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Abstract

Body Mass Index (BMI) is a critical metric for assessing public

health and identifying populations at risk for obesity-related condi-

tions. Traditional BMI monitoring methods often raise privacy con-

cerns and require active cooperation from individuals, limiting their

applicability in real-world scenarios. This paper introduces a novel

approach to BMI monitoring that leverages proximal federated learn-

ing (PFL) using commodity WiFi devices. Our method addresses the

challenges of data heterogeneity and intermittent connectivity in FL.

By our approach, the Adaptive Elastic Stochastic Alternating Direc-

tion Method of Multipliers (AESADMM), an optimization algorithm

designed to handle data heterogeneity and intermittent connectivity

in FL scenarios, our system collects Channel State Information (CSI)

from WiFi signals to passively classify BMI based on the impact of

different body shapes on signal propagation. This approach ensures

privacy preservation and eliminates the need for active participant

involvement. Theoretical analysis and empirical results demonstrate

the superior accuracy, reduced communication costs, and enhanced

scalability of our proposed method compared to existing personal-

ized FL frameworks, showcasing its potential as an effective tool for

large-scale BMI monitoring in diverse environments.
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1 Introduction
Body Mass Index (BMI), calculated from an individual’s weight and

height, is a vital indicator used to assess body fat and identify health

risks associated with underweight and obesity [25]. Community-

level BMI monitoring is essential for public health authorities to
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track prevalence and trends, evaluate intervention efficacy, and de-

velop strategies to promote healthy weight and prevent related health

issues [16]. However, traditional BMI monitoring methods often

pose significant privacy concerns and require active cooperation

from individuals, which limits their practicality and scalability.

Existing BMI monitoring approaches include obtaining patient

records from healthcare systems [1], recruiting participants for self-

reported measurements [3], and utilizing image processing tech-

niques for BMI estimation [7, 8]. While these methods have their

merits, they also present challenges such as privacy violations,

resource-intensive processes, and limited long-term applicability.

Therefore, there is an urgent need for a fine-grained, cost-effective,

and privacy-preserving BMI monitoring solution that can be im-

plemented over extended periods without compromising individual

privacy.

In response to these challenges, this paper introduces a novel ap-

proach to BMI monitoring called proximal federated learning (PFL)

in environments with inconsistent connectivity, utilizing commodity

WiFi devices. Our methodology, the Adaptive Elastic Stochastic

Alternating Direction Method of Multipliers (AESADMM), is an

optimization algorithm tailored to address data heterogeneity and in-

termittent connectivity in federated learning scenarios. By passively

collecting Channel State Information (CSI) from WiFi signals, our

system classifies BMI by analyzing the impact of different body

shapes on signal propagation, ensuring privacy preservation and

obviating the need for active participant involvement. The key con-

tributions of our work are as follows:

1. We present the novel proximal federated learning framework

for BMI monitoring using commodity WiFi, addressing the chal-

lenges of data heterogeneity and intermittent connectivity [5].

2. We set up a WiFi sensing system using off-the-shelf devices to

collect CSI. Using our system, we collected CSI data for 30 human

subjects with varied BMI. Our approach leverages CSI to classify

BMI in a privacy-preserving manner, providing a fine-grained, cost-

effective solution suitable for large-scale deployment.

3. We demonstrate the theoretical and empirical effectiveness

of our proposed method, achieving significant improvements in

accuracy, reduced communication costs, and enhanced scalability

compared to existing personalized FL frameworks.

The remainder of this paper is organized as follows: Section 2

provides a review of work in the related domain. Section 3 intro-

duces our methodology, and Section 4 reports how we evaluated the

effectiveness of our approach. Finally, we conclude this paper with

Section 5.
This work is licensed under a Creative Commons Attribution International 4.0 License.
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2 Related Works
2.1 Heterogeneous Federated Learning
Federated Learning (FL) represents a decentralized machine learning

paradigm where multiple clients can collaboratively develop a global

model without exchanging their local datasets. This methodology

effectively mitigates privacy issues but encounters notable obstacles

in infrastructure-deficient settings with varied data characteristics.

