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Abstract
1.	 Drones have become invaluable tools for studying animal behaviour in the wild, 

enabling researchers to collect aerial video data of group-living animals. However, 
manually piloting drones to track animal groups consistently is challenging due 
to complex factors such as terrain, vegetation, group spread and movement pat-
terns. The variability in manual piloting can result in unusable data for down-
stream behavioural analysis, making it difficult to collect standardized datasets 
for studying collective animal behaviour.

2.	 To address these challenges, we present WildWing, a complete hardware and 
software open-source unmanned aerial system (UAS) for autonomously collect-
ing behavioural video data of group-living animals. The system's main goal is to 
automate and standardize the collection of high-quality aerial footage suitable for 
computer vision-based behaviour analysis. We provide a novel navigation policy 
to autonomously track animal groups while maintaining optimal camera angles 
and distances for behavioural analysis, reducing the inconsistencies inherent in 
manual piloting.

3.	 The complete WildWing system costs only $650 and incorporates drone hard-
ware with custom software that integrates ecological knowledge into autono-
mous navigation decisions. The system produces 4 K resolution video at 30 fps 
while automatically maintaining appropriate distances and angles for behaviour 
analysis. We validate the system through field deployments tracking groups of 
Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation cen-
tre, demonstrating its ability to collect usable behavioural data consistently.

4.	 By automating the data collection process, WildWing helps ensure consistent, 
high-quality video data suitable for computer vision analysis of animal behaviour. 
This standardization is crucial for developing robust automated behaviour rec-
ognition systems to help researchers study and monitor wildlife populations at 
scale. The open-source nature of WildWing makes autonomous behavioural data 
collection more accessible to researchers, enabling wider application of drone-
based behavioural monitoring in conservation and ecological research.
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1  |  INTRODUC TION

Drones have emerged as a powerful technology for studying animal 
behaviour, enabling researchers to collect aerial footage of wildlife 
in their natural habitats. By partnering human expertise with drone 
technology, researchers can dramatically expand their observational 
capabilities, gathering high-quality behavioural data across challeng-
ing terrains without the limitations of ground-based methods. The 
strategic application of this technology amplifies researchers' effec-
tiveness, enabling them to collect comprehensive data sets while 
maintaining the careful approach needed for wildlife studies. These 
aerial perspectives allow researchers to simultaneously observe all 
individuals in a group (Schad & Fischer, 2023)—something impossible 
with traditional ground-based observation methods such as focal or 
scan sampling (Altmann, 1974). This comprehensive perspective is 
particularly valuable for understanding collective behaviour, where 
interactions between individuals and their environment shape group 
dynamics. Drones have already been used to study the behaviour 
of a wide variety of species in differing habitats, including African 
ungulates (Kholiavchenko et al.2024; Koger et al., 2023; Price et al., 
2023), Przewalski's horse (Ozogány et al., 2023), baboons (Duporge 
et al., 2024), caribou (Torney et al., 2018), elephants (McNutt et al., 
2024) and even underwater tracking of fish species (Cai et al., 2023).

The current state-of-the-art methodology for collecting aerial 
drone footage of wildlife behaviour relies on human pilots to fly the 
drone manually. However, manually collecting usable behavioural data 
with drones presents significant challenges in the field. Collective be-
haviour is challenging to capture, requiring fine-scale observations of 
multiple animals simultaneously (Hughey et  al.,  2018). Researchers 
must maintain optimal viewing angles and distances as animals move 
through complex terrain while ensuring that all individuals remain in 
the frame as groups spread out or merge. This task requires quick re-
sponses to sudden changes in group movement or direction, all while 
maintaining consistent data quality across multiple observation ses-
sions and minimizing disturbance to the animals.

