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Abstract

Keypoints used for image matching often include an esti-
mate of the feature scale and orientation. While recent work
has demonstrated the advantages of using feature scales
and orientations for relative pose estimation, relatively lit-
tle work has considered their use for absolute pose esti-
mation. We introduce minimal solutions for absolute pose
from two oriented feature correspondences in the general
case, or one scaled and oriented correspondence given a
known vertical direction. Nowadays, assuming a known di-
rection is not particularly restrictive as modern consumer
devices, such as smartphones or drones, are equipped with
Inertial Measurement Units (IMU) that provide the grav-
ity direction by default. Compared to traditional abso-
lute pose methods requiring three point correspondences,
our solvers need a smaller minimal sample, reducing the
cost and complexity of robust estimation. Evaluations on
large-scale and public real datasets demonstrate the ad-
vantage of our methods for fast and accurate localization
in challenging conditions. Code is available at https:
//github.com/danini/absolute-pose-from-
oriented-and-scaled-features.

1. Introduction
The goal of absolute pose estimation is to determine the six
degrees-of-freedom (6DOF) pose of an image from visual
measurements. Absolute pose estimation is a core prob-
lem in computer vision with many applications, e.g., visual
localization [51], object recognition [18], Structure-from-
Motion [53] and SLAM [11], and augmented reality [56].

The typical approach to absolute pose estimation is to
obtain 2D-3D point correspondences by matching key-
points in a query image to 3D points in a scene and then
computing the query image pose using a perspective-three-
point (P3P) algorithm [15] inside a robust optimization
loop, such as random sample consensus (RANSAC) [17] or
more modern variants [6, 13]. The number of random sam-

ples required for RANSAC grows with both the outlier ratio
and the minimal sample size exponentially. Thus, especially
in difficult image matching situations where the outlier ra-
tio is high, reducing the minimal sample size can lead to
improvements in pose estimation speed and accuracy.

The P3P method relies on having at least three 2D ob-
servations in the query image of 3D points in the scene.
Since the 3D scene points are typically obtained through
triangulation, the 3D points are usually associated with 2D
points in the reference images. Therefore, it is typical to
have 2D-2D correspondences between the query image and
reference images in addition to 2D-3D correspondences be-
tween the query image and the point cloud [48, 49]. These
2D-2D matches provide extra information for the absolute
pose problem, which we exploit in our work to reduce the
sample size needed for the pose estimation.

Previous work has examined how to reduce the minimal
sample size for absolute pose by various means, such as in-
troducing external pose information from an Inertial Mea-
surement Unit (IMU) [25, 55], or leveraging extra informa-
tion about the point correspondences such as local affine
frames [24]. In particular, Ventura et al. showed that it is
possible to compute the absolute pose from a single affine
correspondence and an estimate of the surface normal at the
3D point [57]. However, affine covariant features are less
commonly used as they are comparably expensive to com-
pute, whereas the most widely-used feature detectors pro-
duce scale and orientation estimates [34, 47].

In this paper, we focus on designing absolute pose
solvers that leverage scaled and oriented features, such as
SIFT [33], to reduce the sample size. This is a highly prac-
tical scenario as most of the popular feature detectors output
more than just the point locations by default. Our method
is based on the equations connecting absolute pose to affine
correspondences derived by Ventura et al. [57], and those
relating affine features to scaled and oriented ones as estab-
lished by Barath and Kukelova [5].

We derive novel constraints on the absolute pose from
scaled and oriented features. Leveraging the proposed con-
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straints, we design efficient minimal solutions for absolute
pose, requiring two oriented features in the general case, or
a single scale-and-orientation feature when the gravity di-
rection is known, together with an estimate of the surface
normal. The gravity direction can be measured using an
IMU or from a vertical vanishing point [46], and thus is
commonly available in recent consumer devices, e.g., when
localizing robots, smartphones, and virtual reality headsets.
Our contributions are as follows:
• We develop novel constraints on the absolute pose from

scale-and-orientation features;
• We introduce two new minimal solvers for pose estima-

tion from one or two scale-and-orientation features; and
• Through synthetic and real data experiments, we demon-

strate that the proposed solvers lead to improved accu-
racy and run-time due to reducing the problem complex-
ity when inserted into state-of-the-art robust estimators.

2. Related Work
The problem of estimating the absolute pose of a calibrated
camera from three 2D-3D point correspondences has been
considered for almost two centuries, as documented in a re-
view of P3P solutions by Haralick et al. [19]. Recent work
has continued to improve the speed and numerical stability
of P3P solutions [21, 42], including a new state-of-the-art
method introduced just recently [15].

The P3P approach uses only 2D point observations of 3D
points. However, measurements of the local image trans-
formation of the keypoints between the query image and
the 3D surface, or between the query image and reference
images, can also inform the absolute pose estimate. For ex-
ample, Lowe [33] aggregated differences in position, scale,
and orientation from SIFT [34] feature matches in a Hough
transform to estimate the affine transformation of an object,
and similar voting strategies have been used for outlier fil-
tering [12] and spatial verification in image retrieval [54].

An affine correspondence (AC) includes an estimate of
the affine transformation between the local image patches
centred on the corresponding keypoint locations. Such cor-
respondences can be estimated using affine shape adapta-
tion [8], affine covariant region detectors [35, 37], or deep
learning [39]. AC is equivalent to a first-order approxima-
tion of the local homography induced by the plane tangent
to the surface at the 3D point [23, 24]. An affine corre-
spondence provides three constraints on the fundamental
matrix [9] or essential matrix [43] relating the reference
and query images. Based on these and related findings, re-
searchers have developed minimal solvers for relative pose
using fewer correspondences than traditional point-based
methods, such as estimating a homography [3] or the essen-
tial matrix [43] from two affine correspondences. Similarly,
Köser and Koch introduced a solution for absolute pose es-
timation from a single affine correspondence from an or-

thorectified reference image [24], and Ventura et al. devel-
oped a general absolute pose solution from a perspective
reference given knowledge of the surface normal [57].

