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Abstract

1. Drones have become invaluable tools for studying animal behaviour in the wild,

enabling researchers to collect aerial video data of group-living animals. However,
manually piloting drones to track animal groups consistently is challenging due
to complex factors such as terrain, vegetation, group spread and movement pat-
terns. The variability in manual piloting can result in unusable data for down-
stream behavioural analysis, making it difficult to collect standardized datasets

for studying collective animal behaviour.

. To address these challenges, we present WildWing, a complete hardware and

software open-source unmanned aerial system (UAS) for autonomously collect-

Handling Editor: Nicolas Lecomte ing behavioural video data of group-living animals. The system's main goal is to
automate and standardize the collection of high-quality aerial footage suitable for
computer vision-based behaviour analysis. We provide a novel navigation policy
to autonomously track animal groups while maintaining optimal camera angles
and distances for behavioural analysis, reducing the inconsistencies inherent in
manual piloting.

3. The complete WildWing system costs only $650 and incorporates drone hard-
ware with custom software that integrates ecological knowledge into autono-
mous navigation decisions. The system produces 4K resolution video at 30 fps
while automatically maintaining appropriate distances and angles for behaviour
analysis. We validate the system through field deployments tracking groups of
Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation cen-
tre, demonstrating its ability to collect usable behavioural data consistently.

4. By automating the data collection process, WildWing helps ensure consistent,
high-quality video data suitable for computer vision analysis of animal behaviour.
This standardization is crucial for developing robust automated behaviour rec-
ognition systems to help researchers study and monitor wildlife populations at
scale. The open-source nature of WildWing makes autonomous behavioural data

collection more accessible to researchers, enabling wider application of drone-

based behavioural monitoring in conservation and ecological research.
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1 | INTRODUCTION

Drones have emerged as a powerful technology for studying animal
behaviour, enabling researchers to collect aerial footage of wildlife
in their natural habitats. By partnering human expertise with drone
technology, researchers can dramatically expand their observational
capabilities, gathering high-quality behavioural data across challeng-
ing terrains without the limitations of ground-based methods. The
strategic application of this technology amplifies researchers' effec-
tiveness, enabling them to collect comprehensive data sets while
maintaining the careful approach needed for wildlife studies. These
aerial perspectives allow researchers to simultaneously observe all
individuals in a group (Schad & Fischer, 2023)—something impossible
with traditional ground-based observation methods such as focal or
scan sampling (Altmann, 1974). This comprehensive perspective is
particularly valuable for understanding collective behaviour, where
interactions between individuals and their environment shape group
dynamics. Drones have already been used to study the behaviour
of a wide variety of species in differing habitats, including African
ungulates (Kholiavchenko et al.2024; Koger et al., 2023; Price et al.,
2023), Przewalski's horse (Ozogéany et al., 2023), baboons (Duporge
et al., 2024), caribou (Torney et al., 2018), elephants (McNutt et al.,
2024) and even underwater tracking of fish species (Cai et al., 2023).

The current state-of-the-art methodology for collecting aerial
drone footage of wildlife behaviour relies on human pilots to fly the
drone manually. However, manually collecting usable behavioural data
with drones presents significant challenges in the field. Collective be-
haviour is challenging to capture, requiring fine-scale observations of
multiple animals simultaneously (Hughey et al., 2018). Researchers
must maintain optimal viewing angles and distances as animals move
through complex terrain while ensuring that all individuals remain in
the frame as groups spread out or merge. This task requires quick re-
sponses to sudden changes in group movement or direction, all while
maintaining consistent data quality across multiple observation ses-
sions and minimizing disturbance to the animals.