Manual drone piloting often fails to address these challenges ad-
equately, and humans generally overestimate their ability to track 
moving targets. Recent research demonstrates that autonomous 
tracking systems outperform human pilots by 22% when following 
a single object moving faster than 2.5 m per second—approximately 
the speed of a walking horse (Bala et al., 2024). When this baseline 
difficulty is compounded by environmental factors such as vege-
tation occlusions, varying topography and the need to track multi-
ple animals simultaneously, the challenge of recording group-living 
animals becomes far more complex than initially apparent. Human 
pilots must balance multiple cognitively demanding tasks simultane-
ously: tracking moving targets while adjusting altitude and position 
to maintain proper framing, navigating around landscape features 

and obstacles, monitoring battery levels and environmental condi-
tions and complying with drone regulations and safety protocols. 
This cognitive burden of multitasking frequently results in inconsis-
tent footage quality for downstream analysis. Video segments must 
be excluded from analysis when animals' species or behaviour can-
not be identified due to insufficient image resolution or occlusion 
from vegetation. For example, the In-Situ Dataset for Kenyan Animal 
Behavior Recognition from Drone Videos (KABR) collected through 
manual piloting yielded only 65% usable data for behavioural anal-
ysis, despite requiring 3 weeks of fieldwork (Kholiavchenko et  al., 
2024). Such inefficiencies make building the comprehensive data-
sets needed for understanding collective behavior difficult.

An autonomous approach could help overcome the limitations of 
the current state-of-the-art manual approach. Autonomous drones 
can maintain consistent viewing angles and distances, react more 
quickly to group movements and produce more consistent, standard-
ized data across sessions by automating the core tracking and posi-
tioning tasks. This automation allows human operators to focus on 
safety and research objectives rather than the technical demands of 
piloting. Autonomous drones can assist ecologists in monitoring and 
responding to complex, emerging collective animal behaviours that are 
beyond the abilities of a manual pilot. Autonomous drone missions are 
safer, more reliable and more consistent than manual missions (Boubin 
& Stewart, 2020). In addition, autonomous drone missions can be pro-
grammed with safety features to minimize animal disturbance, reduce 
crashes and ensure compliance with drone regulations.

Autonomous drones have been successfully deployed to locate 
individuals and estimate animals' positions (Andrew et  al., 2020; 
Meier et  al.,  2024). However, autonomous tracking of wildlife re-
mains largely unexplored. Existing autonomous drone systems are 
primarily designed for tracking single targets or human-made ob-
jects (Chen et al., 2018; Kline et al., 2023; Rohan et al., 2019). While 
drones can reliably track animals that have GPS tags (Kavwele et al., 
2024), attaching tracking devices to protected species is often not 
permitted or practical. Approaches to autonomously track herds of 
livestock have been proposed (Luo et al., 2024), but any approach for 
wildlife must integrate ecological knowledge of the species and hab-
itat to be effective. Wildlife tracking requires different approaches 
for group dynamics and collective movement, natural habitat fea-
tures and obstacles, species-specific behaviours and reactions, 
and critical conservation and animal welfare considerations. These 
factors create unique challenges that existing autonomous systems 
cannot handle.

We present WildWing, an open-source autonomous drone sys-
tem that tracks and records group-living animals' behaviours in semi-
wild and wild environments, illustrated in Figure 1. We summarize 
WildWing's advantages compared with other approaches in Table 1. 
Our system allows users to integrate ecological knowledge into the 
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    |  3KLINE et al.

navigation policies by tuning the system parameters, automatically 
maintaining optimal viewing positions while minimizing animal dis-
turbance. By making the system both affordable ($650) and open-
source, we aim to make autonomous behavioural data collection 
more accessible to researchers studying collective behaviour in 
natural settings. The WildWing system supports modular navigation 
policies, which users can build on and customize according to their 
use cases. We detail a novel autonomous navigation policy to track 
herds and record the behaviours of group-living animals.

2  |  MATERIAL S AND METHODS

The WildWing unmanned aerial system (UAS) consists of three 
main components: a Parrot Anafi drone, open-source control soft-
ware and a laptop equipped with a GPU, illustrated in Figure 1. The 
control software monitors the drone's status, analyses the drone 
video stream and sends commands to the drone based on the 
chosen autonomous navigation policy. Our control software uses 
SoftwarePilot (Boubin & Stewart,  2020) as the software develop-
ment kit (SDK) interface with the drone. The WildWing system may 
be customized by adjusting the navigation parameters to tailor the 
drone's approach for different species and populations. We summa-
rize all tunable parameters in Table  3, along with the settings for 
our study. These parameters may be adjusted to customize the mis-
sion for wind conditions, species and habitat. The code to deploy 
the WildWing system and analyse the collected data is available on 
GitHub.