However, most computer vision systems do not use
affine covariant features, but instead rely on scale and
orientation-covariant ones since they are faster to com-
pute. Keypoint orientation can be estimated in various ways
such as a histogram of gradients [34], the intensity centroid
[44, 47], or supervised [61] or unsupervised learning [28].
Keypoint scale is often inherent to the keypoint detection
process as in the Difference-of-Gaussian (DOG) detector
employed by SIFT [34] or the Harris-Laplace corner detec-
tor [36], or can be estimated as part of the feature learning
process [40, 60] or with a separately learned network [28].

Similar to affine covariant features, correspondences be-
tween scaled and oriented features provide constraints on
the relative pose beyond the point correspondences. Such
constraints can be used to reduce the sample size in mini-
mal solvers. For example, Mills [38] described four-point
solvers for essential matrix estimation, and Barath [2] de-
veloped a five-point solver for fundamental matrix estima-
tion from oriented features. Barath and Kukelova [4, 5] rig-
orously defined the relationship between affine correspon-
dences and scaled and oriented feature matches to produce
a collection of constraints involving the affine transforma-
tion matrix and feature scales and orientations. They further
used these constraints to design a two-point solver for ho-
mography estimation [4] and three- and four-point solvers
for the essential and fundamental matrices, respectively [5].

To the best of our knowledge, no previous work has pre-
sented a minimal solution for absolute pose from scaled and
oriented features. In this work, inspired by the affine de-
composition introduced in [5] and the constraints on abso-
lute pose from an AC proposed in [57], we develop a novel
minimal absolute pose solver from two oriented points. We
also introduce a novel solver for absolute pose from one
scaled and oriented point, assuming a known gravity direc-
tion, which reduces the rotational unknowns to a single an-
gle around the gravity axis. Previous work has developed
two-point solvers for gravity-aware absolute pose [25, 55]
and demonstrated their usefulness for image-based localiza-
tion on smartphones and other IMU-equipped devices. The
advantage of our solvers over the three-point and two-point
solvers is that we require fewer points, thus reducing the
sampling requirement in robust estimation.

3. Methods
Notation. We use a sans-serif capital letter M for a matrix,
and an italic lower-case letter s for a scalar. We use sub-
scripts to indicate matrix and vector indexing; e.g., R1:2,1:2

means the 2× 2 upper-left submatrix of matrix R.
Let us consider a query camera, whose pose we want

to estimate w.r.t. the world coordinate system. We assume



we have a collection of reference images registered in the
world coordinate system. Let Rquery, tquery be the unknown
rotation and translation defining the world-to-camera trans-
formation of the query image, and Rref, tref be the known
rotation and translation of a reference image. The relative
pose transformation from the reference image to the query
image is R = RqueryR

T
ref and t = tquery − Rtref. We assume

that all cameras under consideration are calibrated and thus
do not include the intrinsics matrix in our formulations.

Our aim is to estimate Rquery and tquery. We assume we
have established one or more feature matches between the
query and reference images. Each feature match provides
corresponding 2D points pref and pquery in the reference and
query images, respectively.

In the case of having affine correspondences, for each
correspondence we also have an estimate of the 2× 2 local
affine transformation matrix A which relates the local neigh-
borhoods of the points such that p′

query = pquery + A(p′
ref −

pref), where p′
ref,p

′
query are points in the local neighbor-

hoods of pref and pquery, respectively. Note that affine cor-
respondences are not required for our solver methods.

In the case of scaled and oriented features, for each
correspondence, we have orientation angles αref, αquery and
scales qref, qquery for the features centered on pref and pquery
in the reference and query images, respectively.

Similar to Ventura et al. [57], we assume that we know
the depth d of the point pref in the reference image and the
normal vector n tangent to the surface at the 3D point. The
depth could be obtained, for example, through triangulation,
and the normal vector from the sparse point cloud or using
deep learning methods [10].

3.1. Constraints from an affine correspondence on
the absolute pose

Ventura et al. [57] derived the relationship between a local
affine transformation and the pose of the query image rela-
tive to the reference image, i.e., the relationship between A
and R, t. The constraint is as follows:

A =
d

m
(R1:2,1:2(n

T
refp̃ref)− (R1:2,:p̃ref)nref

T
1:2−

pquery(R3,1:2(n
T
refp̃ref)− (R3,:p̃ref)nref

T
1:2)) ,

(1)

where d is the depth of the point pref in the reference image,
p̃ref = [pT

ref 1]
T , nref = Rrefn is the normal vector trans-

formed to the coordinate system of the reference frame and
m = nT

refp̃ref(d(R3,:p̃ref) + t3).

3.2. Relationship between scaled and oriented fea-
tures and affine correspondences

Barath and Kukelova [5] established several relationships
between the affine transformation and the feature scales and
orientations. The first relationship relevant to our approach

arises from the transformation between the oriented circles
centered on the point correspondence:

a1cref + a2sref − qcquery = 0, (2)
a3cref + a4sref − qsquery = 0, (3)

where cref = cos(αref), sref = sin(αref) and similarly for
αquery, and q = qquery/qref. Eliminating q from Eqs. (2)
and (3) yields a third constraint [4]:

crefsquerya1 + srefsquerya2 − crefcquerya3 − cquerysrefa4 = 0.
(4)

The advantage of Eq. (4) over Eqs. (2) and (3) is that it
only involves the feature orientations, not the scales, and
thus can be applied when scales are unavailable, e.g., when
using oriented corner features such as ORB [47].

Note that since Eq. (4) is derived from Eqs. (2) and (3),
they cannot be used together in a minimal solver, since sat-
isfying Eqs. (2) and (3) also satisfies Eq. (4).