Manual drone piloting often fails to address these challenges ad-
equately, and humans generally overestimate their ability to track
moving targets. Recent research demonstrates that autonomous
tracking systems outperform human pilots by 22% when following
a single object moving faster than 2.5m per second—approximately
the speed of a walking horse (Bala et al., 2024). When this baseline
difficulty is compounded by environmental factors such as vege-
tation occlusions, varying topography and the need to track multi-
ple animals simultaneously, the challenge of recording group-living
animals becomes far more complex than initially apparent. Human
pilots must balance multiple cognitively demanding tasks simultane-
ously: tracking moving targets while adjusting altitude and position
to maintain proper framing, navigating around landscape features

and obstacles, monitoring battery levels and environmental condi-
tions and complying with drone regulations and safety protocols.
This cognitive burden of multitasking frequently results in inconsis-
tent footage quality for downstream analysis. Video segments must
be excluded from analysis when animals' species or behaviour can-
not be identified due to insufficient image resolution or occlusion
from vegetation. For example, the In-Situ Dataset for Kenyan Animal
Behavior Recognition from Drone Videos (KABR) collected through
manual piloting yielded only 65% usable data for behavioural anal-
ysis, despite requiring 3weeks of fieldwork (Kholiavchenko et al.,
2024). Such inefficiencies make building the comprehensive data-
sets needed for understanding collective behavior difficult.

An autonomous approach could help overcome the limitations of
the current state-of-the-art manual approach. Autonomous drones
can maintain consistent viewing angles and distances, react more
quickly to group movements and produce more consistent, standard-
ized data across sessions by automating the core tracking and posi-
tioning tasks. This automation allows human operators to focus on
safety and research objectives rather than the technical demands of
piloting. Autonomous drones can assist ecologists in monitoring and
responding to complex, emerging collective animal behaviours that are
beyond the abilities of a manual pilot. Autonomous drone missions are
safer, more reliable and more consistent than manual missions (Boubin
& Stewart, 2020). In addition, autonomous drone missions can be pro-
grammed with safety features to minimize animal disturbance, reduce
crashes and ensure compliance with drone regulations.

Autonomous drones have been successfully deployed to locate
individuals and estimate animals' positions (Andrew et al., 2020;
Meier et al., 2024). However, autonomous tracking of wildlife re-
mains largely unexplored. Existing autonomous drone systems are
primarily designed for tracking single targets or human-made ob-
jects (Chen et al., 2018; Kline et al., 2023; Rohan et al., 2019). While
drones can reliably track animals that have GPS tags (Kavwele et al.,
2024), attaching tracking devices to protected species is often not
permitted or practical. Approaches to autonomously track herds of
livestock have been proposed (Luo et al., 2024), but any approach for
wildlife must integrate ecological knowledge of the species and hab-
itat to be effective. Wildlife tracking requires different approaches
for group dynamics and collective movement, natural habitat fea-
tures and obstacles, species-specific behaviours and reactions,
and critical conservation and animal welfare considerations. These
factors create unique challenges that existing autonomous systems
cannot handle.

We present WildWing, an open-source autonomous drone sys-
tem that tracks and records group-living animals' behaviours in semi-
wild and wild environments, illustrated in Figure 1. We summarize
WildWing's advantages compared with other approaches in Table 1.
Our system allows users to integrate ecological knowledge into the
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FIGURE 1 Overview of the WildWing Unmanned Aerial System (UAS) consisting of three components: A Parrot Anafi drone, open-
source control software, and a laptop equipped with a GPU. The control software connects the drone to the autonomous navigation policy
and allows users to monitor the system during deployment. The navigation policy analyzes video frames using computer vision models and
determines the next commands to send to the drone. The control software is hosted on the laptop, where the users can also monitor the live

WildWing system deployment.

navigation policies by tuning the system parameters, automatically
maintaining optimal viewing positions while minimizing animal dis-
turbance. By making the system both affordable ($650) and open-
source, we aim to make autonomous behavioural data collection
more accessible to researchers studying collective behaviour in
natural settings. The WildWing system supports modular navigation
policies, which users can build on and customize according to their
use cases. We detail a novel autonomous navigation policy to track

herds and record the behaviours of group-living animals.