2.1  |  Hardware

We selected hardware that is relatively inexpensive and widely avail-
able. We list alternative drones and laptop models in Table 2. The 
Parrot Anafi drone model was selected for its affordability and the 

SDK's ease of use. Parrot Anafi drones are no longer being produced, 
but refurbished versions can be purchased for $300 USD as of this 
publication date. Similar drone models include the DJI Mini 3, DJI 
Mavic 2 and Holybro X500 2 with PX4 Development Kit (DJI, 2024; 
Holybro, 2024). Note that the WildWing system will require some 
modification from the users to deploy on the DJI or Holybro SDK, 
but support for these drone models is currently under development. 
Comparable laptop models to the Lenovo Y530-15ICH include the 
Acer Nitro V 15 (ANV15-51-59MT) and Lenovo Legion Slim 5 Gen 8, 
both equipped with GPU (Buzzi, 2024).

2.1.1  |  Parrot Anafi drone

The Parrot Anafi drone is a small, lightweight quadcopter model, 
weighing 320 grams and measuring 175 × 240 × 65 mm unfolded. 
The drone has a maximum battery life of 25 min with a maximum 
wind resistance of 50 km/h. The maximum horizontal and vertical 
speeds are 15 and 4 m/s, respectively. We used 4K ultra-high defini-
tion (UHD) mode to film the animals in 4K at 30 fps.

2.1.2  |  Remote controller (RC)

The RC used in this system is the Parrot Skycontroller 3, which ships 
with the Parrot Anafi drone. Its maximum transmission range is four 
kilometres, and it live-streams video at a 720-pixel resolution. The 
RC communicates with the drone over a 2.4–5.8 GHz radio link and 
via a USB-C to USB-A cable with the computer.

2.1.3  |  Laptop

SoftwarePilot requires a laptop running Ubuntu OS on x86 64 archi-
tecture. We used a Lenovo Legion Y530-15ICH with 16 GiB and an 

F I G U R E  1  Overview of the WildWing Unmanned Aerial System (UAS) consisting of three components: A Parrot Anafi drone, open-
source control software, and a laptop equipped with a GPU. The control software connects the drone to the autonomous navigation policy 
and allows users to monitor the system during deployment. The navigation policy analyzes video frames using computer vision models and 
determines the next commands to send to the drone. The control software is hosted on the laptop, where the users can also monitor the live 
WildWing system deployment.
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4  |    KLINE et al.

Intel Core i7-8750H CPU running Ubuntu 22.04.4 LTS, purchased 
for $350 USD. It is recommended to have at least 8 GB of RAM and 
50GB of free disc space to store the data and run the computer vi-
sion models (Jocher et al., 2023).

2.2  |  Control system

The control system manages the hardware, connects the drone to the 
autonomous navigation policy, detailed in Section 2.3, and allows users 
to monitor the system during deployment. The camera angle and de-
grees of movement of the drone are fixed to ensure consistent, high-
quality footage for the duration of the flight. The camera gimbal is set 

to zero degrees, that is looking straight forward, so the viewing angle is 
consistent throughout the flight. The controller restricts its commands 
to moving the drone along one axis at a time to adjust the viewpoint 
incrementally. This way, we avoid drastic changes in the drone's view-
point that could cause the animals to move out of frame. Minor, in-
cremental adjustments also assist the system in avoiding manoeuvres 
requiring rapid acceleration, which are both noisy and deplete the bat-
tery quickly. The command to the drone includes moving left/right, up/
down or forward/back. The user pre-sets the distance moved along 
each axis before the mission begins.

SoftwarePilot (Boubin & Stewart, 2020) is an open-source tool 
that allows users to connect drones with customizable Python 
scripts. This SDK provides an interface to the Parrot drone with 

TA B L E  1  Comparison of animal monitoring methods.