A second relevant relationship arises from the scale fac-
tor of the affine transformation [5]: detA = q2. Expanding
out the determinant gives a fourth constraint:

a2a3 − a1a4 + q2 = 0 . (5)

3.3. Constraints from scaled and oriented features
on the absolute pose

Plugging the expression for the affine transformation from
Eq. (1) into the scale and orientation constraints (Eqs. (2)
to (5)) yields constraints on the absolute pose of the query
camera involving only the feature orientations and scales.

We also have the two constraints arising from the point
projection into the images as follows:

pquery1(dR3,:p̃ref + t3)− (dR1,:p̃ref + t1) = 0 , (6)
pquery2(dR3,:p̃ref + t3)− (dR2,:p̃ref + t2) = 0 . (7)

We explored various combinations of these six con-
straints and solution paths for the resulting systems of equa-
tions to find efficient and accurate minimal solvers for ab-
solute pose. Next, we describe the two most practical and
efficient solvers among those we found.

In contrast to the recent P1AC solver [57], in which the
query camera pose was specified relative to the reference
camera, we derive our solvers such that the query camera
pose is in the world coordinate system. This is critical in a
two-point solver since it allows for the two correspondences
to come from different reference images, thus expanding the
available samples for RANSAC.

3.4. Absolute pose from two oriented features

For the six DOF of the general absolute pose problem,
we use two correspondences with three constraints each:



Eqs. (4), (6) and (7). The supplementary material (SM) con-
tains a more complete discussion of possible combinations
of constraints.

Note that Eqs. (6) and (7) are linear in the unknown ro-
tation and translation parameters. To make Eq. (4) linear in
the unknown parameters as well, we multiply both sides by
m (from Eq. (1)). The SM provides a complete derivation
of the system of equations.

Since the system of equations is linear in tquery, we can
use three equations to eliminate the translation parame-
ters from the remaining three equations, e.g., using Gauss-
Jordan elimination. The remaining three equations will then
be linear in the elements of Rquery and will not contain tquery.

To solve for the query rotation from these three equa-
tions, we apply the Cayley rotation parameterization with
parameters x, y, z as follows:

Rquery =
1

s

1+x2−y2−z2 2(xy−z) 2(y+xz)

2(xy+z) 1−x2+y2−z2 2(yz−x)

2(xz−y) 2(x+yz) 1−x2−y2+z2

 ,

(8)
where s = 1 + x2 + y2 + z2. The Cayley parameterization
is unable to represent 180◦ rotations. However, this degen-
eracy can be avoided by applying a random rotation to the
variables [20, 27]. After multiplying the equations by s,
we arrive at a system of three quadratic equations in x, y, z.
Such a system is advantageous since an extremely efficient
solver that significantly outperforms even efficient algebraic
Gröbner basis or resultant-based solvers exists [26, 27, 63].
After finding up to eight solutions for Rquery and retaining
only real-valued ones, we find corresponding solutions for
tquery through back-substitution.

3.5. Gravity-aware absolute pose from a scaled and
oriented feature

In the gravity-aware case, we decompose the query cam-
era rotation as Rquery = RY RXZ , where the known rotation
RXZ aligns the Y axis of the world coordinate system with
the observation of gravity in the camera’s coordinate sys-
tem, and RY is the remaining unknown rotation around the
gravity direction. For the four DOF of the gravity-aware ab-
solute pose problem, we use four constraints from a single
observation: Eqs. (2), (3), (6) and (7).

Let θ be the unknown angle of rotation around the Y axis
of the query camera, so that

RY =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 . (9)

We represent the angle using the tangent half-angle param-
eterization r = tan(θ/2) which provides the substitutions
cos(θ) = 1−r2

1+r2 and sin(θ) = 2r
1+r2 [25]. After eliminat-

ing the translation variables, we arrive at a single quadratic

equation in r, which is easily solved, giving two solutions
for RY . We find corresponding solutions for tquery through
back-substitution. Like the Cayley parameterization, the
tangent half-angle parameterization cannot represent a 180◦

rotation. However, this can be similarly addressed by apply-
ing a random rotation to the variables.

3.6. Decomposition of an affine correspondence

In our synthetic data experiments, the situation arises where
we have computed the affine transformation A for a ran-
domly generated correspondence, and we wish to obtain
feature scale and orientation values that are compatible with
A. While a previous solution used random arbitrary values
for some of the scale and orientation parameters [5], here
we present a more principled approach via a minimal solver
which finds multiple possible solutions.

Given an affine transformation A we want to decompose
the transformation into two angles αref, αquery and scales
qref, qquery such that Eqs. (2) to (5) are satisfied. Eq. (5) is
satisfied by setting qref = 1 and qquery =

√
detA. Note that

we must have detA > 0. Since Eq. (4) is derived from
Eqs. (2) and (3), it will be satisfied when Eqs. (2) and (3)
are satisfied. Therefore what remains is to find solutions for
αref, αquery that satisfy Eqs. (2) and (3).

We apply the tangent half-angle substitutions rref =
tan αref

2 and rquery = tan
αquery

2 . Eqs. (2) and (3) become

a1
1− r2ref

1 + r2ref
+ a2

2rref

1 + r2ref
− q

1− r2query

1 + r2query
= 0 , (10)

a3
1− r2ref

1 + r2ref
+ a4

2rref

1 + rref
− q

2rquery

1 + r2query
= 0 . (11)

After multiplying terms to eliminate the denominators, we
end up with two polynomials in rref, rquery of degree four.
We used the GAPS package [31] to automatically produce
a solver for the system. The solver produces eight possible
solutions for rref, rquery from which we remove any solutions
containing an imaginary part. Since, for the purposes of our
synthetic data experiments, any solution is acceptable, we
simply use the first real-valued solution returned.

