

1 **Large Igneous Province sulfur emissions have long-term (>1000 years) effects on the**
2 **ocean carbon cycle**

3 **Hee Jun Cheong¹, Tushar Mittal^{2*}, Courtney Jean Sprain¹, Isabel M Fendley²**

4 ¹University of Florida, Department of Geological Sciences, Gainesville, FL 32611

5 ²Pennsylvania State University, Department of Geosciences, University Park, PA 16802

6 Corresponding author: Tushar Mittal (tmittal@psu.edu)

7 **Key Points:**

- 8 • Volcanic CO₂ and SO₂ emissions have complex and interconnected effects on the ocean-
9 atmosphere system and biosphere
- 10 • Results show sulfate aerosol driven cooling has long-lasting (>1000 years) effects on the
11 ocean carbon cycle
- 12 • Conventional assumption of strict timescale separation between the effects of volcanic
13 CO₂ and SO₂ emissions is incorrect

14 **Abstract**

15 Large Igneous Province (LIP) eruptions are thought to have driven environmental and
16 climate change over wide temporal scales ranging from a few to thousands of years. Since the
17 radiative effects and atmospheric lifetime of carbon dioxide (CO_2 , warming) and sulfur dioxide
18 (SO_2 , cooling) are very different, the conventional assumption has been to analyze the effects of
19 CO_2 and SO_2 emissions separately and add them together afterward. In this study, we test this
20 assumption by analyzing the joint effect of CO_2 and SO_2 on the marine carbonate cycle using a
21 biogeochemical carbon cycle box model (LOSCAR). By performing model runs with very fine
22 temporal resolution (~0.1-year timestep), we analyze the effects of LIP carbon and sulfur gas
23 emissions on timescales ranging from an individual eruption (hundreds to thousands of years)
24 to the entire long-term carbon cycle (>100,000 years). We find that, contrary to previous work,
25 sulfur emissions have significant long-term (>1000 years) effects on the marine carbon cycle
26 (dissolved inorganic carbon, pH, alkalinity, and carbonate compensation depth). This is due to
27 two processes: the strongly temperature-dependent equilibrium coefficients for marine
28 carbonate chemistry and the few thousand-year timescale for ocean overturning circulation.
29 Thus, the effects of volcanic sulfur are not simply additive to the impact of carbon emissions.
30 We develop a causal mechanistic framework to visualize the feedbacks associated with
31 combined carbon and sulfur emissions and the associated timescales. Our results provide a new
32 perspective for understanding the complex feedback mechanisms controlling the
33 environmental effects of large volcanic eruptions over Earth history.

34 **Plain Language Summary**

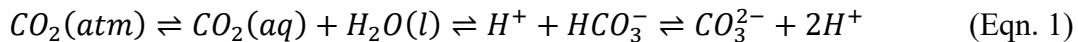
35 Large Igneous Province (LIP) eruptions are among the largest volcanic events in Earth
36 history and have been linked with environmental catastrophes such as mass extinctions and
37 oceanic anoxic events. One of the main ways these volcanic events affect the environment is
38 through the emission of climate-active gases, primarily carbon dioxide (CO_2) and sulfur dioxide
39 (SO_2). These gases are often thought of as behaving independently, as CO_2 causes long-term
40 climate warming while SO_2 , which turns into sulfate aerosols, causes short-term climate
41 cooling. However, in addition to directly causing climate change, both gases also cause more
42 complex environmental changes, including changes to the ocean carbon cycle (e.g., ocean

43 acidification and the amount and chemical species of dissolved carbon). Our study uses a long-
44 term marine carbon cycle box model to investigate these complex effects. We find that the
45 assumption that the effects of each type of gas are independent is not accurate. Instead, we
46 show that the carbon-cycle effects of sulfur emissions, in particular, can persist on long
47 timescales (>1000 years) in addition to short-term cooling. Our results provide a new
48 perspective for understanding the environmental effects of large volcanic eruptions over Earth
49 history.

50 **1. Introduction**

51 Volcanism is a key driver of change in ecosystems and the ocean-atmosphere system on
52 Earth. Volcanic eruptions can strongly perturb the climate and biosphere on a wide range of
53 temporal scales: from years to decades for a single large volcanic eruption to millions of years
54 for the emplacement of a Large Igneous Province (LIP; e.g., the Siberian Traps). Short-term
55 environmental effects of single large eruptive events have been directly observed (e.g., the
56 Pinatubo 1991 eruption, Self et al., 1993; Fay et al., 2023) and are reasonably well understood.
57 Longer-term environmental effects that are difficult to observe on human timescales are more
58 challenging to understand and require disentangling a complex set of Earth system feedbacks
59 (Black et al., 2021; Mather and Schmidt, 2021). These complex direct and indirect Earth system
60 feedbacks, which occur over a range of timescales (Figure 1), are particularly critical for
61 understanding how volcanic eruptions associated with LIP emplacement affected the ocean-
62 atmosphere system and the biosphere on geological timescales (>1000 years).

63 LIPs constitute some of the largest volcanic events in Earth's history representing
64 millions of km³ of predominantly basaltic lavas with individual eruptions having erupted
65 volumes ~1000s km³ (Wignall, 2001; Courtillot, 2002; White et al., 2005; Ernst, 2014; Kasbohm
66 et al., 2021). Multiple paleoclimate and geochronological studies have shown that the
67 emplacement of LIPs occurred simultaneously (within order 10,000 year uncertainty) with severe
68 environmental crises such as mass extinctions and oceanic anoxic events (Courtillot and Renne,
69 2003; Clapham and Renne, 2019; Kasbohm et al., 2021). However, the emplacement of LIPs
70 does not always lead to the same type or magnitude of environmental response. Understanding
71 which factors control different Earth system responses remains one of the key challenges in
72 understanding how volcanism affects climate over Earth history. To elucidate the causal


73 relationship between LIPs and environmental crises, and generally the long-term effects of large-
74 scale volcanism on the Earth system, it is thus important to understand how these volcanic events
75 mechanistically affected the environment beyond simple temporal correlation.

76 Volcanic eruptions associated with LIPs, as well as other large volcanic events, are
77 hypothesized to influence the global ocean-atmosphere system through the rapid atmospheric
78 emission of large amounts of climatically active volcanic gases (e.g., SO₂, CO₂, H₂O, halogens).
79 Specifically, carbon dioxide (CO₂) and sulfur dioxide (SO₂), sourced either from direct degassing
80 of LIP lavas (and magma) or from the heating of carbon- and sulfur-rich sediments by volcanic
81 intrusives, are the two main gases linked to perturbations of the ocean-atmosphere system (See
82 Figure 1a, Clapham and Renne, 2019; Mather and Schmidt, 2021; Callegaro et al., 2023).

83 Classically, the environmental effects of these two volcanic gases have been analyzed
84 separately, because of the assumption that each influences the environment on different
85 timescales. Volcanic CO₂ is a greenhouse gas and has a long residence in the ocean-atmosphere
86 system (hundreds of years in the atmosphere, and hundreds of kiloyears in the marine carbon
87 cycle). Consequently, the release of CO₂ generally results in long-term (10–100+ kiloyears)
88 environmental impacts (e.g., greenhouse warming, changes in weathering) (Figure 1b). In
89 contrast, if volcanic SO₂ reaches the stratosphere, it can oxidize to form sulfate aerosols over the
90 timescale of a few months and result in global cooling for a few years before being deposited on
91 land/oceans (Robock, 2000; Wignall, 2001; Delmelle, 2003). Given the relatively short
92 atmospheric residence times (months to years), volcanic sulfur will only result in short-term
93 direct environmental impacts (e.g., cooling and acid rain) (Wignall, 2001, Figure 1b) unless
94 continuously erupted. Thus, it is often assumed that volcanic SO₂ emissions are not relevant to
95 directly understanding the long-term effects of volcanic eruptions, particularly in the case of LIP-
96 associated eruptions. Within this perspective, the impact of large eruptions can be
97 conceptualized, to first order, as a combination of short-term cooling (up to a few years post the
98 eruption from SO₂ emissions) and long-term warming (from CO₂ emissions).

99 However, this timescale separation assumption may not be fully correct when accounting
100 for the indirect effects of volcanic carbon and sulfur on the Earth system, modulated principally
101 through the marine carbon cycle (Figure 1a). For instance, sulfate has a long residence time in
102 the oceans, and thus volcanism can affect ocean pH and alkalinity through direct sulfate

103 deposition from the atmosphere. Even more importantly, stratospheric sulfate-associated cooling
104 can lead to significant changes in marine carbonate equilibrium chemistry since the equilibrium
105 partition coefficients in marine carbonate chemistry (Eqn. 1) with carbonic acid (H_2CO_3),
106 bicarbonate (HCO_3^-), and carbonate ions (CO_3^{2-}) are strongly temperature dependent (See
107 Section 2.2, Figure 2). The consequent changes in pH and atmospheric pCO_2 in turn may affect
108 ocean carbonate dissolution/carbonate burial and thus the long-term marine carbon cycle
109 response to large volcanic eruptions.

111 The assumption of timescale separation has strongly influenced existing work on
112 understanding the effects of LIP eruptions and has directly motivated two distinct modeling
113 approaches for understanding their environmental impacts:

114 One approach uses complex, high spatial resolution, global climate models (e.g.,
115 GLOMAP in Schmidt et al., 2016; CESM1 in Black et al., 2018; CLIMBER-3 α +C in Landwehrs
116 et al., 2020; Goddard Earth Observing System Chemistry-Climate Model in Guzewich et al.,
117 2022) that are developed to analyze interactions within the Earth system (i.e., atmosphere, ocean,
118 land, etc.) on short timescales (years to 10,000 years at most). Typically, the focus of these
119 studies is the atmospheric radiative effects due to aerosols and the consequential changes in
120 surface temperature and global ocean overturning circulation. For computational reasons, these
121 models are primarily physical models with limited ocean biogeochemistry and can thus only
122 capture the short-term carbon cycle response. Black et al. (2018) modeled the effects of carbon
123 and sulfur with atmospheric circulation using 3D climate modeling (CESM1), including
124 atmospheric, ocean dynamics, and aerosol models. Their results help highlight the atmospheric
125 responses from released carbon and sulfur by demonstrating temperature changes and circulation
126 for the ocean parameters from the associated short-term cooling and long-term warming.
127 However, due to the absence of a biogeochemical cycling model, there are limitations in
128 evaluating ocean geochemistry and carbon cycle responses from both carbon and sulfur jointly.
129 The other approach uses geochemical box models/intermediate complexity Earth system models
130 that utilize simplified ocean-atmospheric dynamics and ocean biogeochemistry to assess the
131 long-term (10,000 years and longer) carbon cycle responses to eruptions. Multiple studies have
132 used these types of models to simulate the long-term carbon cycle response for a number of

133 different LIPs (e.g., LOSCAR in Zeebe, 2012; Landwehrs et al., 2020; Hull et al., 2020; Cox and
134 Keller, 2023; Black et al. 2024). However, the focus of these studies is typically on volcanic CO₂
135 emissions as the climate driver. In the few studies that incorporate the combined effects of
136 carbon and sulfur emissions together on the long-term carbon cycle (Hull et al., 2020; Cox and
137 Keller, 2023), significant simplifications with regard to the volcanic forcing timescale are made.
138 For instance, in Cox and Keller (2023), a few thousand-year model timestep is used for
139 computational reasons to do parameter inversions. In Hull et al. (2020), only some of the
140 potential carbon and sulfur associated processes are included - the effect of volcanically sourced
141 sulfate aerosols on ocean alkalinity, and not temperature. More recently, Cox and Keller (2023)
142 have incorporated these missing components in the LOSCAR model and used it for Bayesian
143 eruption history inversion. However, for computational reasons, the model timestep in their
144 study is ~ 5000 yrs. A variety of volcanological, paleomagnetic, and geochronological evidence
145 (Mittal et al., 2021; Self et al., 2022; Rader et al., 2024) suggest that the individual LIP eruptions
146 lasted for a few years to hundreds of years at most with significant time breaks (>1000–10,000
147 yr), instead of long continuous eruptions for a few thousand years as assumed in these studies.
148 Thus, it is unclear if their modeled effects from the same total volume of sulfur emissions, but
149 spread over much longer timescales with lower amplitude, would give the same response as a
150 more realistic eruption scenario.

151 Furthermore, the focus of some of these studies has been on analyzing the integrated
152 feedback between the ocean-atmosphere cycle and biological organisms to compare model
153 results to specific observational datasets (Landwehrs et al., 2020; Hull et al., 2020; Cox and
154 Keller, 2023). For instance, Landwehrs et al. (2020) integrated both a climate model
155 (CLIMBER-3 α +C Earth System model) and a geochemical box model (LOSCAR, Zeebe (2012))
156 with carbon and sulfur emissions to model end-Triassic volcanism associated with the Central
157 Atlantic Magmatic Province. Analogously, Le Hir et al. (2020) used a climate-carbon-
158 biodiversity coupled model (ECO-GEOCLIM) to assess the impact of the Chicxulub impact and
159 volcanic activity (Deccan Traps) on the productivity and diversity of marine organisms.
160 However, given the complexity of the model and the focus on data-proxy data comparison, it is
161 very challenging to understand how volcanic carbon and sulfur jointly affect the carbon cycle
162 from a mechanistic perspective, especially the different feedback loops in the marine carbon
163 cycle system.

164 Thus, there is a clear knowledge gap in the existing work on the combined effects of
165 carbon and sulfur release over relevant timescales (sub-yr to 100s kyr). To untangle the impact of
166 different Earth system processes (Figure 1), we need to understand, in a process-based
167 framework, the causal relationship between the release of volcanic carbon and sulfur and their
168 impacts on different environmental tracers (pH, temperature, alkalinity, carbonate compensation
169 depth).

170 In this study, we use a biogeochemical box model to test the hypothesis that volcanic
171 sulfur can have a significant long-term effect on the marine carbon cycle (pH, alkalinity, and
172 carbonate compensation depth) and that the effects of volcanic sulfur are not simply additive to
173 the impact of volcanic carbon alone. If correct, our hypothesis suggests that to analyze the effects
174 of large eruptions, particularly LIP eruptions, we must consider the carbon and sulfur volcanic
175 emissions jointly (in contrast to most existing work). Additionally, we develop a causal
176 mechanistic framework to understand the effects of combined carbon and sulfur emissions with
177 an emphasis on determining the feedback amplitudes and characteristic timescales. This analysis
178 will help determine what time resolution is required in climate models to capture the feedbacks
179 correctly. For simplicity, we focus exclusively on the ocean geochemical carbon cycle - a major
180 driver of global environmental change and the control on most paleoclimate records. While LIP
181 eruptions likely significantly impact atmospheric chemistry and dynamics, ocean circulation, and
182 terrestrial systems, isolating the inorganic marine carbon cycle allows us to develop a careful
183 process-based understanding, which can then be subsequently expanded to incorporate other
184 Earth system components.