Characteristic

Ground-based field 
observations (Altmann, 1974; 
Hughey et al., 2018)

Manually piloted drones 
(Dukowitz, 2024; Kholiavchenko 
et al., 2024; Koger et al., 2023)

Autonomous drones 
(livestock) (Luo 
et al., 2024) WildWing

Data qualitya Limited by line of sight; partial 
group view

Full aerial view; group-level data; 
quality varies with pilot skill

Full aerial view; consistent 
quality for contained herds

Full aerial view; 
consistent quality for 
free-ranging groups

Initial costb Low ($1-2K for equipment) Moderate ($2-5K for drone + 
training)

High ($10K+ for 
specialized systems)

Low ($650 for 
complete system)

Operating costc High (multiple field staff) High (expert pilot $350/hr) Low (automated operation) Low (automated 
operation)

Data 
consistencyd

Variable between observers; 
affected by fatigue

Variable between pilots; affected 
by skill level

Highly consistent within 
confined areas

Consistent across 
habitats and 
conditions

Reliabilitye High for small areas; limited by 
observer

Moderate; affected by pilot 
availability

High in structured 
environments

High in varied 
environments

Spatial coveragef Limited to accessible areas Good coverage but limited by pilot 
skill

Limited to predefined 
areas

Adaptable to different 
habitats

Animal 
disturbanceg

Moderate to high from human 
presence

Variable based on pilot skill Low in habituated livestock Minimized through 
predictable 
movements

Training 
requiredh

High (species expertise) High (drone certification + 
expertise)

Moderate (system 
operation)

Moderate (system 
operation)

Data processingi Manual processing; potential 
observer bias

Manual processing; varying quality Automated processing Automated processing 
optimized for 
behaviour analysis

Best use case Individual behaviour; small 
groups

Occasional surveys; specific events Regular monitoring of 
live-stock

Regular monitoring of 
wild animal groups

Note:  Good performance;  Medium performance;  Poor performance.
aData quality refers to the resolution, completeness, and usability of collected data for behavioural analysis. For computer vision applications, 
minimum pixel requirements vary by task: 50 × 50 px for species classification, 100 × 100 px for behaviour recognition, and 500 × 500 px for individual 
identification (Berger-Wolf et al., 2017; Kline, Kholiavchenko, et al., 2024).
bInitial costs include all equipment and training required to begin data collection. Ground-based costs primarily involve observation equipment, while 
drone-based methods require aircraft, controllers, and necessary certifications.
cOperating costs are calculated based on a typical 8-h field day, including personnel, equipment maintenance, and data processing time.
dData consistency is measured by variation in quality and completeness of data across multiple collection sessions and between different operators.
eReliability is assessed based on the successful data collection rate under various environmental conditions and technical constraints.
fSpatial coverage considers both the total area that can be monitored and the ability to follow moving groups across different terrain types.
gAnimal disturbance is evaluated through behavioural changes, stress responses, and displacement from natural activities.
hTraining requirements include both technical operation skills and domain knowledge needed for effective data collection.
iData processing encompasses all post-collection steps needed to prepare data for analysis, including filtering, annotation, and quality control.
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access to the drone's telemetry and video streams and the ability to 
send commands to the drone. As illustrated in Figure 1, SoftwarePilot 
sends video frames from the drone to the laptop for processing and 
translates the commands from the controller to the drone. We pro-
vide users with a guide to getting started with SoftwarePilot.

The control software configures a live stream from the drone's 
camera accessed via RTSP protocol and displayed on the laptop using 
the VLC media player. The commands sent to the drone and the cur-
rent battery level are also displayed. If the pilot detects a problem 
in the system, they may manually take over the controls at any time 
during the mission. The WildWing system continuously saves the 
computer vision model's output, allowing the pilot to oversee the 
operation and determine whether the animals were recognized. The 
computer vision model output, videos and telemetry information are 
automatically saved for each mission.

2.3  |  Autonomous navigation policy

The WildWing control system is built to support modular autono-
mous navigation policies that can be used independently or com-
bined to create specialized missions. Users can select the policy 
provided or customize it to match their research needs. This naviga-
tion approach enables broad usability and flexibility—users can tune 
the parameters of the navigation model appropriately based on their 
expert understanding of the species and habitat. The autonomous 
navigation model further integrates ecological understanding by de-
fining the herd of animals in the scene as the object of interest.

