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Abstract. Multimodal pre-trained models, such as CLIP, are popu-
lar for zero-shot classification due to their open-vocabulary flexibility
and high performance. However, vision-language models, which compute
similarity scores between images and class labels, are largely black-box,
with limited interpretability, risk for bias, and inability to discover new
visual concepts not written down. Moreover, in practical settings, the
vocabulary for class names and attributes of specialized concepts will
not be known, preventing these methods from performing well on im-
ages uncommon in large-scale vision-language datasets. To address these
limitations, we present a novel method that discovers interpretable yet
discriminative sets of attributes for visual recognition. We introduce an
evolutionary search algorithm that uses the in-context learning abilities
of large language models to iteratively mutate a concept bottleneck of
attributes for classification. Our method produces state-of-the-art, inter-
pretable fine-grained classifiers. We outperform the baselines by 18.4%
on five fine-grained iNaturalist datasets and by 22.2% on two KikiBouba
datasets, despite the baselines having access to privileged information.
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1 Introduction

Multimodal foundation models like CLIP [1] obtain excellent performance on
many visual recognition tasks due to their flexibility to represent open-vocabulary
classes. These models have the potential to impact many scientific applications,
where computer vision systems could automate recognition in specialized do-
mains. However, since foundation models are neural networks, they are largely
black-box and we therefore have no means to explain or audit the predictions
they produce, limiting their trust. Moreover, given that foundation models are
trained on large corpora of web-scraped data [1,2], they are not optimized to
represent rare and fine-grained concepts, such as images from various scientific
fields, which are infrequently described on the internet.

The computer vision community has been building interpretable models by
integrating language, where classifiers are constructed with a bottleneck of sparse
or discrete attributes [3-7]. Language-based approaches have the benefit of being
interpretable. However, they rely on attributes that are either hand-designed,
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Fig. 1: Learning Interpretable Classifiers. Can we find text attributes for a con-
cept by looking at the images without their class names? LLM-Mutate is a framework
that learns sets of maximally discriminative visual attributes per class without access
to class names or any form of prior knowledge.

requiring expert knowledge, or extracted from external sources, such as LLMs.
Since the attributes are not learned, they often obtain poor performance on
specialized classes infrequently discussed in web-scale training sets.

In this paper, we propose a framework to learn interpretable visual rep-
resentations from images. Our approach can discover discrete, discriminative
attributes from purely visual training sets of specialized concepts, and even un-
written concepts that do not appear on the internet. Solving this problem has
typically been challenging because the loss is not differentiable with respect to
discrete attributes, limiting the application of modern deep learning methods.
Gradient-free methods, such as evolutionary search [8], are able to optimize over
discrete search spaces, but they have not scaled to large problems in the past.

Our approach integrates LLMs with evolutionary algorithms in order to learn
discriminative and interpretable attributes for visual recognition. Evolutionary
algorithms work by maintaining a set of candidates, randomly mutating them,
and discarding the poorly performing ones according to an objective function.
The mutation step is a bottleneck for large-scale problems, such as object recog-
nition, as the search space is large and the lack of gradient information means
the mutations are not guaranteed to drive the optimization towards convergence.

We overcome these bottlenecks by replacing the mutation step with an LLM
instead, whose in-context learning abilities are able to find patterns in-between
candidates and predict strong mutations that reduce the objective. We evaluate
our method on images from specialized scientific domain that have been infre-
quently discussed on the internet due to the nature of their specificity, with
the iNaturalist dataset [9]. We chose five families of plants and animals within
iNaturalist, each containing five to six species, and evaluated the fine-grained
classification performance on each family. We outperform all baselines, on aver-
age by 18.4% per family dataset. We also evaluated our method on imaginary
concepts that have been hardly discussed on the internet before. Following the
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KikiBouba experiments [10] where people associate imaginary objects with non-
existent words, we learn interpretable attributes that achieve strong discrimina-
tive performance, outperforming baselines by an average of 22.2%.

Our primary contribution is a framework for learning interpretable visual
recognition systems from images. We propose to integrate evolutionary search
with LLMs, allowing us to efficiently learn interpretable, discrete, and discrimi-
native attributes. The remainder of the paper will discuss the related work in this
area, describe the method, and present experimental results on multiple datasets.
Our code, data, and models are available at https://llm-mutate.cs.columbia.edu.