Traditional FL strategies, such as Federated Averaging (FedAvg),

are less effective with non-IID (non-independent and identically

distributed) datasets, often resulting in compromised global model

accuracy [14]. To address these limitations, recent innovations in per-

sonalized FL techniques have sought to tailor models more closely

to the unique data distributions of individual clients [10, 11, 21, 22].

Nonetheless, these approaches typically presume the availability of

consistent connectivity and a central coordination mechanism, which

may not be feasible in many practical contexts. An emergent tech-

nique, the Random Walk Stochastic Alternating Direction Method

of Multipliers (RWSADMM) utilizes a mobile server that dynami-

cally moves among clients. Such a design is particularly effective

in environments with sporadic connectivity and heterogeneous data,

enhancing robustness [17]. However, RWSADMM’s requirement

to mobilize servers under such conditions renders it difficult for

applications like Body Mass Index (BMI) monitoring through WiFi

sensing.

2.2 Channel State Information (CSI)
Fine-grained Channel State Information (CSI) is extensively utilized

to delineate the behavior of WiFi signals as they encounter various

obstructions, as noted by Zhou et al. [30]. All WiFi protocols employ

Orthogonal Frequency-Division Multiplexing (OFDM), which allo-

cates the available spectrum across multiple sub-carriers [27]. Unlike

the Received Signal Strength Indicator (RSSI), which provides a

singular measure of signal strength by averaging across sub-carriers,

CSI offers detailed insights at the level of each sub-carrier, thus

enabling more granular analysis. The CSI can be represented as

a three-dimensional tensor corresponding to t transmitting and r

receiving antennas:

ÿďą =



Ą1,1 . . . Ą1,Ĩ

...
. . .

...

ĄĪ,1 . . . ĄĪ,Ĩ



(1)

Here, ĄĪ,Ĩ denotes a vector containing complex pairs for each sub-

carrier, as shown in Eq. (2).

ĄĪ,Ĩ = [ℎĪ,Ĩ,1, . . . , ℎĪ,Ĩ,ģ] (2)

The variable m indicates the number of data sub-carriers, where each

ĄĪ,Ĩ is expressed as a complex number ℎģ , encapsulating both the

amplitude (|ℎģ |) and phase (∠ℎģ) of CSI. The values of amplitude

and phase are susceptible to alterations caused by multipath effects,

such as phase shifts and amplitude attenuation, which are exacer-

bated by human movements. This sensitivity to changes makes CSI

a powerful tool for precisely sensing and locating human subjects,

as demonstrated by Xin et al. [26].

2.3 BMI Classification

Body Mass Index (BMI) is calculated by assessing an individ-

ual’s body fat based on their weight and height using the formula:

BMI =

Weight (lb)

[Height (in)]2
× 703. This metric is crucial for evaluating

health risk factors. Adults are typically categorized into one of four

BMI classifications: Obese, Overweight, Normal Weight, and Under-

weight. Figure 1 illustrates the impact of weight and height on BMI

categorization.

Figure 1: BMI Chart for Adults

Section 1 reviews various techniques for monitoring BMI. Re-

cently, the focus has shifted towards the use of computer vision for

BMI estimation, which offers a non-intrusive approach free from the

need for participant engagement or access to medical records. This

technology holds the promise of being seamlessly integrated into

daily environments, enhancing both convenience and accessibility.

Despite these advantages, machine learning-based BMI assessment

raises significant privacy concerns, which are discussed in detail by

Kumar et al. [9].

2.4 WiFi Sensing

Studies on bio-electromagnetism tailored to WiFi frequencies (such

as 2.4 GHz and 5 GHz) have demonstrated that specific traits or ges-

tures can be effectively detected when electromagnetic waves propa-

gate at these particular frequencies [6]. This finding is fundamental

to the development of WiFi-based sensing technologies. Over the

past decade, numerous advancements have emerged [12], utilizing

wireless communication channels to create innovative applications

across human-computer interaction [19], healthcare monitoring [24],

and security surveillance [29].