4. Experiments
In our experiments, we compare the following methods:
• P2ORI (Sec. 3.4): Our novel absolute pose solver from

two oriented feature correspondences.
• UP1SIFT (Sec. 3.5): Our novel gravity-aware absolute

solver from one scaled and oriented feature match1.
• P1AC [57]: A solver for absolute pose from a single affine

correspondence.
1We reference SIFT [34] in the name since it is arguably the most fa-

mous scaled and orientation feature, but UP1SIFT can be used with any
feature providing a scale and orientation estimate.
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Figure 1. Results of numerical stability experiment, showing density of log rotation and position errors with zero noise added to the
observations. All solvers are numerically stable.

• P3P [15]: A solver for absolute pose from three point cor-
respondences.

• UP2P [25]: A solver for gravity-aware absolute pose from
two point correspondences.

We evaluate each solution using two standard metrics: rota-
tion error and position error [52, 57]. Given the true query
rotation Rquery and the estimated rotation R̃query, the rota-
tion error is computed as || ln(R̃queryR

T
query)||. Given the true

query camera center cquery = −RT
querytquery and the esti-

mated query camera center c̃query, the position error is calcu-
lated as ||cquery − c̃query||. In the synthetic data experiments,
when a method returns multiple solutions, we choose the
solution that minimizes the maximum of these two errors.

4.1. Synthetic data

To evaluate our solvers in terms of numerical stability and
sensitivity to noise, we tested them on randomly generated
synthetic problem instances.

To generate each synthetic data problem, we used the
following setup [16, 57]. We select camera centers for the
reference and query cameras at random positions at a dis-
tance randomly chosen between 1 and 2 from the origin.
We choose a random target point within [−0.5 0.5]3 and
orient each camera to look at the target point. To gener-
ate a point correspondence between the cameras, we select
a random 3D point from N (0, I3×3) and project it to the
two cameras. We select a random normal vector for the
point and use it to calculate the local homography induced
by the plane tangent the surface at the point. We then extract
the affine transformation matrix from the local homography
[3], and use our decomposition method (Sec. 3.6) to extract
scales and orientations from the affine transformation.

We discard any problem configurations where: the ro-
tation between the reference and query cameras is greater
than 180 degrees; the 3D point is behind either camera; or
the determinant of the affine transformation is not positive.
Such scenarios do not appear in real world experiments.

To support the application of the gravity-aware solvers
we decompose the query rotation Rquery into a rotation
around the Y -axis RY and a rotation RXZ around a vec-

P2ORI P1AC [57] P3P [42] UP1SIFT UP2P [26]
2.62 1.92 0.42 1.05 0.23

Table 1. Average timing in µs over 10,000 trials.

tor in the X-Z plane such that Rquery = RY RXZ . RXZ is
provided as an input to the solvers and the only rotational
unknown is θ, the amount of rotation around the Y -axis.
Numerical Stability. We tested each method on 10,000
random problem configurations with zero noise added to the
observations to test the numerical stability of each solver.
Fig. 1 shows a density plot of the log rotation and position
error of each solver. Note that the aim of this experiment
is not to compare the accuracy of the solvers but only to es-
tablish that each is numerically stable with no peaks above a
reasonable level, such as 1× 10−5. As shown in the figure,
the median errors of all solvers are below 1× 10−12.
Timings. We measured the average time to solve a single
problem configuration for each solver over 10,000 random
problems. The measurements are given in Tab. 1. Each
solver was implemented in C++ and the timings were mea-
sured on an Apple M1 Pro MacBook with 16 GB RAM. The
implementations of P3P and UP2P came from PoseLib [27]
and the implementation of P1AC from the authors’ official
code release. Among general absolute pose solvers, P2ORI
is slower than P1AC and P3P; UP1SIFT is more than twice
as fast as P2ORI but still slower than UP2P. However, all
solvers are very fast (under 3 µs). Furthermore, in robust
optimization the other steps such as inlier counting and local
optimization are far more computationally costly, i.e., the
measured differences hardly impact the overall run-times.
Noise Experiments.

We tested the sensitivity of each solver to various types
of observation noise:
• Point noise: Gaussian noise added to the 2D point obser-

vations with a focal length of 400 pixels.
• Normal noise: a random rotation with normally dis-

tributed angle applied to the normal vector n.
• Orientation noise: Gaussian noise added to αquery.
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Figure 2. Median error w.r.t. noise in the 2D point observations, normal vectors, feature orientations, feature scales, and gravity vector.
The x-axis shows the std. dev. of the noise added.

• Log scale noise: Gaussian noise added to log q.
• Gravity noise: a random rotation with normally dis-

tributed angle applied to RXZ .

We tested each solver across a range of noise settings for
each noise type, computing the median error over 10,000
iterations at each setting. For the noise types not being var-
ied, we applied a default noise setting based on the level of
noise expected in real-world settings: 1 pixel point noise; 1
deg normal noise; 1 degrees orientation noise; 0.1 log scale
noise; and 0.5 deg gravity noise. We tested a wide range of
noise values since the actual noise in the observations de-
pends on many factors including the camera configuration,
feature detection algorithm, and IMU sensor characteristics.
For example, the measurement noise of the gravity direction
varies from 0.5◦ in a low-cost IMU to 0.02◦ in a high ac-
curacy IMU [25]. Barath et al. [7] estimated the orientation
noise of SIFT [34] features to be 11.8◦ and the log scale
noise to be 0.51, based on analysis of a large-scale homog-
raphy benchmark dataset; however, modern learned features
have substantially more accurate scale and orientation esti-
mates [28].

The results for varying one noise type at a time are shown
in Fig. 2. In general, we can conclude that P2ORI is most
sensitive to orientation noise, while UP1SIFT’s position es-
timate is most sensitive to orientation and log scale noise,
and UP1SIFT’s rotation estimate is most sensitive to log
scale noise. The SM includes analyses varying two noise
types simultaneously.

