L)) . . . .
e Proximal Federated Learning for Body Mass Index Monitoring

using Commodity WiFi

Jiaxi Li Kiran Davuluri Fei Dou
University of Georgia Khairul Mottakin Jin Lu
Athens, Georgia, USA Zheng Song University of Georgia

University of Michigan Athens, Georgia, USA

Dearborn, Michigan, USA

Abstract

Body Mass Index (BMI) is a critical metric for assessing public
health and identifying populations at risk for obesity-related condi-
tions. Traditional BMI monitoring methods often raise privacy con-
cerns and require active cooperation from individuals, limiting their
applicability in real-world scenarios. This paper introduces a novel
approach to BMI monitoring that leverages proximal federated learn-
ing (PFL) using commodity WiFi devices. Our method addresses the
challenges of data heterogeneity and intermittent connectivity in FL.
By our approach, the Adaptive Elastic Stochastic Alternating Direc-
tion Method of Multipliers (AESADMM), an optimization algorithm
designed to handle data heterogeneity and intermittent connectivity
in FL scenarios, our system collects Channel State Information (CSI)
from WiFi signals to passively classify BMI based on the impact of
different body shapes on signal propagation. This approach ensures
privacy preservation and eliminates the need for active participant
involvement. Theoretical analysis and empirical results demonstrate
the superior accuracy, reduced communication costs, and enhanced
scalability of our proposed method compared to existing personal-
ized FL frameworks, showcasing its potential as an effective tool for
large-scale BMI monitoring in diverse environments.
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1 Introduction

Body Mass Index (BMI), calculated from an individual’s weight and
height, is a vital indicator used to assess body fat and identify health
risks associated with underweight and obesity [25]. Community-
level BMI monitoring is essential for public health authorities to
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track prevalence and trends, evaluate intervention efficacy, and de-
velop strategies to promote healthy weight and prevent related health
issues [16]. However, traditional BMI monitoring methods often
pose significant privacy concerns and require active cooperation
from individuals, which limits their practicality and scalability.

Existing BMI monitoring approaches include obtaining patient
records from healthcare systems [1], recruiting participants for self-
reported measurements [3], and utilizing image processing tech-
niques for BMI estimation [7, 8]. While these methods have their
merits, they also present challenges such as privacy violations,
resource-intensive processes, and limited long-term applicability.
Therefore, there is an urgent need for a fine-grained, cost-effective,
and privacy-preserving BMI monitoring solution that can be im-
plemented over extended periods without compromising individual
privacy.

In response to these challenges, this paper introduces a novel ap-
proach to BMI monitoring called proximal federated learning (PFL)
in environments with inconsistent connectivity, utilizing commodity
WiFi devices. Our methodology, the Adaptive Elastic Stochastic
Alternating Direction Method of Multipliers (AESADMM), is an
optimization algorithm tailored to address data heterogeneity and in-
termittent connectivity in federated learning scenarios. By passively
collecting Channel State Information (CSI) from WiFi signals, our
system classifies BMI by analyzing the impact of different body
shapes on signal propagation, ensuring privacy preservation and
obviating the need for active participant involvement. The key con-
tributions of our work are as follows:

1. We present the novel proximal federated learning framework
for BMI monitoring using commodity WiFi, addressing the chal-
lenges of data heterogeneity and intermittent connectivity [5].

2. We set up a WiFi sensing system using off-the-shelf devices to
collect CSI. Using our system, we collected CSI data for 30 human
subjects with varied BMI. Our approach leverages CSI to classify
BMI in a privacy-preserving manner, providing a fine-grained, cost-
effective solution suitable for large-scale deployment.

3. We demonstrate the theoretical and empirical effectiveness
of our proposed method, achieving significant improvements in
accuracy, reduced communication costs, and enhanced scalability
compared to existing personalized FL frameworks.

