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observations) and subjective (in that their thresholds can be tight-
ened or relaxed). With subjective constraints, the decision maker can Feasibili )
. - . easibility check; fully
test multiple threshold v;lues to determlne how a set of feaSIbIe sys- sequential procedure; green
tems changes as constraints become stricter and use this information simulation; ranking and
to prune systems or identify the system with the best performance. selection; stochastic
When the number of possible thresholds is large, the decision maker constraints
may want to start by obtaining the feasibility decisions with respect
to a smaller subset of thresholds. Depending on the results, she can
then add tighter or relaxed thresholds if many or no feasible systems
have been identified. In this article, we present a multipass pruning
(MPP) procedure that starts with a smaller set of thresholds in a
first pass and adds more thresholds sequentially in later passes with
the goal of pruning inferior systems efficiently. We prove the statis-
tical validity of the proposed procedure and numerically demon-
strate its efficiency in terms of the required number of observations
for pruning inferior systems.

KEYWORDS

1. INTRODUCTION

We consider the problem of pruning inferior systems among a finite number of simu-
lated systems by comparing their performance with different standards (i.e., checking
the feasibility of the systems with respect to different thresholds). For example, a deci-
sion maker wishes to implement an (s, S) inventory policy (namely, ordering products
up to S when the inventory level at a review period is below s, with no order placed
when the inventory level is above or equal to s) with two performance measures.
She hopes to identify combinations of the values of s and S among finitely many choices
such that (i) the probability that a shortage occurs during a review period and
(ii) the expected cost per review period are both small. One can formulate the above bi-
objective optimization problem as a feasibility determination problem by incorporating
the constraints that the shortage probability is no larger than g; and the expected cost
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is less than or equal to g,. By identifying feasible systems with respect to the thresholds
q1 and ¢, those systems that are deemed infeasible are considered as inferior and can
be pruned. When constraints are subjective, instead of choosing two fixed values for the
threshold constants g; and g, the decision maker can allow the constraints to have sev-
eral values for each threshold (such as 20 possible values 0.01,0.02,0.03,...,0.19,0.2 for
q1 and 121 possible values 115,115.5,116,...,174.5,175 for g,) and observe how the
feasible set varies with respect to each combination of thresholds to further prune infer-
ior systems. For example, she can start with larger thresholds for both constraints, say,
0.2 for threshold gq; and 175 for threshold g,, and repeat the feasibility check for smaller
values for g; or g,, such as 0.05 for g; and 120 for g,, while there are multiple feasible
solutions left. For each combination of thresholds, whenever infeasible systems are iden-
tified, the systems are considered inferior and can be pruned.

Ranking and selection (R&S) is a classical and actively studied problem in the simula-
tion community. R&S procedures are useful in identifying feasible systems or a system
with the best expected performance among a finite number of systems whose perform-
ance is estimated through stochastic simulation. We refer to Kim and Nelson (2006)
and Hong, Nelson, and Xu (2015) for detailed literature reviews of R&S with a single
performance measure. In reality, decision makers may want to handle multiple perform-
ance measures (as in the inventory example discussed above); Hunter et al. (2019) pro-
vided a review on the multi-objective simulation optimization problem. Several studies
have applied the optimal computing budget allocation approach to handle multiple per-
formance measures. Lee et al. (2012) considered the primary performance measure as
the objective and the remaining secondary performance measures as constraints. Lee
et al. (2010) proposed a multi-objective optimal computing budget allocation method to
allocate computing budget among systems to minimize type I and II errors in selecting
nondominated systems.

Among the R&S procedures that use the indifference-zone approach and deal with
multiple performance measures, Andradéttir and Kim (2010) considered two perform-
ance measures and proposed procedures to identify the best system in terms of the pri-
mary performance measure and subject to a constraint on the secondary performance
measure. Healey, Andradéttir, and Kim (2014) proposed procedures to identify the best
system in the presence of multiple secondary performance measures. Batur and Kim
(2010) proposed procedures to identify the feasibility of systems with respect to multiple
constraints with fixed thresholds. Andradéttir and Lee (2021) presented a procedure to
estimate a Pareto set with statistical guarantee. When the stochastic constraints are sub-
jective (i.e., have multiple thresholds), Zhou et al. (2022) adopted the concept of “green
simulation” and proposed a statistically valid procedure with recycled observations,
denoted by RF (“Recycling for Feasibility”), to simultaneously perform feasibility
checks with respect to all threshold values on each performance measure. Zhou,
Andradéttir, and Kim (2024) proposed procedures to identify the system with the best
possible primary performance measure in the presence of subjective stochastic con-
straints on secondary performance measures.

In practice, the decision maker may not value one performance over the others. Or
the decision maker may be interested in understanding how the set of feasible systems
changes when the thresholds vary for each constraint. These problems cannot be fully
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addressed by the procedures due to Zhou, Andradéttir, and Kim (2023). In this article,
rather than formulating the multi-objective optimization problem as a selection-of-the-
best problem with subjective constraints as in Zhou, Andradéttir, and Kim (2023), we
will model it as the feasibility check problem with subjective constraints considered by
Zhou et al. (2022).

When the objective of a feasibility check problem with subjective constraints is to
solve a multi-objective optimization problem, it is reasonable to consider large numbers
of possible values for the constraint thresholds to facilitate the comparison of the differ-
ent systems. However, to perform feasibility checks for subjective constraints, Zhou
et al. (2022) suggested applying their proposed RF procedure with respect to all pos-
sible thresholds, even if that number is large. For the inventory example discussed
above, to find the system with the smallest possible combination of shortage probability
and expected cost, this would involve checking feasibility with respect to all 20 thresh-
olds of the shortage probability constraint and all 121 thresholds of the expected cost
constraint and pruning systems based on the feasibility decisions to those thresholds. If
the decision maker’s objective is to use feasibility decisions to prune inferior systems,
then checking feasibility with respect to all possible thresholds for all systems can be
inefficient. For example, if any system is already deemed feasible with respect to the
threshold combination 0.1 and 120, there is no need to perform additional feasibility
checks from systems deemed infeasible with respect to 0.1 and 120. However, the RF
procedure will keep collecting more observations from such systems, solely aiming to
perform feasibility checks for all less preferred thresholds (i.e., g > 0.1 and g, > 120),
which is a waste of time and resources. In this case, a multipass approach is preferable,
where a “pass” represents the feasibility checks for systems with respect to a subset of
the set of thresholds. More specifically, the decision maker can start with thresholds
q1 € {0.01,0.1,0.2} and g, € {115,145,175} in the first pass (a total of three thresholds
for each constraint). If no systems are feasible with respect to the most preferred thresh-
old combination 0.01 and 115 but several systems are feasible with respect to threshold
combination 0.1 and 145, the decision maker can consider additional thresholds q; =
0.05 and ¢, € {120,125, ...,140} in the second pass (one threshold for the first con-
straint and five thresholds for the second constraint). If feasible systems are identified
with respect to the threshold combination 0.05 and 120, she can further include add-
itional thresholds that are multiples of 0.01 from 0.02 to 0.04 for the shortage probabil-
ity constraint and thresholds that are multiples of 0.5 from 115.5 to 119.5 for the
expected cost constraint (a total of three thresholds for the first constraint and nine
thresholds for the second constraint). Such a multipass approach reduces the total num-
ber of thresholds considered from 20 to 7 and 121 to 17 for the shortage probability
and the expected cost constraints, respectively, and may reduce the number of needed
observations as well.

In this article, we propose a multipass pruning (MPP) procedure that performs
feasibility checks with respect to a subset of possible thresholds during the first pass
and allows the decision maker to sequentially add thresholds in the following passes.
The main contributions of this article include (1) suggesting new statistics that enable
us to implement feasibility checks with sequentially added thresholds for subjective con-
straints without significantly increasing the data storage requirement, (2) proposing a
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computationally efficient procedure for the purpose of pruning inferior systems, (3)
proving the statistical guarantee of the proposed procedure, and (4) demonstrating the
computational efficiency and statistical validity of our new procedure through
experiments.