185 For our analysis, we use a multi-box earth system model, LOSCAR (Long-term Ocean-
186 atmosphere-Sediment CArbon cycle Reservoir Model; Zeebe, 2012), modified to incorporate the
187 effects of sulfate aerosol-driven cooling and the effect of sulfur on ocean alkalinity. We vary
188 eruption parameters such as the total amount of carbon and sulfur released and the timescale over
189 which the gases are released (hypothesized to scale to volatile release from erupted lava and
190 eruption duration, respectively) across a large parameter space. By performing model runs with
191 very fine temporal resolution (~0.1 year timestep), we can analyze the effects of carbon and
192 sulfur release on timescales ranging from individual volcanic eruptions (hundreds to thousands
193 of years) to the entire long-term carbon cycle (>100,000 years, Figure 1b). We focus on
194 continental flood basalt (CFB, i.e. LIPs that erupted through continental crust) eruptions for this

195 work since they are the best examples of volcano-climate-ecosystem interaction due to their
196 large amplitude and associated environmental change based on paleoclimate proxies (Clapham
197 and Renne 2019). To focus on the impact of eruptive gas release on the marine carbon cycle, we
198 keep the ocean circulation and biological productivity parameters the same pre- and post-
199 eruption. Our choice is also motivated in part by the fact that previous studies (Black et al., 2018,
200 Schmidt et al., 2016) have already analyzed the “physical” effect (ocean and atmospheric
201 dynamics) of carbon and sulfur volcanic emissions, but not the "geochemical" carbon cycle
202 effects (changes in marine carbon cycle). To elucidate the role of the simultaneous release of
203 carbon and sulfur, we perform two types of model runs, one carbon-only with the original
204 LOSCAR setup (see supplementary text S1), and one combined carbon and sulfur using our
205 modified LOSCAR setup (including cooling and changes in alkalinity from volcanic sulfur;
206 section 3.1).

207 We focus on modeling the effects of a single LIP eruption (i.e., a single lava flow-field,
208 or gas emission event) as a source of CO₂ and sulfate into the atmosphere (e.g., Self et al., 2022).
209 In reality, LIPs have multiple (hundreds) eruptions as part of a long million-year scale eruption
210 history. However, realistic eruption histories make it difficult to disentangle causal relationships
211 without first understanding the effects of a single eruption, as the volatile gas release volume and
212 eruption duration are varied. We also do not attempt a direct comparison with paleoclimate
213 records here. A model-data comparison would require incorporation of both a multiple eruption
214 history over a million years (but with <1 year time resolution to resolve the individual eruption
215 effects) as well as the physical (ocean dynamics) impacts of the eruptions on the atmosphere-
216 ocean system – this is beyond the scope of the current work.

217 In the following sections, we start with a theoretical background of the main marine
218 carbon environmental tracers and how volcanism could affect them. This analysis is used to
219 develop a conceptual causal diagram with various feedback loops (Section 2). Next, we describe
220 the modeling framework and our model parameters (Section 3), followed by the model results
221 (Section 4). We use these results to update the causal diagram with various feedback loops and
222 associated timescales for the release of carbon and sulfur and the resulting environmental effects.
223 We close with a discussion of the implications of our results in the context of LIP eruptions as
224 well as coupling with physical feedbacks (e.g., changes in ocean circulation) that are not
225 included in our model (Section 5).

226 **2. Theoretical Background**227 **2.1. Primary Environmental Tracers of Interest**

228 In our analysis, we will focus primarily on five marine environmental tracers:
 229 temperature, pH, total alkalinity (TA), dissolved inorganic carbon (DIC), and the carbonate
 230 compensation depth (CCD). These tracers were chosen because they have a significant influence
 231 on marine ecosystems and characterize the state of the marine carbonate system following
 232 perturbations, for example, volcanic eruptions (e.g., Hull et al., 2020; Landwehrs et al., 2020; Le
 233 Hir et al., 2020; Mather and Schmidt, 2021).

234 DIC (mmol kg⁻¹) refers to the sum of the concentration of all dissolved inorganic carbon
 235 compounds, including dissolved CO₂, carbonic acid (H₂CO₃), bicarbonate (HCO₃⁻), and
 236 carbonate ions (CO₃²⁻) (see Eqn. 1). pH is the negative logarithm of proton concentration: -log
 237 [H⁺] and is thus a key variable in the marine carbonate system.

238 Ocean alkalinity refers to the capacity of seawater to neutralize acids and, hence buffer
 239 changes in pH. Titration (or total) alkalinity (TA) refers to the excess of proton acceptors over
 240 proton donors. From here, TA and alkalinity (in mmol kg⁻¹) will be used interchangeably in the
 241 rest of the text. When considering the CO₂ – H₂O system and a few other acid–base systems such
 242 as sulfate, borate, phosphate, and ammonia, TA can be defined (also following the LOSCAR
 243 model – Zeebe, 2012) as Middleburg et al. (2020):

$$244 \quad TA = HCO_3^- + 2CO_3^{2-} + B(OH)_4^- + HPO_4^{2-} + 2PO_4^{3-} + NH_3 + HS^- + 2S^{2-} + OH^- - \\ 245 \quad H^+ - HSO_4^- - 2SO_4^{2-} \quad (\text{Eqn. 2})$$


246 Given the large relative concentrations of [CO₃²⁻] and [HCO₃⁻] at neutral pH compared to
 247 H⁺ and small changes in other acid–base species, besides sulfate (from volcanic sulfur) during
 248 our model simulations, TA can be simplified as follows (Middleburg et al., 2020; Tosca and
 249 Tutolo, 2023):

$$250 \quad TA \approx 2[CO_3^{2-}] + [HCO_3^-] - 2SO_4^{2-} \quad (\text{Eqn. 3})$$

251 Overall, TA is a metric for the ocean's ability to precipitate carbonate and buffer against
 252 pH variations. This neutralizing ability plays a significant role in maintaining marine chemical
 253 balance and supporting marine life, especially calcifying organisms such as corals and mollusks,
 254 which rely on stable pH levels to build and sustain their calcium carbonate structures. Because of
 255 the interdependence between these environmental tracers (Eqn. 1), the marine carbonate system

256 (concentration of each DIC species) is uniquely defined by a combination of any two tracers
 257 among TA, pH, DIC, and $p\text{CO}_2$ (units of μatm).

258 The last environmental tracer of interest for our analysis is the CCD - the depth at which
 259 calcium carbonate (CaCO_3) supply from ocean productivity and water column/seafloor
 260 dissolution are balanced (Eqn. 4, Wood et al., 2022).

262 Below this depth, the solubility of CaCO_3 increases due to higher pressure and lower
 263 temperatures, causing any CaCO_3 materials to dissolve more quickly than they can accumulate.
 264 Hence, no CaCO_3 is preserved on the seafloor. CaCO_3 precipitation and dissolution are critical
 265 components of the marine carbon cycle since the dissolution leads to a two-unit increase in TA
 266 and a one-unit increase in DIC. In contrast, the opposite is the case for the precipitation (see
 267 Figure 2a and b). Thus, changes in CCD act as a critical part of the Earth system response to
 268 perturbations in the atmospheric $p\text{CO}_2$ and marine carbonate chemistry following volcanic
 269 eruptions.

270 **2.2 Anticipated Effects of Volcanic CO_2 and SO_2 emissions:**

271 Based on the theoretical understanding of the marine carbon cycle and prior work on
 272 volcanic forcings, we here provide a brief overview of how volcanic CO_2 and SO_2 emissions
 273 may influence ocean pH, temperature, alkalinity, and CCD. This forms the basis for our causal
 274 diagram (Figure 3), which describes the various feedbacks associated with the CO_2 and SO_2
 275 emissions. The causal diagram in turn provides a reference framework to interpret our model
 276 results in subsequent sections.

277 Firstly, both gases affect the temperature in the atmosphere: volcanic CO_2 increases
 278 $p\text{CO}_2$, which drives warming due to the greenhouse effect (Romps et al., 2022). In contrast, SO_2
 279 emissions, if they reach the stratosphere, oxidize to form sulfate aerosols over a few months
 280 timescale and can lead to cooling due to increased shortwave scattering by aerosols (Robock,
 281 2000; Wignall, 2001; Delmelle, 2003). Next, these changes in atmospheric temperature will
 282 affect the ocean: the surface ocean responds quickly to atmospheric temperature; however, it
 283 takes longer to diffuse heat into the deeper ocean with timescales ranging from years to 1000s of
 284 years, depending on global ocean overturning circulation rates and spatial patterns (Gupta and
 285 Marshall, 2018). Importantly, changes in ocean temperature strongly affect (i) the solubility of

286 various geochemical species in seawater; for example, the solubility of gaseous O₂ decreases
287 with increasing temperature, making a warmer ocean less oxygenated and (ii) the equilibrium
288 coefficients for the reactions in marine carbonate chemistry (Eqn. 1); for example, changes in
289 seawater temperature at constant DIC and TA lead to strong changes in equilibrium atmospheric
290 $p\text{CO}_2$ and ocean pH (Figure 2c and 2d).

291 To illustrate these dependencies, we use pyCO2SYS (Xu et al., 2017; Humphreys et al.,
292 2022); to calculate the equilibrium ocean carbonate chemistry for a range of TA-DIC-seawater
293 temperature conditions for both the shallow and deep ocean. In Figure 2c and d, we show how
294 the equilibrium $p\text{CO}_2$ and pH change as a function of both TA and temperature (at a constant
295 DIC of 2 mmol/kg). As expected, at higher TA, the equilibrium atmospheric $p\text{CO}_2$ decreases,
296 and the pH increases. However, seawater temperature strongly affects the exact value of both
297 these tracers – increasing temperature from 5 to 35°C can lead to up to a 4000 ppm $p\text{CO}_2$
298 increase and 0.4 unit pH decrease. Moreover, the amplitude of the change is dependent on both
299 the value of TA and DIC, while seawater pressure (i.e., depth) has a small impact on pH changes
300 only (See Supplementary Dataset S1). Thus, we expect that ocean temperature changes due to
301 volcanic carbon and sulfur emissions will have a significant but complex impact on the primary
302 environmental tracers (described in the previous section) as temperature evolves in the
303 atmosphere and different parts of the ocean over different timescales.

304 To visualize the various non-intuitive feedbacks and isolate the dominant effects and the
305 associated timescales, we generate a causal diagram to illustrate step-by-step how volcanic gases
306 affect the ocean-atmosphere system (Figure 3). The causal diagram has two causal sequences for
307 CO₂ and SO₂, respectively. Both start with temperature changes and are followed by interlinked
308 changes in marine chemistry, atmospheric $p\text{CO}_2$, and temperature on various timescales.
309 Although we made the causal diagram structure based principally on a theoretical understanding
310 of marine carbonate chemistry, the reaction rates/associated timescales are unclear and require
311 our LOSCAR model results for quantitative estimates.

312 Considering volcanic CO₂ emissions, rising atmospheric $p\text{CO}_2$ leads to increased CO₂
313 absorption by the oceans (changes in both DIC and TA), resulting in ocean acidification
314 (decrease in pH) since the ocean is a key surface carbon reservoir. For instance, about half of the
315 anthropogenic carbon emissions are presently stored in the shallow ocean (Gattuso et al. 2015).

316 This acidification promotes the dissolution of calcium carbonate into calcium and bicarbonate
317 ions (Eqn. 1), thereby shallowing the CCD and making previously stable zones more susceptible
318 to CaCO_3 dissolution (Sulpis et al., 2018). In turn, the dissolution of seafloor CaCO_3 dissolution
319 leads to an increase in DIC and alkalinity (one unit of DIC per two units of TA, Eqn. 1), causing
320 an increase in pH and a decrease in $p\text{CO}_2$ (Figure 2a and b, Deffeyes diagrams - TA vs DIC plots
321 for $p\text{CO}_2$ and pH respectively; Middleburg et al., 2020). Thus, calcium carbonate mineral
322 dissolution acts as a rapid feedback to transfer carbon from the atmosphere to the oceans, one of
323 Earth's biggest surface carbon reservoirs (Ridgwell, 2007; Colbourn et al., 2015; Renforth and
324 Gideon, 2017; Bogumil et al., 2024).

325 On longer timescales, CO_2 -driven warming also affects other environmental processes
326 such as the hydrological cycle, as increased warming is thought to result in increased
327 precipitation, and the favorability of weathering reactions. These changes lead to increased
328 carbonate and silicate weathering on land, causing increases in river alkalinity fluxes into the
329 ocean. The increase in alkalinity then causes permanent CO_2 drawdown (via carbonate mineral
330 precipitation of the dissolved ocean carbon) and hence stabilizing the system back to its original
331 steady state (Berner and Caldeira, 1997; Kump et al., 2000; Penman et al., 2016; Penman et al.,
332 2020). We note that this perspective is a simplified marine carbonate-centric perspective - there
333 is also a critical role of the terrestrial and marine organic carbon cycle in the Earth system
334 feedback to volcanic forcings since marine productivity is dependent on both the terrestrial
335 riverine fluxes and atmospheric $p\text{CO}_2$ while the reduced ocean oxygenation in warmer oceans
336 affects organic carbon preservation (Hilton and West, 2020; Gernon et al., 2024; Rogger et al.,
337 2024). However, to isolate processes, we will not be focusing on these feedbacks in this study.

338 Considering the volcanic sulfur pathways, we expect to have both aerosol-driven cooling
339 and a direct effect on ocean pH and alkalinity because sulfate (SO_4^{2-} , sourced from volcanic
340 aerosol and subsequent sulfuric acid rain) is one component of alkalinity (Eqn. 2). The decrease
341 in temperature also affects the ocean temperatures, influencing ocean pH and alkalinity through
342 feedbacks described above (See Figure 2). The temperature change associated with sulfate
343 aerosols is also much more rapid and brief than the greenhouse warming associated with CO_2 .
344 This is because the lifetime of sulfate in the stratosphere is short; hence, the atmospheric cooling
345 is expected to persist only slightly longer than the duration of each eruption (Schmidt et al.,
346 2016). However, since the deep ocean mixing timescales can be 1000s of years, there can be a

347 lag between the surface cooling/warming and the deep ocean response and reduction in the
348 cooling/amplitude (Cessi, 2019; Johnson and Lyman, 2020). Since volcanic aerosol-derived
349 SO_4^{2-} would decrease TA and sulfate has a long residence time in seawater (Halevy et al., 2012;
350 Present et al., 2020), the decrease in TA would lead to a long-term increase in atmospheric $p\text{CO}_2$
351 (Figure 2c). This is the main sulfur feedback that was included in previous geochemical studies
352 with LOSCAR (Hull et al., 2020).

