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Observations of enhanced rainfall 
variability in Kenya, East Africa
Susan M. Kotikot 1*, Erica A. H. Smithwick 1 & Helen Greatrex 2

Understanding local patterns of rainfall variability is of great concern in East Africa, where agricultural 
productivity is dominantly rainfall dependent. However, East African rainfall climatology is influenced 
by numerous drivers operating at multiple scales, and local patterns of variability are not adequately 
understood. Here, we show evidence of substantial variability of local rainfall patterns between 1981 
and 2021 at the national and county level in Kenya, East Africa. Results show anomalous patterns 
of both wetting and drying in both the long and short rainy seasons, with evidence of increased 
frequency of extreme wet and dry events through time. Observations also indicate that seasonal and 
intraseasonal variability increased significantly after 2013, coincident with diminished coherence 
between ENSO (El Nino Southern Oscillation) and rainfall. Increasing frequency and magnitude of 
rainfall variability suggests increasing need for local-level climate change adaptation strategies.
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Climate variability is of great concern for countries whose economies rely on rain-fed agriculture, especially when 
climate services are inadequate, and adaptive capacity is low. Extreme events such as drought can directly impact 
the productivity of both crops and pasture systems1,2. Thus, understanding local patterns of change is the first 
critical step in developing context specific and risk-based adaptation strategies. Recent trends indicate a strong 
increase in the intensity and frequency of maximum temperatures across East Africa3,4. Based on global CMIP6 
estimates, the intensity and frequency of maximum temperatures and of heavy rainfall is expected to increase5,6 
across East Africa (EA). While these broad scale climate assessments are important for guiding national climate 
adaptation action plans, they do not highlight local level spatial–temporal changes that are relevant to agropas-
toral livelihoods to promote contextualized adaptation. Furthermore, large uncertainties remain regarding the 
spatial and temporal variability of rainfall events7.

Rainfall projections for EA are associated with high uncertainty due to complex climate drivers8. For exam-
ple, the outcomes of large-scale atmospheric circulation systems are influenced by local physical features of the 
landscape that can produce highly diverse climate conditions within very short distances, and that are difficult 
to directly link to global circulation systems9,10. Despite its equatorial location, the EA region is relatively dry 
compared to the rest of the equatorial belt11. Even so, the precarity of agricultural livelihoods in the region is 
related more to rainfall variability than to annual total rainfall of the growing season12. Extreme rainfall in 2019 
for example, is believed to have caused desert locust reproduction13, while recurrent droughts14, have caused dev-
astating famine across EA. Increasing velocities of climate changes15 can aggravate land degradation, for example 
through increased rainfall intensity, floods, drought frequency and intensity. However, fine-grained spatial and 
temporal patterns of rainfall are not understood at local scales, hindering climate adaptation16.

In addition to these factors, EA rainfall is influenced by numerous teleconnections (e.g., El Niño-South-
ern Oscillation (ENSO), Indian Ocean Dipole (IOD), Madden–Julian Oscillation (MJO)17), regional (e.g., 
topography18,19 large water bodies20–22), and local (e.g., soil moisture23, vegetation) controls on its rainfall 
variability18,23. These factors generate variability in seasonality and rainfall amounts at multiple scales. Specifi-
cally, the IOD24 and ENSO have been shown to influence extreme events (high rates of rainfall and heat conver-
gence associated with aridity) in EA25,26 and are major modes of interannual variability, while the MJO is mainly 
associated with intraseasonal variability27. ENSO and IOD affect EA rainfall by influencing preferred regions of 
rising and descending moisture and air in the Walker circulation28,29. Basically, rainfall is enhanced during El 
Niño and positive IOD events, and drought is enhanced during La Niña and negative IOD events30. Although 
many IOD events develop independently with separate impacts on regional climate from those of the ENSO 
related variability, ENSO can enhance IOD variability at interannual time scales31. Often, negative IOD events 
will occur during La Niña and positive events will occur during El Niño32. The impact on rainfall amount and 
variability is greatest when ENSO and IOD are in phase.
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Interactions among large-scale (atmospheric and ocean circulation) and regional and local factors produce 
intricate patterns of rainfall. The Intertropical Convergence Zone (ITCZ) governs the seasonality of EA rainfall33. 
It is a band of low pressure around the Earth and marks the convergence of trade winds near the equator34. 
Drastic shifts in the position of the ITCZ can occur due to local and remote forcings35–37 with potential implica-
tions for seasonal rainfall patterns in EA. ENSO for example, is known to influence interannual variations in the 
seasonal cycle of the ITCZ30. The complex topography of EA affects rainfall primarily by influencing low-level 
flow which enhances surface heat flux and convection and initiates high frequency mesoscale and sub-synoptic 
disturbances18. For example, the highlands channel flow creating the southwest monsoon flow and Somali Jet38 
and the Turkana channel converges flow into a low-level jet that impacts low-level divergence, modulating the 
diurnal cycle of rainfall19. Lee rain shadows also form when highlands block moist air flowing from the Congo 
basin. Large water bodies assure the presence of moisture, which can intensify local level rains39. For example, 
Lake Victoria influences the diurnal cycle of rainfall largely through interactions between orographic effects of 
the surrounding topography and easterly flow20–22. As a source of evapotranspiration, soil moisture (and vegeta-
tion) influences water and energy cycles and therefore can trigger atmospheric feedbacks that impact the climate 
system23,40. Forests are especially known to control rainfall patterns at local to regional scales41. Depending on 
the scales of deforestation, forest loss can impact rainfall by inducing local circulations that enhance rainfall or 
it can reduce precipitation recycling leading to rainfall reduction as has been shown with the Congo Forest42. 
As a result of these multiscalar factors, the EA rainfall regime is marked with extreme spatial heterogeneity and 
temporal variability where, in recent years, drought and flood years/seasons have alternated.