For our deployment, we implemented the autonomous naviga-
tion policy to track group-living animals with drones proposed in 
Kline et  al.  (2023). This policy produced an 87% accuracy in navi-
gating the drone compared to an expert pilot when tested in simu-
lation on the KABR dataset (Kline, Kholiavchenko, et al., 2024). We 
use YOLOv5 (Jocher et al., 2023) computer vision model to detect, 
classify, and track the animals. YOLOv5su detected more animals in 
the frame than YOLOv8n and YOLOv8m in (Kline, Kholiavchenko, 

et  al.,  2024) so it was selected for this study. However, users can 
easily replace this YOLO model with newer versions, or any suitable 
object detector and classifier model.

We illustrate the navigation algorithm logic in Figure  3. This 
navigation approach builds on previous works using image-based 
tracking and detection for real-time control (Rohan et  al.,  2019; 
Venna et  al.,  2020), by extending this approach to track groups. 
The drone is programmed to move forward until the computer vi-
sion model detects the species of interest. Once the animals are 
detected, the centroid of the herd is calculated. Here, we define 
a herd as a collection of zebras within a circle of diameter 100 
meters and that the circle is atleast 100 meters away from any 
other herd of zebras. The navigation model sends commands to 
the drone to keep the centroid of the herd within the center region 
of the drone's camera.

3  |  WildWing FIELD DEPLOYMENT

We deployed the WildWing system at The Wilds, a 10,000-acre ani-
mal conservation centre in southeastern Ohio, USA (TheWilds, 2024). 
We obtained permission from The Wilds Science Committee to take 
field observations and fly drones in the pastures. The drone was 
flown within the pilot's visual line of sight, per US Federal Aviation 
Authority drone regulations. We used WildWing to collect behav-
iour video data of Grevy's zebras, giraffes and Przewalski's horses 
under the supervision of wildlife conservation experts. Before de-
ploying the autonomous WildWing system, we flew several ses-
sions manually on three different days over 3 months to gauge the 
animal's reactivity to the drone. We illustrate the WildWing deploy-
ment phases in Figure 2 and the corresponding navigation logic in 
Figure 3. We summarize the WildWing system settings in Table 3. 
Please refer to supplemental materials for additional details on the 
field deployment.

We summarize a selection of the data gathered during testing 
in Table 4. Sample images are included in Figure 4, and we include a 
comprehensive representation of the data collected in supplemental 
materials. The zebras and Przewalski's horses grazed near each other 
during the mission, allowing us to capture the entire herd. Giraffes, 
on the other hand, were more spread out across the pasture. We 
concentrated on two individuals standing close together and easily 
visible from our launch point. Our launch sites were nearer to the 
herds of zebras and giraffes than the Przewalski's horses. As a result, 
the approach time (refer to Step 5 in Figure 2) was shorter for zebras 
and giraffes than for the Przewalski's horses. Approach time is the 
duration between the initial launch and the first frame where the 
target species are detected.

The total frames with detections is the percentage of video 
frames that show detections from launch to the end of the mission. 
The approach time for the Przewalski's horses was proportionately 
longer than the other sessions, reducing the total of frames with de-
tections. We also computed the percentage of usable video frames 
during the tracking phase only (Step 5), excluding the approach 

TA B L E  2  Comparison of drone and laptop models that may be 
used with the WildWing system.

Hardware Model
Cost 
(USD)

Drone Parrot Anafi with Skycontroller 
(Refurbished)

$300

DJI Mini 3 $445

Holybro X500 v2 PX4 
Development Kit

$508

DJI Mavic 2 (Refurbishe) $525

Laptop with GPU Lenovo Legion Y530-15ICH $350

Acer Nitro V 15 
(ANV15-51-59MT)

$800

Lenovo Legion Slim 5 Gen 8 $1,200

Note: The drone and laptop used in testing are listed in bold 
(Buzzi, 2024; DJI, 2024; Holybro, 2024; Parrot, 2024).
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6  |    KLINE et al.

phase. Here, we define usable frames as those with adequate resolu-
tion to assess each animal's behaviour. The animals walked, grazed 
and stood still throughout the missions. Once the animals are de-
tected by the WildWing system, the percentage of usable frames 
approaches nearly 100%.