The remainder of this paper is organized as follows: Section 2
provides a review of work in the related domain. Section 3 intro-
duces our methodology, and Section 4 reports how we evaluated the
effectiveness of our approach. Finally, we conclude this paper with
Section 5.
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2 Related Works

2.1 Heterogeneous Federated Learning
Federated Learning (FL) represents a decentralized machine learning

paradigm where multiple clients can collaboratively develop a global
model without exchanging their local datasets. This methodology
effectively mitigates privacy issues but encounters notable obstacles
in infrastructure-deficient settings with varied data characteristics.
Traditional FL strategies, such as Federated Averaging (FedAvg),
are less effective with non-IID (non-independent and identically
distributed) datasets, often resulting in compromised global model
accuracy [14]. To address these limitations, recent innovations in per-
sonalized FL techniques have sought to tailor models more closely
to the unique data distributions of individual clients [10, 11, 21, 22].
Nonetheless, these approaches typically presume the availability of
consistent connectivity and a central coordination mechanism, which
may not be feasible in many practical contexts. An emergent tech-
nique, the Random Walk Stochastic Alternating Direction Method
of Multipliers (RWSADMM) utilizes a mobile server that dynami-
cally moves among clients. Such a design is particularly effective
in environments with sporadic connectivity and heterogeneous data,
enhancing robustness [17]. However, RWSADMM’s requirement
to mobilize servers under such conditions renders it difficult for
applications like Body Mass Index (BMI) monitoring through WiFi
sensing.

2.2 Channel State Information (CSI)

Fine-grained Channel State Information (CSI) is extensively utilized
to delineate the behavior of WiFi signals as they encounter various
obstructions, as noted by Zhou et al. [30]. All WiFi protocols employ
Orthogonal Frequency-Division Multiplexing (OFDM), which allo-
cates the available spectrum across multiple sub-carriers [27]. Unlike
the Received Signal Strength Indicator (RSSI), which provides a
singular measure of signal strength by averaging across sub-carriers,
CSI offers detailed insights at the level of each sub-carrier, thus
enabling more granular analysis. The CSI can be represented as
a three-dimensional tensor corresponding to ¢ transmitting and r
receiving antennas:

H1,1 . Hl,r
csi=|: . (M
Hyi ... Hy

Here, H; » denotes a vector containing complex pairs for each sub-
carrier, as shown in Eq. (2).

Ht,r = [ht,r,l, s ht,r,m] 2

The variable m indicates the number of data sub-carriers, where each
H;,r is expressed as a complex number h,,, encapsulating both the
amplitude (|h;,|) and phase (£h;,) of CSI. The values of amplitude
and phase are susceptible to alterations caused by multipath effects,
such as phase shifts and amplitude attenuation, which are exacer-
bated by human movements. This sensitivity to changes makes CSI
a powerful tool for precisely sensing and locating human subjects,

as demonstrated by Xin et al. [26].
2.3 BMI Classification

Body Mass Index (BMI) is calculated by assessing an individ-
ual’s body fat based on their weight and height using the formula:

BMI = U}N;ﬁ% X 703. This metric is crucial for evaluating
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health risk factors. Adults are typically categorized into one of four
BMI classifications: Obese, Overweight, Normal Weight, and Under-
weight. Figure 1 illustrates the impact of weight and height on BMI
categorization.

Body Mass Index (BMI) Chart for Adults
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Figure 1: BMI Chart for Adults

Section 1 reviews various techniques for monitoring BMI. Re-
cently, the focus has shifted towards the use of computer vision for
BMI estimation, which offers a non-intrusive approach free from the
need for participant engagement or access to medical records. This
technology holds the promise of being seamlessly integrated into
daily environments, enhancing both convenience and accessibility.
Despite these advantages, machine learning-based BMI assessment
raises significant privacy concerns, which are discussed in detail by
Kumar et al. [9].

2.4 WiFi Sensing

Studies on bio-electromagnetism tailored to WiFi frequencies (such
as 2.4 GHz and 5 GHz) have demonstrated that specific traits or ges-
tures can be effectively detected when electromagnetic waves propa-
gate at these particular frequencies [6]. This finding is fundamental
to the development of WiFi-based sensing technologies. Over the
past decade, numerous advancements have emerged [12], utilizing
wireless communication channels to create innovative applications
across human-computer interaction [19], healthcare monitoring [24],
and security surveillance [29].

Inspired by the concept of unique pattern generation for active
motion in the sensing region [15], body characterization research
focuses on pose, person, gait, and activity recognition using statisti-
cal features extracted from CSI sequences [2, 13, 23]. Deep learning
(DL) methods have been explored to enhance feature extraction
from CSI data, thereby enhancing the robustness of CSI-based body
characterization [27, 28]. Challenges such as overfitting and lim-
ited datasets persist, requiring dedicated layers for specific datasets.
DL has shown success in sensorless body characterization and hu-
man activity recognition by applying transformation methods, with
applications ranging from activity detection frameworks to small-
scale recognition systems that address signal variations caused by
movement speeds and body shapes [18].

