
An E!icient Hardware Accelerator Design for Dynamic Graph
Convolutional Network (DGCN) Inference

Yingnan Zhao→, Ke Wang§, Jiaqi Yang→, Ahmed Louri→
→ The George Washington University, Washington, D.C.

§ University of North Carolina at Charlotte, Charlotte, NC
{yzhao96,Yang_Jiaqi_Cute,louri}@gwu.edu,ke.wang@charlotte.edu

ABSTRACT
Dynamic graph convolutional networks (DGCNs) have been in-
creasingly used to extend machine learning techniques to applica-
tions that involve graph-structured data with temporal changes. A
typical DGCN model is comprised of graph convolutional network
(GCN) layers to capture spatial information, followed by recurrent
network (RNN) layers for temporal information. Designing a high-
performance and energy-e!cient DGCN accelerator is challenging
due to the distinct computation and communication requirements
of the GCN and RNN layers. Speci"cally, the computation of GCN
layers can be abstracted as Sparse-dense and General Matrix-matrix
Multiplication (SpMM and GeMM), while RNN layers involve ex-
tensive element-wise addition and Hadamard product in addition
to SpMM and GeMM. For data communication, GCN layers neces-
sitate irregular data memory access due to the unstructured distri-
bution of vertices involved in graphs, whereas RNN layers exhibit
a predictable memory access pattern. We propose E-DGCN, a high-
performance and energy-e!cient accelerator design for improved
DGCN inference. The proposed E-DGCN comprises recon"gurable
processing elements that e!ciently support diverse types of data
computations required by GCN and RNN layers, a #exible on-chip
interconnection design with an adaptive data#ow to improve data
reuse during DGCN inference, and a lightweight vertex caching
algorithm to leverage data locality and reduce o$-chip memory ac-
cess while processing temporal information. Experimental results
show that the E-DGCN achieves 2.2x speed-up and 2.6x energy
savings on average as compared to existing DGCN accelerators.

1 INTRODUCTION
Dynamic graphs are pervasive data structures that model pairwise
interactions between entities in systems that are constantly chang-
ing [1–4]. To extract spatial-temporal features, dynamic graph con-
volutional networks (DGCNs) have been developed to facilitate
machine learning on dynamic graphs applied in a wide variety of
application domains, such as social networks [5], recommendation
systems, tra!c forecasting [6], and many others. A typical DGCN
model, as shown in Fig. 1, is comprised of two types of neural
network layers, namely the graph convolutional network (GCN)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3658254

B

A

C

D

F E

G
Features

GCN

B

A

C

D

F E

G
Features

Intermediate
Features

Final
Features

Intermediate
Features

Final
Features

Tim
e (t)

Tim
e (t+1)

Final Features

H

Add Vertex-G

Add Vertex-H

Layers

GCN
Layers

RNN
Layers

RNN
Layers

Figure 1: A typical DGCN model includes graph convolu-
tional network (GCN) layers to capture spatial evolution and
recurrent neural network (RNN) layers to capture temporal
information of input graphs.

layers to capture spatial dependencies and perform conventional
static graph learning [7, 8], and the recurrent neural network (RNN)
layers to process temporal information [1, 2, 6] that captures the
dynamic change of graph representations.

In DGCN models, GCN and RNN layers have distinct data com-
putation and communication requirements. Speci"cally, for com-
putation, each GCN layer takes the adjacency, feature, and weight
matrices as input and performs Sparse-dense and General matrix-
matrix multiplications (SpMM and GeMM). For each RNN layer, it
takes the results of previous GCN and RNN output as input matrices
to be multiplied by weight matrices to perform SpMM. Additionally,
the intermediate matrices of each RNN layer are used to calculate
Hadamard Product [9]. For data communication, GCN layers in-
duce irregular data memory access and unpredictable data reuse,
due to the varying numbers and locations of neighboring nodes of
each vertex in the input graphs. On the contrary, since RNN layers
recurrently use the output matrices of GCN layers whose vertices
share the same weight matrices, it results in a predictable data reuse
pattern and regular data memory access. Therefore, there is a strong
need for a versatile design that can dynamically support diverse
computation types required by RNN and GCN layers, along with a
#exible data#ow to e!ciently handle memory access, explore data
locality, and support diverse data reuse patterns.

