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ABSTRACT 
We consider the problem of pruning inferior systems among a finite 
number of simulated systems using constraints that are stochastic 
(in that their performance measures need to be estimated through 
observations) and subjective (in that their thresholds can be tight
ened or relaxed). With subjective constraints, the decision maker can 
test multiple threshold values to determine how a set of feasible sys
tems changes as constraints become stricter and use this information 
to prune systems or identify the system with the best performance. 
When the number of possible thresholds is large, the decision maker 
may want to start by obtaining the feasibility decisions with respect 
to a smaller subset of thresholds. Depending on the results, she can 
then add tighter or relaxed thresholds if many or no feasible systems 
have been identified. In this article, we present a multipass pruning 
(MPP) procedure that starts with a smaller set of thresholds in a 
first pass and adds more thresholds sequentially in later passes with 
the goal of pruning inferior systems efficiently. We prove the statis
tical validity of the proposed procedure and numerically demon
strate its efficiency in terms of the required number of observations 
for pruning inferior systems.
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1. INTRODUCTION

We consider the problem of pruning inferior systems among a finite number of simu
lated systems by comparing their performance with different standards (i.e., checking 
the feasibility of the systems with respect to different thresholds). For example, a deci
sion maker wishes to implement an (s, S) inventory policy (namely, ordering products 
up to S when the inventory level at a review period is below s, with no order placed 
when the inventory level is above or equal to s) with two performance measures. 
She hopes to identify combinations of the values of s and S among finitely many choices 
such that (i) the probability that a shortage occurs during a review period and 
(ii) the expected cost per review period are both small. One can formulate the above bi- 
objective optimization problem as a feasibility determination problem by incorporating 
the constraints that the shortage probability is no larger than q1 and the expected cost 
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is less than or equal to q2. By identifying feasible systems with respect to the thresholds 
q1 and q2, those systems that are deemed infeasible are considered as inferior and can 
be pruned. When constraints are subjective, instead of choosing two fixed values for the 
threshold constants q1 and q2, the decision maker can allow the constraints to have sev
eral values for each threshold (such as 20 possible values 0:01, 0:02, 0:03, :::, 0:19, 0:2 for 
q1 and 121 possible values 115, 115:5, 116, :::, 174:5, 175 for q2) and observe how the 
feasible set varies with respect to each combination of thresholds to further prune infer
ior systems. For example, she can start with larger thresholds for both constraints, say, 
0.2 for threshold q1 and 175 for threshold q2, and repeat the feasibility check for smaller 
values for q1 or q2, such as 0.05 for q1 and 120 for q2, while there are multiple feasible 
solutions left. For each combination of thresholds, whenever infeasible systems are iden
tified, the systems are considered inferior and can be pruned.

Ranking and selection (R&S) is a classical and actively studied problem in the simula
tion community. R&S procedures are useful in identifying feasible systems or a system 
with the best expected performance among a finite number of systems whose perform
ance is estimated through stochastic simulation. We refer to Kim and Nelson (2006) 
and Hong, Nelson, and Xu (2015) for detailed literature reviews of R&S with a single 
performance measure. In reality, decision makers may want to handle multiple perform
ance measures (as in the inventory example discussed above); Hunter et al. (2019) pro
vided a review on the multi-objective simulation optimization problem. Several studies 
have applied the optimal computing budget allocation approach to handle multiple per
formance measures. Lee et al. (2012) considered the primary performance measure as 
the objective and the remaining secondary performance measures as constraints. Lee 
et al. (2010) proposed a multi-objective optimal computing budget allocation method to 
allocate computing budget among systems to minimize type I and II errors in selecting 
nondominated systems.

Among the R&S procedures that use the indifference-zone approach and deal with 
multiple performance measures, Andrad�ottir and Kim (2010) considered two perform
ance measures and proposed procedures to identify the best system in terms of the pri
mary performance measure and subject to a constraint on the secondary performance 
measure. Healey, Andrad�ottir, and Kim (2014) proposed procedures to identify the best 
system in the presence of multiple secondary performance measures. Batur and Kim 
(2010) proposed procedures to identify the feasibility of systems with respect to multiple 
constraints with fixed thresholds. Andrad�ottir and Lee (2021) presented a procedure to 
estimate a Pareto set with statistical guarantee. When the stochastic constraints are sub
jective (i.e., have multiple thresholds), Zhou et al. (2022) adopted the concept of “green 
simulation” and proposed a statistically valid procedure with recycled observations, 
denoted by RF (“Recycling for F easibility”), to simultaneously perform feasibility 
checks with respect to all threshold values on each performance measure. Zhou, 
Andrad�ottir, and Kim (2024) proposed procedures to identify the system with the best 
possible primary performance measure in the presence of subjective stochastic con
straints on secondary performance measures.

In practice, the decision maker may not value one performance over the others. Or 
the decision maker may be interested in understanding how the set of feasible systems 
changes when the thresholds vary for each constraint. These problems cannot be fully 
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addressed by the procedures due to Zhou, Andrad�ottir, and Kim (2023). In this article, 
rather than formulating the multi-objective optimization problem as a selection-of-the- 
best problem with subjective constraints as in Zhou, Andrad�ottir, and Kim (2023), we 
will model it as the feasibility check problem with subjective constraints considered by 
Zhou et al. (2022).

When the objective of a feasibility check problem with subjective constraints is to 
solve a multi-objective optimization problem, it is reasonable to consider large numbers 
of possible values for the constraint thresholds to facilitate the comparison of the differ
ent systems. However, to perform feasibility checks for subjective constraints, Zhou 
et al. (2022) suggested applying their proposed RF procedure with respect to all pos
sible thresholds, even if that number is large. For the inventory example discussed 
above, to find the system with the smallest possible combination of shortage probability 
and expected cost, this would involve checking feasibility with respect to all 20 thresh
olds of the shortage probability constraint and all 121 thresholds of the expected cost 
constraint and pruning systems based on the feasibility decisions to those thresholds. If 
the decision maker’s objective is to use feasibility decisions to prune inferior systems, 
then checking feasibility with respect to all possible thresholds for all systems can be 
inefficient. For example, if any system is already deemed feasible with respect to the 
threshold combination 0.1 and 120, there is no need to perform additional feasibility 
checks from systems deemed infeasible with respect to 0.1 and 120. However, the RF

procedure will keep collecting more observations from such systems, solely aiming to 
perform feasibility checks for all less preferred thresholds (i.e., q1 > 0:1 and q2 > 120), 
which is a waste of time and resources. In this case, a multipass approach is preferable, 
where a “pass” represents the feasibility checks for systems with respect to a subset of 
the set of thresholds. More specifically, the decision maker can start with thresholds 
q1 2 f0:01, 0:1, 0:2g and q2 2 f115, 145, 175g in the first pass (a total of three thresholds 
for each constraint). If no systems are feasible with respect to the most preferred thresh
old combination 0.01 and 115 but several systems are feasible with respect to threshold 
combination 0.1 and 145, the decision maker can consider additional thresholds q1 ¼

0:05 and q2 2 f120, 125, :::, 140g in the second pass (one threshold for the first con
straint and five thresholds for the second constraint). If feasible systems are identified 
with respect to the threshold combination 0.05 and 120, she can further include add
itional thresholds that are multiples of 0.01 from 0.02 to 0.04 for the shortage probabil
ity constraint and thresholds that are multiples of 0.5 from 115.5 to 119.5 for the 
expected cost constraint (a total of three thresholds for the first constraint and nine 
thresholds for the second constraint). Such a multipass approach reduces the total num
ber of thresholds considered from 20 to 7 and 121 to 17 for the shortage probability 
and the expected cost constraints, respectively, and may reduce the number of needed 
observations as well.

In this article, we propose a multipass pruning (MPP) procedure that performs 
feasibility checks with respect to a subset of possible thresholds during the first pass 
and allows the decision maker to sequentially add thresholds in the following passes. 
The main contributions of this article include (1) suggesting new statistics that enable 
us to implement feasibility checks with sequentially added thresholds for subjective con
straints without significantly increasing the data storage requirement, (2) proposing a 
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computationally efficient procedure for the purpose of pruning inferior systems, (3) 
proving the statistical guarantee of the proposed procedure, and (4) demonstrating the 
computational efficiency and statistical validity of our new procedure through 
experiments.

The rest of this article is organized as follows: Section 2 provides the background of 
our problem, including the problem formulation and a discussion of existing work. 
Section 3 proposes our multipass procedure to identify feasible systems in the presence 
of subjective stochastic constraints with sequentially added thresholds. Section 4 proves 
the statistical validity of our proposed procedure. The experimental results are provided 
in Section 5, and the concluding remarks are summarized in Section 6.

2. BACKGROUND

In this section, we provide the background for our problem. Section 2.1 describes the 
problem and notation, and Section 2.2 discusses the existing procedure RF that is rele
vant to our problem.

2.1. Problem and Notation

In this section, we present our problem description and the required notation. We con
sider k systems whose s performance measures can be estimated through stochastic 
simulation. Let H denote the index set of all possible systems (i.e., H ¼ f1, :::, kg). Let 
Yiln, where i ¼ 1, :::, k, l ¼ 1, :::, s, and n ¼ 1, 2, :::, be the nth observation of the ith 
system for the lth performance measure. Note that the observations across different sys
tems may or may not be correlated depending on whether systems are simulated inde
pendently or under common random numbers (CRN). The expected value and variance 
for system i regarding performance measure l are denoted as yil ¼ E½Yiln� and r2

il ¼

VarðYilnÞ: Observations are assumed to satisfy the following normality assumption:

Assumption 2.1. For each i ¼ 1, 2, :::, k,
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where �iid denotes independent and identically distributed, Ns denotes s-dimensional multi
variate normal, and Ri is the s � s positive definite covariance matrix of the vec
tor ðYi1n, :::, YisnÞ:

Normally distributed observations are a common assumption used in many R&S pro
cedures because Assumption 2.1 can be justified by the central limit theorem when 
observations are either within-replication averages or batch means (Law and Kelton 
2000). In other words, when Assumption 2.1 is violated, the decision maker can apply 
the proposed procedures by treating batch means of nonnormally distributed observa
tions as basic observations. However, it is well known that a large batch size can cause 
inefficiency, especially in fully sequential type procedures (Kim and Nelson 2006). The 
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observations of different performance measures from a system can be correlated, such 
as the shortage probability and expected cost in the inventory example of Section 1.