3 Methodology

3.1 Overview

Figure 2 provides a comprehensive depiction of our model training
structure, highlighting the mechanisms involved in gathering and
analyzing Channel State Information (CSI) for BMI prediction in
real-world environments and proximal federated learning scheme.
To create a system suitable for practical deployment, we amassed a




Proximal Federated Learning for Body Mass Index Monitoring using Commaodity WiFi

substantial dataset from participants involved in a variety of exper-
iments. This dataset includes a wide spectrum of individual body
types, movement speeds, and motions such as rotating, walking back-
wards, and sidestepping, thereby enhancing the system’s accuracy
and reliability in real-world BMI assessment. For the purpose of BMI
categorization, we converted the numerical CSI data into heatmaps
depicted as 2D images. These are laid out on a two-dimensional
plane with varying color intensities indicating different data values.
These heatmaps are then used as inputs to train both conventional
and cutting-edge machine learning models.
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Figure 2: General Training Flow of Proximal Federated Learn-
ing. In each training round, global model w, is downloaded from
the server when the client is within the environment, the local
model w; and the proximity parameter ¢; are updated accord-
ingly using local CSI data and uploaded to the server. Then the
server update the global model.

3.2 Data Collection

For our experimental framework, we chose the Raspberry Pi (RPi),
a widely accessible and cost-effective commodity device.

Thirty participants were randomly selected from the CIS depart-
ment at UMDearborn. We gathered their body weights and heights
to compute their Body Mass Indices (BMIs) and documented each
participant’s gender and age. Further details on our participants are
available in Table 2.
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Figure 3: CSI Collection System Setup

Participants were instructed to walk along pre-defined trails in a
6m x 6m indoor lab room, with CSI samples recorded during their
movement as illustrated in Fig. 3. The initial two trials consisted of
walking at speeds ranging from 0.3 to 0.8 m/s across 3m-long paths,
collecting 25 and 10 samples respectively. The third trial required
participants to rotate 90 degrees every 2 seconds at the center of the
Line of Sight (LoS), repeated five times.

PICASSO 24, November 18-22, 2024, Washington D.C., DC, USA

System Settings

Tx-Rx Height 0.5m
Tx-Rx Distance 2.1lm
# of Subjects 30
Subject Movements/ Walking,
Activity Rotation
# of Trails 3

Sampling Duration ~ 4-8 sec

Sampling Rate 200 Hz
CSI Samples 1050

Channel Frequency 80 MHz

Table 1: System Configuration

The setup was centrally placed in the room, with a Raspberry Pi
(RPi) acting as a passive observer (Rx) measuring the CSI of WiFi
signals emitted by an Access Point (Tx) approximately 2m away.
A computer linked to the router stimulated traffic by sending 8000
ping packets to the Tx, while the RPi, in monitor mode, captured
the return data. The number of packets was tailored to the duration
of the activity. The sampling rate was maintained at 200 Hz to
accurately capture participant movements. Data was collected using
Nexmon, and processed with fcpdump to produce .pcap files. These
files were then analyzed using CSIKit to generate 256 x 1 numpy
matrices, which were further utilized in Tensorflow for extracting
CSI amplitude data. This amplitude data was segmented using a
sliding window of 1 second at 100Hz, with overlapping windows
of 1 second. The configuration of our data collection system is
summarized in Table 1.

BMI Category Dist(:‘:;zstion AgF Range Gend.er Ratio Weight Range Heig!lt Range
(out of 1) (in yrs) (Male:Female) (in kg) (in m)
Underweight 0.133 19-25 4:0 50.4-57.0 1.67-1.78
Normal 0.6 23-40 13:5 53.8-75.5 1.63-1.86
Overweight 0.133 19-40 3:1 69.3-87.4 1.57-1.69
Obese 0.133 30-50 4:0 87.7-119.9 1.62-1.81

Table 2: Participant Distribution

3.3 Data Processing

The heatmaps depicted in Fig.4 were created using CSIKit[4], show-
casing pseudo color maps that visualize signal variations over time,
sub-carriers, and amplitude through RGB color intensities. The x-
axis delineates time, the y-axis represents sub-carriers, and the z-axis
(color intensity) indicates CSI amplitude levels. To reduce noise and
maintain the integrity of the waveform in the CSI data collected via
the Raspberry Pi, a Least-square smoothing filter [20] was employed
with a sample window of 51 units.