353 Although we have a first-order conceptual understanding of how volcanic carbon and
354 sulfur likely affect the environment, the complex causal pathways (see Figure 3 with multiple
355 sequential pathways) mean that the effects of a combination of carbon and sulfur emissions are
356 difficult to predict with pyCO2SYS calculations alone - some changes may be opposite and
357 hence decrease overall change (e.g., cooling vs warming) while others may be additive (e.g.,
358 sulfate addition to oceans and $p\text{CO}_2$ increase both decrease TA). Because of the wide range of
359 timescales (up to hundreds of years for sulfate cooling vs hundreds of kiloyears for CO_2
360 greenhouse warming, Figure 1b), assessing the net timescale of feedbacks without Earth system
361 models is challenging. However, understanding the timescales and response amplitudes is
362 necessary to assess how the eruptions with different durations and gas emission rates affect the
363 environment.

364 **3. Methods**

365 **3.1. Geochemical Box Model Setup**

366 For this study, we utilized a geochemical intermediate complexity Earth System model,
367 LOSCAR (Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir), which models
368 carbon cycle perturbations in the oceans, atmosphere, and ocean sediments (Zeebe, 2012) with a
369 multi-box setup (3 boxes each for each ocean basin along with high latitude and atmospheric
370 boxes). LOSCAR is composed of three main components: the ocean, atmosphere, and marine
371 sediments (Supplementary Figure S1 and Text S1). These boxes are coupled together and
372 interact with each other, connected via the global carbon cycle. The global ocean geometry in the
373 LOSCAR is largely divided into the Pacific (P), Atlantic (A), and Indian (I) ocean basins, with
374 the addition of the Tethys (T) ocean for the Paleogene Period setup (Zeebe, 2012). Each ocean
375 box is subdivided into Low-latitude surface (L), intermediate (M), and Deep boxes (D) based on
376 depth, with circulation occurring within the ocean box. The High-latitude box (H) represents
377 cold surface waters.

378 In the ocean boxes, ocean circulation and mixing take place based on conveyor
379 circulation and bidirectional mixing among the subdivided boxes. Dissolving or adding CaCO_3
380 into the ocean boxes will result in accumulation or chemical erosion in the sediment boxes.
381 Material exchange with the atmosphere box is also modeled with weathering flux and gas
382 exchange. Weathering processes (e.g., carbonate, silicate weathering) transport CO_2 from the
383 atmosphere to the sediment boxes. In this reaction, atmospheric $p\text{CO}_2$ is consumed, and calcium
384 and bicarbonate ions are provided to the ocean. Precipitation of CaCO_3 transports carbon from
385 the ocean to the sediment box. Erosion and accumulation are the main processes within the
386 sediment boxes. LOSCAR calculates the following key environmental tracers in each box:
387 temperature, total DIC, alkalinity (TA), phosphate (PO_4), dissolved O_2 , $\delta^{13}\text{C}$ (although we do
388 not discuss isotopic shifts here), pH, $p\text{CO}_2$, and CCD. Motivated by the interest in LIPs such as
389 the Deccan Traps (Cretaceous-Paleogene boundary) and the North Atlantic Magmatic Province
390 (Paleogene), we used the Paleogene configuration of LOSCAR.

391 To evaluate the effects of volcanic sulfur emissions on the ocean carbonate system, we
392 modified the original LOSCAR model to include (a) atmospheric effects: sulfate aerosol-driven
393 cooling based on radiative forcing, converted from SO_2 emission flux, and (b) ocean chemistry
394 effects: the effect of sulfur (SO_4^{2-}) on ocean alkalinity (following Hull et al., 2020). In our
395 simulations, we converted volcanic SO_2 emissions (Tg/yr) into a global radiative forcing (W/m^2)
396 by parameterizing the global climate model results (with aerosol growth) from Schmidt et al.
397 (2015). The volcanic sulfur emissions also result in a net decrease in TA (Eqn. 3) through the
398 addition of sulfate ions to the surface ocean boxes (see Supplementary Text S1).

399 By adopting a lower complexity box model, it is possible to perform long-term modeling
400 (> 1 million years) compared to previous research (e.g., $< 20,000$ years CESM1 from Black et
401 al., 2018 or $< 50,000$ years from Landwehrs et al., 2020). With both carbon and sulfur emissions
402 together, we need a model time step of ~ 0.1 year to properly resolve sulfur-associated effects,
403 because aerosol-driven cooling is rapid and short-lived.

404 **3.2. Model forcings**

405 In order to investigate changes in ocean environmental tracers (pH, ocean temperature,
406 carbonate compensation depth, and alkalinity) due to the eruption of volcanic volatiles, we used
407 various eruption scenarios of an individual LIP eruption (i.e., input forcings). In an eruption
408 scenario, each eruption releases CO_2 and SO_2 into the atmosphere box. We created a range of

409 eruption scenarios by controlling eruption parameters - (A) mass eruption rate (km^3/yr), aka the
410 volume of lava erupted per year, and (B) duration of eruption (yr). For the mass eruption rate, we
411 span a large physically plausible range, using 5, 10, 20, 30, 50, 75, and 100 km^3/yr (Self et al.,
412 2014; Fendley et al., 2019; Self et al., 2021). To convert these eruption rates into the amount of
413 gas released into the atmospheric box, we use estimates of magmatic carbon and sulfur
414 concentrations from LIP melt inclusions: 14 Tg/km^3 of CO_2 and 6 Tg/km^3 of SO_2 (e.g., Self et
415 al., 2014; Hernandez Nave et al., 2021). For the duration of an eruption, we used the following
416 scenarios: 10, 50, 100, 200, 400, 800, 1600, and 1800 years. Typically, individual continental
417 flood basalt eruptions (i.e., a pulse) are thought to last tens to hundreds of years (Fendley et al.,
418 2019; Mather and Schmidt, 2021; Self et al., 2022). Here, we selected a larger range of values to
419 assess the potential effects from a broad range of volcanic scenarios. For simplicity, we assume
420 that the LIP volcanic gas emissions, especially sulfur, can reach the stratosphere efficiently and
421 thus can cause global-scale effects (Self and Mather, 2014; Glaze et al., 2017). We note that the
422 volcanic plume dynamics of LIP eruptions remain an area of active research and hence, the
423 stratospheric transport efficiency of sulfur may be less than unity - changes in this parameter
424 would at best, rescale all our results, but not change our primary conclusions (Mather and
425 Schmidt, 2021).

426 By comparing the model results between setups running combined carbon and sulfur
427 emissions (i.e., eruption scenarios including sulfur emission) to results from carbon-only setups
428 (i.e., eruption scenarios without sulfur emission), we are able to assess the effects of sulfur as
429 well as carbon on the marine carbon cycle, especially, highlighting changes in temperature, pH,
430 TA, and the CCD.

431 **4. Results**

432 To highlight the dominant responses and processes, here, we first present results from a
433 single emissions scenario (eruption rate of 50 km^3/yr with an eruption duration of 400 yr), which
434 has a pattern of carbon cycle response that is similar across a wide range of eruption rates and
435 duration. This is followed by a summary of the behavior across the whole parameter space of
436 eruption rates and durations.

437 4.1. LOSCAR model results from single eruption scenarios

438 In Figure 4, we show the results of the ocean environmental tracers (e.g., temperature,
439 pH, CCD, and TA) against the elapsed time since the eruption for both carbon-only (C-O) and

440 carbon plus sulfur (C+S) models. The different ocean basins (Atlantic, Pacific, Indian, and
441 Tethys) and their corresponding depths (i.e., shallow, intermediate, deep) are indicated by
442 different colors and line styles. In the LOSCAR model, all the major ocean basins have the same
443 temperature response, differing only by depth (shallow, intermediate, deep). To further highlight
444 the differences in the results between our two model setups, we subtract the results from the C+S
445 model from the C-O model for each eruption scenario. Below we highlight the observed changes
446 for each environmental tracer of interest.

447 4.1.1. Oceanic Temperature (°C)

448 In the C-O model, the ocean temperature rises due to carbon dioxide degassing from
449 volcanic eruptions and consequent increase in atmospheric $p\text{CO}_2$. In our exemplar eruption
450 scenario, we calculate a maximum ocean temperature increase of $\sim 0.25^\circ\text{C}$ for the surface and
451 intermediate ocean boxes and $\sim 0.2^\circ\text{C}$ for the deep box (Figure 4a). The surface and intermediate
452 ocean boxes warm rapidly following the eruption (years to 10s of years), while the deep ocean
453 takes a few 1000 yr to experience the peak warming. On longer timescales ($>10,000$ years), the
454 ocean temperatures return to pre-eruption values. This occurs because CO_2 is removed from the
455 atmosphere first by ocean acidification-calcium carbonate dissolution feedback ($\sim 10,000$ years,
456 See Section 2.2) and eventually by terrestrial and marine silicate weathering and calcium
457 carbonate precipitation ($\sim 300,000$ years).

458 In the C+S model, released volcanic sulfur has a dominant short-term effect on
459 temperature, and it results in significant ocean cooling (Figure 4b). We note that this case still
460 has the same amount of carbon dioxide emissions as the C-O case. Our exemplar eruption
461 scenario shows a peak decrease of $\sim 5.7^\circ\text{C}$ in the surface, $\sim 4.1^\circ\text{C}$ in the intermediate, and $\sim 2.3^\circ\text{C}$
462 in the deep box during the eruption. In the deep ocean boxes, we observe that the response time
463 is slower (a few thousand years; Figures 4b and 5a). Correspondingly, the deep ocean also takes
464 longer to return to pre-eruption values than intermediate and shallow boxes. Given the LOSCAR
465 model parameterization, there are no significant differences in temperature responses across the
466 surface boxes (and the same for intermediate and deep boxes). This is clearly illustrated by the
467 overlapping plots in Figure S3a for each ocean depth box for C+S – C-O model differences.

468 However, in the longer term (10 – 100s of kiloyears), the C+S model results also show
469 warming, driven by the CO_2 release as well as the reduction in TA from the addition of sulfate to
470 seawater. However, the peak amplitude of the warming is less than that of the C-O model

471 scenario (Figures 4a, b and 5a). This is clearly illustrated by the fact that the peak atmospheric
472 $p\text{CO}_2$ perturbation in the C+S model is about half of that in the C-O model (Figures 4f and 5d).
473 Eventually, silicate weathering helps return the system to the pre-eruption equilibrium state.

474 The primary temperature behavior we see in the models is determined by the temperature
475 relaxation timescales for each ocean box depth in LOSCAR - 20, 200, and 1,000 years for
476 surface, intermediate, and deep ocean boxes (see supplementary text S1 for details). These ocean
477 mixing and temperature diffusion timescales are consistent with detailed ocean dynamics models
478 and global climate models demonstrating different response timescales for shallow ocean (years
479 to decades) and deep ocean (hundreds to thousands of years) (Gupta and Marshall, 2018).

480 4.1.2. pH

481 In our C-O model (Figures 4c, d), pH decreases are observed after the eruption in all
482 ocean boxes (~ 0.02 pH units in the surface ocean and smaller in the deeper ocean), as expected
483 due to the dissolution of volcanic CO_2 in seawater. Like temperature, the deep ocean box sees a
484 smaller and time-delayed pH response than the volcanic input, likely due to lags introduced by
485 ocean circulation.

486 In contrast, the C+S model results show a more complex pH response, including both pH
487 increases and decreases over time (Figures 4c, d and 5b). In the shallow ocean boxes, we observe
488 an initial increase in pH followed by a recovery to lower values in $\sim 10,000$ years. On the other
489 hand, in the intermediate and deep boxes, we see a pH drop immediately after the eruption,
490 followed by a pH increase similar to the surface ocean box (but with a smaller amplitude), and
491 finally relaxation close to a steady state in $\sim 10,000\text{--}15,000$ years. Thus, when comparing the
492 difference in pH perturbations between the C+S and C-O model, we see that the surface ocean
493 boxes always see a pH increase compared to the C-O model. In contrast, the intermediate and
494 deep ocean boxes (Atlantic, Indian, Tethys - Figure 5b) see both a stronger pH decrease and a
495 subsequent pH increase in the C+S models. We also find that the response in the Pacific Ocean
496 box is slightly different compared to the other ocean boxes - the deep Pacific does not have a
497 pronounced initial drop in pH compared to other deep ocean boxes. These differences are likely
498 because of different initial TA, alkalinity, and ocean temperatures and the prescribed spatial
499 pattern of ocean circulation in LOSCAR. Overall pH changes in the C+S model are more
500 temporally complex and variable compared to the C-O model.

501 4.1.3. Carbonate Compensation Depth and Total Alkalinity

502 Figure 4e shows the CCD changes in the four ocean basins (i.e., Atlantic, Pacific, Indian, 503 and Tethys) following the volcanic carbon and carbon and sulfur emissions, respectively. In the 504 model results, the overall CCD in both the model scenarios initially becomes shallower, although 505 the amplitude of CCD change is different across ocean basins. This is expected since ocean 506 acidification leads to calcium carbonate dissolution and a corresponding increase in TA (Figure 507 2). This process represents the fast ocean chemical buffering response to atmospheric $p\text{CO}_2$ 508 increases and occurs over timescales of 5,000–20,000 years (Section 2.2). On longer timescales, 509 the CCD in the C-O model becomes deeper than the pre-eruption state - this allows the removal 510 of carbon from the ocean-atmosphere system by seafloor sedimentary carbon burial and silicate 511 weathering (Bogumil et al., 2024).

512 Although we see similar overall CCD behavior in the C+S model, the CCD changes are 513 much faster/abrupt (~5,000-10,000-year timescale) and also have a larger magnitude. These are 514 coincident with the strong decreases in pH in the deep ocean boxes. Correspondingly, TA shows 515 a much larger and faster increase in the C+S models in the deep ocean (Supplementary Figure S2). 516 In contrast, the shallow and intermediate ocean boxes in the C+S model show an initial TA 517 decrease after the eruption partially due to sulfate addition in the surface ocean. This is followed 518 by an increase in TA over a few 1000 yr timescale before relaxation to an equilibrium state.