4.2. Real data experiments

Datasets. To evaluate the performance of the compared
methods in large-scale image-based localization, we uti-
lized the Cambridge Landmarks [22] and Aachen Day-
Night v1.1 [50, 52, 62] benchmark datasets, both well-
regarded in the literature of visual localization.

The Cambridge Landmarks dataset consists of six scenes
in Cambridge, UK, each recorded via multiple video se-
quences taken with a smartphone, capturing different parts
of the city. From the recorded sequences for each scene,
some provide database images representing the scene, while
others are used to acquire query images. Ground truth
poses and intrinsic camera calibrations for all images were
determined using the VisualSFM [58, 59] Structure-from-
Motion (SfM) software. Localization performance is com-
monly evaluated by reporting the median position and ori-
entation error. Additionally, we assess the proportion of im-
ages (i.e., recall) localized within 5cm / 1◦, 10cm / 1◦, and
20cm / 1◦ of their actual poses.

Cambridge Landmarks is generally less challenging be-
cause each scene is small, and query images were captured
around the same time as the database images. One scene,
Street, is an exception to this, posing a challenge to most
feature matchers and absolute pose estimators.

The Aachen Day-Night dataset, representing the historic
city center of Aachen (Germany), is more challenging than
Cambridge Landmarks. Besides its larger scale, it includes
daytime database images and nighttime query images taken
over an extended period of time. The ground truth for
the daytime images was established via COLMAP [53],
with nighttime queries aligned by refining initial pose es-



Position (cm) ↓ Rotation (◦) ↓ Recall (0.05m/1◦) ↑ Recall (0.1m/1◦) ↑
Scene P3P P1AC P2ORI UP1SIFT P3P P1AC P2ORI UP1SIFT P3P P1AC P2ORI UP1SIFT P3P P1AC P2ORI UP1SIFT
Great Court 2 2 2 2 0.01 0.01 0.01 0.01 90.4 92.0 93.0 91.7 96.5 97.2 96.5 96.2
King’s Col. 1 2 1 2 0.02 0.03 0.03 0.03 89.2 88.1 89.5 86.0 97.1 98.0 97.7 96.2
Old Hospital 2 3 2 3 0.04 0.04 0.04 0.05 80.2 82.4 81.3 73.6 95.1 97.3 96.2 93.4
Shop Façade 1 1 1 1 0.06 0.06 0.06 0.06 91.3 87.9 96.1 88.4 99.0 99.1 100.0 99.0
St Mary’s Ch. 2 2 2 2 0.06 0.05 0.05 0.05 84.7 87.9 90.4 87.7 94.2 95.1 97.4 96.2
Street 197 40 21 6 2.57 1.12 0.66 0.20 7.8 19.0 30.0 46.3 18.2 26.8 38.3 52.7
Avg. 34 8 5 3 0.46 0.23 0.14 0.17 73.9 76.5 80.1 79.0 83.3 85.7 87.7 88.8
Weighted avg. 120 25 14 4 1.56 0.74 0.41 0.13 39.5 46.8 54.1 62.7 49.0 54.6 61.6 69.9

Table 2. Cambridge Landmarks [22] median position (centimeters) and rotation (degrees) errors, and recalls (percentages) at 0.05m/1◦

and 0.1m/1◦, of GC-RANSAC [6] combined with various solvers when using SuperPoint [14] + LightGlue [32] + SelfScaleOri [28]
matches. The average over all scenes and average weighted by the number of images in each scene are in the two last rows.

Recall (0.05m/1◦) ↑ Recall (0.1m/1◦) ↑ Recall (0.2m/1◦) ↑
P3P UP2P P1AC P2ORI UP1SIFT P3P UP2P P1AC P2ORI UP1SIFT P3P UP2P P1AC P2ORI UP1SIFT

ORB-2k 21.8 20.2 30.0 35.4 40.7 37.4 36.1 48.1 53.1 57.5 47.7 49.5 62.2 65.6 68.2
RootSIFT-2k 56.3 45.6 56.8 57.0 58.5 66.9 56.0 71.9 70.1 73.5 72.4 60.4 79.6 77.0 81.0
RootSIFT-8k 64.3 64.2 65.9 70.6 71.7 76.1 73.0 79.1 82.3 82.9 81.5 76.5 86.3 87.2 88.6

SP + LG + SSO 73.9 76.2 76.5 80.1 79.0 83.3 86.4 85.7 87.7 88.8 87.0 90.5 88.6 90.6 92.6

Table 3. Cambridge Landmarks [22] recalls (in percentages) at 0.05m/1◦, 0.1m/1◦ and 0.2m/1◦, of GC-RANSAC [6] combined with
various solvers on ORB-2k [47], RootSIFT-2k and 8k [34], and SuperPoint [14] + LightGlue [32] + SelfScaleOri [28] matches. Bold
numbers indicate the best performing approach and underlined numbers the second best.

Time (secs) ↓
Scene P1AC P3P UP2P P2ORI UP1SIFT↓

Great Court 1.18 5.72 1.38 1.22 0.68
King’s College 1.78 8.40 1.42 2.01 0.99
Old Hospital 1.07 2.95 3.18 1.02 0.42
Shop Facade 1.99 5.64 1.63 1.33 1.29
St Mary’s Church 2.49 4.11 5.56 2.00 0.60
Street 2.30 0.80 1.71 2.16 0.20
Day 2.47 2.81 2.48 1.45 1.34
Night 1.29 3.42 1.75 2.15 0.20

Table 4. Average times of GC-RANSAC [6] on the Cambridge
Landmarks [22] and Aachen Day-Night [50] datasets on Super-
Point [14] + LightGlue [32] + SelfScaleOri [28] matches.

timates [62]. Our evaluation adheres to the standard pro-
tocol, reporting the percentage of images localized within
three error thresholds (0.25m / 2◦, 0.5m / 5◦, 5.0m / 10◦).