The rest of this article is organized as follows: Section 2 provides the background of
our problem, including the problem formulation and a discussion of existing work.
Section 3 proposes our multipass procedure to identify feasible systems in the presence
of subjective stochastic constraints with sequentially added thresholds. Section 4 proves
the statistical validity of our proposed procedure. The experimental results are provided
in Section 5, and the concluding remarks are summarized in Section 6.

2. BACKGROUND

In this section, we provide the background for our problem. Section 2.1 describes the
problem and notation, and Section 2.2 discusses the existing procedure RF that is rele-
vant to our problem.

2.1. Problem and Notation

In this section, we present our problem description and the required notation. We con-
sider k systems whose s performance measures can be estimated through stochastic
simulation. Let ® denote the index set of all possible systems (i.e., ® = {1,...,k}). Let
Yi/n, where i=1,..,k,/ =1,...,s, and n=1,2,..., be the nth observation of the ith
system for the /th performance measure. Note that the observations across different sys-
tems may or may not be correlated depending on whether systems are simulated inde-
pendently or under common random numbers (CRN). The expected value and variance
for system i regarding performance measure / are denoted as y,; = E[Yy,] and 6% =
Var(Yjs,). Observations are assumed to satisfy the following normality assumption:

Assumption 2.1. For each i = 1,2, ...,k

Yiin ) yil
EN L L, =120,

Yisn Yis

where ' denotes independent and identically distributed, N, denotes s-dimensional multi-
variate normal, and X; is the sXxs positive definite covariance matrix of the vec-
tor (Yiin, - Yisu)-

Normally distributed observations are a common assumption used in many R&S pro-
cedures because Assumption 2.1 can be justified by the central limit theorem when
observations are either within-replication averages or batch means (Law and Kelton
2000). In other words, when Assumption 2.1 is violated, the decision maker can apply
the proposed procedures by treating batch means of nonnormally distributed observa-
tions as basic observations. However, it is well known that a large batch size can cause
inefficiency, especially in fully sequential type procedures (Kim and Nelson 2006). The
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observations of different performance measures from a system can be correlated, such
as the shortage probability and expected cost in the inventory example of Section 1.

When each constraint contains one fixed threshold value with a given threshold vector
q = (q1,...qs), Batur and Kim (2010) introduced procedure Fj to determine a set of sys-
tems i with y;; < g, forall / = 1,2, ..., s. In this article, we consider subjective constraints
whose threshold values vary. We let d; denote the number of threshold values that the
decision maker is interested in for performance measure / and let g/, denote the thresh-
old value for performance measure 7 with index m, where m = 1, ..., d,.

Consider the feasibility check of a system with respect to constraint / and threshold
qs/m. Andradéttir and Kim (2010) proposed the concept of a tolerance level, which is
denoted by ¢, for constraint / and set to a positive real number by the decision maker.
Any system i with y;, < g/, — €, is considered desirable and feasible with respect to
constraint 7 and threshold g,. The set of all desirable systems with respect to con-
straint / and threshold g, is denoted as D;(q/y). Systems with y; > q/m + €, are
unacceptable and infeasible with respect to constraint / and threshold g/, placing
them in the set Uy(g/m). Systems that fall within the tolerance level of g/, so that
Grm — €/ < Yir < qum + €, are acceptable and are placed in the set A/(q/m):

D(qrm) ={i €O | yir < qrm—¢r};
U/(qrm) ={i €O | yir > q/m +€/}; and
Ar(Qrm) =i €O | qum—e€r <yir <qrm+er}.

When performing a feasibility check, we use CD;/(g/n) to denote a correct decision
event of system i with respect to constraint / for threshold q,,,, which is an event such
that system i is declared to be feasible with respect to constraint / if i € D/(qsm) and
infeasible if i € Us(qsm). For i € As(q/m), any decision is considered as a correct
decision.

We define CD,,, the correct decision event for system i with respect to constraint 7,
as correctly determining feasibility for all possible thresholds q,, where m =1,...,d;
that is, CD;, = ﬁf,f:lCD,-/(q/m). Then, a statistically valid procedure that determines the
feasibility for all combinations of the threshold values with respect to all performance
measures should satisfy the following statement:

PCD = Pr(nf, nS_, CDy) > 1 -0,

where 1 — « is the nominal confidence level for the feasibility check.

The decision maker starts by choosing all possible threshold values for constraint ¢
and defining a set of possible thresholds, {q/1,qs2,...-4s4,}. Without loss of generality,
we adopt the conversion that q,1 < g/ < --- < qzq, for each / =1,...,s. Suppose that
the decision maker performs the initial feasibility check with respect to a subset of the
possible thresholds and adds additional possible thresholds in subsequent passes (pos-
sibly adaptively). We introduce the following notation:

T, = the index set of all possible thresholds considered for constraint 7,{1,2,...,d/};

T}W) = the index set of the thresholds tested in pass w > 1 for constraint /;
H™) = the index set of the constraints with added thresholds in pass w > 1

(i.e.,/ such that T;W) #0).
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The thresholds tested in each pass w > 1 should be possible thresholds that have not

been tested in previous passes, and hence T< CT,\ (UW:%T ) for / =1,2,.

Consider the inventory example in Section 1. The predefined threshold set for the
shortage probability constraint (ie., 7 =1) is {0.01 +0.01y|0 <y <19,y € Z} and for
the expected cost constraint (i.e., / = 2) is {115+ 0.5y|0 < y < 120,y € Z}. This means
that Ty = {1,2,..,20} and T, = {1,2,...,121}. The decision maker wants to run the
first pass with thresholds {0.01,0.1,0.2} for the shortage probability constraint and
with {115 145, 175} for the expected cost constraint. Then we have T ={1,10,20}
and T2 ={1,61,121}. Assume that she adds thresholds {120, 125,130, 135,140} for
the expected cost constraint in the second pass and no additional thresholds for the
shortage probablhty constraint (unlike in Section 1). Then we have H?® = {2}, T
0, and T = {11,21,31,41,51}.

The thresholds tested up to the wth pass are g/, where m € ULVZIT;") for/=1,..s
We seek a statistical guarantee that the feasibility decisions under the multipass
approach are identical to those of RF when the thresholds g/, where m €
UL"ZIT;“), / =1, ..,,s are considered in one pass in RF.

Throughout the article, we need the additional notation defined below:

no = the initial sample size for each system (1 > 2);

the number of observations obtained so far for system i(r; > ng);

T
Y (r;)) = average value of Yy,..., Yy, for system i and constraint /;
S?,(ng) = the sample variance of Yisi, ..., Yiss, for system i =1,2,...,k and

constraint 7 =1, ..., s;

-1
R(riv,w,z) = max{O, M—%ri} for v,w,z € R" and ¢ € N*;
v c
Sy (1) 2n(2e =) """
— Jjt1 -
s =3 (172 ) « (14 20220)

=1
where ¢ € N* and Z(-) is the indicator function.

The nonnegative function R(r;;-) is used to specify an interval (—R(r;;-),R(ri;-)),
called the continuation region, after r; observations have been collected from system i.
To determine the continuation region, we need to choose the value of ¢. The shape of
the continuation region (—R(r;;-),R(ri;-)) becomes a longer and narrower triangle as ¢
increases and turns into two straight lines when ¢ = co. Zhou et al. (2022) considered
both ¢ € N* and ¢ = co and presented expressions for g(17) for both cases. Because the
focus of this article is not on the continuation region, we only consider g(1) when ¢ €
N*. We set c=1 for the experimental results for the following reasons: (i) Kim and
Nelson (2001) recommended setting ¢ =1 when the decision maker does not have infor-
mation about the system’s mean configuration and (ii) the choice ¢=1 guarantees a
unique and easy solution when computing the implementation parameter # from

g(n) = p; that is, n = [(28)>/™"V —1]/2.
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2.2, Existing Procedure

In this section, we provide a brief overview of the procedure RF due to Zhou et al.
(2022) that performs a feasibility check for subjective constraints. RF is given in
Algorithm 1 with the following definition of f:

1-(1- oc)l/ . when systems are independent,
B = (2.1)
a/k, when systems are dependent.