Typically, the rainfall regime is bimodal over much of EA, with most of the rain falling in the long rains in 
March, April, and May (MAM) and less during the short rains in October, November, and December (OND)43. 
Previous work has shown that interannual variability is stronger in OND than MAM at broad scales, but OND 
rainfall is better understood as it has a strong connection to ENSO and IOD44,45, whereas MAM is weakly 
influenced by sea surface temperature (SST) anomalies46–49. Although drivers of MAM variability are less well 
understood18, extreme seasons have occurred over the recent years50–52 and there is evidence that MAM rainfall 
over EA is decreasing, contributing to widespread drought and famine53. Some researchers attribute MAM 
decline to a stronger Indian Ocean branch of the Walker Circulation54,55 influenced by the Pacific Ocean56. More 
specifically, interactions between La Nina-like patterns in the eastern Pacific and warm western Pacific SST have 
been linked to drier than normal MAM including the recent widespread MAM 2022 droughts in EA57. According 
to46, recent MAM rainfall decline is likely associated with decadal variability in the Pacific Ocean, specifically the 
negative phase of the Pacific Decadal Oscillation. Others have found that MAM variability is rather influenced by 
a combination of factors acting on intraseasonal, interannual, decadal, and multidecadal timescales (e.g.18,58,59. 
Furthermore,18 found that each month in MAM exhibited marked differences in terms of character, causal fac-
tors, and teleconnections, which indicates intraseasonal contrasts.

In this study, we explore spatio-temporal characteristics of rainfall variability in Kenya, and examine the 
association of rainfall with ENSO and the IOD mode, two major factors of rainfall variability in EA. We reveal 
heterogeneous patterns of rainfall anomalies at scales relevant to agropastoral livelihoods in EA. First, we uncover 
archetypal spatial patterns of seasonal rainfall anomalies and their trends over time using the self-organizing 
map (SOM)60 approach and compare between national and regional levels of analysis to establish the potential 
for localized assessment. SOM is an ideal tool for identifying physically relevant patterns of variability and 
allows us to assess changes in the frequency of such patterns. Estimated patterns provide a basis for further 
investigation of physical driving mechanisms including less understood micro to mesoscale systems. Second, we 
explore the periodicity of rainfall variability and how that variability is changing with time using the continuous 
wavelet transform61, and delineate between interannual, interseasonal, and intraseasonal time scales of rainfall 
variability. Third, we determine the correlation in time and frequency space, between rainfall and SST indices 
(Niño3.4 and the Dipole Mode Index (DMI)), and extract features of localized (in time) coherence and phase 
relationships. The two complementary approaches used in the study provide robust characterization of rainfall 
patterns allowing us to infer relative variability at local spatial and temporal scales, and how that variability is 
changing with time. Understanding time scales of rainfall variability, e.g., intraseasonal patterns, is essential for 
characterizing patterns of seasonal rainfall distribution that determine water availability to crops. Furthermore, 
season-to-season dynamics (interseasonal variability) are critical for assessing the vulnerability of pastoral live-
lihoods that involve seasonal migration based on weather and pasture availability. Our findings are critical for 
informing policy on adaptation strategies especially for agropastoralists in arid and semi-arid areas where rainfall 
is a major determinant of productivity.