2 | MATERIALS AND METHODS

The WildWing unmanned aerial system (UAS) consists of three
main components: a Parrot Anafi drone, open-source control soft-
ware and a laptop equipped with a GPU, illustrated in Figure 1. The
control software monitors the drone's status, analyses the drone
video stream and sends commands to the drone based on the
chosen autonomous navigation policy. Our control software uses
SoftwarePilot (Boubin & Stewart, 2020) as the software develop-
ment kit (SDK) interface with the drone. The WildWing system may
be customized by adjusting the navigation parameters to tailor the
drone's approach for different species and populations. We summa-
rize all tunable parameters in Table 3, along with the settings for
our study. These parameters may be adjusted to customize the mis-
sion for wind conditions, species and habitat. The code to deploy
the WildWing system and analyse the collected data is available on
GitHub.

2.1 | Hardware

We selected hardware that is relatively inexpensive and widely avail-
able. We list alternative drones and laptop models in Table 2. The
Parrot Anafi drone model was selected for its affordability and the

SDK's ease of use. Parrot Anafi drones are no longer being produced,
but refurbished versions can be purchased for $300 USD as of this
publication date. Similar drone models include the DJI Mini 3, DJI
Mavic 2 and Holybro X500 2 with PX4 Development Kit (DJI, 2024;
Holybro, 2024). Note that the WildWing system will require some
modification from the users to deploy on the DJI or Holybro SDK,
but support for these drone models is currently under development.
Comparable laptop models to the Lenovo Y530-15ICH include the
Acer Nitro V 15 (ANV15-51-59MT) and Lenovo Legion Slim 5 Gen 8,
both equipped with GPU (Buzzi, 2024).

2.1.1 | Parrot Anafi drone

The Parrot Anafi drone is a small, lightweight quadcopter model,
weighing 320 grams and measuring 175x240x65mm unfolded.
The drone has a maximum battery life of 25min with a maximum
wind resistance of 50km/h. The maximum horizontal and vertical
speeds are 15 and 4 m/s, respectively. We used 4K ultra-high defini-
tion (UHD) mode to film the animals in 4K at 30fps.

2.1.2 | Remote controller (RC)

The RC used in this system is the Parrot Skycontroller 3, which ships
with the Parrot Anafi drone. Its maximum transmission range is four
kilometres, and it live-streams video at a 720-pixel resolution. The
RC communicates with the drone over a 2.4-5.8 GHz radio link and
via a USB-C to USB-A cable with the computer.

2.1.3 | Laptop

SoftwarePilot requires a laptop running Ubuntu OS on x86 64 archi-
tecture. We used a Lenovo Legion Y530-15ICH with 16 GiB and an
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TABLE 1 Comparison of animal monitoring methods.

Characteristic

Data quality?

Initial cost®
Operating cost®

Data
cc>nsistencyd

Reliability®
Spatial coverage

Animal
disturbance®

Training

required”

Data processingi

Best use case

Note:  Good performance;

Ground-based field
observations (Altmann, 1974;
Hughey et al., 2018)

Limited by line of sight; partial
group view

Low ($1-2K for equipment)

High (multiple field staff)

Variable between observers;
affected by fatigue

High for small areas; limited by
observer

Limited to accessible areas

Moderate to high from human
presence

High (species expertise)

Manual processing; potential
observer bias

Individual behaviour; small
groups

Medium performance;

Manually piloted drones

(Dukowitz, 2024; Kholiavchenko

et al., 2024; Koger et al., 2023)

Full aerial view; group-level data;

quality varies with pilot skill

Moderate ($2-5K for drone +
training)

High (expert pilot $350/hr)

Variable between pilots; affected

by skill level

Moderate; affected by pilot
availability

Good coverage but limited by pilot

skill
Variable based on pilot skill

High (drone certification +
expertise)

Manual processing; varying quality

Occasional surveys; specific events

Poor performance.