In this paper, we propose E-DGCN, an e!cient architecture
design aimed at accelerating DGCN inference with improved per-
formance and reduced energy consumption. The key contributions
are abstracted as follows:

• E-DGCN features a uni"ed computing array that includes
multiple recon"gurable Processing Elements (PEs). Each PE
can dynamically adjust its functionality to e!ciently sup-
port various computations required by GCN and RNN layers,
including SpMM, GeMM, element-addition, Hadamard prod-
uct, and diverse activation functions.

• E-DGCN deploys an adaptive on-chip data#ow facilitated
by a #exible interconnection design. According to GCN
and RNN workloads, the #exible interconnection enables

https://doi.org/10.1145/3649329.3658254
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3658254&domain=pdf&date_stamp=2024-11-07

G
lo

ba
l B

uf
fe

r
(G

LB
)

Global Buffer
(GLB)

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
SR

ec
on

fig
ur

ab
le

 A
rr

ay

PE
S

PE
S

PE
S

PE
S

DRAM

DRAM
Interface

H
os

t I
nt

er
fa

ce

Software
Scheduler

: Control Signal
: Off-chip Data
: On-chip Data

Reused

U
ni

fie
d

C
on

tr
ol

le
r

PE
Configuration

Switch (S)
Configuration

E-DGCN Architecture Design

Vertices
Table

Figure 2: The overall architecture of the proposed design
includes Processing Elements (PEs) and Switches (S) used for
on-chip data computation and communication, respectively.
The Global Bu!er (GLB) stores the required data loaded from
DRAM. The Uni"ed Controller, connected to the software
scheduler, selects the con"guration of PEs and switches based
on the input workload. The Reused Vertices Table records the
indices of vertices that can be further reused, as determined
by the proposed algorithm.

the most e!cient data#ow (i.e., inter-PE data transmission,
spatial-temporal decision, and on-chip bu$ering strategy)
that explores data locality to improve data reuse among PEs.

• E-DGCN integrates a lightweight vertex caching algorithm
that exploits the intra-layer and inter-layer data dependen-
cies to locate the dynamic change of the graph (e.g., addi-
tion and removal of nodes/edges). Using the proposed algo-
rithm, E-DGCN selectively loads the vertices impacted by
the temporal change from the main memory to the accelera-
tor during DGCN inference, which signi"cantly contributes
to reducing o$-chip data memory access.

Evaluation results with real-world datasets show that the pro-
posed E-DGCN achieves a factor of 2.2x speed-up and 2.6x energy
savings on average as compared to previous designs.

2 PROPOSED E-DGCN DESIGN
2.1 Architecture Overview
Fig. 2 demonstrates the overall architecture of the proposed E-
DGCN. E-DGCN implements a tile-based uni"ed recon"gurable
array that includes customized Processing Elements (PE) and an
interconnection design with recon"gurable switches (S) to ful"ll
the diverse data computation and communication requirements
that exist in the DGCN model, respectively. Speci"cally, based on
the input workload, the proposed PE can adjust its functionality to
perform various types of computations, including matrix-matrix
multiplication, Hadamard product, and activation functions. Each
PE is connected to its local recon"gurable switch, and switches are
interconnected to support an adaptive data#ow and manage the
on-chip data communication e!ciently. Details of the proposed
E-DGCN PEs and switches are introduced in Sec. 2.2 and Sec. 2.3, re-
spectively. The Global Bu$er (GLB) is implemented as a multi-bank
scratchpad memory, where each bank can be shared by di$erent
PEs through E-DGCN switches. Additionally, E-DGCN features a
uni"ed controller connected to the o$-chip software scheduler. In
response to the input workload from the software scheduler, the
uni"ed controller selects the con"guration for both E-DGCN PEs

Local
Controller

E-DGCN Switch (S)

F OI F

Control
Signals

North PE

East
PE

West
PE

South PE

PE
S

(a)
Buffer

Buffer

Input Sparse

E-DGCN Processing Element

Buffer

Control Signals

Input Dense
Buffer

Buffer
Output Dense

Intermediate/Final Results

Functional Unit

(PE)Local
Controller

Dense Row Prefetcher
(DRP)