When each constraint contains one fixed threshold value with a given threshold vector 
q ¼ ðq1, :::, qsÞ, Batur and Kim (2010) introduced procedure F B to determine a set of sys
tems i with yil � ql for all l ¼ 1, 2, :::, s: In this article, we consider subjective constraints 
whose threshold values vary. We let dl denote the number of threshold values that the 
decision maker is interested in for performance measure l and let qlm denote the thresh
old value for performance measure l with index m, where m ¼ 1, :::, dl:

Consider the feasibility check of a system with respect to constraint l and threshold 
qlm: Andrad�ottir and Kim (2010) proposed the concept of a tolerance level, which is 
denoted by �l for constraint l and set to a positive real number by the decision maker. 
Any system i with yil � qlm − �l is considered desirable and feasible with respect to 
constraint l and threshold qlm: The set of all desirable systems with respect to con
straint l and threshold qlm is denoted as DlðqlmÞ: Systems with yil � qlm þ �l are 
unacceptable and infeasible with respect to constraint l and threshold qlm, placing 
them in the set UlðqlmÞ: Systems that fall within the tolerance level of qlm, so that 
qlm − �l < yil < qlm þ �l, are acceptable and are placed in the set AlðqlmÞ :

DlðqlmÞ ¼ fi 2 H j yil � qlm − �lg;

UlðqlmÞ ¼ fi 2 H j yil � qlm þ �lg; and
AlðqlmÞ ¼ fi 2 H j qlm − �l < yil < qlm þ �lg:

When performing a feasibility check, we use CDilðqlmÞ to denote a correct decision 
event of system i with respect to constraint l for threshold qlm, which is an event such 
that system i is declared to be feasible with respect to constraint l if i 2 DlðqlmÞ and 
infeasible if i 2 UlðqlmÞ: For i 2 AlðqlmÞ, any decision is considered as a correct 
decision.

We define CDil, the correct decision event for system i with respect to constraint l, 
as correctly determining feasibility for all possible thresholds qlm where m ¼ 1, :::, dl;

that is, CDil ¼ \
dl

m¼1CDilðqlmÞ: Then, a statistically valid procedure that determines the 
feasibility for all combinations of the threshold values with respect to all performance 
measures should satisfy the following statement:

PCD ¼ Prð\k
i¼1 \s

l¼1 CDilÞ � 1 − a, 

where 1 − a is the nominal confidence level for the feasibility check.
The decision maker starts by choosing all possible threshold values for constraint l 

and defining a set of possible thresholds, fql1, ql2, :::, qldl
g: Without loss of generality, 

we adopt the conversion that ql1 < ql2 < � � � < qldl 
for each l ¼ 1, :::, s: Suppose that 

the decision maker performs the initial feasibility check with respect to a subset of the 
possible thresholds and adds additional possible thresholds in subsequent passes (pos
sibly adaptively). We introduce the following notation:

Tl � the index set of all possible thresholds considered for constraint l, f1, 2, :::, dlg;

TðwÞ

l � the index set of the thresholds tested in pass w � 1 for constraint l;

HðwÞ � the index set of the constraints with added thresholds in pass w � 1
ði:e:, l such that TðwÞ

l 6¼ ;Þ:
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The thresholds tested in each pass w � 1 should be possible thresholds that have not 
been tested in previous passes, and hence TðwÞ

l � Tl n ð[w−1
u¼1TðuÞ

l Þ for l ¼ 1, 2, :::, s:
Consider the inventory example in Section 1. The predefined threshold set for the 

shortage probability constraint (i.e., l ¼ 1) is f0:01 þ 0:01cj0 � c � 19, c 2 Zg and for 
the expected cost constraint (i.e., l ¼ 2) is f115 þ 0:5cj0 � c � 120, c 2 Zg: This means 
that T1 ¼ f1, 2, :::, 20g and T2 ¼ f1, 2, :::, 121g: The decision maker wants to run the 
first pass with thresholds f0:01, 0:1, 0:2g for the shortage probability constraint and 
with {115, 145, 175} for the expected cost constraint. Then we have Tð1Þ

1 ¼ f1, 10, 20g

and Tð1Þ
2 ¼ f1, 61, 121g: Assume that she adds thresholds f120, 125, 130, 135, 140g for 

the expected cost constraint in the second pass and no additional thresholds for the 
shortage probability constraint (unlike in Section 1). Then we have Hð2Þ ¼ f2g, Tð2Þ

1 ¼

;, and Tð2Þ
2 ¼ f11, 21, 31, 41, 51g:

The thresholds tested up to the wth pass are qlm where m 2 [w
u¼1TðuÞ

l for l ¼ 1, :::, s:
We seek a statistical guarantee that the feasibility decisions under the multipass 
approach are identical to those of RF when the thresholds qlm where m 2

[w
u¼1TðuÞ

l , l ¼ 1, :::, s are considered in one pass in RF :

Throughout the article, we need the additional notation defined below:

n0 � the initial sample size for each system ðn0 � 2Þ;

ri � the number of observations obtained so far for system iðri � n0Þ;

�Y ilðriÞ � average value of Yil1, :::, Yilri for system i and constraint l;

S2
ilðn0Þ � the sample variance of Yil1, :::, Yiln0 for system i ¼ 1, 2, :::, k and

constraint l ¼ 1, :::, s;

Rðri; v, w, zÞ � max 0,
ðn0 − 1Þwz

v
−

v
2c

ri

� �

for v, w, z 2 Rþ and c 2 Nþ;

gðgÞ ¼
Xc

j¼1
ð−1Þ

jþ1 1 −
1
2

Iðj ¼ cÞ

� �

� 1 þ
2gð2c − jÞj

c

� �−ðn0−1Þ=2

,

where c 2 Nþ and Ið�Þ is the indicator function:

The nonnegative function Rðri; �Þ is used to specify an interval ð−Rðri; �Þ, Rðri; �ÞÞ, 
called the continuation region, after ri observations have been collected from system i. 
To determine the continuation region, we need to choose the value of c. The shape of 
the continuation region ð−Rðri; �Þ, Rðri; �ÞÞ becomes a longer and narrower triangle as c 
increases and turns into two straight lines when c ¼ 1: Zhou et al. (2022) considered 
both c 2 Nþ and c ¼ 1 and presented expressions for gðgÞ for both cases. Because the 
focus of this article is not on the continuation region, we only consider gðgÞ when c 2

Nþ: We set c ¼ 1 for the experimental results for the following reasons: (i) Kim and 
Nelson (2001) recommended setting c ¼ 1 when the decision maker does not have infor
mation about the system’s mean configuration and (ii) the choice c ¼ 1 guarantees a 
unique and easy solution when computing the implementation parameter g from 
gðgÞ ¼ b; that is, g ¼ ½ð2bÞ

−2=ðn0−1Þ − 1�=2:
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2.2. Existing Procedure

In this section, we provide a brief overview of the procedure RF due to Zhou et al. 
(2022) that performs a feasibility check for subjective constraints. RF is given in 
Algorithm 1 with the following definition of b:

b �
1 − ð1 − aÞ

1=k, when systems are independent;
a=k, when systems are dependent:

(

(2.1) 

Note that b can be interpreted as the nominal probability of error for each system 
(in both the existing procedure RF and the proposed MPP procedure in Section 3). 
The chosen value of b depends on whether systems are simulated independently or 
dependently with CRN. Because 1 − ð1 − aÞ

1=k
� a=k holds for any fixed positive integer 

k, b is set to a relatively smaller value when systems are independent, which implies 
that the procedure is slightly more efficient under independent sampling. Zhou et al. 
(2022) indeed recommended that the decision maker simulate systems without CRN. 
However, they included the choice of b when systems are dependent for two reasons: 
(1) applying CRN is a default design in some discrete-event simulation packages and 
(2) the decision maker may wish to combine the feasibility decisions with comparison 
between systems to identify the best feasible system. We include b for both cases in our 
MPP procedure for the same reasons.

Algorithm 1. Procedure RF

[Setup:]
Choose confidence level 1 − a, tolerance level �l, and thresholds ql1, ql2, :::, qldlf g for 
constraint l ¼ 1, 2, :::, s: Also, choose the value of c 2 Nþ and set H ¼ f1, 2, :::, kg: For 
l ¼ 1, :::, s, set gl such that gðglÞ ¼ bl, where b satisfies (2.1), and either

i. bl ¼ ðb=sÞ � Iðdl ¼ 1Þ þ ½b=ð2sÞ� � Iðdl > 1Þ for l ¼ 1, 2, :::, s, or
ii. bl ¼ b=D; D ¼

Ps
l¼1 minfdl, 2g for l ¼ 1, :::, s:

for each system i 2 H do
[Initialization:]

� Obtain n0 observations Yil1, Yil2, :::, Yiln0 for l ¼ 1, 2, :::, s:
� Compute �Y ilðn0Þ and S2

ilðn0Þ for l ¼ 1, 2, :::, s:
� Set ri ¼ n0, ON ¼ f1, 2, :::, sg, and ONl ¼ f1, 2, :::, dlg for l ¼ 1, 2, :::, s:

[Feasibility Check:]
for l 2 ON do

for m 2 ONl do
If �Y ilðriÞ þ Rðri; �l, gl, S2

ilðn0ÞÞ=ri � qlm, set Zilm ¼ 1 and ONl ¼ ONl n fmg:

If �Y ilðriÞ − Rðri; �l, gl, S2
ilðn0ÞÞ=ri � qlm, set Zilm ¼ 0 and ONl ¼ ONl n fmg:

end for
If ONl ¼ ;, set ON ¼ ON n flg:

end for
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[Stopping Condition:]
If ON ¼ ;, return Zilm for l ¼ 1, 2, :::, s and m ¼ 1, 2, :::, dl: Otherwise, set ri ¼

ri þ 1, take one additional observation Yilri , and update �Y ilðriÞ for l 2 ON; then 
go to [Feasibility Check].

end for

As shown in Algorithm 1, procedure RF determines the feasibility of system i with 
respect to threshold qlm on constraint l as

feasible, if �Y ilðriÞ þ
Rðri; �l, g, S2

ilðn0ÞÞ

ri
� qlm,

infeasible, if �Y ilðriÞ −
Rðri; �l, g, S2

ilðn0ÞÞ

ri
� qlm:

8
>>><

>>>:

(2.2) 

In other words, RF constructs an interval ð�Y ilðriÞ − Rðri; �l, g, S2
ilðn0ÞÞ=ri, �Y ilðriÞ þ

Rðri; �l, g, S2
ilðn0ÞÞ=riÞ whenever an observation Yilri is collected and makes the feasibility 

decision for system i with respect to threshold qlm when the threshold qlm falls outside 
of the interval.