Autonomous drones
(livestock) (Luo
et al., 2024)

Full aerial view; consistent
quality for contained herds

High ($10K+ for
specialized systems)

Low (automated operation)

Highly consistent within
confined areas

High in structured
environments

Limited to predefined
areas

Low in habituated livestock

Moderate (system
operation)

Automated processing

Regular monitoring of
live-stock

WildWing

Full aerial view;
consistent quality for
free-ranging groups

Low ($650 for
complete system)

Low (automated
operation)

Consistent across
habitats and
conditions

High in varied
environments

Adaptable to different
habitats

Minimized through
predictable
movements

Moderate (system
operation)

Automated processing
optimized for
behaviour analysis

Regular monitoring of
wild animal groups

?Data quality refers to the resolution, completeness, and usability of collected data for behavioural analysis. For computer vision applications,

minimum pixel requirements vary by task: 50 x 50 px for species classification, 100 x 100 px for behaviour recognition, and 500 x 500 px for individual
identification (Berger-Wolf et al., 2017; Kline, Kholiavchenko, et al., 2024).
BInitial costs include all equipment and training required to begin data collection. Ground-based costs primarily involve observation equipment, while
drone-based methods require aircraft, controllers, and necessary certifications.

“Operating costs are calculated based on a typical 8-h field day, including personnel, equipment maintenance, and data processing time.

dData consistency is measured by variation in quality and completeness of data across multiple collection sessions and between different operators.

Reliability is assessed based on the successful data collection rate under various environmental conditions and technical constraints.

fSpatial coverage considers both the total area that can be monitored and the ability to follow moving groups across different terrain types.

8Animal disturbance is evaluated through behavioural changes, stress responses, and displacement from natural activities.

PTraining requirements include both technical operation skills and domain knowledge needed for effective data collection.

iData processing encompasses all post-collection steps needed to prepare data for analysis, including filtering, annotation, and quality control.

Intel Core i7-8750H CPU running Ubuntu 22.04.4 LTS, purchased
for $350 USD. It is recommended to have at least 8 GB of RAM and
50GB of free disc space to store the data and run the computer vi-
sion models (Jocher et al., 2023).

2.2 | Control system

The control system manages the hardware, connects the drone to the
autonomous navigation policy, detailed in Section 2.3, and allows users
to monitor the system during deployment. The camera angle and de-
grees of movement of the drone are fixed to ensure consistent, high-
quality footage for the duration of the flight. The camera gimbal is set

to zero degrees, that is looking straight forward, so the viewing angle is
consistent throughout the flight. The controller restricts its commands
to moving the drone along one axis at a time to adjust the viewpoint
incrementally. This way, we avoid drastic changes in the drone's view-
point that could cause the animals to move out of frame. Minor, in-
cremental adjustments also assist the system in avoiding manoeuvres
requiring rapid acceleration, which are both noisy and deplete the bat-
tery quickly. The command to the drone includes moving left/right, up/
down or forward/back. The user pre-sets the distance moved along
each axis before the mission begins.

SoftwarePilot (Boubin & Stewart, 2020) is an open-source tool
that allows users to connect drones with customizable Python
scripts. This SDK provides an interface to the Parrot drone with
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TABLE 2 Comparison of drone and laptop models that may be
used with the WildWing system.

Cost

Hardware Model (USD)
Drone Parrot Anafi with Skycontroller $300

(Refurbished)

DJI Mini 3 $445

Holybro X500 v2 PX4 $508

Development Kit

DJI Mavic 2 (Refurbishe) $525
Laptop with GPU Lenovo Legion Y530-15ICH $350

Acer Nitro V 15 $800

(ANV15-51-59MT)

Lenovo Legion Slim 5 Gen 8 $1,200

Note: The drone and laptop used in testing are listed in bold
(Buzzi, 2024; DJI, 2024; Holybro, 2024; Parrot, 2024).

access to the drone's telemetry and video streams and the ability to
send commands to the drone. Asiillustrated in Figure 1, SoftwarePilot
sends video frames from the drone to the laptop for processing and
translates the commands from the controller to the drone. We pro-
vide users with a guide to getting started with SoftwarePilot.

The control software configures a live stream from the drone's
camera accessed via RTSP protocol and displayed on the laptop using
the VLC media player. The commands sent to the drone and the cur-
rent battery level are also displayed. If the pilot detects a problem
in the system, they may manually take over the controls at any time
during the mission. The WildWing system continuously saves the
computer vision model's output, allowing the pilot to oversee the
operation and determine whether the animals were recognized. The
computer vision model output, videos and telemetry information are

automatically saved for each mission.