2 Related Work

Concept Bottlenecks. A common approach for interpretability is to create
a bottleneck in the classifier, where interpretable attributes are first predicted
before classifying the object category [3,4,6,11-13]. Concept bottleneck models
have been comprehensively studied in the domain of zero-shot learning [14-18].
However, all these methods require a significant amount of annotations for the
intermediate attributes to perform well while being interpretable. Our method
instead finds interpretable intermediate concepts by learning from visual data.
Post-hoc Interpretabililty. Several post-hoc methods have been proposed
to interpret deep models. Methods such as GradCAM [19] rely on the activation
maps to provide explanations for classification [20-25]. Generating counterfac-
tual examples is another way for interpretation [26-29]. Other work has looked
at sample importance for explanations [30-36]. All these methods look at expla-
nations from the perspective of a single image. In contrast to these approaches,
several methods aim at understanding the behaviors of individual neurons in
trained models [37—41]. One major limitation of post-hoc methods is that they
can only explain the receptive field of the model, which requires some interpre-
tation on the user’s part. Concept or attribute bottleneck models on the other
hand can justify the classification by providing scores for individual attributes.
Vision-Language Models. Large-scale vision-language models (VLMs),
such as CLIP [1], have bridged the visual and language modalities through
contrastive learning. VLMs estimate the similarity between text and an image,
leading to many downstream applications, such as zero-shot classification with
open-ended language. Several improvements have been proposed to the VLMs,
such as training with noisy data [42—44]|, better training strategies [45-52], con-
cept localization [53], multiple modalities [54], grounding abilities [55, 56], or
generative capabilities [57-60]. Another advantage of VLMs is that classification
or retrieval can be done by using a list of attribute descriptors in conjunction
with the class names [5,61,62]. Classification by using descriptions results in
an intermediate step of interpretability, as these lists of descriptions are essen-
tially concept bottlenecks. Waflle-CLIP [7] proposed using random words along
with these concepts leads to more robust concept embedding. However, all these
methods have access to a knowledge base (large language models in this case),
which they use to retrieve descriptions for categories using the category name.
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Fig. 2: Method. LLM-Mutate is an evolutionary algorithm that learns sets of discrete
language attributes per class. The mutation and cross-over operations— that introduce
new parameter hypotheses— are replaced by a large language model that uses in-context
learning over past attributes and their scores to iteratively generate better attributes.

Such approaches fail if the categories are never discussed or are infrequently
mentioned on the internet. Since our approach does not rely on the name of the
category, we perform better on specialized and esoteric categories.

LLMs as Optimizers. Using a large language model to generate mutations
with evolutionary search has been implemented for the task of code genera-
tion [63]. We follow a similar approach, except for the task of visual recognition.
In addition, their fitness functions are a series of non-learning-based metrics.
We instead use another foundation model, a vision-language model, as the fit-
ness function, thereby scaling to open-ended visual concepts. Another instance
in which LLM’s are used as optimizers is for prompt discovery [64]. Similarly,
concurrent work leverages LLMs as optimizers to find attributes to improve vi-
sual classification, but crucially, they provide the class name as an input to the
LLM [65,66]. As such, they use privileged information that we do not assume.

3 Discovering Visual Classifiers

3.1 Model

Given an image x, our goal is to predict its category label y. We create a concept
bottleneck model f.(z) that scores whether the image z contains category c. Once
optimized, the concept bottleneck model should produce a high score for ¢ =y
and a low score otherwise. To score the class ¢ from the image z, we average
over a bottleneck of discrete attributes:

1
felx;D) = 0] d,ieZD(c) ¢(di, x) (1)

where D(c) is the set of attributes to recognize class ¢, and ¢(d;, x) is the score
from a vision-language model (such as CLIP) to detect the attribute d; in image
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x. The model in Eq. (1) provides a degree of explainability because a prediction
must be based in natural language attributes d; € D(c). At inference, we perform
multi-class classification by scoring Eq. (1) for each class, and picking the highest
scoring one, i.e. arg max. f.(x; D).

Concept bottleneck models have traditionally been challenging to implement
in computer vision because we need to instantiate a discriminative set of discrete
attributes D(c), which pose challenges for gradient-based optimization methods
that are now ubiquitous in deep learning. Prior work has relied on manual an-
notation of D(c) for each class [6], which does not efficiently scale, or relied on
other knowledge bases [5], which cannot generalize to specialized categories.