519 In both C+S and C-O models, we see that the CCD shallowing of the Atlantic and Indian 520 oceans is more pronounced than that of the Pacific and Tethys ocean boxes. This is likely related 521 to different initial TA-DIC states of the deep ocean boxes which in turn lead to a deeper initial 522 CCD for the Atlantic ocean. Overall, we find a more dynamic and faster CCD response in the 523 C+S model. This is also reflected by the faster changes in TA and DIC in the C+S models 524 (Supplementary Figures S2 and S3) across the different ocean boxes.

525 To further illustrate the significantly different ocean marine carbonate chemistry 526 dynamics in the C-O and C+S models, we show the time evolution of the models in the TA-DIC 527 space (Figure 6; Supplementary Data S3). This clearly illustrates that the two models follow 528 distinct trajectories, with the C+S model exhibiting initial sulfate-associated TA change and DIC 529 increase, likely due to colder temperatures. This is followed by the effect of calcium carbonate 530 dissolution, which increases TA and DIC and eventually seafloor carbonate burial to return the 531 system back to equilibrium. We find that the distinction between the C-O and C+S models is

532 stronger in the shallow ocean box. This is expected given the stronger temperature perturbation
533 in the upper ocean from sulfate-aerosol cooling. The exact trajectories are a consequence of the
534 coupled ocean carbon cycle in LOSCAR and are thus complex. However, the results clearly
535 illustrate visually the significant differences between the C-O and the C+S models in the context
536 of primary marine carbon cycle parameters.

537 **4.1.4 Atmospheric $p\text{CO}_2$**

538 In the C-O model, the carbon dioxide degassing from volcanic eruptions leads to an
539 increase in atmospheric $p\text{CO}_2$ (Figure 4f – solid line). Subsequently, the atmospheric $p\text{CO}_2$
540 returns back to pre-eruption state over 10s-100s of kyr due to the combined effect of carbonate
541 and silicate weathering cycles. In the C-S case, we see an initial rapid decrease in atmospheric
542 carbon dioxide in C+S model (Figure 4f – dashed line) despite volcanic carbon emissions. This is
543 likely due to enhanced dissolution of CO_2 in colder surface ocean waters (Figure 4a – dashed line).
544 When the surface ocean temperatures relax back to pre-eruption state, the atmospheric increases
545 (even though the eruption has stopped much earlier) due to atmosphere-ocean exchange. However,
546 the peak atmospheric in the C+S model is lower than the C-O model, even though they have the
547 same overall volcanic carbon dioxide emissions. These results highlight the significant indirect
548 impact of volcanic S emissions on the climate by coupling through the inorganic marine carbon
549 cycle. We also find a similar type of behavior for the dissolved ocean oxygen content, but inverted
550 in sign. The dissolved oxygen decreases in the C-O model due to an increase in ocean temperatures.
551 In contrast, it initially increases in the C+S model due to reduced temperatures and increased
552 seawater dissolution, followed by a return to a similar response as the C-O model over long
553 timescales (See Supplementary Data S2; Figure 3).

554
555 **4.2. Environmental tracers vs total eruption volume**

556 Next, we analyze the overall trends in changes in temperature, pH, and CCD as a function
557 of eruption duration, eruption rate, and total eruption volume (Figures 7 and 8, Supplementary
558 Figures S4-15; Supplementary Data S4). Here, we show results for the Pacific and the Atlantic
559 Ocean basins since they are the largest ocean basins, and the changes are representative of global
560 averaged behavior.

561 Overall, we see that the changes in environmental tracers are strongly dependent on the
562 total eruption volume, and the shallower the ocean depth, the greater the perturbation. For

563 instance, the shallow ocean boxes experience stronger maximum cooling for larger eruption
564 volumes in contrast to intermediate and deep ocean boxes (Figure 7). Additionally, the C-O
565 model's maximum warming is larger than the C+S models across the parameter space. This result
566 suggests that volcanic sulfur indirectly affects ocean warming long after the direct effect of
567 cooling has dissipated.

568 Considering the ocean pH, the eruption volume similarly primarily controls the behavior
569 (Figure 8), though there is a fair bit of scatter at high erupted volumes. The pH reduction in the
570 C+S models is typically smaller than the C-O model for the Pacific Ocean boxes but it is larger
571 in the Atlantic Ocean box (similar to the results discussed earlier). Furthermore, we uniquely see
572 a large increase in pH compared to the initial state in the C+S model, likely due to the
573 temperature dependence of marine carbonate equilibrium coefficients (Figure 2). Finally, CCD
574 changes in the Pacific and Atlantic both depend on erupted volume, but with different
575 relationships (Supplementary Figure S4). The CCD shoaling is much stronger in the C+S models
576 with the Atlantic Ocean (deepest CCD) experiencing the first changes followed by the Pacific
577 with increasing eruption volumes. This is potentially related to the different structures of ocean
578 circulation in these ocean basins - the Atlantic has a faster overturning circulation that also leads
579 to a stronger pH perturbation in the deep ocean.

580 When we compare eruption scenarios that have the same total eruptive volume but
581 differing eruption duration, we see that a short-duration, high-mass eruption rate (large amount
582 of gas emissions per year) results in larger magnitude temperature changes in shallow ocean
583 model responses compared to a long-duration eruption with a smaller mass eruption rate
584 (Supplementary Figure S5). However, this is not the case for deep ocean boxes wherein a long-
585 lived eruption (comparable to timescales of ocean overturning circulation, ~ few 1000 years) can
586 cool the deep ocean more than a large but short-lived eruption, thus affecting ocean CCD and pH
587 of deep ocean box in a complex manner (Supplementary Figures S6-S9).

588 Thus, overall we find that both the eruption rate and duration are important, depending on
589 the environmental tracer of interest, and eruption volume alone does not capture the full carbon
590 cycle response (Supplementary Figures S10-S15). Analyzing the exact reasons for the
591 differences between different scenarios, especially the structure of the CCD responses across
592 different ocean basins, is beyond the scope of the current paper since it depends on the nature of

593 ocean mixing and initial bathymetric distribution of the basins (Bogumil et al., 2024). Our results
594 across the parameter space show the diversity of responses in the environmental tracers for
595 different eruption parameters with significant differences between the C+S and C-O models.

596 **5. Discussion**

597 5.1. Counterintuitive effects of temperature-dependent equilibrium coefficient on pH:

598 Looking at the C+S model pH results (Figure 4c and 4d; Figure 5b), pH responses vary
599 with the ocean depths and over time. Intuitively, following a volcanic eruption, pH in the surface
600 ocean should decrease due to ocean acidification from the addition of CO₂ and sulfuric acid.
601 However, the results show that pH actually increases in the shallow ocean boxes. This is most
602 likely because the equilibrium coefficients of the various DIC species are temperature-dependent
603 variables, and a decrease in temperature (for a constant TA and DIC) results in an increase in pH
604 (Figure 2). Although the input of acids (sulfate, dissolved CO₂) into the surface water likely has
605 an effect, the temperature effect is larger, and hence, there is a net increase in pH.

606 Since diffusion in the environmental tracers (DIC, TA) in seawater is much smaller than
607 temperature, thermohaline circulation (i.e., physical transport of water mass) can transport
608 carbonate ionic species between ocean boxes more efficiently than temperature changes
609 (Sharqawy et al., 2010; Zeebe, 2011; Supplementary Text S1). Thus, the intermediate and deep
610 ocean boxes see the changes due to acidification (CO₂ and SO₄²⁻ input) more quickly than the
611 temperature changes, resulting in an initial decrease in pH. This is further enhanced by increased
612 solubility of CO₂ in seawater at lower temperatures at the surface, which results in an increase in
613 DIC which is then transported to the deeper ocean. Then, an increase in pH follows after a few
614 hundred years, due to the combined effects of a) rapid carbonate mineral dissolution at the
615 seafloor, increasing TA and shallowing the CCD, and b) the temperature decrease finally
616 reaching the deeper ocean from the surface. Figure 3 shows a schematic description of this
617 feedback loop while Figure 6 shows the time-trajectory of the C-O and C+S model for two
618 representative ocean boxes.

619 In summary, in the C+S model, the effects of cooling on temperature-dependent DIC-
620 species equilibrium coefficients lead to faster transport of atmospheric carbon into the ocean than
621 in the C-O model. Furthermore, the feedback described above leads to a rapid shoaling of the
622 CCD and then a subsequent rebound in pH within a few hundred to a thousand years. Overall,

623 the calcium carbonate dissolution feedback process, which occurs in the C-O model over 5,000–
624 20,000 years, occurs much more rapidly in the C+S model.

625 Furthermore, because carbon is sequestered into the ocean faster in the C+S model, the
626 overall long-term warming is less, even long after the sulfate aerosol-driven cooling is over. This
627 is because the peak atmospheric carbon dioxide is lower in the C+S model due to the rapid
628 sequestration of some volcanic C in the ocean compared to the C-O model (Figure 4f). Thus,
629 even with the same total volcanic carbon emissions, the climate response of the C+S model is
630 strikingly different. This result contrasts with previous studies, (e.g., Hull et al., 2020), that only
631 considered the effects of sulfur on ocean alkalinity and hence found that volcanic sulfur caused
632 enhanced warming over long timescales. *Overall, our results illustrate that the timescale*
633 *separation assumption for volcanic carbon and sulfur impacts, inherent in a number of previous*
634 *studies, does not always apply.* These results have important implications in terms of interpreting
635 paleoclimate proxies, especially high-resolution records of potential LIP associated cooling and
636 warming (e.g., O'Connor et al., 2024).

637 **5.2. Identifying dominant effects within the causal diagram:**

638 Using our model results, we were able to identify the dominant effects associated with
639 volcanic carbon and sulfur emissions in the context of marine carbonate chemistry as well as the
640 associated timescales. By comparing the results from the C-O vs. the C+S models, we can isolate
641 the impacts of volcanic sulfur emissions on the ocean-atmosphere system. We used these model
642 results to update the causal diagram shown in Figure 3, focusing on the dominant feedback
643 loops.

644 The causal diagram uses distinct colors to indicate different timescales for various
645 processes. Relatively rapid events (year to decade scale), such as acid rain or sulfate aerosol
646 cooling, are displayed using red arrows. Century-scale intermediate processes include
647 temperature, pH, TA drops, and rapid shoaling of the CCD after the eruptions (green arrows).
648 Relatively long-term reactions (i.e., more than 1000 yrs) are indicated by navy blue arrows. The
649 causal diagram provides a visual summary of the processes described in the previous sections
650 and thus can act as a mechanistic framework to assess how large eruptions affect the
651 environment.

652 A key conclusion from our results and the causal diagram is the importance of
653 appropriate time resolution in the carbon cycle models (Figure 3). For instance, the dominant
654 processes in the C+S model include ocean temperature change and CCD shoaling, both of which
655 occur at intermediate (~century) timescales. Consequently, the temporal resolution of the model
656 is very important. Models with a few 1000-year time steps (e.g., Cox and Keller, 2023) will not
657 resolve these processes, and this may strongly affect the long-term behavior. In our models, we
658 use a time step of a fraction of a year to fully resolve the short-term cooling effects from sulfate
659 aerosol and its effects on marine carbonate chemistry due to temperature-dependent equilibrium
660 constants. Although more computationally expensive than a longer time step, especially when
661 models need to run for hundreds of kiloyears to millions of years, our results suggest that high
662 temporal resolution is necessary to capture the dynamics resulting from very rapid processes,
663 which (as discussed in the previous section) do impact the much longer-term carbon cycle.

664 **5.3. Importance of multiple eruptions:**

665 In this study, we have focused on the effects of a single large eruption on the marine
666 carbon cycle. In reality, LIPs are characterized by multiple individual eruptions over a million-
667 year timescale (Sprain et al., 2019; Black et al., 2021; Mittal et al., 2021; Self et al., 2021). Thus,
668 to compare our model results with paleo-environmental datasets, we need to consider scenarios
669 with multiple eruptions and evaluate the importance of other eruption parameters such as the
670 typical time between eruptions and the total number of eruptions. Although we do not model this
671 explicitly, our results do provide some perspective on what we might expect for multi-eruption
672 scenarios, since we have determined the key response timescales. When the time between
673 eruptions is shorter than the timescale over which the large responses persist, e.g., effects on
674 CCD, pH, and temperature, the effect of multiple eruptions will be additive and complementary
675 (e.g., see Figure 4 and Supplementary Dataset S2 for response timescales). In contrast, if the
676 eruption frequency is much lower, each of the multiple eruptions will be effectively independent.
677 Since the deep ocean responses are typically longer duration (due to ocean mixing; Figure 4b),
678 there is a higher likelihood of additive responses in the deep ocean from multiple eruptions
679 (Gupta and Marshal, 2018).

680 Additionally, our results for marine CCD and pH show a series of complex changes
681 within the first few thousand years after an eruption (Figure 5b,c). Geochemical and
682 volcanological estimates of LIP eruption recurrence intervals suggest that subsequent eruptions

683 likely occurred within that time interval (e.g., Mittal et al., 2022; Fendley et al., 2019). In that
684 case, the marine carbon cycle would experience large, rapid, and repeated perturbations, with
685 significant implications for the ecosystem impact of the eruptions and their potential to trigger a
686 mass extinction (e.g., Close et al., 2020; Foster et al., 2023; Monarrez et al., 2023; Payne et al.,
687 2023). Analyzing the response and feedbacks for multiple closely-spaced eruptions (within a few
688 thousand years) is beyond the scope of the present study, but would be a fruitful avenue for
689 future work.

690 **5.4. Role of ocean dynamics and biological feedbacks:**

691 Our study has focused on understanding how these LIP volatiles impact climate change
692 by examining individual environmental tracers and their relationships specifically in the context
693 of ocean geochemistry. To simplify our models and gain mechanistic insights, we excluded
694 certain factors such as physical ocean/atmosphere dynamics and biological processes. However,
695 as a next step, coupling the chemical, physical, and biological processes is needed to understand
696 the net effect of large volcanic eruptions with carbon and sulfur emissions. In particular, the
697 strong surface temperature changes in our results would affect the ocean-atmosphere dynamics.
698 For example, previous work by Black et al., (2018) shows that volcanic cooling enhances the rate
699 of the global ocean overturning circulation. However, their work did not examine the consequent
700 effects on marine carbonate chemistry (e.g., TA, DIC) and biological productivity. Since the
701 ocean pH and CCD responses are dependent on temperature and ocean circulation in our model
702 (See Section 5.1, Figure 2), understanding the coupled feedbacks using a physical-chemical
703 model is a key direction for future work.