Sparse Input
Index of loaded data

Multiplier Array
(K x N)

Accumulation Buffer
(K x N)

Buffer

(FU)

FU

FU
K x N FU Array

In
te

rm
ed

ia
te

Finals

F OI F

Control
Signals

From
Switch

From
Switch

To
Switch

PE
S (b)To

/Fr
om

PE’s
Buff

ers

Input-1

1
0

Sign
bit

Input-2

Functional Unit (FU)

Right
Shifter
2-bit

Right
Shifter
1-bit

Multiplier

Right
Shifter
1-bit

Adder (c)
To

Output
Buffer

Figure 3: Architecture design of the proposed E-DGCN pro-
cessing elements (PEs). The multiplier array followed by
accumulation bu!ers, is implemented for Sparse-dense, Gen-
eral matrix-matrix multiplication (SpMM or GeMM), and
element-wise addition. (b) Architecture design of the pro-
posed switch (S) for managing on-chip data communication.
(c) Functional units (FUs) perform Hadamard Product and
activation functions for both GCN and RNN layers. Black and
blue links represent data and control signal transmission.

and switches, forwarding the corresponding control signals to the
entire recon"gurable array. To e!ciently manage data communica-
tion between E-DGCN and DRAM while avoiding repeated access
to the same set of vertices, a table is utilized to record indices of
reused vertices that is directed by a proposed lightweight vertex
caching algorithm which is detailed in Sec. 2.4.

2.2 E-DGCN Processing Element (PE)
Fig. 3 (a) depicts details of the proposed E-DGCN Processing Ele-
ment (PE). Speci"cally, considering that the input matrices for both
GCN and RNN layers consist of both sparse and dense matrices
stored in di$erent formats, each modi"ed PE incorporates separate
input sparse and dense bu$ers to store input data separately for
improved storage e!ciency. To facilitate data synchronization dur-
ing computations, when the sparse input data is streamed into the
First-In-First-Out (FIFO) from the input sparse bu$er, the indexes
of non-zero elements are sent to the Dense Row Prefetcher. Subse-
quently, these indexes are forwarded to the input dense bu$er to
load the speci"c row. Additionally, each PE integrates a dense out-
put bu$er to store the intermediate results or the "nal outputs of the
RNN and GCN layers. The local controller receives the control sig-
nal based on the input workload and con"gures MUX-DeMUXes to
manage the local communication. To perform diverse types of com-
putations, each PE consists of three main hardware components:
a multiplier array, an accumulation bu$er array, and a versatile
functional unit (FU) array.

For GCN layers: Each GCN layer takes the normalized adja-
cency matrix (𝐿), feature matrix (X), and weight matrix (W) as
inputs to calculate the "nal output 𝑀 (𝐿+1)=𝑁(𝐿𝑀 (𝐿)𝑂 (𝐿)), where
K represents the number of GCN layer. The computation consists

2

B

A

C

D

F E

G

0 1 1 0 0 0 1
1 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

V-A
V-B
V-C
V-D
V-E
V-F
V-G

Adjacency
Matrix
(A)

V-A
V-B
V-C
V-D
V-E
V-F
V-G

Feature
Matrix
(X)

B

A

C

D

F E

G

Update

B

A G

AC

G

Features

O
ld

 F
ea

tu
re

s N
ew

 Features

Aggregation Combination

Features

Input Graph

Input Matrices

B

A

C

D

F E

G

Update

A

A G

B
C
D

Features

O
ld

 F
ea

tu
re

s N
ew

 Features

Aggregation Combination

Vertices for
updates

Processing Vertices:
A, B, C, and G

F

Processing Vertices:
A and G

GA

Operations List
Agg.

GAComb.

GA
Operations List
Agg.

GAComb.