3.2 Learning and Optimization

Given C categories (without semantic labels), we want to learn discriminative
attributes D where D(c) are the attributes for class c. We optimize the objective:

mgn IE(:Jc,y) [‘C (Qv y)] for Z) = [fl (l‘; D)v R fC(x; D)] s (2)

where £ is a loss function that measures the error of the predictions ¢ to the
label y of each training example. We use the cross-entropy loss for L.

Since attributes for each class are discrete and f. is not differentiable, we
optimize Eq. (2) with evolutionary search. We maintain a bank of hypotheses B
for potential D(c), mutate them, and keep the best-scoring hypotheses accord-
ing to the objective function. Typically, evolutionary search creates heuristics to
mutate the attributes D(c) € B, for example by randomly merging attributes
together (called crossover) or by randomly injecting new words from a vocabu-
lary. However, these heuristics are not efficient for two reasons. First, the search
space of natural language descriptions is large. Second, most heuristics do not
leverage patterns between attributes and their performance that could drive the
optimization to convergence rapidly.

We propose to replace the mutation step with a large language model and its
in-context learning capabilities. Given k past hypotheses {D;(c), ..., Di_k(c)}
for a class ¢, and their loss, we “mutate” the next hypotheses through:

Dig1(c) = LLM (Dy(c), . .., Di_i(c)) (3)

where D; is an attribute set from iteration ¢t. By using an LLM, the mutated
f)t+1 (¢) benefit from natural language priors, allowing us to efficiently search for
descriptors that obey the semantics and syntax of natural language. Secondly, the
in-context learning ability of the LLM means they will be able to find patterns
in the past hypothesis to guide the search towards attributes that are likely to
minimize the objective function. After mutation, we add D41 (c) to the bank of
classifiers if it improves the objective and iterate.

We use the open-source Llama-2-70B-Instruct [67] for the LLM(-) and CLIP
ViT-B/32 [1] as our vision-language model ¢(-). The starting attributes are ini-
tialized randomly, with no prior knowledge of the class name or prior information.
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Algorithm 1: Discriminative Attribute Set Learning

Input: Number of categories C, Loss function that scores attribute set £(D)
on the training set, Scalar hyper-parameters N, M
Output: Discriminative attributes Dpest, where Dpest(c) is the set of
attributes to recognize class c
// Randomly initialize the classifier bank B
1 B+ {}
2 fori=1,...,N do
3 forc=1,...,C do
4 L D;(y) + randomly sampled attributes
5

| B+ B U {D;}

// Learn a D that discriminates the training set {(z,y)}
while not converged do

// Biased sampling of M classifiers by expected loss E[[]
7 S ={Du,...,Dn} where D; ~ B s.t. p(D;) x E[L(D;)]

// Sort by the expected loss

8 S = (D1, ,DM) where E [E(Dl)] > E [E(Dﬂ] Vi<j

// One step of evolutionary search for each category

9 forc=1,...,C do

// Mutate the attributes with the LLM

(=)

10 S, = (DZ(C) :D; € S)
11 D(c) + LLM(S.)
! / / / Z/j(c) if c= k
12 S =(Di,...,D here Vi D;(k) =
@ ) where Vi, Di(k) {D(kj) otherwise

// Keep best attribute set
13 B+ B U argminpeg {E[L(D)]}

14 return arg minpep{E [L£(D)]}

3.3 Evolutionary Search

Algorithm 1 shows the search procedure to optimize the attribute sets for clas-
sification. We initialize the classifier bank B with random words to create IV
initial hypotheses for D;. We sample sets of attributes from B to construct the
in-context examples for mutation and repeat this process until convergence. We
bias the samples with the loss of each attribute set. For each sampled set, we
construct a prompt per class by concatenating the attributes from class ¢ in in-
creasing order of performance. We prompt the LLM separately per class, which
generates the novel, mutated attributes, D(c) for them. We evaluate the newly
mutated attribute sets and add the best-mutated classifier to the classifier bank.
We provide more implementation details in the supplementary material.

3.4 Classifier Bank Initialization

During fine-grained classification, the optimization favors attributes that are
highly discriminative between visually similar classes, causing attributes common
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to multiple classes to be discouraged. We want to encourage common attributes
at the beginning of learning so that the optimization discovers class-specific
details, instead of spurious unrelated attributes arising from noise.