Data and methodology
The Climate Hazards group InfraRed Rainfall with Station (CHIRPS) v2.062 dataset was used in this study. It is a 
quasi-global dataset available at a relatively high spatial resolution of 0.050 and multiple time steps (daily, 5-day) 
beginning 1981 to present. It is developed based on high-resolution infrared satellite measurements and blended 
with ground observation station data. It therefore closely matches data that is interpolated gauge observations 
in areas with a dense network of stations. Generally, agreement between CHIRPS and ground observations var-
ies across space and with time depending on the density of gauge stations. CHIRPS was chosen as the primary 
rainfall dataset in this study due to both its performance in validation studies, and due to its wide-ranging use in 
both Kenya drought research and operations (allowing comparison between this study and existing research). At 
present, over ten research papers have validated CHIRPS across Kenya, with a majority finding excellent correla-
tion against reference gauges62–69. In addition, CHIRPS is used operationally in Narok for drought early warning 
bulletins published by Kenya’s National Drought Management Authority70; is commonly employed as a bench-
mark dataset in meteorological research across Kenya71–75; and was chosen as the input dataset for a wide range 
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of recent drought-relevant research in Narok and the surrounding regions76,77. CHIRPS has also been employed 
as an input dataset for several trend analyses in the East African region and was found to perform well17,53,66,78–80.

However, it is important to note that CHIRPS is still likely to have errors, especially as most validation stud-
ies focus on the larger East African region rather than examining local meteorological conditions. For example, 
several papers focused on Kenya have suggested CHIRPS is likely to underestimate rainfall in high elevation 
zones, including the mountains in Narok county81. Others have suggested that CHIRPS might overestimate 
rainfall in the nearby Kisumu region along the Western shores of Lake Victoria82. In addition,65 suggested that 
CHIRPS had a slight dry bias, although in general performing well. In other regions of the world, CHIRPS has 
been found to struggle to capture extreme rainfall83.

Monthly time series of the Dipole Mode Index (DMI) and Niño3.4 SST anomaly index between 1981 and 
2021 were used to assess the relationship between the Indian and Pacific Ocean SST and Kenya rainfall anomalies. 
DMI indicates the east–west temperature gradient of the tropical Indian Ocean associated with the IOD. It is the 
difference between the Western Tropical Indian Ocean (WTIO) and Southeastern Tropical Indian Ocean (SETIO) 
SST anomaly indices which are indicators of surface temperatures in the western and southeastern parts of the 
tropical Indian ocean. WTIO and SETIO are respectively calculated with SSTs within 50 °E–70 °E, 10 °S–10 °N 
and 90 °E–110 °E, 10 °S–0°. The Niño3.4 is an SST anomaly index that indicates average SST conditions in the 
tropical pacific between 170 °W and 120 °W, 5 °S–5 °N. Monthly DMI and Niño3.4 SST anomalies are calculated 
at NOAA Physical Sciences Laboratory using the HadISST1.1 SST dataset and can be downloaded from https://​
psl.​noaa.​gov/​gcos_​wgsp/​Times​eries/.

Study area characteristics
The study area is Kenya (Fig. 1a), a country in equatorial EA. Like the wider equatorial EA, the rainfall regime 
is historically bimodal over most areas43, although over recent years, the timing of seasonal rainfall has become 
increasingly unpredictable. The spatial distribution of rainfall is highly heterogeneous and mainly follows pat-
terns of topography (Fig. 1b). March, April, May (MAM) has been the typical growing season84,85 but recent 
trends have indicated delayed onset, early cessation of rains, and prolonged dry periods9,78. To determine local 
level patterns, we compare results between national (country) and regional (county) levels of analysis. Narok 
county was selected as a regional case study site as it exemplifies a typical agropastoral landscape in EA in that it 
is highly diverse in climate, topography, land cover, and land uses. It is a county in southern Kenya, ~ 18,000 km2 
in area. Livelihood forms relate to ecological and climate conditions which follow patterns of elevation, and that 
are strongly influenced by local topography86.

Spatial patterns of rainfall variability
The Self-organizing maps60 approach was used to delineate dominant spatial patterns of rainfall anomalies. They 
are a type of artificial neural network which allows for the nonlinear unsupervised classification of multivariate 
data into a finite set of representative patterns. A SOM is made up of several nodes in a two-dimensional grid 
representing the probability density function of a dataset88. The nodes are successively adjusted through an 
iterative training process, until the map becomes well organized and representative of the data89–91. Each data 
point is then assigned to a node based on its similarity (measured by Euclidean distance) and the node with the 
smallest distance to the data vector is the best match unit (BMU). Compared to other clustering techniques, 
SOM has a main advantage in that it does not assume stationarity or orthogonality88,89,92 making it more appro-
priate for analysis of environmental data. SOM has successfully been used in the clustering of rainfall data and 
found to obtain patterns that are readily interpretable93,94. Furthermore, they can discover patterns resulting 
from non-linear processes, and may help reveal physical mechanisms consistent with the observed patterns. The 
SOM clustering method delineates groups with similar rainfall characteristics, including time evolving patterns 
associated with climate change.