Note that § can be interpreted as the nominal probability of error for each system
(in both the existing procedure RF and the proposed MPP procedure in Section 3).
The chosen value of f§ depends on whether systems are simulated independently or

dependently with CRN. Because 1 — (1 — oc)l/ ¥ < o/k holds for any fixed positive integer
k, B is set to a relatively smaller value when systems are independent, which implies
that the procedure is slightly more efficient under independent sampling. Zhou et al.
(2022) indeed recommended that the decision maker simulate systems without CRN.
However, they included the choice of f when systems are dependent for two reasons:
(1) applying CRN is a default design in some discrete-event simulation packages and
(2) the decision maker may wish to combine the feasibility decisions with comparison
between systems to identify the best feasible system. We include f for both cases in our
MPP procedure for the same reasons.

Algorithm 1. Procedure RF

[Setup:]

Choose confidence level 1 — o, tolerance level ¢,, and thresholds {91,902 - qra,} for
constraint / = 1,2, ...,s. Also, choose the value of ¢ € N* and set ® = {1,2,...,k}. For
/ =1,..,s, set n, such that g(1,) = f,, where f satisfies (2.1), and either

i B,=(B/s)-Z(d,=1)+1[p/(25)]-Z(dy > 1) for / =1,2,...,s, or
ii. p,=p/D;D=>, min{d,2} for/=1,..,s.

for each system i € © do
[Initialization:]

e Obtain ny observations Yi/1, Yirz, ..., Yien, for £ =1,2,...,s.
e Compute Y;/(n) and S, (ng) for / = 1,2, ...,s.
e Setr;=mn9,ON={1,2,...,s}, and ON, = {1,2,....d/} for £/ = 1,2, ...,s.

[Feasibility Check:]
for / € ON do
for m € ON, do
If Yi/(r;) + R(ri; €41, S5 (n0)) /1: < Grm> set Zigm = 1 and ON, = ONy \ {m}.
If Yi/(r;) = R(ri; €4, 114, % (n0)) /1i > Gym> set Zigy = 0 and ON, = ONy \ {m}.
end for
If ON, = 0, set ON = ON\ {/}.
end for
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[Stopping Condition:]
If ON =0, return Zi,, for / =1,2,...,s and m = 1,2, ...,d,. Otherwise, set r; =
r; + 1, take one additional observation Yi/,, and update Y (r;) for / € ON; then
go to [Feasibility Check].

end for

As shown in Algorithm 1, procedure RF determines the feasibility of system i with
respect to threshold g/, on constraint / as

R(ris 7,1, (m)) _ -

R(r;;€ riSZ (no)) 22)
infeasible, if Yi(r)——2 /> 11> Si\o > q/m-
£}

feasible, if Yi(r;)+

In other words, RF constructs an interval (Y (r;) — R(ri; €/, 1, S%(n0))/1i, Yir(1i) +
R(ri; €4,1,S2,(no))/ri) whenever an observation Yj/,, is collected and makes the feasibility
decision for system i with respect to threshold g/, when the threshold g,,, falls outside
of the interval.

The following theorem from Zhou et al. (2022) shows that there are at most two
effective thresholds on each constraint.

Theorem 2.1. For system i with s constraints and thresholds T, = {qs1,qs2,..»qra,} for
{ =1,2,..,s, the joint probability of correct decision with respect to thresholds yi; — ¢,
and yis + €, is a lower bound on the joint probability of correct decision with respect to
all thresholds of constraint /; that is,

Pr( Dy (a/m) ) = Pr(CDy (v = €0), CDulyr + ).

Theorem 2.1 implies that a procedure designed to deliver a correct decision with
respect to the two effective thresholds y;, — €/, yir + €, on constraint ¢/ will deliver cor-
rect decisions with respect to the other thresholds. RF is designed to accomplish this.
Thus, RF avoids setting the implementation parameter # in a very conservative way
and scales well with respect to the number of thresholds. However, it requires all
thresholds to be tested simultaneously in one pass for statistical validity, and thus the
computation time for [Feasibility Check] increases as the number of thresholds
increases.

3. MULTIPASS PRUNING PROCEDURE

In this section, we present a new procedure to identify feasible systems for subjective
constraints when thresholds are added sequentially in multiple passes. Section 3.1
presents the pruning procedure for the first pass, and Section 3.2 proposes the pruning
procedure for the subsequent passes.
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3.1. First-Pass Pruning Procedure

In this section, we propose a procedure with new statistics that performs a feasibility
check for the first pass when the decision maker considers a subset of thresholds chosen
from the set of all possible thresholds.

As discussed in Section 2.2, procedure RF checks the two inequalities in equation
(2.2) for each threshold g/, whenever an observation is collected from constraint 7.
Recall that the statistical guarantee we want to provide is that the feasibility decisions
under the multipass approach are identical to those of RF. One straightforward way to
provide such a guarantee is to save the sample paths Y/ (r;) of system i, where r; > ny,
during the first pass and track down from the very first stage (i.e., from r; = ng) what
would have happened if RF had been performed with all thresholds considered in the
multiple passes. However, this is not desirable due to a data storage problem. Instead,
we keep the following two statistics while system i is simulated:

_ R(r:es,n,,S%
viB = min{Yi/(r’) + (7 €217 Sig (o)) ' ng <t < r,} and

r/

_ R /; s ,S?
vl-L/BEmax{Yi/(r’)— (7’ €Ny 1/(”0)) ‘ 1o Srléri}a

r/

where vP? is the minimum of the upper bounds (UB) and v} is the maximum of the
lower bounds (LB) that the possible thresholds g, have been compared with so far.
The first pass for the MPP procedure, namely, PV, then determines system i feasible
with respect to threshold q/,, on constraint 7 if vJ® < g,,, and infeasible if v.* > g,,,

where m € T}U. We update the interval (vi?,vD?) whenever an observation Y/, is col-
lected and the feasibility decision is made for a particular threshold gq,,, where m €

T}l), once it falls outside of the interval for the first time. Figure 1 shows the behavior
of vJ8 and v}? when a feasibility check is performed with respect to thresholds

—— Yulr) + R(ri; &, Ny, S3(no))/r; —-- VB
Yig(ri) = R(ri; €, Ny, SG(no))ri - =+= VP
qlmz
lel W
W
IO 4
fz.-l"
/
i
rin ri2

Figure 1. Behavior of vJ® and vi? for the feasibility check with respect to thresholds {q/m,, G/m,} on

constraint Z, where my,m; € Tﬁ”.
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{q¢my>qrm, } on constraint / during the first pass (i.e., m;, m, € T<1>) In Figure 1, q/m,
falls outside of the interval (i.e., below v B) at r;y for the first time and system i is then
determined infeasible with respect to g/,,,. The feasibility decision for g, is deter-
mined at rp and system i is determined feasible with respect to gsm, as q/m, falls
above VP,

The full description of PO s provided in Algorithm 2 for k systems, s constraints,
and thresholds g, where m € T for /=1,...,s. We use Zjy,,, where m € TF/1>, to
indicate the feasibility of system i with respect to threshold g, on constraint 7 (i.e.,
Ziym =1 if system i is feasible with respect to threshold g, on constraint #, and

Zism = 0 otherwise).

Algorithm 2. Procedure P™), w = 1

[Setup:]

Choose confidence level 1 — o, tolerance level ¢, and threshold index set T;l)

straint /= 1,2,...,s. Also, choose the value of ¢ € N* and set ® = {1,2,...,k} and
YV =1{1,2,..,s}. For / =1,...,s, set n, such that g(i,) = f,, where f satisfies (2.1),

and either

for con-

i p,=(B/s)-Z(d,=1)+[B/(2s)]-Z(d; > 1) for / =1,2,...,s, or
ii. B,=p/D;D=>Y,_ min{d,2}for/=1,..s

for each system i € ® do
[Initialization:]

e Obtain ny observations Yis1, Yis2, ..., Yien, for £ =1,2,...,s
e Compute Y/ (1) and S/(no) for / = 1 2

e Setr,=ny,ON=HU, and ON, = for / =1,2,.