The following theorem from Zhou et al. (2022) shows that there are at most two 
effective thresholds on each constraint.

Theorem 2.1. For system i with s constraints and thresholds Tl ¼ fql1, ql2, :::, qldl
g for 

l ¼ 1, 2, :::, s, the joint probability of correct decision with respect to thresholds yil − �l 

and yil þ �l is a lower bound on the joint probability of correct decision with respect to 
all thresholds of constraint l; that is,

Pr \
dl

m¼1CDilðqlmÞ

� �

� Pr CDilðyil − �lÞ, CDilðyil þ �lÞ
� �

:

Theorem 2.1 implies that a procedure designed to deliver a correct decision with 
respect to the two effective thresholds yil − �l, yil þ �l on constraint l will deliver cor
rect decisions with respect to the other thresholds. RF is designed to accomplish this. 
Thus, RF avoids setting the implementation parameter g in a very conservative way 
and scales well with respect to the number of thresholds. However, it requires all 
thresholds to be tested simultaneously in one pass for statistical validity, and thus the 
computation time for ½Feasibility Check� increases as the number of thresholds 
increases.

3. MULTIPASS PRUNING PROCEDURE

In this section, we present a new procedure to identify feasible systems for subjective 
constraints when thresholds are added sequentially in multiple passes. Section 3.1
presents the pruning procedure for the first pass, and Section 3.2 proposes the pruning 
procedure for the subsequent passes.
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3.1. First-Pass Pruning Procedure

In this section, we propose a procedure with new statistics that performs a feasibility 
check for the first pass when the decision maker considers a subset of thresholds chosen 
from the set of all possible thresholds.

As discussed in Section 2.2, procedure RF checks the two inequalities in equation 
(2.2) for each threshold qlm whenever an observation is collected from constraint l:

Recall that the statistical guarantee we want to provide is that the feasibility decisions 
under the multipass approach are identical to those of RF : One straightforward way to 
provide such a guarantee is to save the sample paths �Y ilðriÞ of system i, where ri � n0, 
during the first pass and track down from the very first stage (i.e., from ri ¼ n0) what 
would have happened if RF had been performed with all thresholds considered in the 
multiple passes. However, this is not desirable due to a data storage problem. Instead, 
we keep the following two statistics while system i is simulated:

vUB
il � min �Y ilðr0Þ þ

Rðr0; �l, gl, S2
ilðn0ÞÞ

r0

�
�
�
� n0 � r0 � ri

( )

and

vLB
il � max �Y ilðr0Þ −

Rðr0; �l, gl, S2
ilðn0ÞÞ

r0

�
�
�
� n0 � r0 � ri

( )

, 

where vUB
il is the minimum of the upper bounds (UB) and vLB

il is the maximum of the 
lower bounds (LB) that the possible thresholds qlm have been compared with so far. 
The first pass for the MPP procedure, namely, Pð1Þ, then determines system i feasible 
with respect to threshold qlm on constraint l if vUB

il � qlm and infeasible if vLB
il � qlm 

where m 2 Tð1Þ

l : We update the interval ðvLB
il , vUB

il Þ whenever an observation Yilri is col
lected and the feasibility decision is made for a particular threshold qlm, where m 2

Tð1Þ

l , once it falls outside of the interval for the first time. Figure 1 shows the behavior 
of vUB

il and vLB
il when a feasibility check is performed with respect to thresholds 

Figure 1. Behavior of vUB
il and vLB

il for the feasibility check with respect to thresholds fqlm1 , qlm2 g on 

constraint l, where m1,m2 2 Tð1Þ

l :
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fqlm1 , qlm2 g on constraint l during the first pass (i.e., m1, m2 2 Tð1Þ

l ). In Figure 1, qlm1 

falls outside of the interval (i.e., below vLB
il ) at ri1 for the first time and system i is then 

determined infeasible with respect to qlm1 : The feasibility decision for qlm2 is deter
mined at ri2 and system i is determined feasible with respect to qlm2 as qlm2 falls 
above vUB

il :

The full description of Pð1Þ is provided in Algorithm 2 for k systems, s constraints, 
and thresholds qlm where m 2 Tð1Þ

l for l ¼ 1, :::, s: We use Zilm, where m 2 Tð1Þ

l , to 
indicate the feasibility of system i with respect to threshold qlm on constraint l (i.e., 
Zilm ¼ 1 if system i is feasible with respect to threshold qlm on constraint l, and 
Zilm ¼ 0 otherwise).

Algorithm 2. Procedure PðwÞ, w ¼ 1
[Setup:]
Choose confidence level 1 − a, tolerance level �l, and threshold index set Tð1Þ

l for con
straint l ¼ 1, 2, :::, s: Also, choose the value of c 2 Nþ and set H ¼ f1, 2, :::, kg and 
Hð1Þ ¼ f1, 2, :::, sg: For l ¼ 1, :::, s, set gl such that gðglÞ ¼ bl, where b satisfies (2.1), 
and either

i. bl ¼ ðb=sÞ � Iðdl ¼ 1Þ þ ½b=ð2sÞ� � Iðdl > 1Þ for l ¼ 1, 2, :::, s, or
ii. bl ¼ b=D; D ¼

Ps
l¼1 minfdl, 2g for l ¼ 1, :::, s:

for each system i 2 H do
[Initialization:]

� Obtain n0 observations Yil1, Yil2, :::, Yiln0 for l ¼ 1, 2, :::, s:
� Compute �Y ilðn0Þ and S2

ilðn0Þ for l ¼ 1, 2, :::, s:
� Set ri ¼ n0, ON ¼ Hð1Þ, and ONl ¼ Tð1Þ

l for l ¼ 1, 2, :::, s:
� Set vUB

il ¼ 1 and vLB
il ¼ −1 for l ¼ 1, 2, :::, s:

� Set LASTil as an empty string for l ¼ 1, :::, s:

[Feasibility Check:]
for l ¼ 1, 2:::, s and vUB

il > vLB
il do

vLB
il ¼ maxðvLB

il , �Y ilðriÞ − Rðri; �l, gl, S2
ilðn0ÞÞ=riÞ: If vLB

il is updated, set LASTil 

¼ LB.
vUB

il ¼ minðvUB
il , �Y ilðriÞ þ Rðri; �l, gl, S2

ilðn0ÞÞ=riÞ: If vUB
il is updated, set LASTil 

¼ UB.
for m 2 ONl do

If vUB
il � qlm, set Zilm ¼ 1 and ONl ¼ ONl n fmg:

If vLB
il � qlm, set Zilm ¼ 0 and ONl ¼ ONl n fmg:

end for
If ONl ¼ ;, set ON ¼ ON n flg:

end for
[Stopping Condition:]
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If ON ¼ ;, return Zilm for l 2 HðwÞ and m 2 TðwÞ

l and save the (final) random 
seed(s) for system i. Otherwise, set ri ¼ ri þ 1 and, for any l such that vUB

il > vLB
il , 

take one additional observation Yilri and update �Y ilðriÞ: Then go to [Feasibility 
Check].

end for

Note that in addition to only considering a subset of all possible thresholds whose 
indices are in Tð1Þ

l � Tl and maintaining the variables vUB
il and vLB

il , Pð1Þ incorporates 
several other differences with RF as described below:

� We add variables LASTil in the description of Pð1Þ: This is needed for subse
quent passes of the feasibility check when vUB

il � vLB
il so that we can directly con

clude the correct feasibility decisions for the added thresholds. Note that Pð1Þ

can overwrite the value of LASTil if both vLB
il and vUB

il are updated in one stage. 
A detailed discussion on the use of LASTil, including an explanation that over
writing LASTil in the same stage does not result in unintended consequences, is 
provided in Section 3.2.

� We keep collecting observations Yilri from constraint l with vUB
il > vLB

il and 
update �Y ilri ðriÞ when ON 6¼ ; even if l 62 ON: Note that whenever we conduct 
one simulation replication, observations across all the constraints can be 
obtained; therefore, obtaining observations from constraint l such that l 62 ON 
6¼ ; does not increase the total number of required simulation replications. The 
additional data are in preparation for the case when the decision maker adds 
thresholds in later passes for such constraints (to guarantee statistical validity 
and increase efficiency). One may notice that when vUB

il � vLB
il , adding thresholds 

to constraint l does not require additional observations to conclude their feasi
bility decisions because every possible threshold qlm satisfies vUB

il � qlm or vLB
il �

qlm or both. In addition, when vUB
il � vLB

il , we utilize the final value of LASTil to 
conclude certain feasibility decisions in later passes. Collecting additional obser
vations when vUB

il � vLB
il might overwrite LASTil and lead to issues with statistical 

validity.
� We save the (final) random seed(s) for each system when the feasibility check is 

completed so that we can continue generating observations for the systems that 
match those of RF in future passes if needed.