704 Additionally, future studies should consider the coupling between sulfate aerosols and
705 stratospheric water vapor and its effect on surface cooling and warming. Guzewich et al. (2022
706 and 2024) found that sulfate aerosols can locally heat up the stratosphere and thus increase the
707 water vapor content in the lower stratosphere. Since water vapor is a greenhouse gas (Maycock
708 et al., 2021), it can cause global warming following the stratospheric cooling from the eruptions
709 given the longer stratospheric residence time of water vapor compared to aerosols. Stratospheric
710 water vapor can in turn affect stratospheric ozone and atmospheric dynamics, leading to various
711 feedbacks (which can lead to warming or cooling) that need to be carefully analyzed and then
712 parameterized in long-term carbon cycle models (Wang et al., 2023; Fleming et al., 2024).
713 Finally, changes in ocean temperature and chemistry would significantly affect marine

714 ecosystems and productivity as biological pump efficiency (rates of carbonate and organic
715 carbon remineralization in the water column). These and other important dynamical feedbacks
716 would need to be coupled to the work we have done in this study to develop a full mechanistic
717 causal diagram framework and interpret paleoclimate records; our work provides a baseline for
718 the chemistry of the carbon cycle feedbacks.

719 **6. Conclusions**

720 In this paper, we conducted model experiments to evaluate whether sulfate aerosol-driven
721 cooling during continental flood basalt eruptions has long-term effects on the marine carbon
722 cycle. We used the LOSCAR intermediate complexity carbon cycle model and compared the
723 model results for running a scenario with only CO₂ emissions with those using a scenario
724 involving both CO₂ and SO₄²⁻ emissions (which we assume reach the stratosphere). We found
725 that volcanic sulfur has a significant impact on all the environmental tracers in the model -
726 temperature, pH, TA, DIC, and CCD.

727 In our carbon and sulfur model results, we find some counterintuitive behavior, such as
728 the increase in pH in the surface ocean immediately following an eruption. However, the reason
729 for this change became clear when considering the impact of temperature decrease on DIC
730 species equilibria. Although this sulfate aerosol-driven cooling is brief (<~500 years), its effects
731 on marine carbonate chemistry persist for much longer, for example, the peak amount of
732 warming is lower in the carbon and sulfur model scenario relative to that with carbon emissions
733 alone.

734 In conclusion, our results validate our hypothesis that volcanic sulfur emissions can have
735 a significant long-term effect on the marine carbon cycle (pH, alkalinity, and carbonate
736 compensation depth) and not just on short (tens to hundreds of years) timescales. The effects of
737 volcanic sulfur are not simply additive to the impact of volcanic carbon alone, highlighting the
738 importance of analyzing them both jointly, rather than individually for large eruptions,
739 particularly flood basalt eruptions. Furthermore, high temporal resolution (~0.1 yr) is needed to
740 properly represent the volcanic effects on the marine carbon cycle. We also develop a causal,
741 mechanistic framework to understand the effects of combined carbon and sulfur emissions. This
742 framework can be extended to include physical (atmospheric, ocean dynamics) and biological

743 processes in the future to help develop a comprehensive understanding of how large volcanic
744 eruptions affect the environment.

745 **Figure Captions**

746
747 **Figure 1.** (a) A schematic illustration showing the direct and indirect environmental
748 effects of volcanic carbon and sulfur emissions from Large Igneous Province (LIP) volcanism,
749 modified after Clapham and Renne (2019). (b) Timescale of earth system processes and
750 geological events affecting the surface environmental change. We note the potential timescales
751 for forcings from individual eruptions and large igneous province emplacement at the bottom.
752 Modified after Rohling et al. (2018).

753 **Figure 2.** Alkalinity (TA) versus dissolved inorganic carbon (DIC) plots, calculated
754 using CO2SYS, for the very shallow ocean (~100 m) and 10°C with corresponding equilibrium
755 values shown as colors for atmospheric $p\text{CO}_2$ (a) and pH (b). Effects of seawater temperature on
756 the equilibrium $p\text{CO}_2$ (c) and pH (d) as a function of TA for a fixed DIC value (2 mmol/kg) and
757 shallow ocean depths (~100 m).

758 **Figure 3.** Causal diagram showing the dominant effects and relative reaction rate from
759 LOSCAR model results. The red arrows indicate short-term processes (~tens of years), the green
760 arrows intermediate (~hundreds of years), and the dark blue arrows indicate long-term processes
761 (~thousands of years). Blue stars highlight the dominant effects in the model results.
762 Temperature decrease, pH increase, and TA increase are the dominant environmental effects of
763 the combined sulfur and carbon model. The yellow highlighted box shows the dominant reaction
764 flow in the model results.

765 **Figure 4.** Plots of several environmental tracers responding to gas equivalents of an
766 eruption of 50 km³/yr of basalt (with assumed gas content of 14 Tg/km³ of CO₂ and 6 Tg/km³ of
767 SO₂), emitted over 400 years, for carbon-only (C-only, solid lines) and carbon and sulfur (C+S,
768 dashed lines) model results. Each plot spans 5000 years before the eruption to 30,000 years since
769 eruption initiation to highlight initial changes (c.f. the total model duration is 2,000,000 years).
770 (a) and (b) show the temperature in the shallow and deep ocean, respectively (note these
771 temperatures are the same for the major ocean basins and only vary as a function of ocean
772 depth). (c) and (d) show pH for the Pacific and Atlantic oceans as representative examples. (e)

773 shows the CCD response for each major ocean basin. (f) shows atmospheric $p\text{CO}_2$ for the C-only
774 and C+S models.

775 **Figure 5.** Differences in temperature (a), pH (b), CCD (c), and atmospheric $p\text{CO}_2$ (d)
776 between the combined carbon and sulfur (C+S) model and the carbon-only (C-only) model for an
777 eruption of $50 \text{ km}^3/\text{yr}$ and duration of 400 years. The plots are illustrated by subtracting the value
778 for the relevant parameter in the C-only model results from the C+S model results. Hence,
779 negative (positive) values indicate lower (higher) environmental tracer values in the combined
780 model than in the carbon-only model.

781
782 **Figure 6.** Pathway plots for alkalinity (TA) against dissolved inorganic carbon (DIC)
783 plots with temperature (color) in the Pacific surface (a) and deep (b) ocean boxes spanning the
784 model results for an eruption of $50 \text{ km}^3/\text{year}$ and duration of 400 years. The path represents the
785 total $\sim 100,000$ -year duration of the model run after eruption initiation. Both C-only and C+S
786 models have the same starting TA, DIC, and temperature values. Note that (a) and (b) have
787 different temperature scales. The passage of time for the carbon-only (C-only; pink arrows) and
788 the combined carbon and sulfur (C+S; green arrows) models are shown as arrows. Important
789 time points are indicated, including maximum and minimum temperature, eruption start and end,
790 and model end.

791
792 **Figure 7.** Plots of maximum warming and maximum cooling in relation to the total
793 volume of the eruption (km^3). Note the difference in the y-axis scale for (a) and (b) and that the
794 temperatures are the same for the major ocean basins and only vary as a function of ocean depth.
795 Maximum warming (cooling) is the maximum difference between the initial and highest (lowest)
796 temperature values for a particular model result (C-only: red circles; C+S: blue circles and
797 squares). Maximum cooling is not plotted for the C-only model because cooling effects are
798 insignificant.

799 **Figure 8.** Plots of maximum pH increase and decrease in relation to the total volume of
800 the eruption (km^3), for the Pacific and Atlantic ocean basins, including the shallow, intermediate,
801 and deep ocean boxes. The maximum pH increase (decrease) is the difference between the initial
802 and highest (lowest) pH values for a particular model result (C-only: red circles and squares;
803 C+S: blue circles and squares).

804

805 **Acknowledgments**

806 HJC and CJS acknowledge funding from National Science Foundation (NSF) grant
807 #2321344. CJS additionally acknowledges funding from NSF grants #2237807, #2245629,
808 #2054605, and #2016763. TM acknowledges funding from PSU. We acknowledge
809 computational support from HiPerGator super computing facility at UF. We acknowledge
810 Richard Zeebe for providing a copy of the LOSCAR code for the work in this study. We
811 acknowledge Steve Self, Paul Renne, Mark Richards, and Matthew Bogumil for helpful
812 discussions about this work and LOSCAR modeling.

813 **CRediT Roles:**

814 HJC: Data curation, formal analysis, investigation, visualization, writing-original draft, and
815 software. CJS: Funding acquisition, investigation, project administration, resources, supervision,
816 and writing-review and editing. TM: Conceptualization, formal analysis, investigation,
817 methodology, project administration, software, supervision, validation, visualization, and
818 writing-review and editing. IF: Conceptualization, investigation, methodology, validation,
819 visualization, and writing-review and editing.

820

821 **Open Research**

822 All data (model output files as well as python scripts) are available at Cheong et al.,
823 2024. The original LOSCAR code was graciously provided to us by Richard Zeebe. Additional
824 figures and model results are also available within the supplemental information.

825

826 **References**

827 Berner, R. A., & Caldeira, K. (1997). The need for mass balance and feedback in the geochemical
828 carbon cycle. *Geology*, 25(10), 955-956. [https://doi.org/10.1130/0091-7613\(1997\)025<0955:TNFMBA>2.3.CO;2](https://doi.org/10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2)

830

831 Black, B. A., Neely, R. R., Lamarque, J.-F., Elkins-Tanton, L. T., Kiehl, J. T., Shields, C. A., et al.
832 (2018). Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur
833 outgassing. *Nature Geoscience*, 11(12), 949-954. <https://doi.org/10.1038/s41561-018-0261-y>

834

835 Black, B. A., Karlstrom, L., & Mather, T. A. (2021). The life cycle of large igneous provinces.

836 *Nature Reviews Earth & Environment*, 2(12), 840-857. <https://doi.org/10.1038/s43017-021-00221-4>

838

839 Black, B. A., Karlstrom, L., Mills, B. J., Mather, T. A., Rudolph, M. L., Longman, J., & Merdith, A.

840 (2024). Cryptic degassing and protracted greenhouse climates after flood basalt events.

841 *Nature Geoscience*, 1-7.

842

843 Bogumil, M., Mittal, T., & Lithgow-Bertelloni, C. (2024). The effects of bathymetry on the long-

844 term carbon cycle and CCD. *Proceedings of the National Academy of Sciences*, 121(21),

845 e2400232121. <https://doi.org/10.1073/pnas.2400232121>

846

847 Callegaro, S., Baker, D. R., Renne, P. R., Melluso, L., Geraki, K., Whitehouse, M. J., et al. (2023).

848 Recurring volcanic winters during the latest Cretaceous: Sulfur and fluorine budgets of Deccan

849 Traps lavas. *Science advances*, 9(40), eadg8284. <https://doi.org/10.1126/sciadv.adg8284>

850

851 Cessi, P. (2019). The global overturning circulation. *Annual Review of Marine Science*, 11(1),

852 249-270. <https://doi.org/10.1146/annurev-marine-010318-095241>

853

854 Cheong, H. J., Mittal, T., Sprain, C., & Isabel, F. (2024). supplementary material for "Analyzing

855 the joint effect of volcanic carbon and sulfur emissions on the marine carbon cycle", for

856 *Geochemistry, Geophysics, Geosystems* [Data set]. <https://doi.org/10.5281/zenodo.13760340>

857

858 Clapham, M. E., & Renne, P. R. (2019). Flood basalts and mass extinctions. *Annual Review of*

859 *Earth and Planetary Sciences*, 47(1), 275-303. <https://doi.org/10.1146/annurev-earth-053018-060136>

861

862 Close, R. A., Benson, R. B., Saupe, E. E., Clapham, M. E., & Butler, R. J. (2020). The spatial
863 structure of Phanerozoic marine animal diversity. *Science*, 368(6489), 420-424.

864

865 Colbourn, G., Ridgwell, A., & Lenton, T. (2015). The time scale of the silicate weathering
866 negative feedback on atmospheric CO₂. *Global Biogeochemical Cycles*, 29(5), 583-596.
867 <https://doi.org/10.1002/2014GB005054>

868

869 Courtillot, V. E., & Renne, P. R. (2003). On the ages of flood basalt events. *Comptes Rendus
870 Geoscience*, 335(1), 113-140. [https://doi.org/10.1016/S1631-0713\(03\)00006-3](https://doi.org/10.1016/S1631-0713(03)00006-3)

871

872 Courtillot, V. (2002). *Evolutionary catastrophes: the science of mass extinction*: Cambridge
873 University Press.

874

875 Cox, A. A., & Keller, C. B. (2023). A Bayesian inversion for emissions and export productivity
876 across the end-Cretaceous boundary. *Science*, 381(6665), 1446-1451.
877 <https://doi.org/10.1126/science.adh3875>

878

879 Delmelle, P. (2003). Environmental impacts of tropospheric volcanic gas plumes. *Geological
880 Society, London, Special Publications*, 213(1), 381-399.
881 <https://doi.org/10.1144/GSL.SP.2003.213.01.23>

882

883 Ernst, R. E. (2014). *Large igneous provinces*: Cambridge University Press.
884 <https://doi.org/10.1017/CBO9781139025300>

885

886 Fay, A. R., McKinley, G. A., Lovenduski, N. S., Eddebar, Y., Levy, M. N., Long, M. C., et al. (2023).
887 Immediate and Long-Lasting Impacts of the Mt. Pinatubo Eruption on Ocean Oxygen and
888 Carbon Inventories. *Global Biogeochemical Cycles*, 37(2), e2022GB007513.
889 <https://doi.org/10.1029/2022GB007513>

890

891 Fendley, I. M., Mittal, T., Sprain, C. J., Marvin-DiPasquale, M., Tobin, T. S., & Renne, P. R. (2019).
892 Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination
893 of high-resolution terrestrial mercury records and geochemical box models. *Earth and Planetary
894 Science Letters*, 524, 115721. <https://doi.org/10.1016/j.epsl.2019.115721>

895

896 Fleming, E. L., Newman, P. A., Liang, Q., & Oman, L. D. (2024). Stratospheric temperature and
897 ozone impacts of the Hunga Tonga-Hunga Ha'apai water vapor injection. *Journal of Geophysical
898 Research: Atmospheres*, 129(1), e2023JD039298. <https://doi.org/10.1029/2023JD039298>

899

900 Foster, W. J., Allen, B. J., Kitzmann, N. H., Münchmeyer, J., Rettelbach, T., Witts, J. D., ... &
901 Dunhill, A. M. (2023). How predictable are mass extinction events?. *Royal Society open science*,
902 10(3), 221507.