. Setv}}B—ooande——oofor/—12

e Set LAST;, as an empty string for / = 1,...,s

[Feasibility Check:]
for / =1,2.. ,sandv > v do
vi? = max(viF, Y,/(r,) R(ri; ey S (ng))/ri). If viP is updated, set LASTj
= LB.
vi® = min(v})%, Y (r;) + R(ri; €4, 115, S5 (o)) /ri). If v5® is updated, set LASTy
= UB.
for m € ON, do
If vi® < q/m, set Ziyy =1 and ON, = ON, \ {m}.
If vi® > q/m, set Ziyy = 0 and ON, = ON, \ {m}.
end for
If ON; = (), set ON = ON\ {/}.
end for
[Stopping Condition:]
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If ON = (), return Zy,, for £ € H") and m € T;W) and save the (final) random
seed(s) for system i. Otherwise, set r; = r; + 1 and, for any / such that v}® > v},

take one additional observation Yj/,, and update Y (r;). Then go to [Feasibility
Check].
end for

Note that in addition to only considering a subset of all possible thresholds whose

indices are in T!" C T, and maintaining the variables vJB and v:B, P() incorporates

several other differences with RF as described below:

e We add variables LAST;, in the description of PW. This is needed for subse-
quent passes of the feasibility check when v}/® < v} so that we can directly con-
clude the correct feasibility decisions for the added thresholds. Note that P
can overwrite the value of LAST,, if both v/ and v}® are updated in one stage.
A detailed discussion on the use of LAST;,, including an explanation that over-
writing LAST;, in the same stage does not result in unintended consequences, is
provided in Section 3.2.

e We keep collecting observations Yj,, from constraint / with v}i;B > VlL/B and
update Y/, (r;) when ON # ) even if / ¢ ON. Note that whenever we conduct
one simulation replication, observations across all the constraints can be
obtained; therefore, obtaining observations from constraint 7 such that / ¢ ON
# () does not increase the total number of required simulation replications. The
additional data are in preparation for the case when the decision maker adds
thresholds in later passes for such constraints (to guarantee statistical validity
and increase efficiency). One may notice that when v}® < v}, adding thresholds
to constraint / does not require additional observations to conclude their feasi-
bility decisions because every possible threshold q,,, satisfies v,® < g, or vif >
q/m or both. In addition, when v;® < B, we utilize the final value of LAST;, to
conclude certain feasibility decisions in later passes. Collecting additional obser-
vations when vJ® < v'® might overwrite LAST;, and lead to issues with statistical
validity.

e We save the (final) random seed(s) for each system when the feasibility check is
completed so that we can continue generating observations for the systems that
match those of RF in future passes if needed.

3.2. Pruning Procedure for Later Passes

In this section, we propose a procedure to determine the feasibility for the added
thresholds in the later passes after the first pass is complete. We let w > 2 be the index
of the pass and consider a particular constraint /7 € H™). Recall that the thresholds for
the wth pass need to be selected from the predefined threshold set {q/1,9/2,..-»9sd, }-
That is, the threshold indices for the wth pass satisfy

" ¢ )\ (U ).
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—— Yiu(ri) + R(ri; €, Ny, SE(No))/ri
Yin(ri) — R(ri; €, Ny, SE(no))/r;

Qi \\
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Qim =V

: e

ri
Figure 2. Crossing of vo® and v} on constraint / when retrieving feasibility decision for threshold
Gsm, Where m € T/(/W) and w > 2.

If the decision maker decides to add a threshold g/, where m & T/(,W), the feasibility
decision that RF would have made for system i is retrieved during the wth pass. This is
achieved by comparing the values of v® and v:# with g,,, and only collecting additional
observations if needed (in which case the additional observations would be collected and
employed as in PV). We now discuss how we determine feasibility for q,,, depending on

the values of v}/® and v} at the end of pass w — 1 based on three cases as follows.

Case 1. When v})® < g/, and viF < gz (or vi2 > q/m and vDP > g/):

If vJ8 <gqum and v? < g/, we immediately declare that system i is feasible with
respect to g/ Similarly, we immediately declare that system i is infeasible with respect
to qrm if Vi2 > q/m and v > qrm.

Case 2. When v}® < g/, < viB:

Although vJ® > v'B in general, it is possible that v}® < v'B happens at the time when
feasibility decisions for all thresholds on constraint ¢ of system i with indices in T;W_l) are
concluded in the previous pass. If an added threshold value g,,, satisfies v;/® < g/, < V5,
we need to know which value of vJ® and v} was updated last in the previous pass.
Consider the example in Figure 2 where we use g/, to denote the threshold whose feasi-
bility decisions are made last in pass w — 1. At the last stage of the feasibility check for con-

UB

straint / in the previous pass, we have v},® < v'B. When the feasibility decision for gy

needs to be retrieved in the current pass, we have vP)® < g/, < v}? and v}® is the last
updated value in the previous pass. As shown in Figure 2, the LB of the interval

(?i/(ri/) — R(ris; €0, 83 (n0))/1ir, Yie (ri) + R(rigs €4,y S?/(”O))/ri{’)

is greater than vi? before the last stage of the previous pass and g, would have satis-
fied vi® > g, before it satisfied vi® < gy, if q/m had been included in the previous
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pass Thus, we should declare system i infeasible with respect to q/,. In general, when
VB < qsm < viP, if the last updated value among vP®,viP in the previous pass is v}/®
(i.e., LAST;, = UB), we declare the system infeasible with respect to g/, and we declare
the system feasible with respect to q, if the last updated value in the previous pass is

B (ie., LAST;, = LB).

Note that the value of LAST;, can be overwritten when both v}? and vJ® are updated
in one stage. For example, we see that the first few observations taken in Figure 1 result
in v/® decreasing and v}? increasing. This means that both v}® and v}? are updated in
the same stages and thus LAST;, updates accordingly (and therefore is overwritten).
However, overwriting LAST;, results in values vj® of Y (r;) + R(ri; €/, 0, S (n0))/1;
and v of Y/ (r;) — R(ri; €/, 1, S (o)) /1;. Because R(m,e/,n/, 8% (no)) takes a nonnega-
tive value, it is guaranteed that vUB > vLB in such a case. Because the variable LAST;, is
only used when v,® <v'®, overwriting the value of LAST;, in the same stage does not
have any unintended consequences for the feasibility check during the following pass
when  R(r;€,1,,8%(ng)) >0  (and  hence  vP)® >vF).  Moreover, when
R(ri;€/,1,S5(n9)) = 0 in the final stage of pass w— 1, overwriting LAST;, implies that
vi? =vB =Y, (r;) and LAST;, = UB; thus, the system is declared infeasible when
implementing P™). In this case, vJ* < g/, <P implies that g, = vJ® = vf =
Yi/(r;) and it is easily seen that the value of Z;/,, is also overwritten in Algorithm 1 and
thus the system is concluded infeasible by RF, which matches with the decision from
P™). Furthermore, note that Y (r;,) = vi¥ = v = q;; occurs with zero probability
under Assumption 2.1.

Case 3. When vi? < g, < v}

If v’ < q/m < V", we cannot determine feasibility relative to threshold g, based on
the data collected in passes 1,...,w — 1 and need to take additional observations. In this
case, one needs to use the (final) random seed(s) saved for the system from the previous
pass. This is essential for the proof of statistical validity discussed in Section 4.

We present the description of the retrieving process for pass w>2, namely, P™, in

Algorithm 3. We determine the values of Z;,, for / € H™ and m € T( in the wth
pass for the feasibility of system i for the corresponding added thresholds g/,

Algorithm 3. Procedure PW > 2

[Setup:]

Decide H™), the set of constraints that need additional thresholds, for the wth pass.
Choose the indices of the thresholds added, T/ , for # € H") and set ® = {1,2,...,k}.

for each system i € ® do
[Initialization:]

e Set ON=H™ and ON, = T'" for / € H™.
e Obtain r;, Y,/(r,) LAST,/, vi8, and vUB for / = 1,...,s from procedure P~ and
S, (o) from P
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e Obtain the saved seed(s) for system i from procedure P~ and use it (them)
for generating observations from system i (if needed).