B C

B C

(a)

(b)

G
C

N
 L

ay
er

-1

G
C

N
 L

ay
er

-2
 (e)

(f)

Root Vertex-G GA

M
ai

n

Stack

Global Buffer

Input Graph

GA
Stack

M
em
or
y

Index of
vertices

GA

Traverse
Graph

Load
Vertices

Root Vertex-A CB

M
ai

n

Stack

Global Buffer

Input Graph

Stack

M
em
or
y

Index of
vertices

GA

Traverse
Graph

Load
Vertices

CB

CB

(c)

(d)

Vertices for
updates

Figure 4: (a) Insert a new vertex (G) into the given graph G=(V, E), where the values of both V and E are six in this example. (b)
The update of both adjacency and feature matrices after inserting vertex-G. Note that in real applications, the adjacency matrix
is typically normalized. In this example, we set values of the adjacency matrix to 0 or 1 for simplicity. (c) and (d) illustrate
the evolution of loaded vertices stored in the global bu!er for two GCN layers, respectively. The stack is used to record the
datapath during graph traversal. Additionally, (e) and (f) depict the processing of aggregation and combination phases of loaded
vertices, providing a detailed list of the operations that occurred.

of an aggregation phase (SpMM) and a combination phase (GeMM).
In this case, each PE activates the uni"ed multiplier array followed
by accumulation bu$ers to perform the required computations.
Those multipliers located within the same row/column share the
same data from the input dense/sparse bu$ers, respectively. Partial
sums of multipliers are then forwarded to the accumulation bu$ers
through a permutation network for further addition. The permuta-
tion network is controlled by the index of data stored within the
FIFO and is used to pair the multipliers with the corresponding ac-
cumulation bu$ers. Additionally, each PE applies the Outer Product
(OP) loop unrolling technique when performing SpMM and GeMM.
Compared to the other two common loop unrolling techniques,
namely Inner Product (IP) [10] and Row-based Product (RP), OP
can mitigate the impact of the workload imbalance induced by the
sparsity of the graph’s structure [11–14]. Each functional unit, as
shown in Fig. 3 (c), is con"gured to perform activation functions,
such as ReLU and Sigmoid.

For RNN layers: Each RNN layer utilizes the output of previ-
ous GCN and RNN layers as inputs (x(t) and h(t-1)) multiplied by
weight matrices to produce the "nal result. The computation can
be abstracted as 𝑃(𝑄) = 𝑅 (𝑆 ↑ 𝑇 (𝑄) +𝑂 ↑𝑃(𝑄 ↓ 1)), where U and W
represent the weight matrices, and 𝑅 is a function that calculates
the Hadamard product. Similarly to the GCN layer, the SpMM in
the RNN layer is performed by the multiplier array and the accumu-
lation bu$ers. Additionally, the accumulation bu$ers also perform
element-wise addition on the matrix level with intermediate results
of RNN layers. Each FU serves two functionalities: (1) calculating
the Hadamard products, and (2) performing activation functions,
including ReLU, Sigmoid, and Tanh.

2.3 Flexible Interconnection Design
To e$ectively manage data communication among PEs and support
the adaptive data#ow, the proposed design integrates a #exible inter-
connection design with recon"gurable switches, as shown in Fig. 3
(b). Each switch features two input ports, two output ports, a local
port, and a First-In-First-Out (FIFO) bu$er. The input/output ports
are used to share data communication with adjacency switches. The
FIFO is used to store the data received from the corresponding PE
or neighboring switches. Additionally, several MUX/DEMUXes are

used to adjust the directions of data transmission, which are con"g-
ured by the local controller according to the required data#ow. To
ensure data synchronization and eliminate per-hop control timing
overhead, those switches within the same row or column work
in a systolic manner, wherein all the tiles are simultaneously sent
across the PE array. The working of the proposed interconnection
network and supported data#ows for the GCN and RNN layers are
detailed as follows.

For GCN layers: Given that E-DGCN follows a tile-based archi-
tecture, both adjacency and feature matrices are partitioned into
compact tiles to align with on-chip storage constraints. Each PE
handles the computation of a speci"c pair of tiles. During the aggre-
gation phase, to maintain data synchronization, PEs in the same
row are assigned to the same set of vertices, while those PEs in the
same column manage identical sets of feature vectors. Additionally,
each simpli"ed switch con"gures local MUX-DeMUXes to establish
links with neighboring switches in the same row, and each E-DGCN
PE is set up to execute Sparse-dense/General Matrix Multiplication
(SpMM/GeMM) computations. During the combination phase,
the horizontal connections remain active. Given that the weight
matrix of the GCN layer is small and dense [13], each PE stores the
weight matrix directly in its local input dense bu$er without shar-
ing. Once the combination phase is completed, di$erent features of
the same vertex in those PEs in the same row are streamed to the
GLB and then forwarded to the DRAM.