We provide scripts to analyse the drone telemetry data collected 
during missions. Telemetry data includes timestamps, latitude, 

longitude, altitude, commands sent to the drone and the video frame 
used to determine the commands, as shown in Table 5. We provide a 
Jupyter notebook to calculate the speed and heading and to preview 
the drone's viewpoint from telemetry data.

4  |  DISCUSSION

The deployment and evaluation of the WildWing system reveal both 
the potential and challenges of autonomous drone-based wildlife 
monitoring systems. While our field tests demonstrated promising re-
sults, several important factors influence the system's effectiveness 
across different contexts and conditions. Understanding these factors 
is crucial for both the current implementation and future deployments. 
Here, we discuss key considerations spanning system customization, 
environmental conditions and technical limitations that impact the 
broader applicability of drone-based monitoring approaches.

We observed that the animals at The Wilds did not exhibit high 
levels of reactivity or vigilance in response to the drone's approach. 
These animals are habituated to anthropogenic noise, as guests 
to the conservation centre often traverse through their pastures 

F I G U R E  3  WildWing autonomous navigation policy for tracking herds. Components of the algorithm corresponding to each deployment 
phase in Figure 2 are labelled with numbers. Step 1, locating animals, and Step 2, set-up, are accomplished manually.

TA B L E  3  WildWing system settings: flight and detection 
parameters.

Parameter Value

Mission duration 200 s

Altitude 20 ± 3 m

Forward searching increment 10 m

Forward/back movement 5 m

Left/right movement 5 m

Up/down movement 5 m

Sampling rate 1:40 frames

Computer vision model YOLOv5su

F I G U R E  2  WildWing Deployment Phases. Steps 1 and 2 are accomplished manually. Steps 3–6 are accomplished autonomously by the 
WildWing system.
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    |  7KLINE et al.

in buses and trucks. In addition, the animals have previously been 
exposed to drone noise, as The Wilds uses drones occasionally to 
locate and observe animals in pasture. Other animal populations 
may exhibit higher levels of vigilance in response to the presence 
of drones, especially if they experience lower background levels of 
anthropogenic noise (Schad & Fischer, 2023).

The low density of the animals on the landscape at The Wilds 
mimics the natural conditions from the KABR dataset, which was 
collected at Mpala Research Center in Kenya. However, other habi-
tats may contain high densities of animals, particularly in areas where 
food and water are abundant and attract many other animals. High 
densities may increase instances where the model could incorrectly 
identify non-target species as if they were target species. As a result, 

herds may also become large, with fission–fusion events increasing 
in frequency, thus confusing the identity of herd members being fol-
lowed. The WildWing navigation model may be adjusted to keep a 
maximum number of target animals in view to handle such scenarios. 
Around such resources, or in areas where population sizes of diverse 
species are large, tracking herds becomes challenging, depending 
on factors such as group size and spread, speed of movement, fre-
quency of fission or fusion events and the degree of occlusion in the 
habitat. A comprehensive solution to these challenges is beyond the 
scope of this work, but we discuss potential solutions and research 
directions in Section 5.

The performance of the WildWing system is dependent on 
an accurate detection and classifi- cation model. YOLOv5 (Jocher 

TA B L E  4  Summary of WildWing data collection.

Species Animals captureda Pasture size (acres)b Video duration (sec)c Approach time (sec)d

(a) Basic metrics

Grevy's zebras 5/5 34 157 10

Giraffes 2/5 28 137 7

Przewalski's horses 8/8 50 139 72

Species Total frames with detectionse Usable frames captured during track phasef Behaviours recordedg

(b) Detection and behaviour metrics

Grevy's zebras 86% 95% Walking, Grazing

Giraffes 95% 98% Walking, Standing

Przewalski's horses 43% 100% Standing, Grazing

aNumber of animals recorded during sampling out of total animals in pasture.
bPasture area in acres.
cTotal video length in seconds.
dTime spent searching for animals of interest (Step 4 in Figure 2).
ePercentage of frames with computer vision detections, from launch (Step 3) to mission end (Step 6).
fPercentage of frames with detections during the tracking phase only (Step 5), excluding the approach phase.
gAnimal behaviours observed during the track phase (Step 5).