In this study, monthly CHIRPS data between 1981 and 2021 for MAM and OND seasons were used to train a 
SOM for each season. Because we are interested in isolating patterns of rainfall anomalies, standardized anomalies 
of each MAM and OND month were calculated as the monthly values minus the long-term monthly average and 
divided by the month standard deviation. The monthly standardized anomalies were then used to create a SOM 
for each season, while adjusting the SOM size to maximize variance and maintain significance. For each of the 
seasons, a 3 × 2 SOM size was found to fully represent the distribution of rainfall anomaly patterns resulting in 
six nodes (patterns). To unravel regional patterns of rainfall anomalies, the analysis was done at both the Kenya 
and Narok levels, in each case resulting in a 3 × 2 SOM size. From each SOM, specific characteristics including, 
the dominant patterns, the trends in the frequency of occurrence of the patterns, and the spatial heterogeneity 
of anomalies were derived and compared between seasons and geographic levels of analysis. A potential weak-
ness of the SOM approach is that many free parameters need to be adjusted. Sensitivity tests were conducted 
on all the free parameters and the best SOM was chosen that provided a good balance based on three standard 
measures of SOM quality including the Sammon map, quantization error (QE), and topographic error (TE). The 
Sammon map approximates the Euclidean distance between SOM nodes. It shows similarity among SOM node 
maps and how the map is ordered. A good Sammon map should be flat (not folded). QE assesses how related 
the SOM map nodes are to the input data vector. The range of QE values depends on the input data, but they 
should be continuously declining with SOM training time. TE calculates the percentage of data vectors whose 
second-best match node is not a neighboring unit. It assesses whether the SOM map is well-ordered. TE values 
between 10–15% are acceptable. All (MAM and OND for Kenya and Narok levels) SOM patterns exhibited flat 
Sammon maps, consistently declining QE values, and TE values that are less than 15%.

https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://psl.noaa.gov/gcos_wgsp/Timeseries/
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Temporal patterns of rainfall variability
To understand time scales of rainfall variability and how that variability changes temporally, the continuous wave-
let transform approach was utilized following procedures outlined in61. Wavelet transform is a multiresolution 
analysis that achieves time–frequency representation of transient patterns in time series data61. It is an appropriate 
technique for analyzing signals that have time (when) and frequency (how often) components, such as rainfall 
data. In continuous wavelet transform, a wavelet is applied as a band pass filter to the time series and shifted 
temporally at varying time window lengths which allows for time localization of signal properties. A wavelet 
is a small oscillation defined by a function with zero mean and localized in both time and frequency95. In this 
analysis, the Morlet wavelet was used because it has been shown to provide better feature extraction and a good 
balance between time and frequency localizations95–97. The Morlet wavelet was applied with a non-dimensional 
frequency of 6 which satisfies the admissibility condition95 and ensures that the wavelet scale is comparable to 
the Fourier period.

Monthly CHIRPS rainfall data were spatially averaged over two groups of agro-climatic zones (humid and 
arid) separately for each of the two geographic extents (Kenya and Narok) resulting in four time series of monthly 
average values between 1981 and 2021. The humid category consisted of the very humid, humid, and semi-humid 
agro-climate zones, and the arid category consisted of the semi-arid and arid zones98,99. Delineation of moisture 
levels allowed for assessment of relative variability between dry and humid areas as related to climatic vulner-
ability of agropastoral communities, and the two geographic levels allowed for delineation of local features as 
they are most relevant for local livelihoods. The monthly time series data were then seasonally adjusted through 
differencing which involves subtracting the previous observation (in the previous season) from the current 
observation. The seasonally adjusted values were then standardized by subtracting the mean and dividing by 
the standard deviation to allow comparison between power spectra. Continuous wavelet transforms of the 

Figure 1.   Study area map showing elevation over the geographic extent of Kenya and Narok county (a). The 
arid zone (semi-arid and arid) of the Kenya agroclimatic zones is shown in black hatching. The rest of the area 
is under the humid (very humid, humid, semi-humid) category. Monthly average (1981–2021) rainfall of Kenya 
showing spatial heterogeneity in rainfall (b). Standard deviation of MAM and OND total rainfall (1981–2021), 
showing high deviations in the highland and coastal areas (c). Boxplot of monthly rainfall spatially averaged 
over each agro-climatic zone (d). There are high variations among the agro-climatic zones for the months 
between April and November, and arid zones have very low rainfall between July and October. Figure (a) was 
created using ArcGIS Pro 3.2.0, (b), (c) and (d) were created in Python 3.10.9 using Matplotlib 3.7.087 library 
(https://​ieeex​plore.​ieee.​org/​docum​ent/​41602​65).

https://ieeexplore.ieee.org/document/4160265
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resulting time series data were then performed. For easy comparison between power spectra, the power spectra 
were normalized by 1/σ^2 to give power relative to that of white noise. The normalized power spectrum can be 
interpreted as the variance of a time series at a specific period and specific time. The statistical significance of the 
power spectrum was evaluated relative to the null hypothesis that the signal is generated by a stationary process 
with lag-1 (AR1) red noise spectrum. To understand fluctuations in power at different scales, scale averaged 
power spectrum was calculated at predetermined scales of 2–4, 5–10, and 18–30 months respectively defined 
here as intraseasonal, interseasonal, and interannual timescales. The scale averaged power shows average rainfall 
variance over time at the specified frequency (scale) bands.