Features. There are multiple ways of obtaining orienta-
tions and scales for image features from real images. One of
the most representative methods is SIFT [34], which intro-
duced gradient histograms for orientation estimation, while
the scale estimates come from the image scale pyramid
where a particular Difference-of-Gaussian (DoG) feature is
found. Rublee et al. [47] proposed an efficient measure of
corner orientation using intensity centroid on the FAST de-
tectors [45]. Self-Scale-Ori [28] and its variants [29, 30]
tackle the local feature orientation and scale estimation via
a learning-based approach applicable to any feature detector
as a post-processing step, applied on the detected keypoints.

In the experiments, we use DoG features [34] with Root-
SIFT [1] descriptors and the default estimated orientations
and scales. We test two versions, one obtaining the 2k
best matches and one with the 8k best ones. We also run
ORB [47] with 2k features. Additionally, we detect Super-
Point features [14], establish matches by the recent Light-
Glue [32], and obtain scales and orientations by Self-Scale-
Ori [28].

Normal vectors were estimated using 200 nearest neigh-
bors for each point in the SFM point cloud.

Competitors. We compare the proposed P2ORI and
UP1SIFT solvers with P3P [42] and UP2P [25], where both
UP1SIFT and UP2P exploit the gravity direction for esti-
mating the absolute pose. Moreover, we compare to the
recent P1AC solver [57], which requires a single affine cor-
respondence to estimate the pose.

As we do not have affine correspondences, only scales
and orientations, to apply P1AC we approximate the affine
frame Ai for the i-th feature as Ai = SqiRαi

, where Sqi is
a diagonal matrix, scaling uniformly along the axes by the
detected scale factor qi, and Rαi

∈ SO(2) rotates by the
estimated angle αi ∈ [0, 2π). See the SM for more details.

Robust estimation method. We estimate the query pose
from correspondences from multiple reference images [41]
using GC-RANSAC [6] for robust estimation. The SM in-
cludes details about inlier scoring and pose refinement.

Results.
The median position and rotation errors and re-

calls on the Cambridge Landmarks dataset, using Su-



Day Night
P3P 55.6 / 74.2 / 93.7 46.1 / 56.5 / 68.1

UP2P 54.0 / 70.8 / 87.6 19.4 / 29.3 / 47.1
P1AC 60.0 / 80.1 / 93.4 46.1 / 57.1 / 70.2

P2ORI 60.9 / 81.2 / 95.0 40.8 / 53.9 / 61.8
UP1SIFT 60.3 / 82.4 / 94.8 47.6 / 58.1 / 71.2

Table 5. Aachen Day-Night pose error recalls [50], in percent-
ages, at 0.25m/2◦, 0.5m/5◦, and 5.0m/10◦ for GC-RANSAC [6]
combined with various solvers on RootSIFT matches.

Day Night
P3P 60.6 / 79.6 / 92.4 59.7 / 77.5 / 92.7

UP2P 65.8 / 86.8 / 96.8 67.5 / 86.4 / 97.9
P1AC 64.4 / 83.1 / 97.5 69.6 / 87.4 / 99.0

P2ORI 68.2 / 87.3 / 96.6 71.7 / 86.4 / 99.0
UP1SIFT 66.3 / 85.8 / 97.0 69.6 / 88.0 / 99.0

Table 6. Aachen Day-Night pose error recalls [50] at 0.25m/2◦,
0.5m/5◦, and 5.0m/10◦ for GC-RANSAC [6] combined with vari-
ous solvers on SuperPoint + LightGlue + SelfScaleOri matches.

perPoint+LightGlue+SelfScaleOri (SP+LG+SSO) features,
are reported in Table 2. For this test, we use the ground
truth gravity direction obtained from the reference absolute
poses for UP2P and UP1SIFT. While the results on most
scenes are similarly accurate for all methods, we can gen-
erally say that the proposed P2ORI leads to particularly
good accuracy, on par with the UP1SIFT solver that uses
the ground truth gravity direction. The differences are more
pronounced in scene Street, where the two proposed solvers
are the best by a considerable margin compared to P3P
and P1AC. Interestingly, the P1AC solver works surpris-
ingly well, even on approximated affine correspondences.
We also report average and weighted (by the number of
queries in a scene) average errors at the bottom of the ta-
ble. The UP1SIFT solver achieves good results; however, it
uses the ground truth gravity direction. The P2ORI method
is the second best, being ahead of P3P and P1AC by a large
margin. The average recalls of UP2P are 76.2 (0.05m/1◦)
and 86.4 (0.1m/1◦), being less accurate than P2ORI and
UP1SIFT.

We also report the processing times of the robust estima-
tion in Table 1. As expected, the solvers requiring a single
correspondence (P1AC and UP1SIFT) run the fastest. The
P2ORI method is also significantly faster than using P3P.

The recall values when using different feature types are
shown in Table 3. While it is clear that SP+LG+SSO per-
forms the best, the proposed solvers improve upon P3P,
UP2P, and P1AC, independently of the features employed.

Given that Aachen Day-Night is a more challenging
dataset, we only test the solvers with RootSIFT-8k and
SP+LG+SSO features. Since we do not know the grav-

ity direction, we assume that it points downward (it is
[0,−1, 0]T ). This usually is a safe assumption as humans
tend to take pictures upright. The results of using RootSIFT-
8k features are shown in Table 5. On the Day images, the
proposed P2ORI, UP1SIFT, and P1AC achieve the high-
est recalls, with P2ORI being the best by a small margin.
This clearly shows the importance of using small minimal
samples in RANSAC. Despite the inaccurate gravity prior,
UP1SIFT excels due to requiring only a single correspon-
dence. The same holds for P1AC, which only gets an ap-
proximated affine correspondence and still obtains reason-
ably accurate results. This is even more pronounced in the
Night images, where UP1SIFT is the most accurate method
and P1AC is the second most accurate.