F I G U R E  4  Left: Photograph of WildWing deployment (red bounding boxes added manually for visibility). Right: Photograph of Grevy's 
zebras collected with WildWing.
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et al., 2023), which is trained on the COCO dataset, performed well 
on detecting zebras and giraffes, but struggled to accurately clas-
sify Przewalski's horses as horses, likely since this species was not 
included in the training dataset. YOLO models may be fine-tuned to 
increase performance on less common species and classify these an-
imals more accu- rately. However, obtaining training sets with suffi-
cient examples of rare or endangered species can be challenging. To 
solve this, we provide an option for a general animal category, using 
YOLO to inform the navigation decisions. The animals may be further 
classified by species after the mission concludes, either manually or 
by using a more general AI species classifier, such as BioClip (Stevens 
et al., 2024) or MegaDetector (Beery et al., n.d.). However, neither 
of these models were trained on drone imagery, so their applicability 
to the data produced by WildWing requires further investigation.

Weather conditions and habitat features are relevant factors 
that should be considered when deploying WildWing. During the 
field tests, the weather was 32°C (92°F), with 15 km/h wind speeds 
and 60% humidity. The Parrot Anafi drone is rated for temperatures 
between 14°C (6.8°F) and 40°C (104°F) and 93% humidity, and so 
operated successfully under these conditions. However, the laptop 
battery discharged faster than usual, likely due to the heat. The laptop 
battery typically lasts 4.5 h on a full charge but only lasts 3 h during 
field tests. We also note that Parrot drones are not designed for damp 
weather conditions. The zebra and giraffe pastures contained a few 
shade structures with no trees near the animals, allowing for unob-
structed drone flights and straightforward deployment of the auton-
omous tracking system. However, since the Parrot Anafi drones lack 
automatic obstacle avoidance capabilities, deploying them in habitats 
with tall vegetation requires careful operation. We are developing 
support for DJI drones, which are equipped with obstacle avoidance 
features to enable safer operation in more complex environments.

5  |  FUTURE DIREC TIONS

The development of autonomous drone systems for wildlife moni-
toring builds on recent advances in robotics and computer vision. 
As hardware costs decrease and navigation models improve, the 

coordinated deployment of multiple autonomous drones, or swarms, 
for ecological studies becomes increasingly feasible (Gruschak 
et al., 2024; Rolland et al., 2024). Multi-view data sets from swarms 
overcome the limited viewpoint of a single drone, allowing the sys-
tem to handle larger groups, fission–fusion events, and fast-moving 
groups in complex habitats. Integration with existing sensor net-
works, including camera traps, acoustic sensors and GPS tags, can 
provide comprehensive ecosystem monitoring data (Besson et  al., 
2022). Edge computing enables efficient processing of the large vol-
umes of data these systems generate (Kline, O'Quinn, et al., 2024).

Recent computer vision advances enable automated analy-
sis of drone footage, including animal behaviour (Chan et al., 2025; 
Kholiavchenko et al., 2024), pose and movement (Koger et al., 2023; 
McNutt et al., 2024), and 3D modelling (Shukla et al., 2024). However, 
these vision models require extensive high-quality training data, 
which autonomous systems can help collect systematically. The de-
velopment of quieter drones and optimal flight patterns that minimize 
noise disturbance is crucial, as anthropogenic noise can significantly 
impact animal behaviour and ecosystem dynamics (Afridi et  al., 
2024 ; Bennitt et al., 2019; Duporge et al., 2021; Mulero-P'azm'any 
et al., 2017). While the WildWing system currently focusses on spe-
cific species in semi-wild environments, its planned deployment in 
field conditions will test its broader applicability for behavioural ecol-
ogy research. As these technologies mature, they can help address key 
questions about how animal movement patterns and social structures 
respond to environmental change, while generating the fine-grained, 
long-term data sets needed to understand ecosystem dynamics.
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TA B L E  5  Telemetry data collected by WildWing.

Telemetry Description

Time stamp YYYY-MM-DD HH:MM:SS

Location Latitude GPS

Longitude GPS

Altitude Meters

Command x Meters to move forward/
back

y Meters to move left/right

z Meters to move up/down

Frame jpg file Video frame used to 
determine commands, with 
YOLO annotations
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