903

904 Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W., Howes, E.L., Joos, F., Allemand, D., Bopp, L.,
905 Cooley, S.R., Eakin, C.M. and Hoegh-Guldberg, O., 2015. Contrasting futures for ocean and
906 society from different anthropogenic CO₂ emissions scenarios. *Science*, 349(6243), p.aac4722.

907

908 Gernon, T., Mills, B., Hincks, T., Merdith, A., Alcott, L., Rohling, E., & Palmer, M. (2024). Solid
909 Earth forcing of Mesozoic oceanic anoxic events. *Nature Geoscience*.
910 <https://doi.org/10.1038/s41561-024-01496-0>

911

912 Glaze, L. S., Self, S., Schmidt, A., & Hunter, S. J. (2017). Assessing eruption column height in
913 ancient flood basalt eruptions. *Earth and Planetary Science Letters*, 457, 263-270.
914 <https://doi.org/10.1016/j.epsl.2014.07.043>

915

916 Gupta, M., & Marshall, J. (2018). The climate response to multiple volcanic eruptions mediated
917 by ocean heat uptake: Damping processes and accumulation potential. *Journal of Climate*,
918 31(21), 8669-8687. <https://doi.org/10.1175/JCLI-D-17-0703.1>

919

920 Guzewich, S. D., Oman, L. D., Richardson, J. A., Whelley, P. L., Bastelberger, S. T., Young, K. E., et
921 al. (2022). Volcanic climate warming through radiative and dynamical feedbacks of SO₂
922 emissions. *Geophysical Research Letters*, 49(4), e2021GL096612.
923 <https://doi.org/10.1029/2021GL096612>

924

925 Guzewich, S. D., Oman, L. D., Colarco, P. R., Richardson, J. A., Whelley, P. L., Fauchez, T. J., et al.
926 (2024). A potential surface warming regime for volcanic super-eruptions through stratospheric
927 water vapor increases. *Journal of Geophysical Research: Atmospheres*, 129(13),
928 e2023JD038667. <https://doi.org/10.1029/2023JD038667>

929

930 Halevy, I., Peters, S. E., & Fischer, W. W. (2012). Sulfate burial constraints on the Phanerozoic
931 sulfur cycle. *Science*, 337(6092), 331-334. <https://doi.org/10.1126/science.1220224>

932

933 Hernandez Nava, A., Black, B. A., Gibson, S. A., Bodnar, R. J., Renne, P. R., & Vanderkluysen, L.
934 (2021). Reconciling early Deccan Traps CO₂ outgassing and pre-KPB global climate. *Proceedings
935 of the National Academy of Sciences*, 118(14), e2007797118.
936 <https://doi.org/10.1073/pnas.2007797118>

937

938 Hilton, R. G., & West, A. J. (2020). Mountains, erosion and the carbon cycle. *Nature Reviews
939 Earth & Environment*, 1(6), 284-299. <https://doi.org/10.1038/s43017-020-0058-6>

940

941 Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., et al.
942 (2020). On impact and volcanism across the Cretaceous-Paleogene boundary. *Science*,
943 367(6475), 266-272. <https://doi.org/10.1126/science.aay5055>

944

945 Humphreys, M. P., Lewis, E. R., Sharp, J. D., & Pierrot, D. (2022). pyCO2SYS v1. 8: Marine
946 carbonate system calculations in Python. *Geoscientific Model Development*, 15(1), 15-43.
947 <https://doi.org/10.5194/gmd-15-15-2022>

948

949 Johnson, G. C., & Lyman, J. M. (2020). Warming trends increasingly dominate global ocean.
950 *Nature Climate Change*, 10(8), 757-761. <https://doi.org/10.1038/s41558-020-0822-0>

951

952 Kasbohm, J., Schoene, B., & Burgess, S. (2021). Radiometric constraints on the timing, tempo,
953 and effects of large igneous province emplacement. Large igneous provinces: A driver of global
954 environmental and biotic changes, 27-82. <https://doi.org/10.1002/9781119507444.ch2>

955

956 Kump, L. R., Brantley, S. L., & Arthur, M. A. (2000). Chemical weathering, atmospheric CO₂, and
957 climate. *Annual Review of Earth and Planetary Sciences*, 28(1), 611-667.
958 <https://doi.org/10.1146/annurev.earth.28.1.611>

959

960 Landwehrs, J. P., Feulner, G., Hofmann, M., & Petri, S. (2020). Climatic fluctuations modeled for
961 carbon and sulfur emissions from end-Triassic volcanism. *Earth and Planetary Science Letters*,
962 537, 116174. <https://doi.org/10.1016/j.epsl.2020.116174>

963

964 Le Hir, G., Fluteau, F., Suchéras-Marx, B., & Goddériss, Y. (2020). Amplifying factors leading to
965 the collapse of primary producers during the Chicxulub impact and Deccan Traps eruptions.
966 *Mass Extinctions, Volcanism, and Impacts: New Developments*, 544, 223.
967 [https://doi.org/10.1130/2020.2544\(09\)](https://doi.org/10.1130/2020.2544(09))

968

969 Mather, T. A., & Schmidt, A. (2021). Environmental effects of volcanic volatile fluxes from
970 subaerial large igneous provinces. Large igneous provinces: A driver of global environmental
971 and biotic changes, 103-116. <https://doi.org/10.1002/9781119507444.ch4>

972

973 Maycock, A. C., Smith, C. J., Rap, A., & Rutherford, O. (2021). On the structure of instantaneous
974 radiative forcing kernels for greenhouse gases. *Journal of the Atmospheric Sciences*, 78(3), 949-
975 965. <https://doi.org/10.1175/JAS-D-19-0267.1>

976

977 Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean alkalinity, buffering and
978 biogeochemical processes. *Reviews of Geophysics*, 58(3), e2019RG000681.
979 <https://doi.org/10.1029/2019RG000681>

980

981 Mittal, T., Richards, M. A., & Fendley, I. M. (2021). The magmatic architecture of continental
982 flood basalts I: Observations from the Deccan Traps. *Journal of Geophysical Research: Solid*
983 *Earth*, 126(12), e2021JB021808. <https://doi.org/10.1029/2021JB021808>

984

985 Mittal, T., & Richards, M. A (2021). The magmatic architecture of continental flood basalts: 2. A
986 new conceptual model." *Journal of Geophysical Research: Solid Earth* 126, no. 12 (2021):
987 e2021JB021807.

988

989 Monarrez, P. M., Heim, N. A., & Payne, J. L. (2023). Reduced strength and increased variability
990 of extinction selectivity during mass extinctions. *Royal Society Open Science*, 10(9), 230795.

991

992 O'Connor, Lauren K., Rhodri M. Jerrett, Gregory D. Price, Tyler R. Lyson, Sabine K. Lenger,
993 Francien Peterse, and Bart E. van Dongen. "Terrestrial evidence forvolcanogenic sulfate-driven
994 cooling event~ 30 kyr before the Cretaceous–Paleogene mass extinction." *Science advances* 10,
995 no. 51 (2024): eado5478.

996 Payne, J. L., Al Aswad, J. A., Deutsch, C., Monarrez, P. M., Penn, J. L., & Singh, P. (2023).
997 Selectivity of mass extinctions: patterns, processes, and future directions. *Cambridge Prisms:*
998 *Extinction*, 1, e12.

999

1000 Penman, D. E., Turner, S. K., Sexton, P. F., Norris, R. D., Dickson, A. J., Boulila, S., et al. (2016). An
1001 abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene
1002 Thermal Maximum. *Nature Geoscience*, 9(8), 575-580. <https://doi.org/10.1038/ngeo2757>

1003

1004 Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E., & Winnick, M. J. (2020). Silicate weathering as a
1005 feedback and forcing in Earth's climate and carbon cycle. *Earth-Science Reviews*, 209, 103298.
1006 <https://doi.org/10.1016/j.earscirev.2020.103298>

1007

1008 Present, T. M., Adkins, J. F., & Fischer, W. W. (2020). Variability in sulfur isotope records of
1009 Phanerozoic seawater sulfate. *Geophysical Research Letters*, 47(18), e2020GL088766.
1010 <https://doi.org/10.1029/2020GL088766>

1011

1012 Rader, E., Peters, S., Vanderkluysen, L., Clarke, A. B., & Sheth, H. (2024). Morphological
1013 transitions between lobate resurfacing and distal breakout lava flows in flood basalts: insights
1014 from analog experiments. *Bulletin of Volcanology*, 86(1), 1-12. <https://doi.org/10.1007/s00445-023-01693-6>

1016

1017 Renforth, P., & Henderson, G. (2017). Assessing ocean alkalinity for carbon sequestration.
1018 *Reviews of Geophysics*, 55(3), 636-674. <https://doi.org/10.1002/2016RG000533>

1019

1020 Ridgwell, A. (2007). Interpreting transient carbonate compensation depth changes by marine
1021 sediment core modeling. *Paleoceanography*, 22(4). <https://doi.org/10.1029/2006PA001372>

1022

1023 Robock, A. (2000). Volcanic eruptions and climate. *Reviews of Geophysics*, 38(2), 191-219.
1024 <https://doi.org/10.1029/1998RG000054>

1025

1026 Rogger, J., Judd, E. J., Mills, B. J., Goddériss, Y., Gerya, T. V., & Pellissier, L. (2024). Biogeographic
1027 climate sensitivity controls Earth system response to large igneous province carbon degassing.
1028 *Science*, 385(6709), 661-666. <https://doi.org/10.1126/science.adn3450>

1029

1030 Rohling, E. J., Marino, G., Foster, G. L., Goodwin, P. A., Von der Heydt, A. S., & Köhler, P. (2018).
1031 Comparing climate sensitivity, past and present. *Annual Review of Marine Science*, 10(1), 261-
1032 288. <https://doi.org/10.1146/annurev-marine-121916-063242>

1033

1034 Romps, D. M., Seeley, J. T., & Edman, J. P. (2022). Why the forcing from carbon dioxide scales as
1035 the logarithm of its concentration. *Journal of Climate*, 35(13), 4027-4047.
1036 <https://doi.org/10.1175/JCLI-D-21-0275.1>

1037

1038 Schmidt, A., Leadbetter, S., Theys, N., Carboni, E., Witham, C. S., Stevenson, J. A., et al. (2015).
1039 Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from
1040 the 2014-2015 flood lava eruption at Bárðarbunga (Iceland). *Journal of Geophysical Research: Atmospheres*, 120(18), 9739-9757. <https://doi.org/10.1002/2015JD023638>

1041

1042

1043 Schmidt, A., Skeffington, R. A., Thordarson, T., Self, S., Forster, P. M., Rap, A., et al. (2016).
1044 Selective environmental stress from sulphur emitted by continental flood basalt eruptions.
1045 *Nature Geoscience*, 9(1), 77-82. <https://doi.org/10.1038/ngeo2588>

1046

1047 Self, S., Schmidt, A., & Mather, T. (2014). Emplacement characteristics, time scales, and volcanic
1048 gas release rates of continental flood basalt eruptions on Earth. *Geological Society of America
1049 Special Papers*, 505, 319-337. [https://doi.org/10.1130/2014.2505\(16\)](https://doi.org/10.1130/2014.2505(16))

1050

1051 Self, S., Zhao, J.-X., Holasek, R. E., Torres, R. C., & King, A. J. (1993). The atmospheric impact of
1052 the 1991 Mount Pinatubo eruption.

1053

1054 Self, S., Schmidt, A., & Mather, T. (2014). Emplacement characteristics, time scales, and volcanic
1055 gas release rates of continental flood basalt eruptions on Earth. *Geological Society of America
1056 Special Papers*, 505, 319-337. [https://doi.org/10.1130/2014.2505\(16\)](https://doi.org/10.1130/2014.2505(16))

1057

1058 Self, S., Mittal, T., & Jay, A. E. (2021). Thickness characteristics of pāhoehoe lavas in the Deccan
1059 Province, Western Ghats, India, and in continental flood basalt provinces elsewhere. *Frontiers
1060 in Earth Science*, 8, 630604. <https://doi.org/10.3389/feart.2020.630604>

1061

1062 Self, S., Mittal, T., Dole, G., & Vanderkluysen, L. (2022). Toward Understanding Deccan
1063 Volcanism. *Annual Review of Earth and Planetary Sciences*, 50, 477-506.
1064 <https://doi.org/10.1146/annurev-earth-012721-051416>

1065

1066 Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive
1067 tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. *Science*,
1068 363(6429), 866-870. <https://doi.org/10.1126/science.aav1446>

1069

1070 Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic, B. K., & Key, R. M.
1071 (2018). Current CaCO_3 dissolution at the seafloor caused by anthropogenic CO_2 . *Proceedings of*
1072 *the National Academy of Sciences*, 115(46), 11700-11705.
1073 <https://doi.org/10.1073/pnas.1804250115>

1074

1075 Tosca, N. J., & Tutolo, B. M. (2023). Alkalinity in theory and practice. *Elements*, 19(1), 7-9.
1076 <https://doi.org/10.2138/gselements.19.1.7>

1077

1078 Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., et al. (2023). Stratospheric climate
1079 anomalies and ozone loss caused by the Hunga Tonga-Hunga Ha'apai volcanic eruption. *Journal*
1080 *of Geophysical Research: Atmospheres*, 128(22), e2023JD039480.
1081 <https://doi.org/10.1029/2023JD039480>

1082

1083 White, R. V., & Saunders, A. D. (2005). Volcanism, impact and mass extinctions: incredible or
1084 credible coincidences? *Lithos*, 79(3-4), 299-316. <https://doi.org/10.1016/j.lithos.2004.09.016>

1085

1086 Wignall, P. B. (2001). Large igneous provinces and mass extinctions. *Earth-Science Reviews*,
1087 53(1-2), 1-33. [https://doi.org/10.1016/S0012-8252\(00\)00037-4](https://doi.org/10.1016/S0012-8252(00)00037-4)