Influence of large‑scale teleconnections
To understand the relationship between rainfall and oceanic SST indices, wavelet coherence between the time 
series was computed. Wavelet coherence is a measure of the coherence in time–frequency space between power 
spectra of two time series61,100. It can be interpreted as a localized correlation between two time series in time–fre-
quency space and identifies areas in time–frequency space where there is coherence. We calculate the statistical 
significance of the wavelet coherence using Monte Carlo methods following100. The significance is estimated 
against AR1 red noise as it has been shown that the impact of AR1 coefficients on significance is low. First, we 
calculated wavelet coherence between time series of Niño3.4 and DMI SST to explore the relationship between 
them. Wavelet coherence was then calculated between monthly time series of rainfall and both the Niño3.4 and 
DMI SST indices to determine possible influence of the SST on rainfall. All the data were first standardized 
before computation.

Results
Spatial patterns of rainfall variability
Results show SOM patterns associated with positive and negative rainfall anomalies across Kenya for both 
MAM (Fig. 2a) and OND (Fig. 2b). For each season, the six nodes represent archetypal spatial patterns of rain-
fall anomalies observed between 1981 and 2021. The nodes correspond to the most occurring spatial patterns 
as indicated by their relative frequencies (shown on the figure). The patterns show areas with coherent rainfall 
characteristics, and we can infer potential driving factors and potential impacts on associated ecosystems where 
similar adaptation strategies may be recommended. For both seasons, there are two dominant nodes that show 
strong positive (1,1) and negative (3,2) anomalies indicating a dry and wet pattern. The dry pattern occurs more 
frequently compared to the wet pattern which means that most of the MAM and OND months between 1981 
and 2021 had lower than average rainfall. For MAM, both nodes (dry and wet patterns) exhibit an increasing 
trend in their frequency of occurrence over time (Fig. 2c). The increasing trends show that MAM is increas-
ingly characterized by more months of higher than average and lower than average rainfall, and fewer months 
of average rainfall. For OND, the dry pattern shows a deceasing trend in the frequency of occurrence, and the 
wet pattern shows an increasing trend (Fig. 2d). These trends imply that OND is increasingly characterized by 
more months of higher-than-average rainfall and less months of lower-than-average rainfall.

At the national level, there appears to be significant spatial heterogeneity of rainfall anomalies. Within the 
dominant nodes (1,1 and 3,2), there are spatial differences in the strength of negative and positive anomalies. 
Other nodes, (1,2), (2,1), (2,2), (3,1) show patterns with both negative and positive anomalies where one part 
of the country is always dryer (wetter) than average at the same time when other parts are wetter (dryer) than 
average. Such recurring patterns indicate a likely influence of underlying physical mechanisms including mes-
oscale to synoptic factors acting and interacting at multiple scales to generate the rainfall patterns. The patterns 
therefore provide a basis for further investigation into driving factors, and ultimately better understanding of 
rainfall climatology.

Nested patterns were observed between the national (Kenya) and regional (Narok) levels of analyses for both 
MAM and OND. For example, matching node distribution, the dominant patterns, and their trends of occur-
rence (Fig. 3). At the Narok level, the spatial patterns are accentuated allowing us to see spatial difference at 
more localized scales. Slight differences in the frequencies of individual patterns between Narok and Kenya are 
expected because SOM training is an iterative process seeded with random data. However, the overall similarity 
of patterns between the Narok-level and the Kenya-level demonstrates the replicability of the SOM approach 
and shows that in both cases, the SOM was well organized.

Temporal patterns of rainfall variability
Wavelet power spectra show for arid areas, significant (95% confidence level) rainfall variability at periods (time-
scales) between 2 and 10 months and, in the recent years (2017–2021), at periods between 18 and 30 months 
(Fig. 4). Scale-averaged power at predefined periods of 18–30 (Fig. 4b,f), 5–10 (Fig. 4c,g), and 2–4 (Fig. 4d,h) 
months are defined as interannual, interseasonal and intraseasonal timescales, and are shown for both the 
national (Kenya) and regional (Narok) levels.