To achieve this, we use a pre-training strategy that discovers common at-
tributes, to serve as an initialization for joint multi-class training. We implement
the pre-training step by learning a per class binary classifier, using the same al-
gorithm as before, but with an objective to separate one class from all others,
including significantly unrelated classes. We use the following objective:

min Eq, [fe (¢; D)) — Ea, [fe (; D)] (4)

where z), is a positive images of the class ¢, and x,, denotes the negative images
of all the other classes. Crucially, we include classes outside of the fine-grained
dataset in the negative classes here as well. The generated attributes across
the first 200 iterations become the initialization of the set of attributes for the
program bank initialization of the joint training. We randomly initialize the at-
tribute bank for binary-pre-training with a large pool of attributes generated by
an LLM about generic visual categories. Fig. 3 shows an example of the initial-
ization, and we include further implementation details in the supplementary.

4 Experiments

4.1 Datasets

We validate our method by evaluating on two datasets. First are subsets of
iNaturalist — a fine-grained classification dataset with rare species that are rarely
discussed online. Second is an image dataset of novel concepts, created with new
words that are even less likely to be discussed online, as they are invented.

iNaturalist: iNaturalist [9] is a dataset for fine-grained species classification.
It contains images and annotations obtained from citizen scientists for a large
number of animal, plant, and fungus species. We experiment with five differ-
ent families and classify between five to six species with each family. We chose
families whose features varied in more complex ways than color.

Pre-training R T ——— >
Iteration 1 Iteration 5 Iteration 17 Iteration 1 Iteration 47 Iteration 291 Class 5 (Greenleaf Manzanita)
Class 5 Class 5 Class 5 Class 5 Class 5 Class 5
dark green leaves white, yellow, pink, areddish- brown tree can grow up other clustering shrub fragrant, trumpet-

often located in or red flower with a large trunk plants or structures orange or red berries shaped flowers
remote, rural areas leafy green foliage atypically small tree pink, red, or purple branches often lack twisted, curved
aboom for liting agiant sequoia linen-like flower petal flowers leaves branches
vehicles brown, grey, or nuts arranged in atree or shrub with smooth, shiny bark atree with a unique,
green coloration black fur upright spiral thorns ivory colored flower spiral-patterned bark
awide mouth can grow in a variety variegated leaves aforsythia bush wiry, drooping heart-shaped leaves
long, curved dorsal of shapes and sizes grows in clusters mountain scenery branches with a sivery sheen
fin usually found in wet, often grown for its long, thin leaves with
swampy areas fruit a velvety texture
chartreuse leaves
with a hint of pink

Attribute Evolution

Fig. 3: Attribute evolution. We show examples of the attribute evolution for both
the pre-training and joint-training stages of learning. At the beginning, the first gener-
ated set of attributes have little to do with the class, and by the end of the joint-training,
the learned attributes are specific to the Greenleaf Manzanita.
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Fig. 4: Qualitative Results. We show qualitative results for the iNaturalist Lichen
family and a KikiBouba dataset. The results illustrate two sample images per class and
the learned attributes. The learned attributes for the Lichen hardly refer to color, as
this is a common feature to all Lichen, and instead focus on structural properties.

Lichen (fungi) has 6 species: elegant sunburst, golden-eye, slender orange-
bush, golden-hair, hooded sunburst, and maritime sunburst lichen. Wrasse (fish)
has 5 species: caribbean bluehead, six-bar, cortez-rainbow, moon, and ornate
wrasse. Wild rye (grass) has 5 species: squirreltail, bottlebrush, quack grass,
canada wild rye, and virginia wild rye. Manzanita (berry shrubs) has 5 species:
big-berry, pinemat, greenleaf, point-leaf, and pine-mat manzanita. Bulrush (herb)
also has has 5 species: dark-green, woolgrass, panicled, rufous, and wood bulrush.

Kiki-Bouba: We also validate our method on completely novel concepts
that do not appear on the internet and thus language models lack familiarity.
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In a surprising study, the Kiki-Bouba experiment [68] showed that people tend
to associate specific symbols with different sounds, even though the words and
the physical objects do not exist. We create a dataset corresponding to such
concepts with generative models trained to create images from such words [10].
Such a dataset with novel concepts is a strong testbed for attribute discovery.