3.4 Proximal Federated Learning for BMI

Classification

Before we explore the specifics of the proposed algorithm, let’s clar-
ify the key notations. x € R4 represents a vector with length d and e
is defined as a vector with entries equal to 1 and X € RIxd depicts a
matrix with [ rows and d columns. The inner product of A and B is
shown as (A, B). © represents the Hadamard product/element-wise
product and ® represents the Kronecker product between two ma-
trices. Finally, Norm p of vector x is denoted as ||x| |§ = 2;-1:1 |x; 1P,

x € R? and Frobenius norm of matrix X is written as ||X||p =
Y i1 Z;"1:1 |xij|2-

Let’s define the optimization problem for proximal Federated
Learning (FL). Proximal FL can be modeled as an optimization
problem on a connected graph G = (V, &)where we aim to learn
a model collaboratively among n proximal clients. These clients
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are represented as the vertex set V = 01,02, ..., 0n, 0gyp, With vgyp
denoting a global server node. The edge set &.consists of n edges,
each connecting a client v; (where i € {1,..., n}, to the server vyp.
The weight of each edge corresponds to the disparity or distance
between the model parameters at the two connected nodes. The
goal of proximal FL is to minimize the collective loss function
across all client nodes, subject to inequality constraints that maintain
model proximity locally. Mathematically, the optimization problem

is formulated as followslz n n
in - (W ) 2
i ;[ﬁ(wz) + fi(wip)] + A z; 5 )

s.t. ||Wl - ngb” <e,Vie{l,...,n}.
where f;(w;) represents the local loss function with the model
parameter as w; for client i, and ¢; is the learnable proximal parame-
ter. A balances the trade-off between minimizing the expected loss
and the proximity according to the differential distribution between
clients and the global model. The proximal FL problem (3) can be

expressed as:

N
1

min  —F(W,wg)+1 ) &

woip,W 1 glb ; ! )

2 2 .
s.t. |1 ® Wyip — W5 <1® (e1,....en)°/2,Vi.

where 1 = [1 1...1] € R™. We can obtain the augmented La-
grangian for problem (4)1 n
Ly(Wgip, W. Z1n) =~ [F(w) + > <zZillt@wy, - Wi
i=1

n
2 ﬂ 2 2
—ef >+ > llIte wyp ~ WG - cilF]
i=1

where Z; € R"™P are the dual variables and > 0 is the barrier
parameter. The Adaptive Elastic Stochastic Alternating Direction

Method of Multipliers (AESADMM) algorithm minimizes the aug-
mented Lagrangian Lg(Wgy, W, €, Z1.n) in an iterative manner. At
each iteration k, only a subset of clients upload their model update
to the server to participate in the federated update. The following

updates are perforgned: , , , ,
arg r;)llllfl Lg (ngb’ Wi Eis zik), arg r\{[l[l]fl Lﬁ(wglb’ Wiy, Eirs zik),

inL W, g,,Z),
arg min s (Wyp, W, €5, Z")

where w’ 1 Wik and z; denote the groups of variables of the local
parametets stored by client i; at the (k — 1)-th update.
Next, we derive the solver of each subproblem. The three steps
are noted as Updating w;, , Updating w,, and Updating z;, .
Updating wj, : )

min fi, (Wi )+ <z,
Wik

W_:;lb - X, | — €,

—fik”% > (5)

+§||‘W;lb - Xi
The problem (5) can be solved iteratively, which may consume
significant computational resources at the local clients. As the size
of the local dataset increases, the computational complexity also es-
calates. By leveraging stochastic methods and first-order subgradient
expansions, we derive a more computationally efficient approxima-
tion of the o[riginal problem as presented in Eq. (6):

B ’ ’ ’ ’
Igvl}n n (Wik, fik)(wik - wik)+ <z, Worp ~ Wik
it

- €,

ﬁ ’ 2
+E”|W9”’ = Wi | — € lly > (6)

In Eq. (6), £;, denotes one or a few samples randomly selected by
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client i from its feature set and their ground truth labels in pairs
at the k-th iteration. The function g;, (w;k, &;,) is defined as the
stochastic gradient of f;, (w;k) at w;k. The stochastic approximation
can significantly reduce memory consumption and save compu-
tational costs in each iteration. By setting the subgradient of the
objective function in Eq. (6) to zero, we can derive the closed-form
solution in Eq. (7), 1
Wi, = ;lb + Ezgk ©sgn(t’) - Esgn(t') O (& + g, (w;k, f,-k))