2.3 | Autonomous navigation policy

The WildWing control system is built to support modular autono-
mous navigation policies that can be used independently or com-
bined to create specialized missions. Users can select the policy
provided or customize it to match their research needs. This naviga-
tion approach enables broad usability and flexibility—users can tune
the parameters of the navigation model appropriately based on their
expert understanding of the species and habitat. The autonomous
navigation model further integrates ecological understanding by de-
fining the herd of animals in the scene as the object of interest.

For our deployment, we implemented the autonomous naviga-
tion policy to track group-living animals with drones proposed in
Kline et al. (2023). This policy produced an 87% accuracy in navi-
gating the drone compared to an expert pilot when tested in simu-
lation on the KABR dataset (Kline, Kholiavchenko, et al., 2024). We
use YOLOVS5 (Jocher et al., 2023) computer vision model to detect,
classify, and track the animals. YOLOv5su detected more animals in
the frame than YOLOv8n and YOLOv8m in (Kline, Kholiavchenko,

B Methodsin Eclogy and Evalution |
et al., 2024) so it was selected for this study. However, users can
easily replace this YOLO model with newer versions, or any suitable
object detector and classifier model.

We illustrate the navigation algorithm logic in Figure 3. This
navigation approach builds on previous works using image-based
tracking and detection for real-time control (Rohan et al., 2019;
Venna et al., 2020), by extending this approach to track groups.
The drone is programmed to move forward until the computer vi-
sion model detects the species of interest. Once the animals are
detected, the centroid of the herd is calculated. Here, we define
a herd as a collection of zebras within a circle of diameter 100
meters and that the circle is atleast 100 meters away from any
other herd of zebras. The navigation model sends commands to
the drone to keep the centroid of the herd within the center region

of the drone's camera.

3 | WildWing FIELD DEPLOYMENT

We deployed the WildWing system at The Wilds, a 10,000-acre ani-
mal conservation centre in southeastern Ohio, USA (TheWilds, 2024).
We obtained permission from The Wilds Science Committee to take
field observations and fly drones in the pastures. The drone was
flown within the pilot's visual line of sight, per US Federal Aviation
Authority drone regulations. We used WildWing to collect behav-
iour video data of Grevy's zebras, giraffes and Przewalski's horses
under the supervision of wildlife conservation experts. Before de-
ploying the autonomous WildWing system, we flew several ses-
sions manually on three different days over 3months to gauge the
animal's reactivity to the drone. We illustrate the WildWing deploy-
ment phases in Figure 2 and the corresponding navigation logic in
Figure 3. We summarize the WildWing system settings in Table 3.
Please refer to supplemental materials for additional details on the
field deployment.

We summarize a selection of the data gathered during testing
in Table 4. Sample images are included in Figure 4, and we include a
comprehensive representation of the data collected in supplemental
materials. The zebras and Przewalski's horses grazed near each other
during the mission, allowing us to capture the entire herd. Giraffes,
on the other hand, were more spread out across the pasture. We
concentrated on two individuals standing close together and easily
visible from our launch point. Our launch sites were nearer to the
herds of zebras and giraffes than the Przewalski's horses. As a result,
the approach time (refer to Step 5 in Figure 2) was shorter for zebras
and giraffes than for the Przewalski's horses. Approach time is the
duration between the initial launch and the first frame where the
target species are detected.

The total frames with detections is the percentage of video
frames that show detections from launch to the end of the mission.
The approach time for the Przewalski's horses was proportionately
longer than the other sessions, reducing the total of frames with de-
tections. We also computed the percentage of usable video frames
during the tracking phase only (Step 5), excluding the approach
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FIGURE 3 WildWing autonomous navigation policy for tracking herds. Components of the algorithm corresponding to each deployment
phase in Figure 2 are labelled with numbers. Step 1, locating animals, and Step 2, set-up, are accomplished manually.