4.2 Baselines

We compare our method against several baselines. Every baseline that is not
our own has access to privileged information that we do not. Specifically, the
baselines with zero-shot attributes were generated by prompting GPT3 [69] with
the class name. The baselines that contain class names have an evident advan-
tage. Lastly, the gradient-based approach we constructed does not have access
to privileged information such as class names. Nonetheless, our evolutionary
method significantly outperforms this baseline for every dataset, thus justifying
our evolutionary approach. Our results show that our method outperforms all of
the baselines across all datasets, demonstrating that it can learn attributes for
specialized and undocumented visual categories.

Class Name (CLIP [1]): Our first baseline is the simple method of classi-
fying with the class name. For the iNaturalist dataset, which has both a common
and a scientific name per species, we report the best accuracy between using the
common name, the scientific name, and both names.

Classification by Description [5]: We implement the Classification by De-
scription method [5], which generates zero-shot attributes for a class by prompt-
ing GPT3 [69], and joins the class name to each of the zero-shot attributes.
Similar to the “Class Name” baseline, for the iNaturalist dataset, we report the
best accuracy between using the common, the scientific, and both names.

Zero-shot Attributes: We also use a variant of Classification by Descrip-
tion where the class name is no longer appended to the attributes.

Gradient-based Approach: Instead of using an LLM to search for at-
tributes, we instead search for optimal input tokens to the text encoder of the
VLM using gradient descent. For a class, we find tokens that highly discrimi-
nate it from other classes. The model optimizes for probability values over the
complete token list. However, since the explanations have to be tokens and not
a probability distribution over them, we enforce the probability distribution to
be more selective to fewer tokens as training progresses by using a temperature
parameter that decreases over the training period.

Varying Prompt Length: We report the results of our method with two
different prompt lengths: one and ten. In the former, the LLM prompt only has
one example of a set of attributes for a particular class, and therefore doesn’t
see the increasingly better sets of attributes. We notice a significant drop in
accuracy when in-context learning is prohibited.

Engineered Text Templates: For each method, we report the best accu-
racy per dataset between the accuracy computed using scores averaged over the
engineered text templates proposed in CLIP [1], and without averaging over the
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t= [Class], pointed snout
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r= [Class], caudal fin (tail)

t= [Class], scales on body

L= [Class], small, beady eyes

1
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Moon Wrasse

r=[Class], vibrant blue, green, and
yellow

r=[Class], dark spot on upper half n
t=[Class], pointed snout
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14.15%
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Prediction:
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ta [Class], flat, leaf-like
structure
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(apothecia) on the surface
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r=[Class], hair-like or stringy
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fruiting bodies
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texture
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Prediction:
Wood Club-Rush

t= [Class], green or brown in
color

r= [Class], grows in wet or
marshy areas

t= [Class], small, clustered
flowers at the top of the
stem

t= [Class], leaves are long
and thin, resembling
blades of grass

t= [Class], small, spiky seed
heads at the top of the
stem

L= [Class], a slight curve or
bend in the stem

GT Class:
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t=[Class], triangular shape of
the stem when viewed from
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r=[Class], green or brown
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Fig. 5: Predictions. We show three different prediction examples. For each example,
we show our method’s prediction (first column), as well as classification by descrip-
tion [5] (CBD)’s prediction (second column), and CBD’s attributes for the ground
truth class (third column). For each column, we show the normalized probability per
attribute. Below the input image, we show the probability distributions across classes
for both our method and CBD. The results show that our learned attributes are more
detailed and discriminative of the species within the family, compared to the description
by classification (CBD) baseline. Furthermore, our method’s class probability distribu-
tions tend to be more concentrated than CBD’s.
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Table 1: We report the accuracy per dataset, for our method and baselines.

iNaturalist Kiki-Bouba
Method Lichen Wrasse Wild Rye Manzanita Bulrush KB1 KB2
Zero-shot Attributes 21.67 24.0 30.0 22.0 22.0 21.4 20.1
Class Name (CLIP [1]) 21.67 28.0 32.0 20.0 26.0 40.7 43.7
Classification by Desc. [5] 23.33 36.0  30.0 26.0 22.0 28.9 41.7
Gradient-based Approach 23.3  20.0  40.0 20.0 20.0 16.7 55.6
Ours (1-prompt) 31.6 24.0 440 40.0 22.0 50.3 47.8
Ours (10-prompt) 46.67 42.0 52.0 50.0 36.0 78.959.2

Zeroshot CLIP CBD Ours Tab.le 2:. Accurafcy across the hier-
archical iNaturalist 26-class dataset.