Inspired by the concept of unique pattern generation for active

motion in the sensing region [15], body characterization research

focuses on pose, person, gait, and activity recognition using statisti-

cal features extracted from CSI sequences [2, 13, 23]. Deep learning

(DL) methods have been explored to enhance feature extraction

from CSI data, thereby enhancing the robustness of CSI-based body

characterization [27, 28]. Challenges such as overfitting and lim-

ited datasets persist, requiring dedicated layers for specific datasets.

DL has shown success in sensorless body characterization and hu-

man activity recognition by applying transformation methods, with

applications ranging from activity detection frameworks to small-

scale recognition systems that address signal variations caused by

movement speeds and body shapes [18].

3 Methodology

3.1 Overview
Figure 2 provides a comprehensive depiction of our model training

structure, highlighting the mechanisms involved in gathering and

analyzing Channel State Information (CSI) for BMI prediction in

real-world environments and proximal federated learning scheme.

To create a system suitable for practical deployment, we amassed a
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substantial dataset from participants involved in a variety of exper-

iments. This dataset includes a wide spectrum of individual body

types, movement speeds, and motions such as rotating, walking back-

wards, and sidestepping, thereby enhancing the system’s accuracy

and reliability in real-world BMI assessment. For the purpose of BMI

categorization, we converted the numerical CSI data into heatmaps

depicted as 2D images. These are laid out on a two-dimensional

plane with varying color intensities indicating different data values.

These heatmaps are then used as inputs to train both conventional

and cutting-edge machine learning models.

Client 1

Client 2

Client 3

Client 4

Server

CSI data

CSI data
CSI data

CSI data

Download 

Upload 

Figure 2: General Training Flow of Proximal Federated Learn-

ing. In each training round, global modelĭĝ is downloaded from

the server when the client is within the environment, the local

model ĭğ and the proximity parameter ÿğ are updated accord-

ingly using local CSI data and uploaded to the server. Then the

server update the global model.

3.2 Data Collection
For our experimental framework, we chose the Raspberry Pi (RPi),

a widely accessible and cost-effective commodity device.

Thirty participants were randomly selected from the CIS depart-

ment at UMDearborn. We gathered their body weights and heights

to compute their Body Mass Indices (BMIs) and documented each

participant’s gender and age. Further details on our participants are

available in Table 2.

Trail 1
(3m)

Trail 2
(3m) Trail 3

Tx Rx

2.1 m

Figure 3: CSI Collection System Setup

Participants were instructed to walk along pre-defined trails in a

6m x 6m indoor lab room, with CSI samples recorded during their

movement as illustrated in Fig. 3. The initial two trials consisted of

walking at speeds ranging from 0.3 to 0.8 m/s across 3m-long paths,

collecting 25 and 10 samples respectively. The third trial required

participants to rotate 90 degrees every 2 seconds at the center of the

Line of Sight (LoS), repeated five times.

System Settings

Tx-Rx Height 0.5m

Tx-Rx Distance 2.1m

# of Subjects 30

Subject Movements/

Activity

Walking,

Rotation

# of Trails 3

Sampling Duration 4-8 sec

Sampling Rate 200 Hz

CSI Samples 1050

Channel Frequency 80 MHz

Table 1: System Configuration

The setup was centrally placed in the room, with a Raspberry Pi

(RPi) acting as a passive observer (Rx) measuring the CSI of WiFi

signals emitted by an Access Point (Tx) approximately 2m away.

A computer linked to the router stimulated traffic by sending 8000

ping packets to the Tx, while the RPi, in monitor mode, captured

the return data. The number of packets was tailored to the duration

of the activity. The sampling rate was maintained at 200 Hz to

accurately capture participant movements. Data was collected using

Nexmon, and processed with tcpdump to produce .pcap files. These

files were then analyzed using CSIKit to generate 256 x 1 numpy

matrices, which were further utilized in Tensorflow for extracting

CSI amplitude data. This amplitude data was segmented using a

sliding window of 1 second at 100Hz, with overlapping windows

of 1 second. The configuration of our data collection system is

summarized in Table 1.