TABLE 3 WildWing system settings: flight and detection
parameters.

Parameter Value
Mission duration 200s
Altitude 20+3m
Forward searching increment 10m
Forward/back movement 5m
Left/right movement 5m
Up/down movement 5m
Sampling rate 1:40 frames
Computer vision model YOLOvV5su

phase. Here, we define usable frames as those with adequate resolu-
tion to assess each animal's behaviour. The animals walked, grazed
and stood still throughout the missions. Once the animals are de-
tected by the WildWing system, the percentage of usable frames
approaches nearly 100%.

We provide scripts to analyse the drone telemetry data collected
during missions. Telemetry data includes timestamps, latitude,

longitude, altitude, commands sent to the drone and the video frame
used to determine the commands, as shown in Table 5. We provide a
Jupyter notebook to calculate the speed and heading and to preview
the drone's viewpoint from telemetry data.

4 | DISCUSSION

The deployment and evaluation of the WildWing system reveal both
the potential and challenges of autonomous drone-based wildlife
monitoring systems. While our field tests demonstrated promising re-
sults, several important factors influence the system's effectiveness
across different contexts and conditions. Understanding these factors
is crucial for both the current implementation and future deployments.
Here, we discuss key considerations spanning system customization,
environmental conditions and technical limitations that impact the
broader applicability of drone-based monitoring approaches.

We observed that the animals at The Wilds did not exhibit high
levels of reactivity or vigilance in response to the drone's approach.
These animals are habituated to anthropogenic noise, as guests
to the conservation centre often traverse through their pastures
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TABLE 4 Summary of WildWing data collection.
Species Animals captured?®

(a) Basic metrics

Grevy's zebras 5/5 34
Giraffes 2/5 28
Przewalski's horses 8/8 50
Species Total frames with detections®

(b) Detection and behaviour metrics

Grevy's zebras 86%
Giraffes 95%
Przewalski's horses 43%

Number of animals recorded during sampling out of total animals in pasture.

PPasture area in acres.
“Total video length in seconds.
Time spent searching for animals of interest (Step 4 in Figure 2).

Pasture size (acres)®

Usable frames captured during track phase

_

Video duration (sec)® Approach time (sec)?

157 10
137 7
139 72

f Behaviours recorded®

95% Walking, Grazing
98% Walking, Standing
100% Standing, Grazing

®Percentage of frames with computer vision detections, from launch (Step 3) to mission end (Step 6).

fPercentage of frames with detections during the tracking phase only (Step 5), excluding the approach phase.

8Animal behaviours observed during the track phase (Step 5).

FIGURE 4 Left: Photograph of WildWing deployment (red bounding boxes added manually for visibility). Right: Photograph of Grevy's

zebras collected with WildWing.

in buses and trucks. In addition, the animals have previously been
exposed to drone noise, as The Wilds uses drones occasionally to
locate and observe animals in pasture. Other animal populations
may exhibit higher levels of vigilance in response to the presence
of drones, especially if they experience lower background levels of
anthropogenic noise (Schad & Fischer, 2023).

The low density of the animals on the landscape at The Wilds
mimics the natural conditions from the KABR dataset, which was
collected at Mpala Research Center in Kenya. However, other habi-
tats may contain high densities of animals, particularly in areas where
food and water are abundant and attract many other animals. High
densities may increase instances where the model could incorrectly
identify non-target species as if they were target species. As a result,

herds may also become large, with fission-fusion events increasing
in frequency, thus confusing the identity of herd members being fol-
lowed. The WildWing navigation model may be adjusted to keep a
maximum number of target animals in view to handle such scenarios.
Around such resources, or in areas where population sizes of diverse
species are large, tracking herds becomes challenging, depending
on factors such as group size and spread, speed of movement, fre-
quency of fission or fusion events and the degree of occlusion in the
habitat. A comprehensive solution to these challenges is beyond the
scope of this work, but we discuss potential solutions and research
directions in Section 5.