Zeroshot 13.6 10.0 12.4 28.8 Rows represent the method for coarse-
CLIP 17.6 20.8 20.8 40.8 level classification, and column repre-
CBD 17.6 14.4 20.0 41.2 sents the method for fine-grained level

Ours 18.0 12.8 19.6 38.8 classification.

engineered text templates. We outperform all baselines with or without engi-
neered text templates, and report the full numbers in the supplementary.

4.3 Fine-Grained Classification (iNaturalist)

Quantitative Result Discussion: We present the performance (accuracy) for
our method and baselines in Tab. 1. Crucially, our method starts with zero
prior knowledge about what is in a class of images, beyond the fact that those
images are grouped together. The initialized best classifier at the beginning
of optimization has no correspondence to the class name or quality, and only

Panicled Bulrush QOurs Classification By Description  Gradient-based Approach
a common weed with |-a [Class], tall, grass-like thread
small white flowers appearance airplane
greenish-white flowers = [Class], clusters of small, finishes
sharp, jagged edges on brown flowers at the top pile
the teeth of the stem hairy
evergreen foliage = [Class], triangular shape tangle
white flowers of the stem
saltwater or seawater = [Class], green or brown

color

= found in wetland or
marshy areas

—= may have small, pointed
leaves along the stem

N J J J

Fig. 6: Comparison of Attributes by Method. We show qualitative examples
of our learned attributes, classification by description’s attributes (CBD), and our
gradient-based approach attributes. CBD often produces reasonable attributes, but
they are not discriminative, resulting in poor recognition accuracy. Gradient-based
methods often produce poor attributes due to optimization difficulties.
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through optimization our method learns to discover interpretable and reflective
attributes. The first three baselines of zero-shot descriptors, class name, and
class name with zero-shot descriptors on the other hand have prior knowledge
of the class from the start and therefore are at a significant advantage as they
wouldn’t work for any concepts that the internet isn’t already familiar with.

Additionally, we show results for a hierarchical model of classification. Using
the taxonomy from iNaturalist, we train our method to classify objects at coarse
levels first, i.e. the family, then fine-grained levels, i.e., the species, resulting in
a 26-way multi-class classification problem across the five families we previously
reported on. We report these results in Tab. 2 for different choices of method for
the coarse and fine-level classification decision. While class names are sufficient
for coarse-level classification, our method always outperforms class names and
all other baselines for fine-grained classification.

Qualitative Result Discussion: In Fig. 4, we show the fine-grained classi-
fication results on the Lichen family. We observe that while all the Lichen are
orange and yellow in color, the only references to color within the attributes are
when the color diverges from the mean color, i.e. “reddish tint”. The majority
of the attributes reflect the Lichen’s structure, which is due to the fact that
all the Lichen are roughly the same color and grow in similar environments,
the principal discriminating feature is the structure. In Fig. 6, we compare our
learned attributes to the zero-shot attribute in CBD, as well as the learned at-
tributes with our gradient-based approach. The gradient-based approach has far
less descriptive and interpretable attributes. We provide more such qualitative
examples of the three methods in the supplementary material.

In Fig. 5, we explicitly visualize the predictions across for three of the clas-
sifiers, one per row. Each example illustrates how each method compares to
the top-performing baseline, classification by description (CBD). We show our
method’s prediction as well as CBD’s prediction, along with the relative con-
tribution of each attribute to the mean score. We additionally denote CBD’s
attributes for the ground truth class, along with the relative contribution to
the ground truth mean score, to visualize why CBD may have incorrectly pre-
dicted the class. Across the three examples, we notice that CBD’s attributes are
less specific and detailed compared to ours, and that there are many shared at-
tributes across different classes. Shared attributes are not useful in fine-grained
classification, since the goal is to discriminate between classes.

4.4 Novel Objects (Kiki-Bouba)

Quantitative Result Discussion: We outperform all baselines on the two
KikiBouba datasets. The gradient-based baseline has a large variation in perfor-
mance. We hypothesize that this is due to the intra-class variation changing quite
significantly across classes. Across all experiments, the gradient-based approach
produces poor attributes due to optimization difficulties, as illustrated in Tab. 1.