3.2. Pruning Procedure for Later Passes

In this section, we propose a procedure to determine the feasibility for the added 
thresholds in the later passes after the first pass is complete. We let w � 2 be the index 
of the pass and consider a particular constraint l 2 HðwÞ: Recall that the thresholds for 
the wth pass need to be selected from the predefined threshold set fql1, ql2, :::, qldl

g:

That is, the threshold indices for the wth pass satisfy

TðwÞ

l � Tl

�
[w−1

u¼1TðuÞ

l

� �

:
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If the decision maker decides to add a threshold qlm where m 2 TðwÞ

l , the feasibility 
decision that RF would have made for system i is retrieved during the wth pass. This is 
achieved by comparing the values of vUB

il and vLB
il with qlm and only collecting additional 

observations if needed (in which case the additional observations would be collected and 
employed as in Pð1Þ). We now discuss how we determine feasibility for qlm depending on 
the values of vUB

il and vLB
il at the end of pass w − 1 based on three cases as follows.

Case 1. When vUB
il � qlm and vLB

il < qlm (or vLB
il � qlm and vUB

il > qlm): 

If vUB
il � qlm and vLB

il < qlm, we immediately declare that system i is feasible with 
respect to qlm: Similarly, we immediately declare that system i is infeasible with respect 
to qlm if vLB

il � qlm and vUB
il > qlm:

Case 2. When vUB
il � qlm � vLB

il :

Although vUB
il > vLB

il in general, it is possible that vUB
il � vLB

il happens at the time when 
feasibility decisions for all thresholds on constraint l of system i with indices in Tðw−1Þ

l are 
concluded in the previous pass. If an added threshold value qlm satisfies vUB

il � qlm � vLB
il , 

we need to know which value of vUB
il and vLB

il was updated last in the previous pass. 
Consider the example in Figure 2 where we use qlm0 to denote the threshold whose feasi
bility decisions are made last in pass w − 1. At the last stage of the feasibility check for con
straint l in the previous pass, we have vUB

il � vLB
il : When the feasibility decision for qlm 

needs to be retrieved in the current pass, we have vUB
il � qlm � vLB

il and vUB
il is the last 

updated value in the previous pass. As shown in Figure 2, the LB of the interval
�Y ilðrilÞ − Rðril; �l, gl, S2

ilðn0ÞÞ=ril, �Y ilðrilÞ þ Rðril; �l, gl, S2
ilðn0ÞÞ=ril

� �

is greater than vLB
il before the last stage of the previous pass and qlm would have satis

fied vLB
il � qlm before it satisfied vUB

il � qlm if qlm had been included in the previous 

Figure 2. Crossing of vUB
il and vLB

il on constraint l when retrieving feasibility decision for threshold 

qlm, where m 2 TðwÞ

l and w � 2:
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pass. Thus, we should declare system i infeasible with respect to qlm: In general, when 
vUB

il � qlm � vLB
il , if the last updated value among vUB

il , vLB
il in the previous pass is vUB

il 

(i.e., LASTil ¼ UB), we declare the system infeasible with respect to qlm and we declare 
the system feasible with respect to qlm if the last updated value in the previous pass is 
vLB

il (i.e., LASTil ¼ LB).

Note that the value of LASTil can be overwritten when both vLB
il and vUB

il are updated 
in one stage. For example, we see that the first few observations taken in Figure 1 result 
in vUB

il decreasing and vLB
il increasing. This means that both vUB

il and vLB
il are updated in 

the same stages and thus LASTil updates accordingly (and therefore is overwritten). 
However, overwriting LASTil results in values vUB

il of �Y ilðriÞ þ Rðri; �l, gl, S2
ilðn0ÞÞ=ri 

and vLB
il of �Y ilðriÞ − Rðri; �l, gl, S2

ilðn0ÞÞ=ri: Because Rðril; �l, gl, S2
ilðn0ÞÞ takes a nonnega

tive value, it is guaranteed that vUB
il � vLB

il in such a case. Because the variable LASTil is 
only used when vUB

il � vLB
il , overwriting the value of LASTil in the same stage does not 

have any unintended consequences for the feasibility check during the following pass 
when Rðri; �l, gl, S2

ilðn0ÞÞ > 0 (and hence vUB
il > vLB

il ). Moreover, when 
Rðri; �l, gl, S2

ilðn0ÞÞ ¼ 0 in the final stage of pass w − 1, overwriting LASTil implies that 
vLB

il ¼ vUB
il ¼ �Y ilðriÞ and LASTil ¼ UB; thus, the system is declared infeasible when 

implementing PðwÞ: In this case, vUB
il � qlm � vLB

il implies that qlm ¼ vUB
il ¼ vLB

il ¼

�Y ilðriÞ and it is easily seen that the value of Zilm is also overwritten in Algorithm 1 and 
thus the system is concluded infeasible by RF , which matches with the decision from 
PðwÞ: Furthermore, note that �Y ilðriÞ ¼ vLB

il ¼ vUB
il ¼ qil occurs with zero probability 

under Assumption 2.1.

Case 3. When vLB
il < qlm < vUB

il :

If vLB
il < qlm < vUB

il , we cannot determine feasibility relative to threshold qlm based on 
the data collected in passes 1, :::, w − 1 and need to take additional observations. In this 
case, one needs to use the (final) random seed(s) saved for the system from the previous 
pass. This is essential for the proof of statistical validity discussed in Section 4.

We present the description of the retrieving process for pass w � 2, namely, PðwÞ, in 
Algorithm 3. We determine the values of Zilm for l 2 HðwÞ and m 2 TðwÞ

l in the wth 
pass for the feasibility of system i for the corresponding added thresholds qlm:

Algorithm 3. Procedure PðwÞ, w � 2
[Setup:]
Decide HðwÞ, the set of constraints that need additional thresholds, for the wth pass. 
Choose the indices of the thresholds added, TðwÞ

l , for l 2 HðwÞ and set H ¼ f1, 2, :::, kg:

for each system i 2 H do
[Initialization:]

� Set ON ¼ HðwÞ and ONl ¼ TðwÞ

l for l 2 HðwÞ:

� Obtain ri, �Y ilðriÞ, LASTil, vLB
il , and vUB

il for l ¼ 1, :::, s from procedure Pðw−1Þ and 
S2

ilðn0Þ from Pð1Þ:
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� Obtain the saved seed(s) for system i from procedure Pðw−1Þ and use it (them) 
for generating observations from system i (if needed).

[Initial Feasibility Check:]
for l 2 HðwÞ do

for m 2 ONl do
If vUB

il � qlm and vLB
il < qlm, set Zilm ¼ 1 and ONl ¼ ONl n fmg;

Else if vLB
il � qlm and vUB

il > qlm, set Zilm ¼ 0 and ONl ¼ ONl n fmg;

Else if vUB
il � qlm � vLB

il ,
if LASTil ¼ UB, set Zilm ¼ 0 and ONl ¼ ONl n fmg;

if LASTil ¼ LB, set Zilm ¼ 1 and ONl ¼ ONl n fmg:

end for
If ONl ¼ ;, set ON ¼ ON n flg:

end for
[Stopping Condition:]

If ON ¼ ;, return Zilm for all l 2 HðwÞ and m 2 TðwÞ

l : Otherwise, set ri ¼ ri þ 1 
and, for any l such that vUB

il > vLB
il , take one additional observation Yilri and 

update �Y ilðriÞ: Then go to [Feasibility Check] of procedure Pð1Þ:

end for

4. STATISTICAL VALIDITY

We prove the statistical validity of our proposed procedure in this section. We first 
address the statistical validity for a single system in Section 4.1 and then discuss the 
overall probability of correct decision for multiple systems in Section 4.2.

4.1. Statistical Validity of MPP for a Single System

In this section, we prove the statistical validity of our proposed procedure for a single 
system. Recall that procedure RF makes a decision for each threshold qlm for m 2 Tl 

when the interval

�Y ilðrÞ −
Rðr; �l, gl, S2

ilðn0ÞÞ

r
, �Y ilðrÞ þ

Rðr; �l, gl, S2
ilðn0ÞÞ

r

� �

for r ¼ n0, n0 þ 1, :::, 

does not include the threshold qlm for the first time. We refer to such a stage as the 
first exit stage. The following Lemma 4.1 from Zhou et al. (2022) provides the statistical 
validity of procedure RF (shown in Algorithm 1) for a single system.

Lemma 4.1. For system i with s constraints and threshold constants qlm where m 2 Tl 

for l ¼ 1, :::, s, procedure RF makes a decision for each threshold based on its first exit 
stage and guarantees Prð\s

l¼1CDilÞ � 1 − b:

The following lemma shows that if RF is implemented for thresholds qlm, where 
m 2 [w

u¼1TðuÞ

l (i.e., the thresholds considered through the execution of PðwÞ), then it still 
provides statistical validity.
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Lemma 4.2. Procedure RF , executed with respect to qlm, where m 2 [w
u¼1TðuÞ

l , 
guarantees

Pr \s
l¼1\m2[w

u¼1TðuÞ

l

CDilðqlmÞ
� �

� 1 − b:

Proof. Because [w
u¼1TðuÞ

l � Tl and \
dl

m¼1CDilðqlmÞ � \m2[w
u¼1TðuÞ

l

CDilðqlmÞ for l ¼

1, 2, :::, s, we have

Pr \s
l¼1\m2[w

u¼1TðuÞ

l

CDilðqlmÞ
� �

� Pr \s
l¼1 \

dl

m¼1 CDilðqlmÞ

� �

� 1 − b, 

where the second inequality follows from Lemma 4.1.                                         w

We use MPPðwÞ to denote the MPP procedure with w � 1 passes (so that PðuÞ is 
applied to thresholds qlm, where m 2 TðuÞ

l , for u ¼ 1, :::, w). Now we present the main 
theorem that proves that the MPPðwÞ procedure guarantees statistical validity by show
ing that the feasibility decisions of MPPðwÞ match those of RF with respect to thresh
olds qlm, where m 2 [w

u¼1TðuÞ

l and l ¼ 1, :::, s:

Theorem 4.3. Given system i with s constraints and index set Tl ¼ f1, 2, :::, dlg for 
l ¼ 1, 2, :::, s, the MPP procedure MPPðwÞ guarantees