[Initial Feasibility Check:]
for / € H" do
for m € ON, do
If viB < g/ and Vi < gy, set Ziym = 1 and ON, = ON, \ {m};
Else if vi# > g/, and v\® > g/, set Zis,y = 0 and ON, = ON, \ {m};
Else if vJB < g/ < viE,
if LAST;, = UB, set Zy,, = 0 and ON, = ON, \ {m};
if LAST;, = LB, set Zi,, = 1 and ON, = ON, \ {m}.
end for
If ON, = (), set ON = ON\ {/}.
end for
[Stopping Condition:]
If ON = (), return Zy,, for all /€ H® and m € T}W). Otherwise, set r; =1r; + 1

and, for any 7 such that v,® > vI?, take one additional observation Y, and

update Y;/(r;). Then go to [Feasibility Check] of procedure PV,
end for

4. STATISTICAL VALIDITY

We prove the statistical validity of our proposed procedure in this section. We first
address the statistical validity for a single system in Section 4.1 and then discuss the
overall probability of correct decision for multiple systems in Section 4.2.

4.1. Statistical Validity of MPP«fer a Single System

In this section, we prove the statistical validity of our proposed procedure for a single
system. Recall that procedure RF makes a decision for each threshold g, for m € T,
when the interval

( R(ryenny Siy(no)) o R(ryer,17,S3 (o))

Yi(r) — p ,Yir(r) + ;

) for r=mnp,ny+1,..,

does not include the threshold g, for the first time. We refer to such a stage as the
first exit stage. The following Lemma 4.1 from Zhou et al. (2022) provides the statistical
validity of procedure RF (shown in Algorithm 1) for a single system.

Lemma 4.1. For system i with s constraints and threshold constants q;, where m € Ty
for £ =1,...,s, procedure RF makes a decision for each threshold based on its first exit
stage and guarantees Pr(N,_,CD;,) > 1 — f.

The following lemma shows that if RF is implemented for thresholds g, where

m e Ub”f:lT;”) (i.e., the thresholds considered through the execution of P™)), then it still
provides statistical validity.
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Lemma 4.2. Procedure RF, executed with respect to q/m, where m € U3=1T/(u):
guarantees

Pr(ﬂ}zlﬁmeu;r:lTﬁu)CDi/(Wm)) >1-p.

Proof. Because UL‘/ZIT;F) CT, and N¥_ CDy(q/m) CN
1,2,...,s, we have

)CD,’/(q/‘m) for /=

meu;“le;“

Pr<ﬂsf=1mmeu;leTﬁ”)CDi/(q/m)) > Pl’( S/:l mfnle CD,’/<q/m)> >1- ﬁ,
where the second inequality follows from Lemma 4.1. O

We use MPP™ to denote the MPP procedure with w > 1 passes (so that P is
applied to thresholds g, where m € TF”), for u =1,...,w). Now we present the main
theorem that proves that the MPP™) procedure guarantees statistical validity by show-
ing that the feasibility decisions of MPP™) match those of RF with respect to thresh-
olds g/, where m € UL"ZIT;A) and / =1,..,s.

Theorem 4.3. Given system i with s constraints and index set T, ={1,2,....,d;} for
/ =1,2,...s, the MPP procedure MPP"™) guarantees

Pr(m;=lmmeu3:1Tﬁ“)CD"/(W"’)) >1-p.

Proof. Because RF makes the feasibility decisions at the first exit stage, we prove the
theorem by showing that the feasibility decisions made by the MPP™) procedure with
respect to threshold g, where m € UZ’:1T§“) for / =1,...,s are identical to those at the
first exit stage, which in turn match the decisions made by RF.

Procedure P! sets the implementation parameters f3, identical to those of RF for
/ =1,2,..,s. In addition, the two inequalities that determine the values of Z;,, in the
[Feasibility Check] step are essentially identical in the two procedures as well. The

main difference between RF and P is that PV keeps updating the values of vJ®
and vi? for every constraint # such that v.? < vB whenever system i is simulated, even
if # ¢ ON. However, this difference does not affect the values of Zi,, as ON, = () for
/ ¢ ON; thus, Zi,, are not updated and RF and P yield the same decisions for m €
T;l) and / =1,2,...,s.

Let w > 2 and / be an arbitrary constraint. To avoid the trivial case, we assume that
the decision maker adds thresholds for constraint /7 in pass w (i.e., / € H ). We need
to consider five cases for each added threshold g,,,, where m € T,@, after the comple-
tion of P~V

1. If v}® < g/ and v:f < g/, both MPP™ and RF declare system i feasible
with respect to g/, by the first exist stage.
Recall that r; is the number of observations collected from system i to conclude
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feasibility decisions from all constraints after the completion of P~V It is clear
from Algorithm 3 that MPP™ declares system i feasible with respect to g
Moreover, if v\/® < g/, and v}? < g/, then there exists ny < nV® <r; such that
Yir(n"®) + R(n"®; ¢/,n,, 8% (no)) /nY® < qsm but there does not exist ny < n'® <
r; such that Y (n'®) —R(n'®;e/,n,,8%(ng))/n"® > qsm. Therefore, RF also
declares system i feasible with respect to q,.

2. If v\ > g/, and v® > g/, both MPP™ and RF declare system i infeasible
with respect to g/, by the first exist stage.
By similar arguments as in Case 1, the above claim holds.

3. If vi® <gsm <vi? and LAST;, = UB, both MPP™ and RF declare system i
infeasible with respect to g/, by the first exist stage.
As stated in Algorithm 3, it is clear that MPP™ declares system i infeasible
with respect to threshold g/,,. Recall that r; represents the number of observa-
tions from system i from all constraints after the completion of P*~!. Because
VOB < G, there  exists 1y <nY® <r,  such  that Y, (nY®)+
R(n"®;€e/,n,, 8% (n))/nY® < qym. Similarly, due to vi? > g/, there exists ny <
n'® <7 such that Y (n'®) — R(n™®;¢/,n,,8%(ng))/n"® > qsm. Moreover, given
that LAST;, = UB and LAST,, will not be updated when v}® < v# happens, we
know that n'® < n"® because v})® was updated later than v}?. Therefore, as 1y <
nB < nB <1, we see that RF declares system i infeasible with respect to
threshold g/,

4, If v}}B <gm < V%{B and LAST;, = LB, both MPP™ and RF declare system i
feasible with respect to gq/p,.
By similar arguments as in the previous case, Case 4 holds.

5. Finally, if viL/B < Grm < v}}B, MPP™ takes more observations and reaches the
same decision made by RF.
Based on Algorithm 3, it is clear that MPP™) needs more than the r; observa-
tions obtained in all previous passes (i.e., passes 1 through w— 1) and additional
observations are generated using the saved random seeds from pass w — 1. Given
that v < g/, < v}/®, there does not exist ny < n"® <r; such that Y, (n"®) +
R(n"®;€e/,m,, 8% (ng))/nY® < qym nor ny < n'® <r; such that

Yi (n"®) = R(n"®; ¢4,n, S (10)) /0™ > G,

which implies that RF also has not made a feasibility decision for g/, after tak-
ing r; observations. Thus, both MPP™ and RF proceed to obtain the same
observations until they reach the first exit stage for g/, and make the same feasi-
bility decision.

Putting all five cases together proves that MPP™) makes the same decisions as RF

when RF is implemented for the threshold g/, where m € UlleT;u) for / =1,...,s. By
Lemma 4.2, we know that RF guarantees

Pr (ﬂ}zlﬁmeuﬁ;lﬂm CDi/(Wm)) >1-p

and so does MPP™). O
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4.2. Statistical Validity of MPP<fer Multiple Systems

In this section, we extend Theorem 4.3 to the general case with multiple systems and
multiple constraints.

Theorem 4.4. Given predefined threshold sets {qs1,qs2>..»qra,} for £ =1,2,...s, the
MPP procedure MPP"™ guarantees

Pr(ﬂf;l ﬂs/:l ﬁm€UZ,:1T§u)CDi/(q/m)> >1—a.