1
B

\’Vhere t’he sign}lm function sgn(-) extracts the signs of a vector and
t = Woip ™ Wi Updating &; is similar to update w;, .
Updating w;,: We solve the following problem

min(Z, |1 @ wy, — Wi |- 1® ¢

Wglb

=W/, + 5gn(t) © (2, ~ i = giy (W, £5,)) (7)

®)

B
+§”|1 ®ngb —W,‘k“lp -1 ®£?k

One can readily derive a closed-form solution for the problem (8)
. 7
- [wii = (- +ea) © sgn(ti,)] ©)
J
where t;, = w’ 1 = Wik is similar to that of Eq. (7) except the
updated w. Specglf{)cally, via mathematical induction, we can attain
the new updated form of wg;; below, which can also reduce the
communication cost from O(n) to O(1).
7
Wylb :W;lb + N [Wik - (% +ey) 0 Sgn(tik)]
y (10)
% +£,)0 sgn(t;k)]
Updating z;, : The Lafrangian multiplier z;, can be updated strictly
following the standard ADMM scheme below:
Zj;, :zik+/3 Wik—wglb—eik] (1)

Wik = —
iy

~[wi, =«
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Figure 4: Training Neural Networks with Heatmaps

4 Evaluation

We collected a total of 1050 sampled 2D CSI images, and we ran-
domly chose 900 samples for training and the remaining 150 for
testing, as depicted in Table 3. In the training set, 20% of the samples
were designated as the validation set. The training and test datasets
underwent preprocessing steps including random resizing, cropping,
horizontal flipping, and normalization. The models were initialized
with pre-trained weights from ImageNet and had their last fully
connected layer replaced with a linear layer tailored to the specific
classification task. During training, each client’s data was stored
on a single edge device. The models were trained over 15 epochs,
using a mini-batch size of 32 and updating parameters based on the
cross-entropy loss function. Validation accuracy was calculated after
each epoch to monitor performance on unseen data.



Proximal Federated Learning for Body Mass Index Monitoring using Commaodity WiFi

Metric ResNet-50 EffNet-B0
/Model ARWSADMM FedAVG Local ARWSADMM FedAVG  Local
Train Accuracy 0.7410 0.6854  0.6625 0.5484 0.4484 04199
Validation Accuracy 0.6825 0.6237  0.5634 0.4243 0.4075  0.4021
Test F1 Score 0.7933 0.7306  0.7217 0.4942 0.3941  0.3901
Test Precision 0.7541 0.7086  0.6782 0.6504 0.6048  0.6054
Test Recall 0.7783 0.7121  0.7019 0.5305 0.4593  0.4141

Table 3: Comparison of Model Performances with AR-
WSADMM, FedAVG, and Local Training

Our experimental results, as summarized in Table 3, demon-
strate the superior performance of our proposed AESADMM al-
gorithm for Proximal Federated Learning. For the ResNet-50 model,
AESADMM outperforms both FedAVG and Local training across
all key performance indicators. With an F1 score of 79.33%, AE-
SADMM shows enhanced prediction reliability, being 6.27% more
accurate than FedAVG and 7.16 % than Local training. AESADMM
also leads in precision (75.41%) and recall (77.83%), reflecting its
robustness in handling diverse datasets and its capacity to mini-
mize error in all class predictions and retrievals. When deployed on
the EffNet-BO0 architecture, the variant ARWSADMM continues to
showcase enhanced performance. ARWSADMM records a training
accuracy of 54.84%, The F1 score improvement is pronounced, with
ARWSADMM scoring 49.42%, exceeding FedAVG by 10.01% and
Local by 10.41%. This robust performance attests to the potential
of our proposed method in addressing BMI prediction challenges,
thereby providing a compelling solution for real-world applications
requiring decentralized health data processing.

5 Conclusion

In this study, we introduced a novel Proximal Federated Learning
(PFL) approach, proposing a novel and efficient algorithm called
Adaptive Elastic Stochastic Alternating Direction Method of Multi-
pliers (AESADMM) for training BMI federated classification model
using commodity WiFi devices. Our method utilizes Channel State
Information (CSI) to provide a privacy-preserving, non-intrusive
BMI monitoring solution, eliminating active participant involvement.
Empirical evaluations show that our approach outperforms tradi-
tional federated learning in privacy, accuracy, and efficiency. This
research paves the way for scalable, cost-effective health monitoring
solutions, potentially enhancing proactive health management and
preventive care strategies.
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