Pr \s
l¼1\m2[w

u¼1TðuÞ

l

CDilðqlmÞ
� �

� 1 − b:

Proof. Because RF makes the feasibility decisions at the first exit stage, we prove the 
theorem by showing that the feasibility decisions made by the MPPðwÞ procedure with 
respect to threshold qlm where m 2 [w

u¼1TðuÞ

l for l ¼ 1, :::, s are identical to those at the 
first exit stage, which in turn match the decisions made by RF :

Procedure Pð1Þ sets the implementation parameters bl identical to those of RF for 
l ¼ 1, 2, :::, s: In addition, the two inequalities that determine the values of Zilm in the 
[Feasibility Check] step are essentially identical in the two procedures as well. The 
main difference between RF and Pð1Þ is that Pð1Þ keeps updating the values of vUB

il 

and vLB
il for every constraint l such that vLB

il < vUB
il whenever system i is simulated, even 

if l 62 ON: However, this difference does not affect the values of Zilm as ONl ¼ ; for 
l 62 ON; thus, Zilm are not updated and RF and Pð1Þ yield the same decisions for m 2

Tð1Þ

l and l ¼ 1, 2, :::, s:
Let w � 2 and l be an arbitrary constraint. To avoid the trivial case, we assume that 

the decision maker adds thresholds for constraint l in pass w (i.e., l 2 HðwÞ). We need 
to consider five cases for each added threshold qlm, where m 2 TðuÞ

l , after the comple
tion of Pðw−1Þ :

1. If vUB
il � qlm and vLB

il < qlm, both MPPðwÞ and RF declare system i feasible 
with respect to qlm by the first exist stage.
Recall that ri is the number of observations collected from system i to conclude 
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feasibility decisions from all constraints after the completion of Pðw−1Þ: It is clear 
from Algorithm 3 that MPPðwÞ declares system i feasible with respect to qlm:

Moreover, if vUB
il � qlm and vLB

il < qlm, then there exists n0 � nUB � ri such that 
�Y ilðnUBÞ þ RðnUB; �l, gl, S2

ilðn0ÞÞ=nUB � qlm but there does not exist n0 � nLB �

ri such that �Y ilðnLBÞ − RðnLB; �l, gl, S2
ilðn0ÞÞ=nLB � qlm: Therefore, RF also 

declares system i feasible with respect to qlm:

2. If vLB
il � qlm and vUB

il > qlm, both MPPðwÞ and RF declare system i infeasible 
with respect to qlm by the first exist stage.
By similar arguments as in Case 1, the above claim holds.

3. If vUB
il � qlm � vLB

il and LASTil ¼ UB, both MPPðwÞ and RF declare system i 
infeasible with respect to qlm by the first exist stage.
As stated in Algorithm 3, it is clear that MPPðwÞ declares system i infeasible 
with respect to threshold qlm: Recall that ri represents the number of observa
tions from system i from all constraints after the completion of Pðw−1Þ: Because 
vUB

il � qlm, there exists n0 � nUB � ri such that �Y ilðnUBÞ þ

RðnUB; �l, gl, S2
ilðn0ÞÞ=nUB � qlm: Similarly, due to vLB

il � qlm, there exists n0 �

nLB � ri such that �Y ilðnLBÞ − RðnLB; �l, gl, S2
ilðn0ÞÞ=nLB � qlm: Moreover, given 

that LASTil ¼ UB and LASTil will not be updated when vUB
il � vLB

il happens, we 
know that nLB < nUB because vUB

il was updated later than vLB
il : Therefore, as n0 �

nLB < nUB � ri, we see that RF declares system i infeasible with respect to 
threshold qlm:

4. If vUB
il � qlm � vLB

il and LASTil ¼ LB, both MPPðwÞ and RF declare system i 
feasible with respect to qlm:

By similar arguments as in the previous case, Case 4 holds.
5. Finally, if vLB

il < qlm < vUB
il , MPPðwÞ takes more observations and reaches the 

same decision made by RF :

Based on Algorithm 3, it is clear that MPPðwÞ needs more than the ri observa
tions obtained in all previous passes (i.e., passes 1 through w − 1) and additional 
observations are generated using the saved random seeds from pass w − 1. Given 
that vLB

il < qlm < vUB
il , there does not exist n0 � nUB � ri such that �Y ilðnUBÞ þ

RðnUB; �l, gl, S2
ilðn0ÞÞ=nUB � qlm nor n0 � nLB � ri such that

�Y ilðnLBÞ − RðnLB; �l, gl, S2
ilðn0ÞÞ=nLB � qlm, 

which implies that RF also has not made a feasibility decision for qlm after tak
ing ri observations. Thus, both MPPðwÞ and RF proceed to obtain the same 
observations until they reach the first exit stage for qlm and make the same feasi
bility decision. 

Putting all five cases together proves that MPPðwÞ makes the same decisions as RF

when RF is implemented for the threshold qlm where m 2 [w
u¼1TðuÞ

l for l ¼ 1, :::, s: By 
Lemma 4.2, we know that RF guarantees

Pr \s
l¼1\m2[w

u¼1TðuÞ

l

CDilðqlmÞ
� �

� 1 − b 

and so does MPPðwÞ: w
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4.2. Statistical Validity of MPP for Multiple Systems

In this section, we extend Theorem 4.3 to the general case with multiple systems and 
multiple constraints.

Theorem 4.4. Given predefined threshold sets fql1, ql2, :::, qldl
g for l ¼ 1, 2, :::, s, the 

MPP procedure MPPðwÞ guarantees

Pr \k
i¼1 \s

l¼1 \m2[w
u¼1TðuÞ

l

CDilðqlmÞ
� �

� 1 − a:

Proof. When systems are simulated with CRN, we have

PCD ¼ Pr \k
i¼1 \s

l¼1 \m2[w
u¼1TðuÞ

l

CDilðqlmÞ
� �

� 1 −
Xk

i¼1
1 − Pr \s

l¼1\m2[w
u¼1TðuÞ

l

CDilðqlmÞ
� �� �

� 1 − kb ¼ 1 − k
a

k
¼ 1 − a, 

where the first inequality follows from the Bonferroni inequality, the second inequality 
holds due to Theorem 4.3, and the second equality holds due to equation (2.1).

Similarly, when systems are simulated independently, we have

PCD ¼ Pr \k
i¼1 \s

l¼1 \m2[w
u¼1TðuÞ

l

CDilðqlmÞ
� �

¼
Yk

i¼1
Pr \s

l¼1\m2[w
u¼1TðuÞ

l

CDilðqlmÞ
� �

� ð1 − bÞ
k

¼ ð1 − ð1 − ð1 − aÞ
1=k

ÞÞ
k

¼ 1 − a, 

where the inequality holds due to Theorem 4.3 and the third equality follows by equa
tion (2.1).                                                                                               w

5. EXPERIMENTS

In this section, we provide numerical results to demonstrate the performance of our 
proposed procedure compared with that of RF : We first test whether the feasibility 
decisions of chosen thresholds concluded by MPP are identical to those by RF in 
Section 5.1, where all possible thresholds are included throughout two passes for MPP

and thus no pruning occurs. We then compare the performance of the two procedures 
in terms of the number of replications in Section 5.2, where the thresholds chosen for 
different passes of MPP are chosen adapatively and designed to prune inferior 
systems.

Each experiment is repeated 10,000 times with a ¼ 0:05: The initial sample size is 
n0 ¼ 20 except we also consider other values of n0 in Section 5.2.2. The tolerance level 
is set as �l ¼ 1=

ffiffiffiffiffin0
p for all l ¼ 1, :::, s for Sections 5.1 and 5.2.1 and as specified in 

Sections 5.2.2 and 5.2.3. We report how many times RF and MPP have the same 
feasibility decisions for thresholds considered by MPP in the experiments. As stated in 
Algorithms 2 and 3, whenever we perform feasibility checks for the thresholds on one 
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constraint, we collect observations across all constraints from that system and one repli
cation refers to one set of observations collected across all constraints. To measure effi
ciency, we use REPðuÞ to denote the average number of replications obtained during the 
execution of procedure PðuÞ, where u ¼ 1, :::, w: Note that REPðuÞ is only applicable for 
our multipass procedure. We also let REP denote the overall average number of replica
tions throughout the experiments (this applies to both MPP and RF ). Because Zhou 
et al. (2022) reported that the correlation between the primary and secondary perform
ance measures does not have a significant impact on the experimental results, we 
assume that the observations for all performance measures from each system are inde
pendent when s > 1. Furthermore, given that Zhou et al. (2022) reported that applying 
CRN does not benefit feasibility checks for subjective constraints, we consider inde
pendent systems. Finally, dl > 1 for l ¼ 1, :::, s, throughout all of our experiments. This 
implies that approaches (i) and (ii) of selecting bl in Algorithms 1 and 2 are the same 
for all l ¼ 1, :::, s:

5.1. Statistical Validity

To show that the decisions of RF and MPPðwÞ are identical, we consider one system 
with two constraints and w ¼ 2. The mean performance of the system with respect to 
the two constraints is set to yi, 1 ¼ yi, 2 ¼ 0, and the variances are set as r2

i, 1 ¼ r2
i, 2 ¼ 1:

We let both constraints have four thresholds as ql1 ¼ −3�l, ql2 ¼ −�l, ql3 ¼ �l, and 
ql4 ¼ 3�l where l ¼ 1, 2:

We test all thresholds for RF : For MPPð2Þ, we consider three different scenarios as 
follows:

� Scenario 1: Tð1Þ
1 ¼ f1, 4g, Tð1Þ

2 ¼ f2, 3g, Tð2Þ
1 ¼ f2, 3g, and Tð2Þ

2 ¼ f1, 4g;

� Scenario 2: Tð1Þ
1 ¼ Tð1Þ

2 ¼ f1, 4g, and Tð2Þ
1 ¼ Tð2Þ

2 ¼ f2, 3g;

� Scenario 3: Tð1Þ
1 ¼ Tð1Þ

2 ¼ f2, 3g, and Tð2Þ
1 ¼ Tð2Þ

2 ¼ f1, 4g:

Note that Scenario 1 concerns the difference in the difficulty of the feasibility checks 
between the two constraints. More specifically, the feasibility check for the first 
(second) constraint is easy (difficult) during Pð1Þ, whereas it is the opposite for Pð2Þ:

The overall difficulty for Pð1Þ and Pð2Þ is the same. On the other hand, Scenarios 2 
and 3 address the difference between the two passes, where Scenario 2 (3) has a rela
tively easier first (second) pass. During each pass, the overall difficulty for both con
straints is the same.