BMI Category

Class

Distribution

(out of 1)

Age Range

(in yrs)

Gender Ratio

(Male:Female)

Weight Range

(in kg)

Height Range

(in m)

Underweight 0.133 19-25 4:0 50.4-57.0 1.67-1.78

Normal 0.6 23-40 13:5 53.8-75.5 1.63-1.86

Overweight 0.133 19-40 3:1 69.3-87.4 1.57-1.69

Obese 0.133 30-50 4:0 87.7-119.9 1.62-1.81

Table 2: Participant Distribution

3.3 Data Processing

The heatmaps depicted in Fig.4 were created using CSIKit[4], show-

casing pseudo color maps that visualize signal variations over time,

sub-carriers, and amplitude through RGB color intensities. The x-

axis delineates time, the y-axis represents sub-carriers, and the z-axis

(color intensity) indicates CSI amplitude levels. To reduce noise and

maintain the integrity of the waveform in the CSI data collected via

the Raspberry Pi, a Least-square smoothing filter [20] was employed

with a sample window of 51 units.

3.4 Proximal Federated Learning for BMI

Classification

Before we explore the specifics of the proposed algorithm, let’s clar-

ify the key notations. x ∈ R
Ě represents a vector with length Ě and e

is defined as a vector with entries equal to 1 and X ∈ R
Ģ×Ě depicts a

matrix with Ģ rows and Ě columns. The inner product of ý and þ is

shown as ïý, þð. » represents the Hadamard product/element-wise

product and ¹ represents the Kronecker product between two ma-

trices. Finally, Norm p of vector x is denoted as | |x| |
Ħ
Ħ =

∑Ě
ğ=1 |Įğ |

Ħ ,

x ∈ R
Ě and Frobenius norm of matrix X is written as ∥X∥Ă =√∑Ĥ

ğ=1

∑ģ
Ġ=1

��Įğ Ġ
��2.

Let’s define the optimization problem for proximal Federated

Learning (FL). Proximal FL can be modeled as an optimization

problem on a connected graph G = (V, E)where we aim to learn

a model collaboratively among Ĥ proximal clients. These clients
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are represented as the vertex set V = Ĭ1, Ĭ2, . . . , ĬĤ, ĬĝĢĘ , with ĬĝĢĘ
denoting a global server node. The edge set E.consists of Ĥ edges,

each connecting a client Ĭğ (where ğ ∈ {1, . . . , Ĥ}, to the server ĬĝĢĘ .

The weight of each edge corresponds to the disparity or distance

between the model parameters at the two connected nodes. The

goal of proximal FL is to minimize the collective loss function

across all client nodes, subject to inequality constraints that maintain

model proximity locally. Mathematically, the optimization problem

is formulated as follows:

min
w1:Ĥ∈RĦ

1

Ĥ

Ĥ∑

ğ=1

[Ĝğ (wğ ) + Ĝğ (wĝĢĘ )] + ą

Ĥ∑

ğ=1

ÿ2ğ

ĩ .Ī .


wğ −wĝĢĘ



 f Ċğ ,∀ğ ∈ {1, . . . , Ĥ}.

(3)

where Ĝğ (wğ ) represents the local loss function with the model
parameter as wğ for client ğ, and ÿğ is the learnable proximal parame-

ter. ą balances the trade-off between minimizing the expected loss

and the proximity according to the differential distribution between

clients and the global model. The proximal FL problem (3) can be

expressed as:

min
wĝĢĘ ,W

1

Ĥ
Ă (W,wĝĢĘ ) + ą

Ċ∑

ğ=1

ÿ2ğ

s.t. ∥1 ¹ wĝĢĘ −W∥22 f 1 ¹ (91, ..., 9Ĥ)
2/2,∀ğ .