The performance of the WildWing system is dependent on
an accurate detection and classifi- cation model. YOLOvV5 (Jocher
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TABLE 5 Telemetry data collected by WildWing.

Telemetry Description
Time stamp YYYY-MM-DD HH:MM:SS
Location Latitude GPS
Longitude GPS
Altitude Meters
Command X Meters to move forward/
back
y Meters to move left/right
z Meters to move up/down
Frame jpg file Video frame used to

determine commands, with
YOLO annotations

et al., 2023), which is trained on the COCO dataset, performed well
on detecting zebras and giraffes, but struggled to accurately clas-
sify Przewalski's horses as horses, likely since this species was not
included in the training dataset. YOLO models may be fine-tuned to
increase performance on less common species and classify these an-
imals more accu- rately. However, obtaining training sets with suffi-
cient examples of rare or endangered species can be challenging. To
solve this, we provide an option for a general animal category, using
YOLO to inform the navigation decisions. The animals may be further
classified by species after the mission concludes, either manually or
by using a more general Al species classifier, such as BioClip (Stevens
et al., 2024) or MegaDetector (Beery et al., n.d.). However, neither
of these models were trained on drone imagery, so their applicability
to the data produced by WildWing requires further investigation.
Weather conditions and habitat features are relevant factors
that should be considered when deploying WildWing. During the
field tests, the weather was 32°C (92°F), with 15km/h wind speeds
and 60% humidity. The Parrot Anafi drone is rated for temperatures
between 14°C (6.8°F) and 40°C (104°F) and 93% humidity, and so
operated successfully under these conditions. However, the laptop
battery discharged faster than usual, likely due to the heat. The laptop
battery typically lasts 4.5h on a full charge but only lasts 3h during
field tests. We also note that Parrot drones are not designed for damp
weather conditions. The zebra and giraffe pastures contained a few
shade structures with no trees near the animals, allowing for unob-
structed drone flights and straightforward deployment of the auton-
omous tracking system. However, since the Parrot Anafi drones lack
automatic obstacle avoidance capabilities, deploying them in habitats
with tall vegetation requires careful operation. We are developing
support for DJI drones, which are equipped with obstacle avoidance

features to enable safer operation in more complex environments.

5 | FUTURE DIRECTIONS

The development of autonomous drone systems for wildlife moni-
toring builds on recent advances in robotics and computer vision.

As hardware costs decrease and navigation models improve, the

coordinated deployment of multiple autonomous drones, or swarms,
for ecological studies becomes increasingly feasible (Gruschak
et al., 2024; Rolland et al., 2024). Multi-view data sets from swarms
overcome the limited viewpoint of a single drone, allowing the sys-
tem to handle larger groups, fission-fusion events, and fast-moving
groups in complex habitats. Integration with existing sensor net-
works, including camera traps, acoustic sensors and GPS tags, can
provide comprehensive ecosystem monitoring data (Besson et al.,
2022). Edge computing enables efficient processing of the large vol-
umes of data these systems generate (Kline, O'Quinn, et al., 2024).
Recent computer vision advances enable automated analy-
sis of drone footage, including animal behaviour (Chan et al., 2025;
Kholiavchenko et al., 2024), pose and movement (Koger et al., 2023;
McNutt et al., 2024), and 3D modelling (Shukla et al., 2024). However,
these vision models require extensive high-quality training data,
which autonomous systems can help collect systematically. The de-
velopment of quieter drones and optimal flight patterns that minimize
noise disturbance is crucial, as anthropogenic noise can significantly
impact animal behaviour and ecosystem dynamics (Afridi et al.,
2024 ; Bennitt et al., 2019; Duporge et al., 2021; Mulero-P'azm'any
et al., 2017). While the WildWing system currently focusses on spe-
cific species in semi-wild environments, its planned deployment in
field conditions will test its broader applicability for behavioural ecol-
ogy research. As these technologies mature, they can help address key
questions about how animal movement patterns and social structures
respond to environmental change, while generating the fine-grained,

long-term data sets needed to understand ecosystem dynamics.
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