Proof. When systems are simulated with CRN, we have

k
PCD = Pr<ﬂi:1 Vet My 70 CDi/(q/m)>

M)~

>1- (1 —Pr <ﬂ;=1ﬂm€U3:1T/<u> CDi/(q/m)))

i=1
S1—kf=1-kri=1-0
k
where the first inequality follows from the Bonferroni inequality, the second inequality

holds due to Theorem 4.3, and the second equality holds due to equation (2.1).
Similarly, when systems are simulated independently, we have

k
PCD = Pr (ﬂizl ﬂ;zl mmeu‘;’lef”) CD,‘/(&]/W,))

k
e o cOut0)
=1

1-p'=1-01-1-2)")=1-0

where the inequality holds due to Theorem 4.3 and the third equality follows by equa-
tion (2.1). O

v

5. EXPERIMENTS

In this section, we provide numerical results to demonstrate the performance of our
proposed procedure compared with that of RF. We first test whether the feasibility
decisions of chosen thresholds concluded by MPP are identical to those by RF in
Section 5.1, where all possible thresholds are included throughout two passes for MPP
and thus no pruning occurs. We then compare the performance of the two procedures
in terms of the number of replications in Section 5.2, where the thresholds chosen for
different passes of MPP are chosen adapatively and designed to prune inferior
systems.

Each experiment is repeated 10,000 times with o = 0.05. The initial sample size is
ng = 20 except we also consider other values of 7, in Section 5.2.2. The tolerance level
is set as ¢, =1/\/ng for all / =1,...,s for Sections 5.1 and 5.2.1 and as specified in
Sections 5.2.2 and 5.2.3. We report how many times RF and MPP have the same
feasibility decisions for thresholds considered by MPP in the experiments. As stated in
Algorithms 2 and 3, whenever we perform feasibility checks for the thresholds on one
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constraint, we collect observations across all constraints from that system and one repli-
cation refers to one set of observations collected across all constraints. To measure effi-
ciency, we use REP™ to denote the average number of replications obtained during the
execution of procedure P, where u = 1,..., w. Note that REP* is only applicable for
our multipass procedure. We also let REP denote the overall average number of replica-
tions throughout the experiments (this applies to both MPP and RF). Because Zhou
et al. (2022) reported that the correlation between the primary and secondary perform-
ance measures does not have a significant impact on the experimental results, we
assume that the observations for all performance measures from each system are inde-
pendent when s> 1. Furthermore, given that Zhou et al. (2022) reported that applying
CRN does not benefit feasibility checks for subjective constraints, we consider inde-
pendent systems. Finally, d, > 1 for / =1, ..., s, throughout all of our experiments. This
implies that approaches (i) and (ii) of selecting f, in Algorithms 1 and 2 are the same
forall/ =1,...,s.

5.1. Statistical Validity

To show that the decisions of RF and MPP™ are identical, we consider one system
with two constraints and w=2. The mean performance of the system with respect to
the two constraints is set to y;; = y;, = 0, and the variances are set as 0'12,1 = af) , =1
We let both constraints have four thresholds as gq,1 = —3¢/, 9/, = —€/,9/3 = ¢/, and
qrs = 3¢, where £/ = 1,2.

We test all thresholds for RF. For MPP?, we consider three different scenarios as
follows:

o Scenario 1: T\ = {1,4}, TV = {2,3}, T = {2,3}, and T = {1,4};
e Scenario 2: Tfl) = Tél) = {1,4}, and T§2) = ng) ={2,3};
e Scenario 3: Tf” = Tgl) ={2,3}, and Tiz) = T§2> = {1,4}.

Note that Scenario 1 concerns the difference in the difficulty of the feasibility checks
between the two constraints. More specifically, the feasibility check for the first
(second) constraint is easy (difficult) during PY | whereas it is the opposite for PR,
The overall difficulty for PL and P@ is the same. On the other hand, Scenarios 2
and 3 address the difference between the two passes, where Scenario 2 (3) has a rela-
tively easier first (second) pass. During each pass, the overall difficulty for both con-
straints is the same.

Among the total 10,000 repeated runs, we count the number of runs when the
feasibility decisions with respect to all thresholds tested match exactly for RF and
MPP, Table 1 shows the ratio of the runs that have all decisions matched along

with the estimated PCD for the two procedures. We also report REP(!), REP?), and
REP. Because all possible thresholds are tested (rather than excluding unnecessary

thresholds) throughout the execution of MPP?, we expect that REP() 4 REP?) =

REP for MPP? and report the ratio of the runs with the same total number of
replications.
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Table 1. Average number of replications and estimated PCD for k=1 system and s=2 constraints
for RF and MPP®?, where MPP? is tested under three scenarios.

MPP@ MPPRD MPPR) RF
Scenario 1 Scenario 2 Scenario 3
PCD 0.9583 0.9583 0.9583 0.9583
Ratio of matched decisions 100%
REP() 79.44 37.82 95.17 —
REP() 15.73 57.36 0.00 —
REP 95.17 95.17 95.17 95.17
Ratio of matched REP 100%

Table 1 shows that the two procedures have exactly the same feasibility decisions and
use the same total number of replications as expected. Comparing the results of
MPP? under the three scenarios, we see that Scenario 2 has the lowest REP(Y) and
Scenario 3 achieves the highest REP(!). This is expected because Scenario 1 has the easi-
est first pass among the three scenarios (two easy constraints), whereas Scenario 3 has
the most difficult first pass (two hard constraints). Similarly, because Scenario 1 has a
more (less) difficult first pass compared with Scenario 2 (3) (because Scenario 1 has one
difficult and one easy constraint), we also see that Scenario 1 has a larger (smaller)
REPW compared with Scenario 2 (3). Furthermore, because the number of effective
thresholds per constraint is at most two (see Theorem 2.1), it is clear that Scenario 1
requires additional replications for the second constraint but not for the first constraint
during the second pass (because the second pass adds more difficult [easier] thresholds
for the first [second] constraint). For similar reasons, Scenario 2 is expected to require
more replications for both constraints, whereas Scenario 3 is not expected to require
additional replications for either constraint. This matches with the results that Scenario

2 has a higher REP() than Scenario 1 and Scenario 3 incurs a zero REP®?).

5.2. Efficiency

We show the efficiency of MPP compared to RF in this section when the main goal
is to prune inferior systems by finding feasible systems with respect to the most pre-
ferred thresholds possible. Section 5.2.1 considers multiple systems with a single con-
straint, and Section 5.2.2 provides results in cases where MPP yields large savings.
Finally, Section 5.2.3 addresses the efficiency of MPP compared with RF when mul-
tiple systems and two constraints are considered in an inventory example (as described
in Section 1).

Because the thresholds tested by MPP™) may be a subset of all possible thresholds,

we let PCD be the probability of correct decision with respect to the thresholds tested
for RF or MPP™); that is,

N PCD, for RF,
PED =1\ Pr(nb M7y Nty 0 CDr(@rm)), for MPPL.

We report the estimated PCD in our experimental results.
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5.2.1. Systems with One Constraint

We consider k=100 systems with a single constraint and 100 thresholds (ie.,
d, = 100). We set the difference between two consecutive thresholds to 2¢;; that is,
qi,m = (2m — 1)€e; where m = 1,...,100. We assume that the decision maker prefers sys-
tems with smaller means.

Because MPP? only tests a subset of thresholds through each pass and adds thresh-
olds in the second pass depending on the feasibility decisions obtained in the first pass,
it will perform feasibility checks with respect to a restricted set of thresholds that are
close to the means of the potential best systems throughout the two passes. On the
other hand, RF collects observations for all systems with respect to all possible thresh-
olds considered, regardless of whether it is unnecessary to conclude feasibility decisions
for some of the thresholds. We use the concentrated mean (CM) configuration to dem-
onstrate the case when the means of all systems are the same except for the best system
and the common mean of all inferior systems is quite far from the mean of the best sys-
tem. This configuration benefits MPP? because MPP? is likely to identify the
smallest threshold that the best system is declared feasible to and use it to prune all
inferior systems (because the mean difference between inferior systems and the best sys-
tem is large, the pruning becomes easy), whereas RF can spend more observations to
conclude feasibility decisions for all the inferior systems with respect to their closest
thresholds. To be more practical, we also consider a monotonically increasing means
(MIM) configuration where there is one system in each intersection of the unacceptable
and desirable regions of two consecutive thresholds. Specifically, we set the mean con-
figurations as follows:

e CM:y;,;=0andy;; =198¢ fori=2,..,k.
e MIM: y; =2(i—1)¢ foralli=1,..,k.