Among the total 10,000 repeated runs, we count the number of runs when the 
feasibility decisions with respect to all thresholds tested match exactly for RF and 
MPPð2Þ: Table 1 shows the ratio of the runs that have all decisions matched along 
with the estimated PCD for the two procedures. We also report REPð1Þ, REPð2Þ, and 
REP. Because all possible thresholds are tested (rather than excluding unnecessary 
thresholds) throughout the execution of MPPð2Þ, we expect that REPð1Þ þ REPð2Þ ¼

REP for MPPð2Þ and report the ratio of the runs with the same total number of 
replications.
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Table 1 shows that the two procedures have exactly the same feasibility decisions and 
use the same total number of replications as expected. Comparing the results of 
MPPð2Þ under the three scenarios, we see that Scenario 2 has the lowest REPð1Þ and 
Scenario 3 achieves the highest REPð1Þ: This is expected because Scenario 1 has the easi
est first pass among the three scenarios (two easy constraints), whereas Scenario 3 has 
the most difficult first pass (two hard constraints). Similarly, because Scenario 1 has a 
more (less) difficult first pass compared with Scenario 2 (3) (because Scenario 1 has one 
difficult and one easy constraint), we also see that Scenario 1 has a larger (smaller) 
REPð1Þ compared with Scenario 2 (3). Furthermore, because the number of effective 
thresholds per constraint is at most two (see Theorem 2.1), it is clear that Scenario 1 
requires additional replications for the second constraint but not for the first constraint 
during the second pass (because the second pass adds more difficult [easier] thresholds 
for the first [second] constraint). For similar reasons, Scenario 2 is expected to require 
more replications for both constraints, whereas Scenario 3 is not expected to require 
additional replications for either constraint. This matches with the results that Scenario 
2 has a higher REPð2Þ than Scenario 1 and Scenario 3 incurs a zero REPð2Þ:

5.2. Efficiency

We show the efficiency of MPP compared to RF in this section when the main goal 
is to prune inferior systems by finding feasible systems with respect to the most pre
ferred thresholds possible. Section 5.2.1 considers multiple systems with a single con
straint, and Section 5.2.2 provides results in cases where MPP yields large savings. 
Finally, Section 5.2.3 addresses the efficiency of MPP compared with RF when mul
tiple systems and two constraints are considered in an inventory example (as described 
in Section 1).

Because the thresholds tested by MPPðwÞ may be a subset of all possible thresholds, 
we let gPCD be the probability of correct decision with respect to the thresholds tested 
for RF or MPPðwÞ; that is,

gPCD ¼
PCD, for RF ,
Pr \k

i¼1 \s
l¼1 \m2[w

u¼1TðuÞ

l

CDilðqlmÞ
� �

, for MPPðwÞ:

(

We report the estimated gPCD in our experimental results.

Table 1. Average number of replications and estimated PCD for k¼ 1 system and s¼ 2 constraints 
for RF and MPPð2Þ, where MPPð2Þ is tested under three scenarios.

MPPð2Þ MPPð2Þ MPPð2Þ RF
Scenario 1 Scenario 2 Scenario 3

PCD 0.9583 0.9583 0.9583 0.9583
Ratio of matched decisions 100%
REPð1Þ 79.44 37.82 95.17 —
REPð2Þ 15.73 57.36 0.00 —
REP 95.17 95.17 95.17 95.17
Ratio of matched REP 100%
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5.2.1. Systems with One Constraint
We consider k ¼ 100 systems with a single constraint and 100 thresholds (i.e., 
d1 ¼ 100). We set the difference between two consecutive thresholds to 2�1; that is, 
q1, m ¼ ð2m − 1Þ�1 where m ¼ 1, :::, 100: We assume that the decision maker prefers sys
tems with smaller means.

Because MPPð2Þ only tests a subset of thresholds through each pass and adds thresh
olds in the second pass depending on the feasibility decisions obtained in the first pass, 
it will perform feasibility checks with respect to a restricted set of thresholds that are 
close to the means of the potential best systems throughout the two passes. On the 
other hand, RF collects observations for all systems with respect to all possible thresh
olds considered, regardless of whether it is unnecessary to conclude feasibility decisions 
for some of the thresholds. We use the concentrated mean (CM) configuration to dem
onstrate the case when the means of all systems are the same except for the best system 
and the common mean of all inferior systems is quite far from the mean of the best sys
tem. This configuration benefits MPPð2Þ because MPPð2Þ is likely to identify the 
smallest threshold that the best system is declared feasible to and use it to prune all 
inferior systems (because the mean difference between inferior systems and the best sys
tem is large, the pruning becomes easy), whereas RF can spend more observations to 
conclude feasibility decisions for all the inferior systems with respect to their closest 
thresholds. To be more practical, we also consider a monotonically increasing means 
(MIM) configuration where there is one system in each intersection of the unacceptable 
and desirable regions of two consecutive thresholds. Specifically, we set the mean con
figurations as follows:

� CM: y1, 1 ¼ 0 and yi, 1 ¼ 198�1 for i ¼ 2, :::, k:

� MIM: yi1 ¼ 2ði − 1Þ�1 for all i ¼ 1, :::, k:

For RF , we test all 100 thresholds together in one run. For Pð1Þ of MPPð2Þ, we 
consider thresholds fq1, 10, q1, 20, :::, q1, 80, q1, 90g; that is, Tð1Þ

1 ¼ f10, 20, :::, 90g: Based on 
the feasibility decisions with respect to the thresholds from Pð1Þ, if there is only one 
system declared feasible with respect to the tightest threshold, we terminate and select 
the single system as the best system. On the other hand, if there are multiple systems 
declared feasible with respect to the tightest threshold, we consider nine even tighter 
thresholds compared to this threshold. For example, if there are multiple systems 
declared feasible with respect to threshold q1, 10, we add fq1, 1, q1, 2, :::, q1, 9g (with 
Tð2Þ

1 ¼ f1, 2, :::, 9g) for Pð2Þ:

Table 2 presents the results of the estimated gPCD, the ratio of matched feasibility 
decisions for thresholds in Tð1Þ

1 [ Tð2Þ
1 over 10,000 repeated runs, and the number of 

replications required for MPPð2Þ and RF under the CM and the MIM configurations. 
Table 3 shows the average number of feasible systems declared by MPPð2Þ with respect 
to the tightest threshold considered in Pð1Þ and Pð2Þ under both the CM and MIM con
figurations. Because none of the 10,000 replications execute Pð2Þ under the CM config
uration, we do not report this value in Table 3.
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We first discuss our results under the CM configuration. We see that both MPPð2Þ

and RF guarantee statistical validity. MPPð2Þ achieves a higher gPCD than RF because 
MPPð2Þ only needs to guarantee the correct decisions for a subset of the thresholds, 
whereas RF ’s PCD is with respect to all 100 thresholds. In terms of the subset of 
thresholds tested for both MPPð2Þ and RF , the feasibility decisions are matched per
fectly at 100% throughout 10,000 repeated runs. In terms of the required replications to 
conclude the feasibility decisions, we observe that MPPð2Þ requires only 10.87% of the 
replications RF used. This significant reduction is expected because RF performs 
feasibility checks with respect to all thresholds considered, whereas MPPð2Þ only tests 
preferred thresholds and saves unnecessary replications needed to declare feasibility 
with respect to clearly less preferred thresholds. More specifically, we see from Table 3
that there is only one system declared feasible to the tightest threshold, and thus 
MPPð2Þ does not require the second pass.

Overall, we observe a similar tendency for the MIM configuration as in the CM con
figuration. The main difference is that MPPð2Þ requires 40.32% of the replications RF

used, and this savings is relatively smaller than that from the CM configuration as 
expected. Note that the MIM configuration has systems spread out evenly over the 100 
thresholds, whereas the majority of systems in the CM configuration are only feasible to 
the least preferred threshold. As shown in Table 3, Pð1Þ identifies an average of 10 feas
ible systems to the tightest threshold under the MIM configuration but identifies only 
one feasible system under the CM configuration. This means that with the same subset 
of thresholds chosen in Pð1Þ, the MIM configuration is more likely to require the 
second pass to further prune inferior systems and thus requires more replications than 
the CM configuration.

One may also notice that RF achieves similar REP under both the CM and the MIM 
configurations. Although the systems’ means are set differently, RF essentially declares 
feasibility with respect to one effective threshold for the best system (i.e., �1) and two effect
ive thresholds for all inferior systems (i.e., yi, 1 − �1 and yi, 1 þ �1) as discussed in Zhou et al. 
(2022). Thus, it is expected that RF results in a similar REP under both configurations.

Table 3. Average number of surviving systems throughout the exe
cution of MPP:

CM MIM

Pð1Þ 1.00 10.00
Pð2Þ — 1.00

Table 2. Average number of replications and estimated gPCD for k¼ 100 systems and s¼ 1 con
straint under the CM configuration.