Results with SP+LG+SSO correspondences are in Ta-
ble 6. Since SP+LG+SSO are strong features that solve the
Day scenes with close to 100% recall, we resized the images
so that their longest dimension is 800 pixel at maximum. On
the Day sequence, all methods achieve similarly good accu-
racy, except for P3P, which lags slightly behind. The best
performance is achieved by the proposed P2ORI method.
While P1AC achieves high recall at 5.0m / 10◦, it is inac-
curate at the stricter thresholds. On the Night sequence, the
proposed P2ORI and UP1SIFT achieve high accuracy.

Regarding the computational overhead of computing
scale and orientation estimates for learned features, Super-
Point takes 0.39 seconds per image on average, and Self-
Scale-Ori takes 0.20 seconds in our experiments.

5. Conclusions

In this work, we explored various constraints on the cali-
brated absolute camera pose from scaled and oriented point
correspondences, assuming knowledge of surface normals.
Based on these constraints, we developed two novel min-
imal solvers: P2ORI for absolute pose from two oriented
points, and UP1SIFT for gravity-aware absolute pose from
one scaled and oriented point.

Like all solvers based on region correspondences rather
than point correspondences, our solvers are susceptible to
more types of noise than point-based solvers. However,
when applied with robust estimation methods on standard
localization benchmarks, our solvers produce more accurate
pose estimates and higher recall than the standard point-
based approaches (P3P and UP2P) and P1AC while also
being on average as fast or faster.

Future work includes exploring solvers for uncalibrated,
generalized, and non-minimal problems and integrating our
methods into SfM and SLAM systems.
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1. Outline

Our supplementary material provides additional derivations
and experiments to support the material in the main paper.
In Sec. 2, we write out in full the absolute pose constraints
from scale and orientation features (as mentioned in Sec. 3.4
in the main paper). In Sec. 3, we analyze robust estimation
performance, noise interactions (as mentioned in Sec. 4.1
in the main paper), and degenerate configurations through
experiments on synthetic data. In Sec. 4 we discuss affine
feature extraction. In Sec. 5 we discuss inlier scoring and
pose refinement.

2. Systems of equations for minimal solvers

2.1. P2ORI

The general absolute pose problem has six DOFs (three for
rotation, three for translation), and thus, we need a system
of six independent equations to solve it. In our case, each
correspondence provides five constraints in total: two from
the point projection (Eqs. 6 and 7 in the main paper) and
three from the scale and orientation (Eqs. 2, 3, and 5 in
the main paper). Thus, one correspondence is insufficient
and we need two correspondences to solve the full 6DoF
problem.

Two correspondences provide us with ten equations of
which six are sufficient to solve the problem. It is natural
to use the four point projection constraints (Eqs. 6 and 7),
since they are not affected by other types of noise. We need
one additional constraint per observation to remove the two
remaining DOFs, which could be Eqs. 2, 3, 4 or 5. We
chose Eq. 4 because Eqs. 2 and 3 require both orientation
and scale and Eq. 5 is quadratic and thus would result in a
more complex solver. Here, we write out a complete deriva-
tion of the constraint on the orientations (Eq. 4).

For ease of reading, we repeat here the form of the affine

matrix from Eq. 1 in the main paper:

A =
d

m
(R1:2,1:2(n

T
refp̃ref)− (R1:2,:p̃ref)nref

T
1:2−

pquery(R3,1:2(n
T
refp̃ref)− (R3,:p̃ref)nref

T
1:2)) ,

(1)

where p̃ref = [pT
ref 1]T , nref = Rrefn, and m =

nT
refp̃ref(d(R3,:p̃ref) + t3).

We introduce the following substitutions:

b = (nT
refp̃ref), (2)

p′
ref = Rp̃ref, (3)

to rewrite Eq. (1) in a condensed form:

A =
d

m
(bR1:2,1:2 − p′

ref1:2nref
T
1:2−

pquery(bR3,1:2 − p′ref3nref
T
1:2))

, (4)

and m = b(dp′ref3 + t3).
Recall that a1, a2, a3, a4 are the elements of A in row-

major order. Now we have

a1 =
d

m
(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1)),

(5)

a2 =
d

m
(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2)),

(6)

a3 =
d

m
(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1)),

(7)

a4 =
d

m
(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2)).

(8)

The system of equations for the P2ORI solver combines
the projection constraints (Eqs. 6 and 7) with Eq. 4, re-

1



written here for convenience:

crefsquerya1 + srefsquerya2 − crefcquerya3 − cquerysrefa4 = 0.
(9)

Plugging Eqs. (5) to (8) into Eq. (9) gives

crefsquery(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1))

+srefsquery(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2))

−crefcquery(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1))

−cquerysref(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2))

= 0,

(10)

where we have multiplied both sides by m
d to make the

equation linear in the unknown query rotation matrix and
translation vector and remove d which is common to all
terms. After parameterizing the rotation matrix with the
Cayley parameterization, the equation becomes non-linear.

2.2. UP1SIFT

In the gravity-aware case, we assume that we have a mea-
surement of the current gravity direction in the query cam-
era’s coordinate system. Assuming that the Y -axis of the
world coordinate system is aligned with gravity, from the
current measurement of gravity, we can determine a rota-
tion RXZ which rotates the Y -axis of the world coordinate
system to align with the observation of gravity in the cam-
era’s coordinate system. The remaining unknown rotation
RY is a rotation about the gravity direction, and thus the
rotation is reduced to a single DOF. The complete query
camera rotation can be written as Rquery = RY RXZ .

Since we have four DOF and a single observation, we
need to add two constraints to the point projection con-
straints (Eqs. 6 and 7), which could be any combination of
Eqs. 2, 3, 4, or 5. We opted not to use Eq. 5, since it is
quadratic in A, leaving Eq. 2, 3, or 4. We chose Eqs. 2, 3,
although the combinations of Eqs. 2 and 4 or Eqs. 3 and 4
would likely lead to similar solvers.