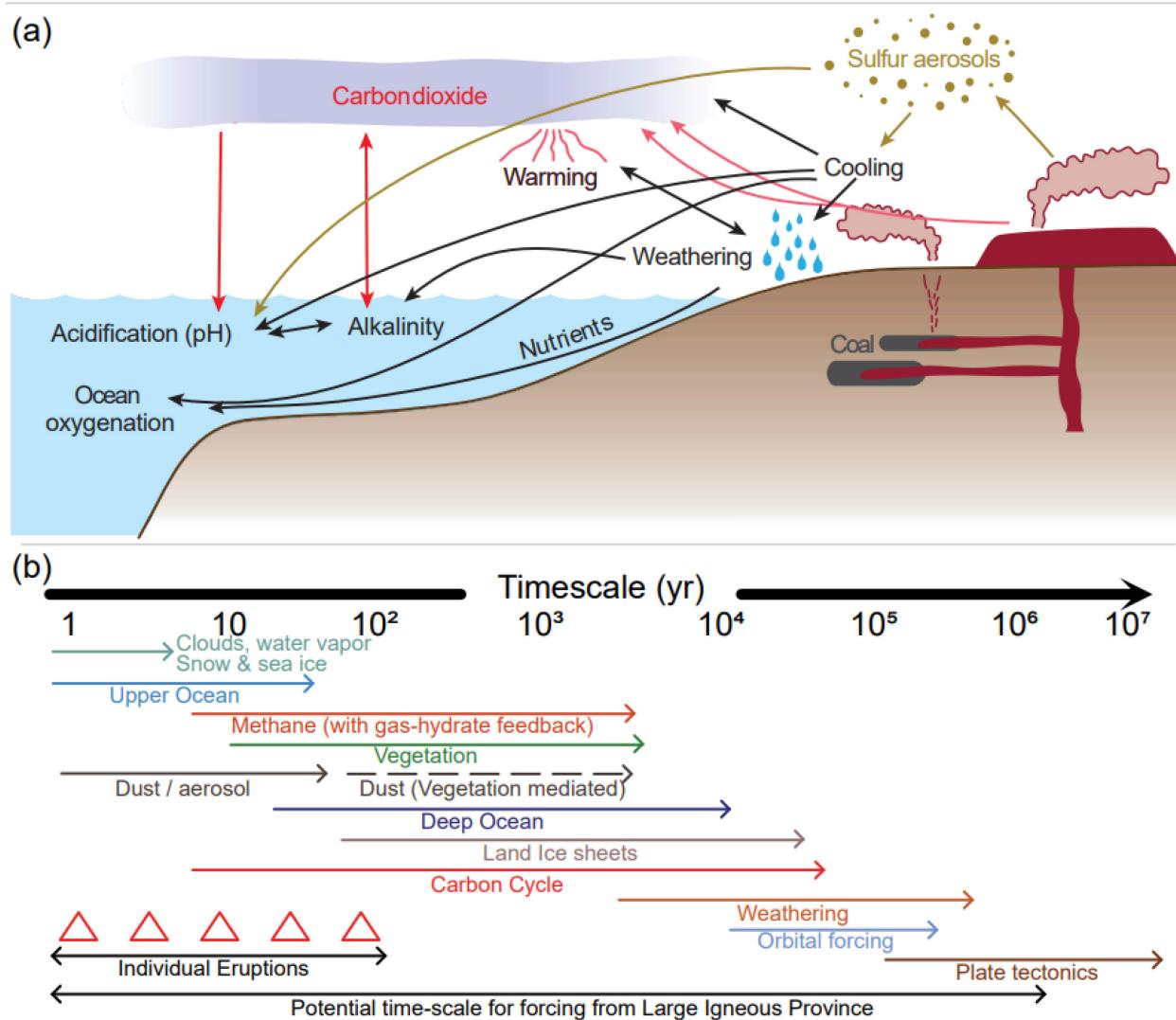
1088

1089 Wood, M., Hayes, C. T., & Paytan, A. (2022). Global Quaternary Carbonate Burial: Proxy-and
1090 Model-Based Reconstructions and Persisting Uncertainties. *Annual Review of Marine Science*,
1091 15. <https://doi.org/10.1146/annurev-marine-031122-031137>

1092

1093 Xu, Y.-Y., Pierrot, D., & Cai, W.-J. (2017). Ocean carbonate system computation for anoxic
1094 waters using an updated CO2SYS program. *Marine Chemistry*, 195, 90-93.
1095 <https://doi.org/10.1016/j.marchem.2017.07.002>

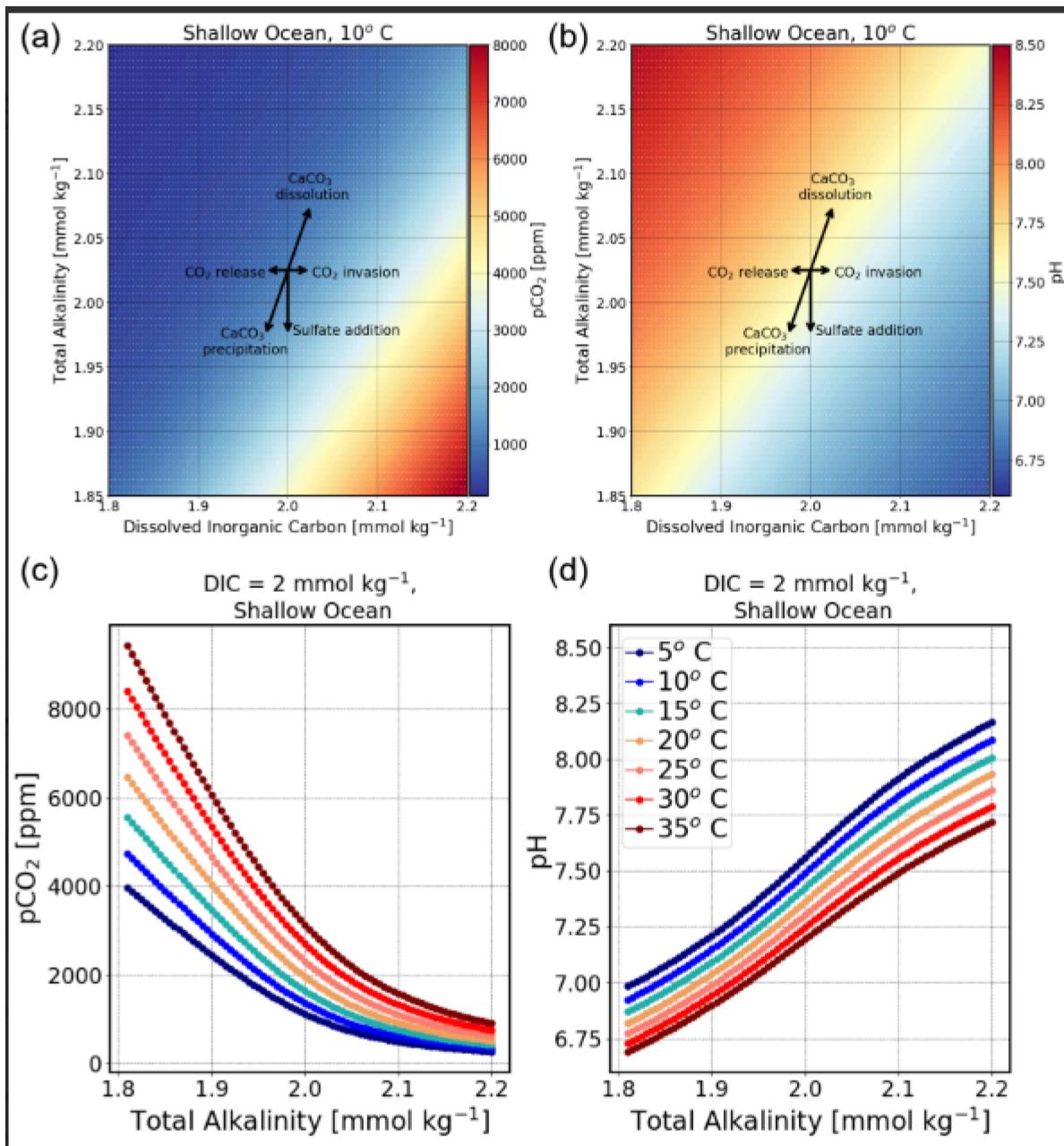
1096


1097 Zeebe, R. E. (2011). On the molecular diffusion coefficients of dissolved CO₂, HCO₃⁻, and CO₃²⁻
1098 and their dependence on isotopic mass. *Geochimica et Cosmochimica Acta*, 75(9), 2483-2498.
1099 <https://doi.org/10.1016/j.gca.2011.02.010>

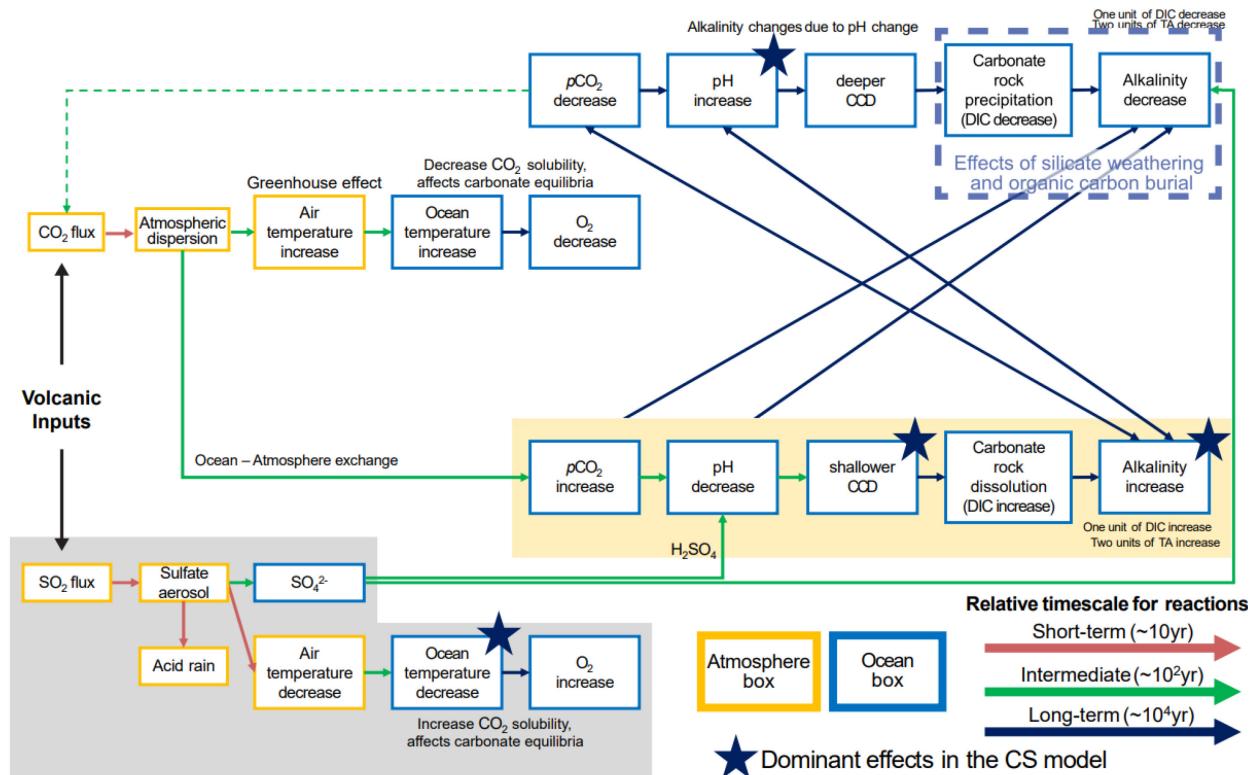
1100

1101 Zeebe, R. E. (2012). LOSCAR: Long-term ocean-atmosphere-sediment carbon cycle reservoir
1102 model v2. 0.4. *Geoscientific Model Development*, 5(1), 149. <https://doi.org/10.5194/gmd-5-149-2012>