(4)

where 1 = [1 1 . . . 1] ∈ R
Ĥ . We can obtain the augmented La-

grangian for problem (4)

Ĉÿ (wĝĢĘ ,W,Z1:Ĥ) =
1

Ĥ

[
Ă (w) +

Ĥ∑

ğ=1

< Zğ , ∥1 ¹ wĝĢĘ −W∥22

−92ğ > +
ÿ

2

Ĥ∑

ğ=1

∥∥1 ¹ wĝĢĘ −W∥22 − ÿğ ∥
2
Ă

]

where Zğ ∈ R
ĤğĦ are the dual variables and ÿ > 0 is the barrier

parameter. The Adaptive Elastic Stochastic Alternating Direction

Method of Multipliers (AESADMM) algorithm minimizes the aug-

mented Lagrangian Ĉÿ (Wglb,W, 9,Z1:Ĥ) in an iterative manner. At

each iteration ġ, only a subset of clients upload their model update

to the server to participate in the federated update. The following

updates are performed:
argmin

Āğġ

Ĉÿ (w
′
ĝĢĘ

,w′
ğġ
, 9ğġ , z

′
ğġ
), argmin

wğġ

Ĉÿ (w
′
ĝĢĘ

,wğġ , 9ğġ , z
′
ğġ
),

argmin
wğġ

Ĉÿ (wĝĢĘ ,W, 9ğġ ,Z
′),

where w′
ĝĢĘ

, wğġ , and z
′
ğġ

denote the groups of variables of the local
parameters stored by client ğġ at the (ġ − 1)-th update.

Next, we derive the solver of each subproblem. The three steps

are noted as Updating wğġ , Updating wĝĢĘ , and Updating zğġ .

Updating wğġ :
min
wğġ

Ĝğġ (wğġ )+ < z
′
ğġ
,
���w′

ĝĢĘ
− xğġ

��� − 9ğġ

+
ÿ

2
∥

���w′
ĝĢĘ

− xğġ

��� − 9ğġ ∥
2
2 > (5)

The problem (5) can be solved iteratively, which may consume
significant computational resources at the local clients. As the size

of the local dataset increases, the computational complexity also es-

calates. By leveraging stochastic methods and first-order subgradient

expansions, we derive a more computationally efficient approxima-

tion of the original problem as presented in Eq. (6):

min
wğġ

[
ĝğġ (w

′
ğġ
, / ğġ ) (wğġ −w

′
ğġ
)+ < z

′
ğġ
,
���w′

ĝĢĘ
−wğġ

��� − 9ğġ

+
ÿ

2
∥

���w′
ĝĢĘ

−wğġ

��� − 9ğġ ∥
2
2 > (6)

In Eq. (6), / ğġ denotes one or a few samples randomly selected by

client ğġ from its feature set and their ground truth labels in pairs

at the ġ-th iteration. The function ĝğġ (w
′
ğġ
, / ğġ ) is defined as the

stochastic gradient of Ĝğġ (w
′
ğġ
) at w′

ğġ
. The stochastic approximation

can significantly reduce memory consumption and save compu-

tational costs in each iteration. By setting the subgradient of the

objective function in Eq. (6) to zero, we can derive the closed-form

solution in Eq. (7).
wğġ =w

′
ĝĢĘ

+
1

ÿ
z
′
ğġ

» ĩĝĤ(t′) −
1

ÿ
ĩĝĤ(t′) »

(
9ğ + ĝğġ (w

′
ğġ
, / ğġ )

)

=w
′
ĝĢĘ

+
1

ÿ
ĩĝĤ(t′) » (z′ğġ − 9ğ − ĝğġ (w

′
ğġ
, / ğġ )) (7)

where the signum function ĩĝĤ(·) extracts the signs of a vector and
t
′
ğġ

= w
′
ĝĢĘ

−w
′
ğġ

. Updating 9ğ is similar to update wğġ .