For RF, we test all 100 thresholds together in one run. For P of MPP?, we
consider thresholds {q1,10, 41,20 - 41,80- 41,90 }; that is, Tgl) = {10,20,...,90}. Based on
the feasibility decisions with respect to the thresholds from P, if there is only one
system declared feasible with respect to the tightest threshold, we terminate and select
the single system as the best system. On the other hand, if there are multiple systems
declared feasible with respect to the tightest threshold, we consider nine even tighter
thresholds compared to this threshold. For example, if there are multiple systems
declared feasible with respect to threshold qi 10, we add {q11,91,2,.-»- 91,9} (with
T = {1,2,..,9}) for P?.

Table 2 presents the results of the estimated P%f), the ratio of matched feasibility
decisions for thresholds in Tfl) U sz) over 10,000 repeated runs, and the number of
replications required for MPP? and RF under the CM and the MIM configurations.
Table 3 shows the average number of feasible systems declared by MPP? with respect
to the tightest threshold considered in P and P® under both the CM and MIM con-

figurations. Because none of the 10,000 replications execute P®) under the CM config-
uration, we do not report this value in Table 3.
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Table 2. Average number of replications and estimated PCD for k=100 systems and s=1 con-
straint under the CM configuration.

™ MIM
MPP RF MPP RF
PCD 1.000 0.9570 0.9922 0.9638
Ratio of matched decisions 100% 100%
Rep() 2,009.86 — 6,065.56 —
REP() 0.00 — 1,391.22 —
REP 2,009.86 18,494.22 7,456.78 18,494.24

Table 3. Average number of surviving systems throughout the exe-
cution of MPP.

™ MIM
= 1.00 10.00
PR — 1.00

We first discuss our results under the CM configuration. We see that both MPP?
and RF guarantee statistical validity. M7PP? achieves a higher PCD than RF because

MPP? only needs to guarantee the correct decisions for a subset of the thresholds,
whereas RF’s PCD is with respect to all 100 thresholds. In terms of the subset of

thresholds tested for both MPP? and RF, the feasibility decisions are matched per-
fectly at 100% throughout 10,000 repeated runs. In terms of the required replications to

conclude the feasibility decisions, we observe that MPP? requires only 10.87% of the
replications RF used. This significant reduction is expected because RF performs

feasibility checks with respect to all thresholds considered, whereas MPP? only tests
preferred thresholds and saves unnecessary replications needed to declare feasibility
with respect to clearly less preferred thresholds. More specifically, we see from Table 3
that there is only one system declared feasible to the tightest threshold, and thus
MPP? does not require the second pass.

Overall, we observe a similar tendency for the MIM configuration as in the CM con-
figuration. The main difference is that MPP®? requires 40.32% of the replications RF
used, and this savings is relatively smaller than that from the CM configuration as
expected. Note that the MIM configuration has systems spread out evenly over the 100
thresholds, whereas the majority of systems in the CM configuration are only feasible to
the least preferred threshold. As shown in Table 3, PV identifies an average of 10 feas-
ible systems to the tightest threshold under the MIM configuration but identifies only
one feasible system under the CM configuration. This means that with the same subset

of thresholds chosen in P, the MIM configuration is more likely to require the
second pass to further prune inferior systems and thus requires more replications than
the CM configuration.

One may also notice that RF achieves similar REP under both the CM and the MIM
configurations. Although the systems’ means are set differently, RF essentially declares
feasibility with respect to one effective threshold for the best system (i.e., €;) and two effect-
ive thresholds for all inferior systems (i.e., y;1 — €; and y; 1 + €;) as discussed in Zhou et al.
(2022). Thus, it is expected that RF results in a similar REP under both configurations.
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Table 4. Average number of replications and estimated PCD for MPPY), where ¢ = 1/v/No
and k € {100, 1,000, 10,000}.

CM(100,1/+/ng) CM(1000,1/+/ng) CM(10000, 1/+/ng)
MppO RF MppO RF MPPO RF
PCD 1.000 0.957 1.000 0.954 1.000 0.956
Ratio of matched decisions 100% 100% 100%
REP 2,000.00 1849424 20,00000  268895.14  200,00000  3,741,675.70

Table 5. Average number of replications and estimated PCD for MPPY, where k=100
and ¢ € {1/,/n,0.1,0.05}.

CM(100,1/+/ng) CM(100,0.1) CM(100, 0.05)
Mmppt RF Mmpp RF Mppt RF
PCD 1.000 0.957 1.000 0976 1.000 0975
Ratio of matched decisions 100% 100% 100%
REP 2,000.00 18,494.24 2,007.47 91,852.00 4,713.99 366,307.30

5.2.2. Systems with Large Savings

Section 5.2.1 shows that when inferior systems are pruned, MPP achieves significant
savings compared with RF. In this section, we demonstrate that the savings of MPP
can be huge in certain settings.

We consider the CM mean configuration as described in Section 5.2.1 for a single
constraint case. We see that to identify the best system, a feasibility decision is basically
needed for one critical threshold; that is, any threshold that is in between the best and
second best system means. In this case, MPP only requires one pass to achieve the

objective (i.e., w=1) and the decision maker chooses Tfl) = {50} (i.e., the threshold in
the middle of the best system mean and the mean of all inferior systems). She considers
all thresholds for RF. The difficulty of the feasibility checks of a specific constraint
depends highly on the number of systems k considered and on the minimum distance
between the thresholds and the systems’ means (¢; for RF). In the following experi-
ments, we adjust the values of k and ¢; to further test how these factors affect the rela-
tive performance of MPP and RF. More specifically, we use CM(k, ¢;) to denote the
CM configuration where k systems and tolerance level ¢, are considered. Table 4
presents the results when k € {100,1000,10000} and €, =1/,/ng ~ 0.22 and Table 5
shows the results when ¢, € {1/,/19,0.1,0.05} and k =100.

From Table 4, we see that MPPY requires only 10.81%,7.44%,5.35% REP com-
pared of that of RF when k=100, 1,000, 10,000 and ¢, = 1/ \/ho, respectively. Because
RF spends unnecessary replications trying to conclude feasibility decisions with respect
to all thresholds for all systems whereas MPPY) only performs feasibility check with
respect to one critical threshold to identify the best system, the huge savings of
MPPWY is expected. We further note that MPPY stops in all cases after taking the
minimum number 1y = 20 replications per system. Therefore, we test ny € {5,10} and
e =1/ V20 as well. To conserve space, we do not include the detailed results here but
for ny =10, MPPY only uses 3.32%, 2.00%, 1.55% REP compared to RF, and for
ng =5, these percentages become 1.47%, 1.47%, 1.48% for k=100, 1,000, 10,000,
respectively.
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We also see from Table 5 that MPP) uses 10.81%,2.19%, 1.29% REP compared of
that of RF when ny = 20,k = 100, and € = 1/,/n,,0.1,0.05, respectively. We again
consider ny € {5,10} but omit the details for reasons of brevity. For ny = 10, these per-
centages become 3.32%, 1.37%, 1.33%, and for ny =5, they are 1.47%, 1.42%, and
1.42% for ¢, =1/ v/20,0.1,0.05, respectively. In conclusion, the results in this section
show that MPP can achieve huge savings compared with RF, especially when the
number of systems and thresholds considered are large and take wide ranges of values.