Rainfall periodicity showed different patterns between the national and regional levels. For Kenya, there are 
episodes of interannual variability between 1997 and 1999 and of interseasonal variability before 1997 that are 
not evident at the Narok level. At the Narok level, we detect episodes (2002–2004, 2012–2017) of significant 
interseasonal variability that was not significant at the Kenya level. We also note a marked increase in intersea-
sonal and intraseasonal variability after 2012. Across both Kenya and Narok, we observe increased variability 
during 1997–1998, 2005–2007, 2017–2018 likely partially a response to El Niño and or a positive IOD, that we 
discuss in the next section. Comparison between power spectra of arid and humid zones for both Kenya and 
Narok revealed only inconsiderable differences and therefore results are not shown here.
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Figure 2.   SOM patterns of MAM (a) and OND (b) rainfall anomalies showing spatial coherence and 
heterogeneity across Kenya. Patterns are named in order of their position in the 3 by 2 SOM node grid. The 
percentages show relative frequency of occurrence of each pattern between 1981 and 2021, and stippling shows 
> 95% significance. Trend in frequency of occurrence of the SOM patterns showing the proportion of MAM (c) 
and OND (d) months that the specific pattern was observed within every 10 years period. SOM  analysis was 
done using Matlab R2023b SOM toolbox. Figures were created in Python 3.10.9 using Matplotlib 3.7.087 library 
(https://​ieeex​plore.​ieee.​org/​docum​ent/​41602​65).

https://ieeexplore.ieee.org/document/4160265
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Influence of large‑scale teleconnections
Wavelet coherence between Niño3.4 SST and DMI (Fig. 5b) shows a large area of significant correlation at time 
scales between 1 and 4 years. Based on the phase angles shown by arrows on Fig. 5b, there is high coherence with 
in-phase behavior between Niño3.4 and DMI most of the time between 1997–1998, 2005–2007, and 2014–2018, 
times when rainfall spectra (Fig. 4) show high power, indicating increased variability. Some areas of the spectrum 
show out of phase behavior, for example at sub-annual time scales between 1988–1990 and between 1997–1999.

Significant correlation between the SST indices (Niño3.4 SST and DMI) and Kenya rainfall is evident. At 
scales between 1 and 4 years, there is continuous, strong, and significant coherence between Niño3.4 SST and 
Kenya rainfall between 1994 and 2013 (Fig. 5c). The coherence between DMI and Kenya rainfall extends to 2018 
(Fig. 5d). Given the high coherence between the SST indices at annual time scales between 2014 and 2018, lack 
of significant coherence between Niño3.4 and rainfall imply that increased rainfall variability is likely an effect 
of the IOD with influence from ENSO. At the sub-annual scale, significant coherence between the SST indices 
and rainfall is visible only during specific years and for short durations of time. Phase angles show that most 
of the time when correlations were highest, Niño3.4 SST and DMI were in phase with rainfall. During these 
times, rainfall variability is likely a result of SST variability in the Pacific (ENSO) and or Indian Ocean (IOD). 

Figure 3.   SOM patterns of MAM (a) and OND (b) rainfall anomalies showing spatial coherence and 
heterogeneity across Narok county. Patterns are named in order of their position in the 3 by 2 SOM node grid. 
The percentages show relative frequency of occurrence of each pattern between 1981 and 2021, and stippling 
shows > 95% significance. Trend in frequency of occurrence of the SOM patterns showing the proportion of 
MAM (c) and OND (d) months that the specific pattern was observed within every 10 years period. SOM 
analysis was done using Matlab R2023b SOM toolbox. Figures were created in Python 3.10.9 using Matplotlib 
3.7.087 library (https://​ieeex​plore.​ieee.​org/​docum​ent/​41602​65).

https://ieeexplore.ieee.org/document/4160265
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However, we also observe some out of phase behavior between both SST indices and rainfall at sub-annual 
time scales. Out of phase implies that the two processes peak at different times. Rainfall variability during such 
times is likely caused by other factors separate from ENSO or IOD mode, or the influence of ENSO and IOD is 
modulated by other factors.

Discussion
Given the importance of understanding localized patterns of rainfall variability in rainfed agropastoral systems, 
quantification of these patterns over space and time are needed. This work contributes to that need by character-
izing spatial anomalies in wetting and drying periods over a 40-year time series of rainfall data and identifying 
domains of temporal variability that are expressed at interannual, interseasonal, and intraseasonal time scales. 
Importantly, regional patterns are not always consistent with patterns observed at the national scale, indicating 
the importance of multiscalar analyses to guide adaptation planning.