CM MIM

MPP RF MPP RF

gPCD 1.000 0.9570 0.9922 0.9638
Ratio of matched decisions 100% 100%
REPð1Þ 2,009.86 — 6,065.56 —
REPð2Þ 0.00 — 1,391.22 —
REP 2,009.86 18,494.22 7,456.78 18,494.24
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5.2.2. Systems with Large Savings
Section 5.2.1 shows that when inferior systems are pruned, MPP achieves significant 
savings compared with RF : In this section, we demonstrate that the savings of MPP

can be huge in certain settings.
We consider the CM mean configuration as described in Section 5.2.1 for a single 

constraint case. We see that to identify the best system, a feasibility decision is basically 
needed for one critical threshold; that is, any threshold that is in between the best and 
second best system means. In this case, MPP only requires one pass to achieve the 
objective (i.e., w ¼ 1) and the decision maker chooses Tð1Þ

1 ¼ f50g (i.e., the threshold in 
the middle of the best system mean and the mean of all inferior systems). She considers 
all thresholds for RF : The difficulty of the feasibility checks of a specific constraint 
depends highly on the number of systems k considered and on the minimum distance 
between the thresholds and the systems’ means (�1 for RF ). In the following experi
ments, we adjust the values of k and �1 to further test how these factors affect the rela
tive performance of MPP and RF : More specifically, we use CMðk, �1Þ to denote the 
CM configuration where k systems and tolerance level �1 are considered. Table 4
presents the results when k 2 f100, 1000, 10000g and �1 ¼ 1=

ffiffiffiffiffin0
p

� 0:22 and Table 5
shows the results when �1 2 f1=

ffiffiffiffiffin0
p , 0:1, 0:05g and k ¼ 100.

From Table 4, we see that MPPð1Þ requires only 10:81%, 7:44%, 5:35% REP com
pared of that of RF when k ¼ 100, 1,000, 10,000 and �1 ¼ 1=

ffiffiffiffiffin0
p , respectively. Because 

RF spends unnecessary replications trying to conclude feasibility decisions with respect 
to all thresholds for all systems whereas MPPð1Þ only performs feasibility check with 
respect to one critical threshold to identify the best system, the huge savings of 
MPPð1Þ is expected. We further note that MPPð1Þ stops in all cases after taking the 
minimum number n0 ¼ 20 replications per system. Therefore, we test n0 2 f5, 10g and 
�1 ¼ 1=

ffiffiffiffiffi
20

p
as well. To conserve space, we do not include the detailed results here but 

for n0 ¼ 10, MPPð1Þ only uses 3.32%, 2.00%, 1.55% REP compared to RF , and for 
n0 ¼ 5, these percentages become 1.47%, 1.47%, 1.48% for k ¼ 100, 1,000, 10,000, 
respectively.

Table 5. Average number of replications and estimated gPCD for MPPð1Þ, where k¼ 100 
and �1 2 f1=

ffiffiffiffiffi
n0

p
, 0:1, 0:05g:

CM 100, 1=
ffiffiffiffiffi
n0

p� �
CMð100, 0:1Þ CMð100, 0:05Þ

MPPð1Þ RF MPPð1Þ RF MPPð1Þ RF

gPCD 1.000 0.957 1.000 0.976 1.000 0.975
Ratio of matched decisions 100% 100% 100%
REP 2,000.00 18,494.24 2,007.47 91,852.00 4,713.99 366,307.30

Table 4. Average number of replications and estimated gPCD for MPPð1Þ, where �1 ¼ 1=
ffiffiffiffiffi
n0

p

and k 2 f100, 1, 000, 10, 000g:

CM 100, 1=
ffiffiffiffiffi
n0

p� �
CM 1000, 1=

ffiffiffiffiffi
n0

p� �
CM 10000, 1=

ffiffiffiffiffi
n0

p� �

MPPð1Þ RF MPPð1Þ RF MPPð1Þ RF

gPCD 1.000 0.957 1.000 0.954 1.000 0.956
Ratio of matched decisions 100% 100% 100%
REP 2,000.00 18,494.24 20,000.00 268,895.14 200,000.00 3,741,675.70
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We also see from Table 5 that MPPð1Þ uses 10:81%, 2:19%, 1:29% REP compared of 
that of RF when n0 ¼ 20, k ¼ 100, and �1 ¼ 1=

ffiffiffiffiffin0
p , 0:1, 0:05, respectively. We again 

consider n0 2 f5, 10g but omit the details for reasons of brevity. For n0 ¼ 10, these per
centages become 3.32%, 1.37%, 1.33%, and for n0 ¼ 5, they are 1.47%, 1.42%, and 
1.42% for �1 ¼ 1=

ffiffiffiffiffi
20

p
, 0:1, 0:05, respectively. In conclusion, the results in this section 

show that MPP can achieve huge savings compared with RF , especially when the 
number of systems and thresholds considered are large and take wide ranges of values.

5.2.3. Inventory Example

In this section, we demonstrate the performance of MPPð3Þ based on an (s, S) inven
tory example as discussed in Section 1. We consider a similar problem setting as in 
Koenig and Law (1985), also tested in Zhou et al. (2022), where one review period is 1 
month and the performance measures are estimated using the first 30 months. The two 
performance measures are the same as in Section 1, namely, the probability that a short
age occurs during each review period (l ¼ 1) and the expected cost per review period 
(l ¼ 2). The expected cost includes the ordering cost, holding cost, and penalty cost 
when the demand is more than the inventory level. We set the ordering cost as 3 per 
item and a fixed cost of 32 per order. The holding cost is set as 1 per item between 
each pair of consecutive periods, and the penalty cost is 5 per item of each unsatisfied 
demand. The demand during each period is assumed to follow a Poisson distribution 
with mean 25. We assume demands over different review periods are independent. We 
consider 2,901 systems in total as H ¼ fðs, SÞj20 � s � 80, 40 � S � 100, s 2 Zþ, S 2

Zþ, and s � Sg: To reduce the initialization bias, both performance measures are com
puted after the first 100 review periods and averaged over the subsequent 30 review 
periods. We obtain analytical results for both performance measures using an steady- 
state analysis of a Markov chain model. We estimate the correlation between the two 
performance measures among all 2,901 systems using simulation with 1,000,000 replica
tions. The estimated correlations range from −0.235 to 0.553.

We consider the same threshold setting as discussed in Section 1, where q1 takes val
ues in f0:01 þ 0:01c j 0 � c � 19, c 2 Zg and q2 takes values in f115 þ 0:5c j 0 � c �

120, c 2 Zg thousands (20 values for q1 and 121 values for q2). We include all thresh
olds from both constraints for RF : To choose the thresholds MPPð3Þ uses to prune 
inferior systems in this multi-objective setting, we utilize the concept of preference 
order introduced in Zhou, Andrad�ottir, and Kim (2024). Preference order is used to 
describe how the decision maker prioritizes different constraints based on the given 
thresholds on each constraint. Zhou, Andrad�ottir, and Kim (2024) proposed three pref
erence orders, namely, the ranked constraints, equally important constraints, and the 
total violation with ranked constraints formulations. In this section, we focus on the 
equally important constraints formulation, where the decision maker values both con
straints equally and would like to tighten (relax) both constraints at the same time if 
multiple (no) feasible systems are identified with respect to the more (less) preferred 
threshold combination. More specifically, we first consider thresholds q1 2

f0:01, 0:1, 0:2g and q2 2 f115, 145, 175g for Pð1Þ: If multiple systems are declared feas
ible to the most preferred possible threshold combination, we tighten both constraints 
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by adding thresholds on a finer level such that q1 is chosen with an increment of 0.05 
and q2 with an increment of 5 for Pð2Þ: Similarly, we consider an even finer level of 
thresholds in Pð3Þ by choosing q1 at an increment of 0.01 and q2 at an increment of 0.5. 
For example, if multiple feasible systems are identified by Pð1Þ with respect to threshold 
combinations ðq1, q2Þ ¼ ð0:1, 145Þ, ð0:01, 175Þ, and ð0:1, 115Þ but no systems are 
declared feasible with respect to combination ðq1, q2Þ ¼ ð0:01, 115Þ, then consistent with 
the equally important constraints formulation, we choose ð0:1, 145Þ as the most pre
ferred threshold combination and add thresholds q1 2 f0:05g and q2 2

f120, 125, 130, 135, 140g for Pð2Þ: If multiple feasible systems are further identified with 
respect to threshold combination ðq1, q2Þ ¼ ð0:05, 120Þ, we add q1 2 f0:01 þ 0:01cj1 �

c � 3, c 2 Zg and q2 2 f115 þ 0:5cj1 � c � 9, c 2 Zg for Pð3Þ: This is equivalent to set
ting Tð1Þ

1 ¼ f1, 10, 20g, Tð1Þ
2 ¼ f1, 61, 121g, Tð2Þ

1 ¼ f5g, Tð2Þ
2 ¼ f11, 21, 31, 41, 51g, Tð3Þ

1 ¼

f2, 3, 4g, and Tð3Þ
2 ¼ f2, 3, 4, 5, 6, 7, 8, 9, 10g:

To get a sense of the number of feasible systems with respect to different threshold 
combinations, we present Table 6 for the number of feasible systems with respect to 
5 � 13 ¼ 65 of the 20 � 121 ¼ 2,420 combinations of thresholds of both constraints based 
on their analytical values. Because feasible systems are likely to be identified with 
respect to threshold combination ðq1, q2Þ ¼ ð0:1, 145Þ after the completion of Pð1Þ and 
are also likely to be identified with respect to ðq1, q2Þ ¼ ð0:05, 120Þ throughout Pð2Þ, we 
further include Table 7 to show the number of feasible systems with respect to the 
threshold combinations, where q1 2 f0:01, 0:02, :::, 0:05g and q2 2

f115, 115:5, 116, :::, 119:5, 120g: Note that we do not present the analytical values for all 
2,420 combinations (as discussed in Section 1) for simplicity.