Updating wĝĢĘ : We solve the following problem
min
wĝĢĘ

〈
Z,
��1 ¹ wĝĢĘ −Wğġ

�� − 1 ¹ 9ğġ

〉

+
ÿ

2
∥
��1 ¹ wĝĢĘ −Wğġ

��∥Ă − 1 ¹ 92ğġ

(8)

One can readily derive a closed-form solution for the problem (8)
as:

wğġ =

1

Ĥğġ

∑

Ġ

[
wğġ − (

zğġ

ÿ
+ 9ğġ ) » ĩĝĤ(tğġ )

]
(9)

where tğġ = w
′
ĝĢĘ

− wğġ is similar to that of Eq. (7) except the
updated w. Specifically, via mathematical induction, we can attain

the new updated form of wĝĢĘ below, which can also reduce the

communication cost from ċ (Ĥ) to ċ (1).

wĝĢĘ =w
′
ĝĢĘ

+
1

Ċ

[
wğġ − (

zğġ

ÿ
+ 9ğġ ) » ĩĝĤ(tğġ )

]

−
[
w
′
ğġ

− (
z
′
ğġ

ÿ
+ 9ğġ ) » ĩĝĤ(t′ğġ )

] (10)

Updating zğġ : The Lagrangian multiplier zğġ can be updated strictly
following the standard ADMM scheme below:

zğġ = z
′
ğġ

+ ÿ
[
wğġ −w

′
ĝĢĘ

− 9ğġ

]
(11)

Figure 4: Training Neural Networks with Heatmaps

4 Evaluation

We collected a total of 1050 sampled 2D CSI images, and we ran-

domly chose 900 samples for training and the remaining 150 for

testing, as depicted in Table 3. In the training set, 20% of the samples

were designated as the validation set. The training and test datasets

underwent preprocessing steps including random resizing, cropping,

horizontal flipping, and normalization. The models were initialized

with pre-trained weights from ImageNet and had their last fully

connected layer replaced with a linear layer tailored to the specific

classification task. During training, each client’s data was stored

on a single edge device. The models were trained over 15 epochs,

using a mini-batch size of 32 and updating parameters based on the

cross-entropy loss function. Validation accuracy was calculated after

each epoch to monitor performance on unseen data.
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Metric

/Model

ResNet-50 EffNet-B0

ARWSADMM FedAVG Local ARWSADMM FedAVG Local

Train Accuracy 0.7410 0.6854 0.6625 0.5484 0.4484 0.4199

Validation Accuracy 0.6825 0.6237 0.5634 0.4243 0.4075 0.4021

Test F1 Score 0.7933 0.7306 0.7217 0.4942 0.3941 0.3901

Test Precision 0.7541 0.7086 0.6782 0.6504 0.6048 0.6054

Test Recall 0.7783 0.7121 0.7019 0.5305 0.4593 0.4141

Table 3: Comparison of Model Performances with AR-

WSADMM, FedAVG, and Local Training

Our experimental results, as summarized in Table 3, demon-

strate the superior performance of our proposed AESADMM al-

gorithm for Proximal Federated Learning. For the ResNet-50 model,

AESADMM outperforms both FedAVG and Local training across

all key performance indicators. With an F1 score of 79.33%, AE-

SADMM shows enhanced prediction reliability, being 6.27% more

accurate than FedAVG and 7.16 % than Local training. AESADMM

also leads in precision (75.41%) and recall (77.83%), reflecting its

robustness in handling diverse datasets and its capacity to mini-

mize error in all class predictions and retrievals. When deployed on

the EffNet-B0 architecture, the variant ARWSADMM continues to

showcase enhanced performance. ARWSADMM records a training

accuracy of 54.84%, The F1 score improvement is pronounced, with

ARWSADMM scoring 49.42%, exceeding FedAVG by 10.01% and

Local by 10.41%. This robust performance attests to the potential

of our proposed method in addressing BMI prediction challenges,

thereby providing a compelling solution for real-world applications

requiring decentralized health data processing.

5 Conclusion
In this study, we introduced a novel Proximal Federated Learning

(PFL) approach, proposing a novel and efficient algorithm called

Adaptive Elastic Stochastic Alternating Direction Method of Multi-

pliers (AESADMM) for training BMI federated classification model

using commodity WiFi devices. Our method utilizes Channel State

Information (CSI) to provide a privacy-preserving, non-intrusive

BMI monitoring solution, eliminating active participant involvement.

Empirical evaluations show that our approach outperforms tradi-

tional federated learning in privacy, accuracy, and efficiency. This

research paves the way for scalable, cost-effective health monitoring

solutions, potentially enhancing proactive health management and

preventive care strategies.
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