The SOM reveals archetypal patterns of rainfall anomalies and enhances our understanding of relative rainfall 
variability across space. Recurrent patterns are indicative of underlying climate drivers acting and interacting 
at multiple scales. Spatially coherent negative (Fig. 2, nodes 3,2) and positive (Fig. 2, nodes 1,1) anomalies at 
the national scale are most likely, largely a result of synoptic scale factors influencing rainfall across large areas 
of EA. Spatially heterogeneous patterns of negative and positive anomalies on the other hand likely result from 
interactions between large scale teleconnections and local level factors such as the influence of topography on 
local air flow and influence of water bodies on moisture availability and convective activity. Heterogeneous SOM 
patterns are consistent with previous studies that have shown spatial differences in rainfall characteristics across 

Figure 4.   Wavelet power spectra of spatially averaged rainfall over arid agro-climatic zones of Kenya (a) and 
Narok (e). In (a) and (e), color contours represent wavelet power normalized by the squared standard deviation 
and are at 0, 1, 2, 3, 4 from the lightest to the darkest colors, solid black contours enclose areas of > 0.95 
significance relative to a lag-1 red noise spectrum, hatched areas represent the cone of influence—area of the 
wavelet spectrum where edge effects (errors) due to a finite time series cannot be ignored. Figures (b), (c), (d) 
and (f), (g), (h), respectively show scale averaged power over the periods 18–30, 5–10, and 2–4 months for (a) 
and (e), and show average rainfall variance for those periods. Dotted horizontal lines show the > 0.95 (black) 
and > 0.99 (red) significance levels. Curves above the dotted lines have significant variance. The power spectra in 
(a) and (e) were generated using pyCWT​101 Python library for spectral analysis. All the figures were created in 
Python 3.10.9 using Matplotlib 3.7.087 library (https://​ieeex​plore.​ieee.​org/​docum​ent/​41602​65).

https://ieeexplore.ieee.org/document/4160265


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12915  | https://doi.org/10.1038/s41598-024-63786-2

www.nature.com/scientificreports/

EA with spatial coherence varying among months of the same season9,102. In this study, we map the spatial pat-
terns and identify their trends with time. The SOM patterns provide a basis for further investigation of the role 
of potential driving factors to better understand rainfall patterns. The trends of occurrence of identified patterns 
can be related to the increasing or decreasing roles of underlying factors and indicate the direction of change in 
rainfall for specific areas in space. For example, more than half the time, MAM and OND months between 1981 
and 2021 have been dryer than average. While the frequencies of both anomalously dry and wet MAM months 
have been increasing over time, those of anomalously dry OND months have been decreasing. Overall, MAM is 
increasingly characterized by more months of higher or lower than average rainfall, while OND is increasingly 
characterized by more months of higher-than-average rainfall and less months of lower-than-average rainfall. 
More extreme MAM months imply poor rainfall distribution in the season and is unfavorable for rainfed agricul-
ture and pastoral systems in arid and semi-arid areas. Adaption plans in such systems might consider strategies 
for dealing with prolonged dry periods in MAM and excess rainfall in OND.

While the SOM detects increasing MAM and OND extremes which is consistent with sub-seasonal variability, 
we characterize further the average periodicity of rainfall using wavelet analysis and detect variability at multi-
ple time scales. Intermittent spells of significant intraseasonal and interseasonal variability become prominent 
after 1995, more strongly so after 2013 at the regional (Narok) level. Differences in the wavelet analysis results 
between levels of analysis suggest that averaging rainfall data over a larger geographic extent leads to loss of 
spatial variations of rainfall characteristics. This is an important result because local patterns are most relevant 
for place-based climate adaptation strategies such as stress resistant crop varieties103 and water harvesting for 
supplement irrigation104. This is especially true in arid agropastoral landscapes that are already vulnerable. In 
a bimodal rainfall regime like in Kenya, interseasonal variability suggests contrast between the rain season and 
the preceding or following dry season. Such alternating cycles of anomalously wet and dry seasons can lead to 
severe erosion or landscape degradation105 for fragile arid ecosystems.

Figure 5.   Monthly values of standardized DMI, Standardized Niño 3.4 SST Index, and standardized monthly 
rainfall (a), wavelet coherence between time series of the Niño3.4 SST index and DMI (b), Niño 3.4 SST index 
and rainfall (c), DMI and rainfall (d). Rainfall data are averages over the Kenya geographic extent. The color 
scale shows correlation between the time series. Arrows show phase relationships between the time series (in 
phase if pointing up, anti-phase if pointing down, one signal leading another if pointing right—in this case, 
Niño 3.4 index leading DMI or Niño 3.4 index leading rainfall or DMI leading rainfall). Wavelet coherence 
was performed in Python 3.7.0 using pyCWT​101 library for spectral analysis, and the figures were created using 
Matplotlib 3.7.087 library (https://​ieeex​plore.​ieee.​org/​docum​ent/​41602​65).