The system of equations for the UP1SIFT solver com-
bines the point projection constraints (Eqs. 6, 7) with Eqs. 2
and 3, rewritten here for convenience:

a1cref + a2sref − qcquery = 0, (11)
a3cref + a4sref − qsquery = 0, (12)

Plugging Eqs. (5) to (8) into Eqs. (11) and (12) gives

dcref(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1))

+dsref(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2))

−mqcquery = 0,

(13)

dcref(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1))

+dsref(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2))

−mqsquery = 0,

(14)

where we have multiplied both sides of the equations by
m to make them linear in the unknown query rotation ma-
trix and translation vector. After parameterizing the rota-
tion matrix with the tangent half-angle parameterization, the
equations become non-linear.

3. Extra synthetic data experiments

3.1. Robust estimation

To evaluate the efficiency of the various solvers in robust
estimation in a controlled experiment, we tested each solver
inside MSAC [3, 8] and Locally Optimized MSAC (LO-
MSAC) [2, 4] on synthetic data problems with random out-
liers. LO-MSAC helps mitigate noise in the observations
by using non-linear optimization to refine minimal sample
solutions and grow the inlier set obtained from a minimal
sample. We used the implementations of MSAC and LO-
MSAC provided in RansacLib [7].

We increased the outlier rate from 0 to 0.9 and calculated
the average timing of each method at each setting. Outliers
were introduced by setting a proportion of the observations
to random values. We used our default noise settings of 1
deg point noise, 1 deg normal noise, 1 deg orientation noise,
0.1 log scale noise, and 0.5 deg gravity noise.

The results are shown in Fig. 1. With vanilla MSAC,
UP1SIFT is faster than all other solvers past an outlier ratio
of about 0.35, but P2ORI is slower than the other solvers
across all outlier ratios due to noise sensitivity. However,
note that the vanilla MSAC experiment is only meant to pro-
vide a theoretical analysis of solver performance; any mod-
ern practical application would use LO-MSAC or more so-
phisticated variants such as GC-RANSAC [1] for best per-
formance.

When using LO-MSAC to mitigate noise sensitivity,
UP1SIFT is faster than all other methods past an outlier ra-
tio of 0.2, and P2ORI is faster than P3P past an outlier ratio
of about 0.4. We did not test GC-RANSAC [1] because
the random synthetic data does not exhibit spatial coher-
ence and thus the graph cut method would not be beneficial
in these experiments.
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Figure 1. Average log timing (ms) for MSAC (top) and LO-MSAC (bottom) with various solvers and increasing outlier ratio. For all tests
we used our default noise settings: 1 deg point noise, 1 deg normal noise, 1 deg orientation noise, 0.1 log scale noise, and 0.5 deg gravity
noise.

3.2. Noise interaction

To explore interactions between noise types, we simultane-
ously varied pairs of noise types in synthetic data experi-
ments. The results are shown in Figs. 2 to 4. The conclu-
sions are largely the same as the single-noise experiments;
namely, that P2ORI is most sensitive to orientation noise,
and UP1SIFT is most sensitive to orientation noise in the
rotation estimate and scale noise in the position estimate.

Because of the scale of the color bars, the increase in
error with increasing point noise is sometimes not obvious
in the plots. However, the error does indeed increase with
point noise for all solvers, as can be more clearly seen in the
1D noise plots in Fig. 2 in the main paper.

It is clear that high noise in two factors will affect the pre-
cision of solvers working with these measurements. How-
ever, as shown in our real data experiments (Sec. 4.2 in

the main paper), our solvers outperform other point/affine
solvers in real noise settings.

3.3. Degenerate configurations

In the main paper (Secs. 3.4,3.5), we mentioned how the
Cayley rotation parameterization cannot represent 180 de-
gree rotations. Here we analyze other possible degenerate
configurations for the solvers.

When d, the depth of the point in the reference image, is
0, the affine matrix A (Eq. (1)) goes to 0. When the normal
vector is orthogonal to the vector from the reference camera
to the 3D point, m = 0 and thus A is undefined. However,
both of these configurations are impossible in real data.

We tested the P2ORI and UP1SIFT solvers with zero and
near-zero rotation and/or translation but did not find any sta-
bility issues, unlike the P1AC solver, which has some insta-
bility with near-zero rotation and/or translation, depending
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Figure 2. Median error of P2ORI and P3P solvers w.r.t. noise in the 2D point observations, normal vectors, and feature orientations.
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Figure 3. Median error of UP1SIFT and UP2P solvers w.r.t. noise in the 2D point observations, normal vectors, feature orientations, and
feature scales.

on the 3Q3 implementation used [9].

4. Affine feature extraction
Affine feature extraction takes 1-2 seconds per image with
AffNet [5] on a GPU. Other detectors, such as ASIFT [6],
are even slower. One of the most important advantages of
the proposed method compared to P1AC is that we do not
need expensive affine shapes. We only need orientation and

scale, which are obtained by default for many features. Es-
timating them, e.g., for learned detectors, is still more effi-
cient than estimating affine shapes. Since scale and orien-
tation provide an approximation to the full affine transfor-
mation, we decided to evaluate the P1AC solver on these
approximate data rather than not comparing it at all.
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Figure 4. Median error of P2ORI and UPSIFT solvers w.r.t. increasing noise in the normal vectors, feature scales, and feature orientations.

5. Inlier scoring and pose refinement
For inlier scoring and pose refinement, we only used the
point re-projection error and did not use the scale and ori-
entation measurements. The scale and orientation tend to
be noisy, and we have not found that using them for inlier
scoring would improve the results. We left the investigation
of their use for pose refinement as future work.
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