5.2.3. Inventory Example

In this section, we demonstrate the performance of MPP® based on an (s, S) inven-
tory example as discussed in Section 1. We consider a similar problem setting as in
Koenig and Law (1985), also tested in Zhou et al. (2022), where one review period is 1
month and the performance measures are estimated using the first 30 months. The two
performance measures are the same as in Section 1, namely, the probability that a short-
age occurs during each review period (/ = 1) and the expected cost per review period
(¢ =2). The expected cost includes the ordering cost, holding cost, and penalty cost
when the demand is more than the inventory level. We set the ordering cost as 3 per
item and a fixed cost of 32 per order. The holding cost is set as 1 per item between
each pair of consecutive periods, and the penalty cost is 5 per item of each unsatisfied
demand. The demand during each period is assumed to follow a Poisson distribution
with mean 25. We assume demands over different review periods are independent. We
consider 2,901 systems in total as ® = {(5,5)[20 <s < 80,40 < S < 100,s € Z*,S €
Z", and s < S}. To reduce the initialization bias, both performance measures are com-
puted after the first 100 review periods and averaged over the subsequent 30 review
periods. We obtain analytical results for both performance measures using an steady-
state analysis of a Markov chain model. We estimate the correlation between the two
performance measures among all 2,901 systems using simulation with 1,000,000 replica-
tions. The estimated correlations range from —0.235 to 0.553.

We consider the same threshold setting as discussed in Section 1, where g, takes val-
ues in {0.01 +0.01y | 0 <7y <19,y € Z} and g, takes values in {1154 0.5y |0 <y <
120,y € Z} thousands (20 values for g, and 121 values for g,). We include all thresh-
olds from both constraints for RF. To choose the thresholds MPP®) uses to prune
inferior systems in this multi-objective setting, we utilize the concept of preference
order introduced in Zhou, Andradéttir, and Kim (2024). Preference order is used to
describe how the decision maker prioritizes different constraints based on the given
thresholds on each constraint. Zhou, Andradéttir, and Kim (2024) proposed three pref-
erence orders, namely, the ranked constraints, equally important constraints, and the
total violation with ranked constraints formulations. In this section, we focus on the
equally important constraints formulation, where the decision maker values both con-
straints equally and would like to tighten (relax) both constraints at the same time if
multiple (no) feasible systems are identified with respect to the more (less) preferred
threshold combination. More specifically, we first consider thresholds ¢ €
{0.01,0.1,0.2} and g, € {115,145,175} for PV, If multiple systems are declared feas-
ible to the most preferred possible threshold combination, we tighten both constraints
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by adding thresholds on a finer level such that g; is chosen with an increment of 0.05
and ¢, with an increment of 5 for P?. Similarly, we consider an even finer level of
thresholds in P by choosing g, at an increment of 0.01 and g, at an increment of 0.5.
For example, if multiple feasible systems are identified by P! with respect to threshold
combinations (g1,42) = (0.1,145),(0.01,175), and (0.1,115) but no systems are
declared feasible with respect to combination (q;,¢>) = (0.01,115), then consistent with
the equally important constraints formulation, we choose (0.1,145) as the most pre-
ferred threshold combination and add thresholds ¢; € {0.05} and ¢, €
{120,125,130, 135,140} for P?. If multiple feasible systems are further identified with
respect to threshold combination (qi,q,) = (0.05,120), we add g; € {0.01 +0.01y|1 <

y<3,7€Z}and g, € {115+ 0.5y|]1 <y <9,y € Z} for P). This is equivalent to set-
ting T\Y ={1,10,20}, " = {1,61,121}, T? = {5}, ¥ = {11,21,31,41,51}, T =

{2,3,4}, and TS = {2,3,4,5,6,7,8,9,10}.

To get a sense of the number of feasible systems with respect to different threshold
combinations, we present Table 6 for the number of feasible systems with respect to
5% 13 =65 of the 20 x 121 =2,420 combinations of thresholds of both constraints based
on their analytical values. Because feasible systems are likely to be identified with

respect to threshold combination (gy,q,) = (0.1,145) after the completion of P! and

are also likely to be identified with respect to (q;,4,) = (0.05,120) throughout P?), we
further include Table 7 to show the number of feasible systems with respect to the
threshold combinations, where q1 € {0.01,0.02,...,0.05} and g2 €
{115,115.5,116,...,119.5,120}. Note that we do not present the analytical values for all
2,420 combinations (as discussed in Section 1) for simplicity.

Due to the nature of the two constraints (shortage probability is likely between 0.9 to
1 and the expected cost is likely between 110 to 180), we set the tolerance level for the
shortage probability constraint as ¢; = 0.001 and for the expected cost constraint as

Table 6. Number of feasible systems with respect to a grid of 65 combinations of constraint
thresholds.

92
g 115 120 125 130 135 140 145 150 155 160 165 170 175
0.01 0 31 221 563 914 1,210 1,470 1,705 1,902 2,052 2,176 2,265 2,317
0.05 31 178 526 923 1,274 1,570 1,830 2,065 2,262 2,412 2,536 2,625 2,677
0.1 74 309 675 1,081 1,432 1,728 1,988 2,223 2420 2,570 2,694 2,783 2,835
0.15 94 345 711 1,117 1,468 1,764 2,024 2,259 2,456 2,606 2,730 2,819 2,871
0.2 108 364 730 1,136 1,487 1,783 2,043 2,278 2,475 2,625 2,749 2,838 2,890

Table 7. Number of feasible systems with respect to a finer grid of 55 threshold combinations.

92
g 115 1155 116 116.5 17 117.5 118 118.5 119 119.5 120
0.01 0 0 0 0 0 1 5 12 17 27 31
0.02 0 0 2 8 15 23 31 40 47 61 67
0.03 6 10 18 27 36 45 56 67 77 92 104
0.04 18 24 34 44 56 65 79 91 102 125 142

0.05 31 38 49 60 73 84 99 17 130 158 178
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Table 8. Average number of replications and estimated PCD for the inven-
tory example.

N MPPE) RF
PCD 0.966 0.964
Ratio of matched decisions 100%

REP(") 4,648,089 —
REP() 9,123,765 —
REP®) 6,210,287 —
REP 19,982,140 65,293,513

€, = 0.1. Table 8 presents the estimated PCD and the average number of replications

needed for the MPP®) and RF procedures as well as the ratio of the matched feasibil-
ity decisions.

Similar to Sections 5.2.1 and 5.2.2, both MPP® and RF guarantee statistical valid-
ity even though Assumption 2.1 is violated due to the observations on each constraint

not being normally distributed. We also see that MPP® results in a slightly higher

PCD compared with RF because MPP?) only needs to guarantee a correct decision
for a subset of the thresholds while RF guarantees correct decisions for all possible
thresholds. MPP®) achieves huge savings by only requiring about 30.60% of the repli-
cations compared with RF. The values of REP("), REP?), and REP®® likely depend on
the difficulty of each pass and the number of replications already collected in previous
passes. For each pass, the difficulty mainly depends on the number of surviving systems
and whether the system means are close to the thresholds considered (see additional
discussion in Section 5.2.2). Pass 1 is easy in general. Although we need to run replica-
tions from all 2,901 systems, the thresholds are easy to test (because many systems have
means that are far from the thresholds considered; see Table 6). Pass 2 considers more
preferred thresholds and tests only surviving systems from Pass 1 and thus those thresh-
olds can be closer to the surviving systems’ means for the two constraints, which makes
the feasibility checks more difficult. Also, because Pass 1 is relatively easy, the number
of collected replications so far is not large and hence does not benefit Pass 2 signifi-
cantly. This explains why REP?) is higher than REP'). Similar reasons apply to Pass 3,
except with fewer surviving systems and many replications that Pass 3 can utilize from
Passes 1 and 2, and hence Pass 3 does not require as many additional replications as
Pass 2.

6. CONCLUSION

We consider the problem of pruning inferior systems among finitely many simulated
systems using subjective stochastic constraints with sequentially added thresholds.
When some systems are concluded feasible with respect to preferred thresholds, the
decision maker can prune systems that are declared infeasible to those thresholds to
avoid collecting unnecessary observations from the inferior systems. We propose an
indifference-zone MPP procedure that initially tests a subset of thresholds and allows
thresholds to be added sequentially if needed without requiring much data storage. We
prove that MPP guarantees statistical validity and show by experiments that it can
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achieve large savings in terms of the required replications compared with RF if the
decision maker aims to prune inferior systems using subjective constraints.
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