https://ieeexplore.ieee.org/document/4160265
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We detect evidence of existing linkages between ENSO and IOD, and their individual and combined influ-
ence on EA rainfall variability. Consistent with existing literature that indicates greater influence on EA rainfall 
when ENSO and IOD are in phase106, the current study shows increased variability at specific times (e.g., 1997, 
2006) when ENSO and IOD were in phase. However, independent occurrences of a positive (negative) IOD 
and El Niño (La Niña) have also been associated with anomalous rainfall in EA107, such as the extreme rainfall 
in 2019 that resulted from an independently occurring positive IOD mode. Coherence between Niño3.4 and 
Kenya rainfall at the annual time scale appears to have diminished after 2013, coinciding with increased rainfall 
variability that we observe in arid Narok. The increased variability after 2013 is likely a part of an abrupt climate 
shift that has been linked to climate change induced warming of Western Pacific SST108,109, and involving declin-
ing MAM rainfall and an enhanced link between OND La Niña events and subsequent dry MAM seasons56. The 
effect is increased contrast between seasons which we observe here as an increase in interseasonal variability. 
These results highlight shifting patterns of rainfall variability through time and enhance our understanding of 
the non-stationarity of teleconnections which are likely linked to climate change.

In general, our assessment shows that CHIRPS data conforms to those of spatial and aggregate monthly 
rainfall for EA, and that identified patterns are consistent with physical mechanisms that drive them. In this 
case, we note that wavelet spectra exhibit changes associated with the influence of ENSO and IOD. However, 
local analysis of rainfall patterns is hindered by a lack of reliable observations at fine spatial and temporal scales 
sufficient to characterize variability, thus one limitation of this study is a reliance on a single observed rainfall 
source, CHIRPS v2. As discussed earlier in the paper, multiple recent studies suggest that CHIRPS remains 
among the most reliable precipitation datasets for Kenya and has been widely used across the region. As also 
discussed, CHIRPS is still likely to have errors and localized assessments of skill have suggested that CHIRPS 
might struggle to capture the climates on Kenyan Highlands and on the shores of Lake Victoria. In future work, 
we plan to assess the sensitivity of our results to multiple gridded precipitation estimates that have performed 
well in reanalysis studies.

The numerous free parameters of the SOM approach can also introduce uncertainty in the interpretation of 
the SOM results88. However, spatial SOM patterns were largely consistent between the Narok and Kenya levels 
of analysis, suggesting our SOM parameters were sound and indicating potential generalization of this approach 
to other regions. Furthermore, sensitivity tests were performed on all the parameters and the best SOM chosen 
based on standard measures of SOM quality, discussed in detail in the methods section.

Conclusions
In rainfall dependent agropastoral systems, unpredictability of rainfall patterns severely limits the ability of 
farmers and herders to plan and can undermine agricultural investment, negatively affecting economic devel-
opment. This is especially true in East Africa, where multiscale climate drivers generate highly heterogeneous 
rainfall characteristics, yet adaptation plans are based on broad scale climate assessments. In this study, we 
characterize aspects of rainfall variability at scales relevant for place-based adaptation planning. We determine 
archetypal patterns of rainfall anomalies that demonstrate regional heterogeneity. These results enhance our 
understanding of local rainfall patterns and provide a basis for further investigation into local climate dynamics 
including potential microscale to mesoscale drivers of observed patterns and their changing roles. In addition, 
we determine the temporal timescales of rainfall variability and how it is changing over time and establish that a 
localized assessment can better highlight features that are not readily discernible at broader scales. We elaborate 
on subtle patterns of rainfall variability observed at the annual, seasonal, and sub-seasonal scale which relates 
to inconsistent rainfall distribution that we refer here as intraseasonal variability. Improved understanding of 
localized rainfall patterns is necessary for contextualized adaptation strategies such as agricultural climate ser-
vices. It further highlights relative vulnerabilities associated with spatial heterogeneity of rainfall and this can 
help to focus resources where they are most needed and guide the transfer of successful adaptation strategies 
across spatially coherent areas. This information can be integrated into national adaptation planning to support 
effective place-based strategies that address actual local needs, for example though a decision support tool to 
guide targeted recommendations. Furthermore, the SOM patterns can help to define spatial scales associated 
with anomalous occurrences of aridity or wetness which is useful for defining spatial domains of early warning 
systems. While Narok was used as a case study site for regional level analysis because it captures the wide range 
of conditions present in Kenya, results for other regions are likely to be locally specific.

Data availability
All the data used in this analysis are publicly available. The Climate Hazards group InfraRed Rainfall with Sta-
tion (CHIRPS) v2.0 dataset is available from https://​www.​chc.​ucsb.​edu/​data/​chirps. Monthly DMI and Niño3.4 
SST anomalies are available from https://​psl.​noaa.​gov/​gcos_​wgsp/​Times​eries/. Code is available from the cor-
responding author upon request.
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