Due to the nature of the two constraints (shortage probability is likely between 0.9 to 
1 and the expected cost is likely between 110 to 180), we set the tolerance level for the 
shortage probability constraint as �1 ¼ 0:001 and for the expected cost constraint as 

Table 6. Number of feasible systems with respect to a grid of 65 combinations of constraint 
thresholds.

q1

q2

115 120 125 130 135 140 145 150 155 160 165 170 175

0.01 0 31 221 563 914 1,210 1,470 1,705 1,902 2,052 2,176 2,265 2,317
0.05 31 178 526 923 1,274 1,570 1,830 2,065 2,262 2,412 2,536 2,625 2,677
0.1 74 309 675 1,081 1,432 1,728 1,988 2,223 2,420 2,570 2,694 2,783 2,835
0.15 94 345 711 1,117 1,468 1,764 2,024 2,259 2,456 2,606 2,730 2,819 2,871
0.2 108 364 730 1,136 1,487 1,783 2,043 2,278 2,475 2,625 2,749 2,838 2,890

Table 7. Number of feasible systems with respect to a finer grid of 55 threshold combinations.

q1

q2

115 115.5 116 116.5 117 117.5 118 118.5 119 119.5 120

0.01 0 0 0 0 0 1 5 12 17 27 31
0.02 0 0 2 8 15 23 31 40 47 61 67
0.03 6 10 18 27 36 45 56 67 77 92 104
0.04 18 24 34 44 56 65 79 91 102 125 142
0.05 31 38 49 60 73 84 99 117 130 158 178
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�2 ¼ 0:1: Table 8 presents the estimated gPCD and the average number of replications 
needed for the MPPð3Þ and RF procedures as well as the ratio of the matched feasibil
ity decisions.

Similar to Sections 5.2.1 and 5.2.2, both MPPð3Þ and RF guarantee statistical valid
ity even though Assumption 2.1 is violated due to the observations on each constraint 
not being normally distributed. We also see that MPPð3Þ results in a slightly higher 
gPCD compared with RF because MPPð3Þ only needs to guarantee a correct decision 

for a subset of the thresholds while RF guarantees correct decisions for all possible 
thresholds. MPPð3Þ achieves huge savings by only requiring about 30.60% of the repli
cations compared with RF : The values of REPð1Þ, REPð2Þ, and REPð3Þ likely depend on 
the difficulty of each pass and the number of replications already collected in previous 
passes. For each pass, the difficulty mainly depends on the number of surviving systems 
and whether the system means are close to the thresholds considered (see additional 
discussion in Section 5.2.2). Pass 1 is easy in general. Although we need to run replica
tions from all 2,901 systems, the thresholds are easy to test (because many systems have 
means that are far from the thresholds considered; see Table 6). Pass 2 considers more 
preferred thresholds and tests only surviving systems from Pass 1 and thus those thresh
olds can be closer to the surviving systems’ means for the two constraints, which makes 
the feasibility checks more difficult. Also, because Pass 1 is relatively easy, the number 
of collected replications so far is not large and hence does not benefit Pass 2 signifi
cantly. This explains why REPð2Þ is higher than REPð1Þ: Similar reasons apply to Pass 3, 
except with fewer surviving systems and many replications that Pass 3 can utilize from 
Passes 1 and 2, and hence Pass 3 does not require as many additional replications as 
Pass 2.

6. CONCLUSION

We consider the problem of pruning inferior systems among finitely many simulated 
systems using subjective stochastic constraints with sequentially added thresholds. 
When some systems are concluded feasible with respect to preferred thresholds, the 
decision maker can prune systems that are declared infeasible to those thresholds to 
avoid collecting unnecessary observations from the inferior systems. We propose an 
indifference-zone MPP procedure that initially tests a subset of thresholds and allows 
thresholds to be added sequentially if needed without requiring much data storage. We 
prove that MPP guarantees statistical validity and show by experiments that it can 

Table 8. Average number of replications and estimated gPCD for the inven
tory example.

MPPð3Þ RF
gPCD 0.966 0.964
Ratio of matched decisions 100%
REPð1Þ 4,648,089 —
REPð2Þ 9,123,765 —
REPð3Þ 6,210,287 —
REP 19,982,140 65,293,513
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achieve large savings in terms of the required replications compared with RF if the 
decision maker aims to prune inferior systems using subjective constraints.

ACKNOWLEDGMENTS

The authors thank the associate editor and two anonymous referees for their insightful and 
invaluable comments that have improved this paper.

DISCLOSURE STATEMENT

The authors have no conflicts of interest to report.

FUNDING

SA was supported by NSF under grant CMMI-2127778 and CP was supported by the Basic 
Science Research Program through the National Research Foundation of Korea funded by the 
Ministry of Education (No. 2022R1F1A1063147).

ORCID

Yuwei Zhou http://orcid.org/0000-0003-1266-7200 
Sigr�un Andrad�ottir http://orcid.org/0000-0002-5763-0199 
Seong-Hee Kim http://orcid.org/0000-0001-9536-5755 
Chuljin Park http://orcid.org/0000-0001-9447-1281 

REFERENCES

Andrad�ottir, Sigr�un, and Seong-Hee Kim. 2010. “Fully Sequential Procedures for Comparing 
Constrained Systems via Simulation.” Naval Research Logistics (NRL) 57 (5): 403–421. https:// 
doi.org/10.1002/nav.20408.

Andrad�ottir, Sigr�un, and Judy S. Lee. 2021. “Pareto Set Estimation with Guaranteed Probability 
of Correct Selection.” European Journal of Operational Research 292 (1): 286–298. https://doi. 
org/10.1016/j.ejor.2020.10.021.

Batur, Demet, and Seong-Hee Kim. 2010. “Finding Feasible Systems in the Presence of 
Constraints on Multiple Performance Measures.” ACM Transactions on Modeling and 
Computer Simulation 20 (3): 1–26. https://doi.org/10.1145/1842713.1842716.

Healey, Christopher, Sigr�un Andrad�ottir, and Seong-Hee Kim. 2014. “Selection Procedures for 
Simulations with Multiple Constraints under Independent and Correlated Sampling.” ACM 
Transactions on Modeling and Computer Simulation 24 (3): 1–25. https://doi.org/10.1145/ 
2567921.

Hong, L. Jeff, Barry L. Nelson, and Jie Xu. 2015. “Discrete Optimization via Simulation.” In 
Handbook of Simulation Optimization, edited by Michael C. Fu, 9–44. New York, NY: 
Springer.

Hunter, Susan R., Eric A. Applegate, Viplove Arora, Bryan Chong, Kyle Cooper, Oscar Rinc�on- 
Guevara, and Carolina Vivas-Valencia. 2019. “An Introduction to Multiobjective Simulation 
Optimization.” ACM Transactions on Modeling and Computer Simulation 29 (1): 1–36. https:// 
doi.org/10.1145/3299872.

Kim, Seong-Hee, and Barry L. Nelson. 2001. “A Fully Sequential Procedure for Indifference-Zone 
Selection in Simulation.” ACM Transactions on Modeling and Computer Simulation 11 (3): 
251–273. https://doi.org/10.1145/502109.502111.

SEQUENTIAL ANALYSIS 273

https://doi.org/10.1002/nav.20408
https://doi.org/10.1002/nav.20408
https://doi.org/10.1016/j.ejor.2020.10.021
https://doi.org/10.1016/j.ejor.2020.10.021
https://doi.org/10.1145/1842713.1842716
https://doi.org/10.1145/2567921
https://doi.org/10.1145/2567921
https://doi.org/10.1145/3299872
https://doi.org/10.1145/3299872
https://doi.org/10.1145/502109.502111


Kim, Seong-Hee, and Barry L. Nelson. 2006. “Selecting the Best System: Simulation.” In 
Handbooks in Operations Research and Management Science, edited by Shane G. Henderson 
and Barry L. Nelson, 501–534. Amsterdam, The Netherlands: Elsevier.

Koenig, Lloyd W., and Averill M. Law. 1985. “A Procedure for Selecting a Subset of Size m 
Containing the l Best of k Independent Normal Populations, with Applications to Simulation.” 
Communications in Statistics—Simulation and Computation 14 (3): 719–734. https://doi.org/10. 
1080/03610918508812467.

Law, Averill M., and David M. Kelton. 2000. Simulation Modeling and Analysis. 3rd ed. 
Cambridge, MA: Academic Press.

Lee, Loo Hay, Ek Peng Chew, Suyan Teng, and David Goldsman. 2010. “Finding the Non- 
Dominated Pareto Set for Multi-Objective Simulation Models.” IIE Transactions 42 (9): 656– 
674. https://doi.org/10.1080/07408171003705367.

Lee, Loo Hay, Nugroho Artadi Pujowidianto, Ling-Wei Li, Chun-Hung Chen, and Chee Meng 
Yap. 2012. “Approximate Simulation Budget Allocation for Selecting the Best Design in the 
Presence of Stochastic Constraints.” IEEE Transactions on Automatic Control 57 (11): 2940– 
2945. https://doi.org/10.1109/TAC.2012.2195931.

Zhou, Yuwei, Sigr�un Andrad�ottir, and Seong-Hee Kim. 2024. “Selection of the Best in the 
Presence of Subjective Stochastic Constraints.” ACM Transactions on Modeling and Computer 
Simulation. Just Accepted (May 2024). https://doi.org/10.1145/3664814.

Zhou, Yuwei, Sigr�un Andrad�ottir, Seong-Hee Kim, and Chuljin Park. 2022. “Finding Feasible 
Systems for Subjective Constraints Using Recycled Observations.” INFORMS Journal on 
Computing 34 (6): 3080–3095. https://doi.org/10.1287/ijoc.2022.1227.

274 Y. ZHOU ET AL.

https://doi.org/10.1080/03610918508812467
https://doi.org/10.1080/03610918508812467
https://doi.org/10.1080/07408171003705367
https://doi.org/10.1109/TAC.2012.2195931
https://doi.org/10.1145/3664814
https://doi.org/10.1287/ijoc.2022.1227

	Pruning inferior systems using subjective constraints with sequentially added thresholds
	Abstract
	INTRODUCTION
	BACKGROUND
	Problem and Notation
	Existing Procedure

	MULTIPASS PRUNING PROCEDURE
	First-Pass Pruning Procedure
	Pruning Procedure for Later Passes

	STATISTICAL VALIDITY
	Statistical Validity of MPP for a Single System
	Statistical Validity of MPP for Multiple Systems

	EXPERIMENTS
	Statistical Validity
	Efficiency
	Systems with One Constraint
	Systems with Large Savings
	Inventory Example


	CONCLUSION
	ACKNOWLEDGMENTS
	DISCLOSURE STATEMENT
	Funding
	Orcid
	REFERENCES