1103

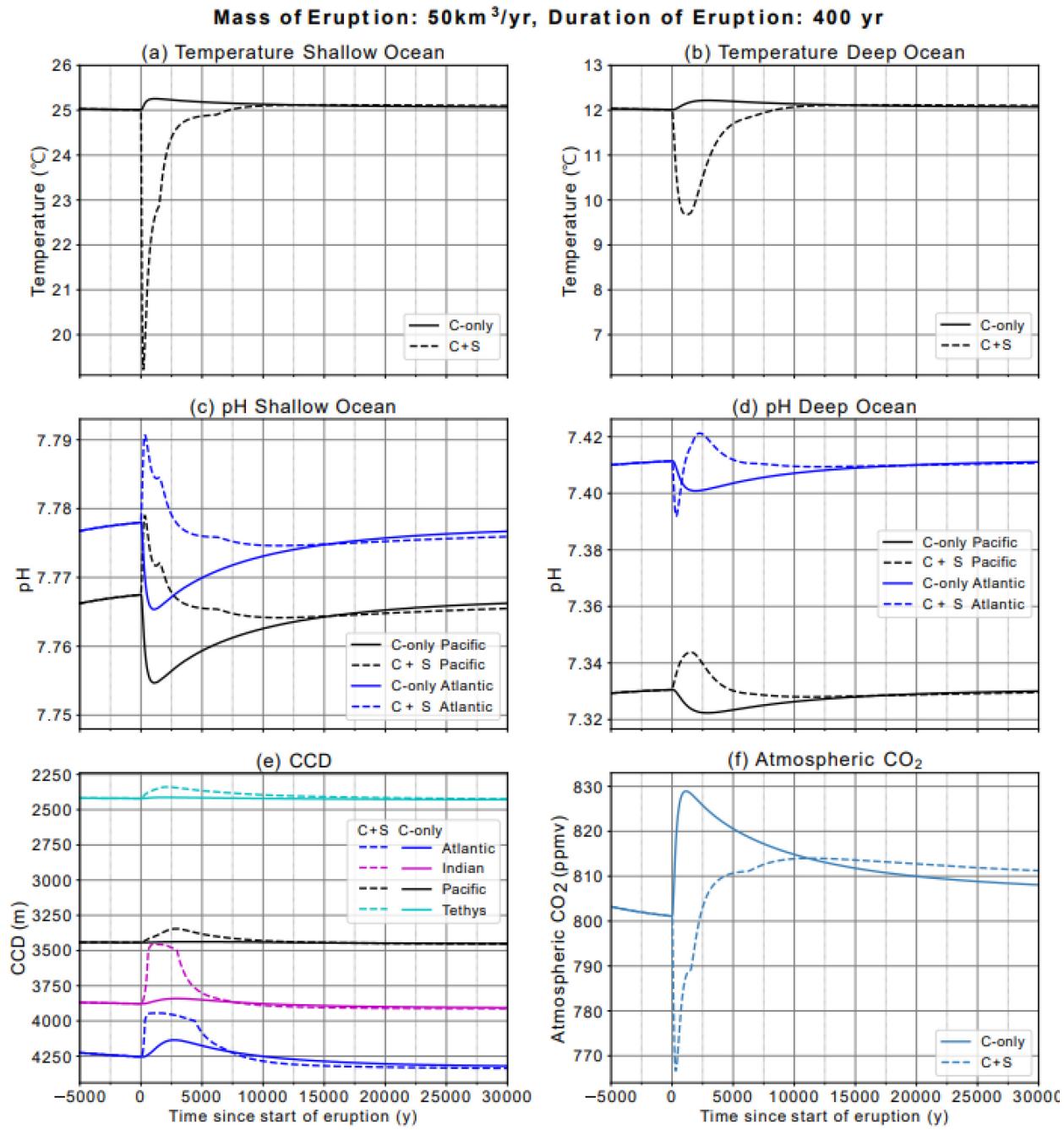

1104

1105


1106 Figure 1.

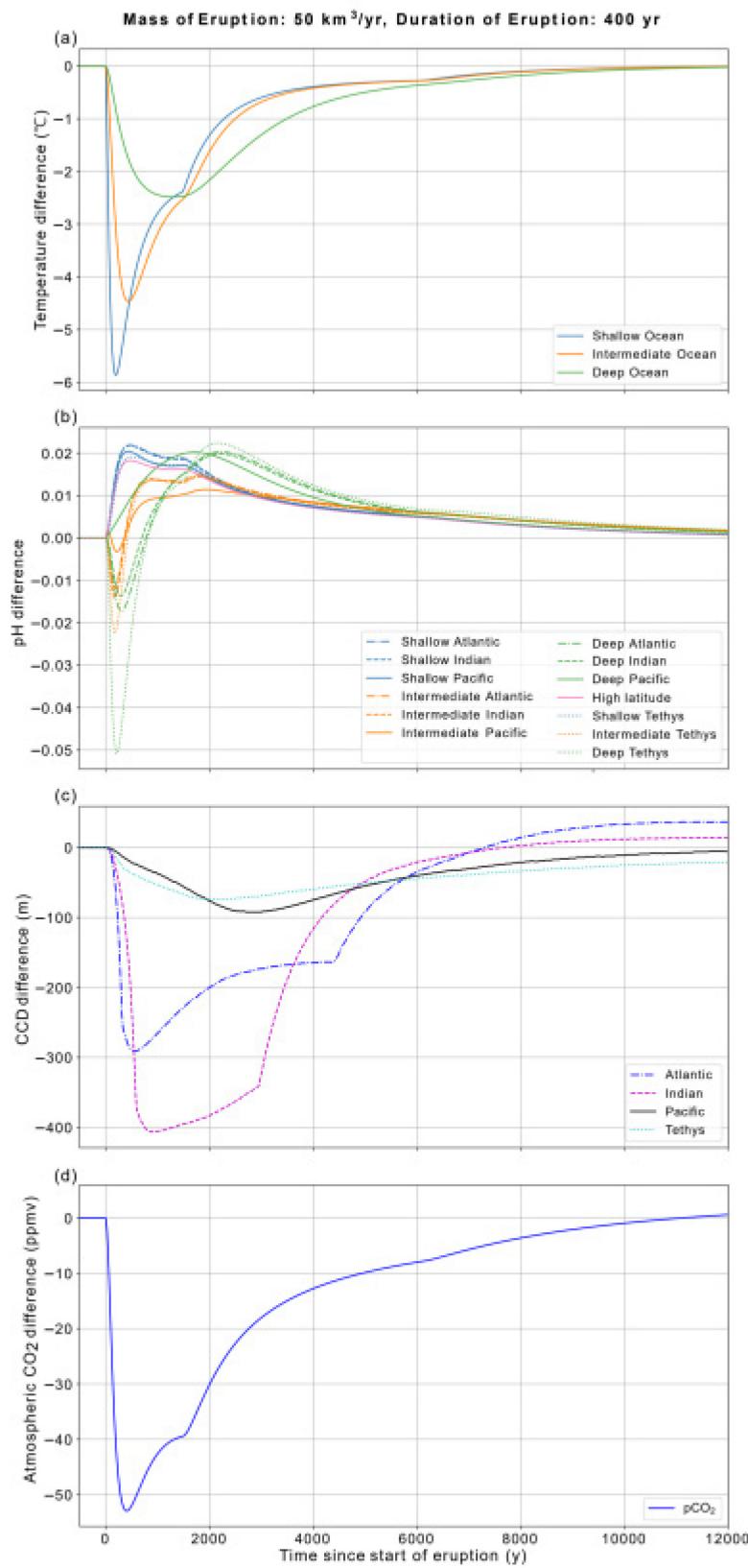
1107

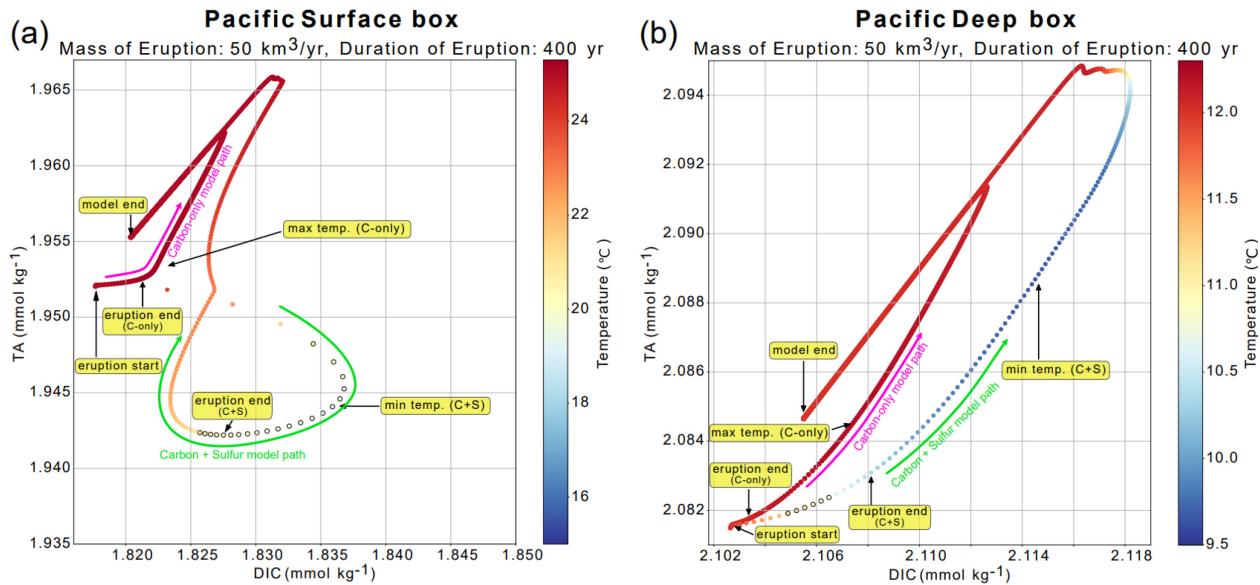
1108
1109
1110

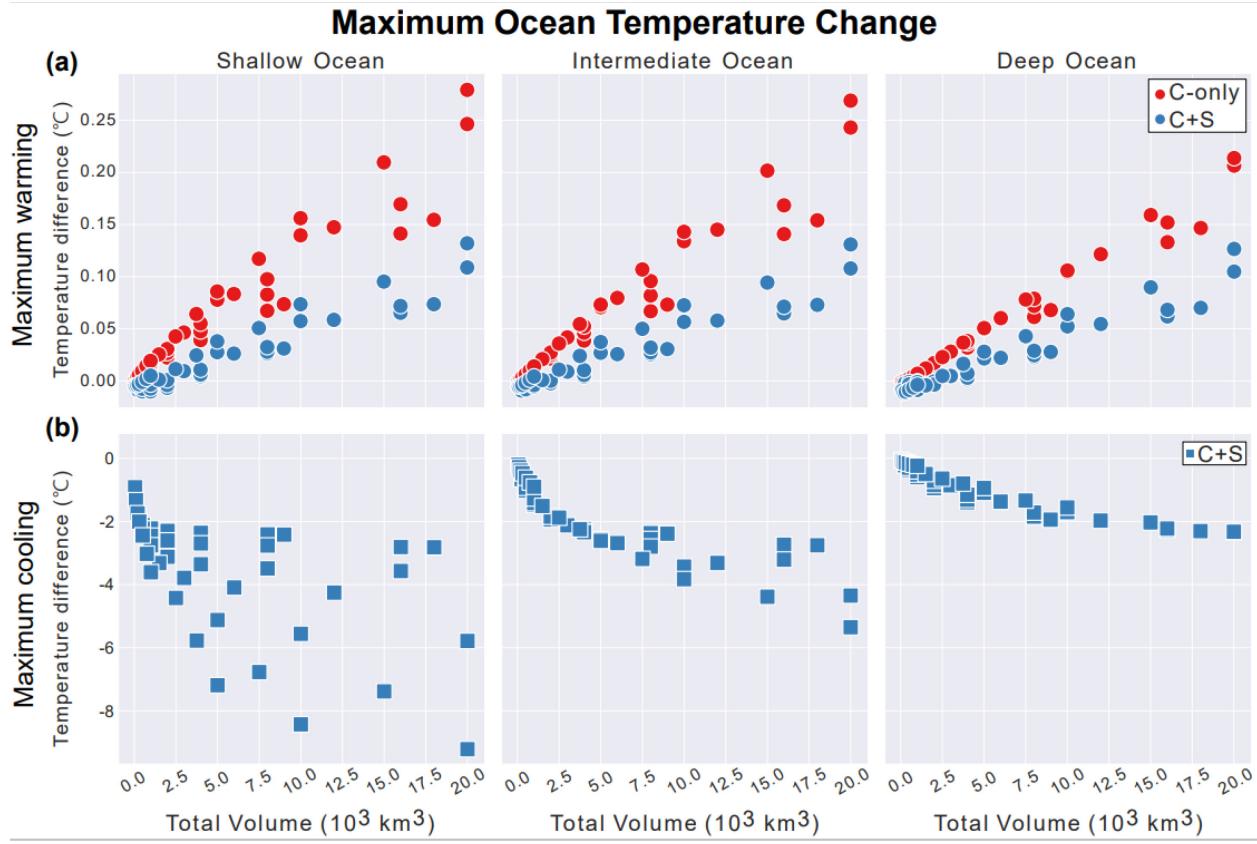

Figure 2.

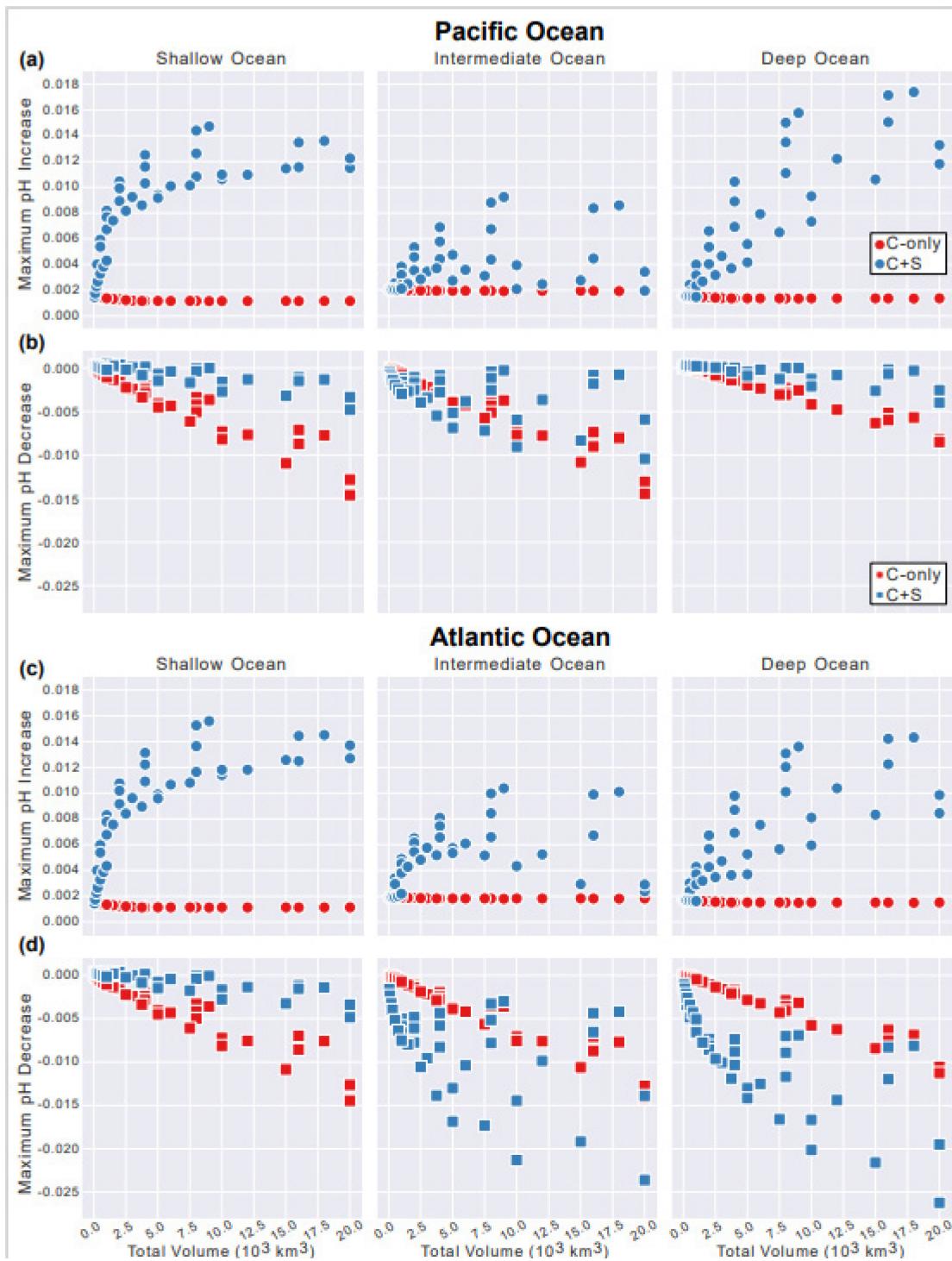
1111

1112 Figure 3.


1113




1114


1115 Figure 4.

1116

1125

1126 Figure 8.

1127