Qualitative Result Discussion: For the novel image results on the first dataset
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05 Fig.7: Confidence. We
Zero-shot .
Zero-shot + Class show the mean margin of

B Gradient-based

H Ours the scores between the top

and runner-up prediction,
which measures the typical

confidence of each model.

Lichen Wrasse Wild Rye Manzanita Bulrush KB1 KB2

of Kiki-Bouba. In Fig. 4, we show qualitative results of the learned attribute sets
for the second Kiki-Bouba dataset. We notice that compared to the iNaturalist
datasets, there is less similarity between classes, and the discovered attributes
are more object-oriented. We suspect these observations are not unrelated, and
that when an object name can be used to discriminate between classes, the
vision-language model scores highly with it.

4.5 Analysis of Learning

Margin Metric: In Fig. 5, below the input image, we show the probabil-
ity distributions across classes for both our method and CBD. We observe
that in general, the probability distribution across classes for CBD is more
uniform than ours. We investigate this observation by measuring the margin
metric per dataset, per method. The margin is defined as max.cc fe(2i; D) —
maxg¢c fe(24; D), which measures the difference in scores between the top pre-
diction and the runner-up, indicating the prediction confidence [70]. We plot the
margin for each method, per dataset, in Fig. 7. The results illustrate that our
method is on average twice as confident as the other methods.

Attribute Evolution: In Fig. 3, we show examples of the iterations for pre-
training, followed by the joint training. At initialization, the first sampled set
of attributes for Greenleaf Manzanita hardly relate to the class. The closest
attributes are “dark greenf leaves” and “green coloration”, with the other at-
tributes having nothing in common with images. However, by the end of the
attribute evolution, the color “green” is no longer part of the attributes, as the
other Manzanita also have green leaves, making it non-discriminative. The final
attributes contain descriptors that are particularly descriptive of the Greenleaf
Manzanita. We share more examples of attribute evolution in the supplementary.

4.6 Auditing Dataset Bias

By having explicitly interpretable attributes as the bottleneck for classification,
we can directly observe whether the classifier is picking up on dataset bias to
perform prediction. An example of dataset bias can be seen in Fig. 8. This is
unique to our method, as classifiers with no concept bottlenecks have no way of
converting dataset bias into language, and previous work in concept bottlenecks
do not discover the attributes from the data itself.
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Quack Grass Virginia Wild Rye
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rows of long, thin, parallel desert lavender spiky, dark green leaves smooth to finely pubescent La serene countryside scene

” strips creosote bush diamond-shaped leaves may have small hairs on with fields of ripe wheat and
O |funeven upper edge arizona barrel cactus cliff-dweling leaves taa distant, hazy horizon

3 | [=along, thin, flexible rod with sand sagebrush cool, humid ravines may form large colonies fields of golden wheat

E || uneven, roughened surfaces spiny hedgehog cactus edible nuts important to waterfow! tablowing in the breeze

<C | Laaring or coil with small, teddy bear cholla birch-like bark compound palmate abale of hay in a peaceful
8 green leaves leaves Miami near lakeshores meadow

% fufields of tall, vibrant grasses
3 and colorful wildflowers

t=a field of green, young wheat
with a large, old tree in the
background
Lafields of bright, yellow
unflowers

Fig. 8: Dataset Bias. The squirreltail is the only species in the family that lives in
drought habitats, and the learned attributes are names of plants that live in the desert.
The ability to explicitly audit bias is an advantage of our interpretable method.

5 Discussion

Societal Impacts and Limitations. Explainable vision systems have the po-
tential to have significant practical impact, especially in specialized, critical, and
scientific domains. Such interpretable classifiers can establish trust, as they pro-
vide insight into how a classifier reached a decision. They allow people to audit
the decision-making process, which is important for many practical cases. Fi-
nally, they also impact education, as the classifiers can report to a person the
visual differences it has discovered, thereby helping the person learn about the
recognized concept too. However, since our approach uses open-source LLMs, our
method inherits known limitations about LLMs in bias and inappropriate gen-
erations. As research in LLMs advance, we expect our framework to improve too.

Conclusion. We propose a framework that integrates large language models
and evolutionary search in order to learn interpretable, discrete attributes for
visual recognition. In multiple datasets, our method outperforms existing base-
lines significantly.
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