For RNN layers: Each RNN layer includes multiple gate func-
tions and each gate function has two types of input matrices: one
is the result of the current GCN layer (A) and the other is the result
of the latest RNN layer (B). Each gate function utilizes two dis-
tinct weight matrices to separately multiply two types of input and
perform the element addition at the end [1, 2]. Therefore, the two
types of input matrices are shared among diverse gate functions.
Under this circumstance, E-DGCN assigns the entire row of PEs to
the same set of vertices and the entire column of PEs to the same
type of weight matrix. During the computations, the tiles of the
input matrix are shared by PEs horizontally. After "nishing the
transmission of the input B matrix, the A matrix will be streamed
in the same way as the B matrix. Concurrently, the result of each
PE stays locally for accumulation. When completing both types of

3

input matrices, vertical links are active while horizontal links are
disabled for result accumulation.
2.4 Lightweight Vertex Caching Algorithm
Dynamic graphs encompass various operations involving the ad-
dition or removal of edges, features, and vertices over time [3, 15].
These operations impact DGCN inference as changes occur in the
input adjacency and feature matrices. Fig. 4 shows an example
of the addition of vertices in DGCN, with other operations being
abstracted similarly. We utilize a DGCN model that includes two
conventional GCN layers in this example. As shown in Fig. 4 (a), the
system inserts a new vertex (G) to the given graph G=(V, E), where
V and E represent the number of vertices and edges, respectively
(both V and E are six in this example). By adding the new vertex,
modi"cations occur in both the adjacency and feature matrices,
as illustrated in Fig. 4 (b). In this scenario, only vertices A and G
undergo the aggregation and combination phases of GCN Layer-1.
This is because the addition of vertex-G speci"cally in#uences the
arrangement of vertex-A’s neighbors. Following the completion
of Layer-1, the updated features of vertices A and G necessitate
updates in the second GCN layer for vertices A, B, C, and G, as
illustrated in Fig. 4 (d). This is because the update of vertex A has an
impact on both vertices B and C. With two GCN layers, the opera-
tion of inserting a new vertex G only impacts the results of vertices
A, B, and C, which is limited for DGCN inference. Additionally,
throughout the entire GCN inference, the values of the adjacency
list and intermediate results of vertices A and G can be reused.

Based on the aforementioned observation, E-DGCN deploys a
lightweight vertex caching algorithm based on Deep-First Search
(DFS) to e!ciently locate those vertices impacted by the update,
e!ciently manage, and avoid redundant data memory access, as
illustrated in Algorithm-1. Speci"cally, the proposed algorithm
designates the updated vertex (N) as the root node and loads the
adjacency list of the vertex N to an array. Subsequently, the pro-
posed algorithm calls a recursive traverse function, as shown in
Algorithm-2, which takes the root node and the adjacency list as
inputs to traverse the graph, identifying those vertices impacted by

the updated vertex N. The termination condition for the recursive
function is based on the height of the search tree. The maximum
value of the height is determined by the total number of GCN layers
involved in DGCN models. After the traverse function is completed,
the system receives an array (stack), including vertices that need to
be loaded for the current GCN layer. As the number of processing
GCN layers increases, the height of the traversal tree also grows.
Moreover, vertices at the top of the tree are frequently accessed.
To avoid redundant o$-chip memory access of these vertices, the
proposed design records the index of these vertices using an addi-
tional array and stores the intermediate results of these vertices
on-chip for subsequent reuse, thus reducing data memory access.
Given a DGCN model with N GCN layers, the time complexity of
the proposed algorithm is O(V+E), where V and E represent the
number of vertices and edges traversed by the algorithm.

An example of the proposed vertex caching algorithm is demon-
strated in Fig. 4. As shown in Fig. 4, the proposed algorithm des-
ignates the inserted vertex G as the root node. Subsequently, the
system traverses all its neighbors (A in this example) and stacks
them for the "rst GCN layer. Fig. 4 (c) and (e) illustrate the ver-
tices stored inside the global bu$er and the detailed operations
performed on the loaded vertices for the "rst GCN layer, respec-
tively. After completing the aggregation and combination phases
for all the loaded vertices, the proposed algorithm uses these loaded
vertices as root nodes to explore new required vertices at a deeper
level through the traverse function. Simultaneously, the results of
both vertex A and G from the "rst GCN layer are stored within
the on-chip bu$er for future data reuse. The index and the height
of A and G are stored in the on-chip table for easy lookup. Fig. 4
(d) and (f) illustrate the vertices stored inside the global bu$er and
the detailed operations performed on the loaded vertices for the
Layer-2 of GCN inference, respectively.
3 EVALUATION AND ANALYSIS
3.1 Experiment Setup
Hardware simulator. We build a cycle-accurate simulator in C++
language to model the hardware behavior and evaluate the perfor-
mance of the proposed design. Speci"cally, the designed simulator

4

precisely counts the exact number of on/o$-chip data memory read
andwrite operations, which is used to estimate the energy consump-
tion of the memory access according to [16]. To measure the area
consumption, we model all the proposed hardware logic, including
the uni"ed recon"gurable array, controller, MUX-DeMUXes, FI-
FOs, and other hardware components. We use the Synopsys Design
Compiler with the TSMC 45nm library for the synthesis. We set
the clock frequency at 1 GHz. We use Cacti 6.0 [17] to estimate the
area, power, and access latency of all types of on-chip bu$ers.

Architecture Con"guration. We implement the proposed de-
sign including K↑K PEs/simpli"ed routers array. Each PE includes
an N↑N multiplier array connected to an accumulation bu$er with
N↑N adders. Additionally, each PE includes N↑N functional units
for required activation functions. During the evaluation, we set the
values of K and N to be 8 and 4, respectively. Additionally, in Sec. 3.5,
we conduct a scalability analysis to illustrate the relationship be-
tween performance and the dimensions of the uni"ed array. Since
the proposed E-DGCN is a tile-based architecture, the capacity of
the input sparse/dense bu$er within PEs is 320 KB and 4 KB to
accommodate the required data of each tile. The output bu$er used
to store the intermediate and "nal matrices is 256 KB. The capacity
of the FIFO inside each simpli"ed router is 320 KB, designed to
accommodate the largest tile of data that needs to be transferred
between modi"ed PEs such as feature matrices.

Datasets and Benchmarks. Table 1 illustrates four dynamic
graphs used for evaluation in this paper with the number of ver-
tices and edges [1, 18, 19]. We consider two typical DGCN models:
T-GCN [6] and CD-GCN [1]. Speci"cally, T-GCN includes GCN and
Gated Recurrent Unit (GRU). CD-GCN includes GCN and Long-
Short-Term-Memory (LSTM) models. The 32-bit #oating-point rep-
resentation is used in the evaluation, which proves to be su!cient
for maintaining inference accuracy [20, 21].

Baselines. To perform fair cross-platform comparisons, we com-
pare E-DGCN to the state-of-the-art DGCN software framework,
PyGT [22], on CPU (Intel Xeon V4) and GPU (NVIDIA A100), iden-
ti"ed as PyGT-CPU and PyGT-GPU, respectively. We also compare
E-DGCN to prior work on DGCNs such as ReaDy [2]. Additionally,
since DGCNs mainly include two basic kernels, GCN and RNN,
we compare E-DGCN to the combination of state-of-the-art GCN
(I-GCN [12]) and RNN (ERA-LSTM [23]) accelerators, connecting
as a tandem-engine architecture (denoted as I-LSTM).

3.2 Data Memory Access
Fig. 5 shows the normalized o$-chip data memory access of the
proposed design (E-DGCN) compared to previous works. All the
evaluation results are normalized to the proposed design, and a
lower value indicates better performance. E-DGCN outperforms

Data Memory Access

!"!

!""

!"#

0

!"$

No
rm

al
iz

ed
 D

at
a

M
em

or
y

Ac
ce

ss

PM RD WI TW PM RD WI TW PM RD WI TW
T-GCN CD-GCN Avg.

PyGT-CPU PyGT-GPU ReaDy I-LSTM E-DGCN
Figure 5: Normalized o!-chip data memory access with two
di!erent DGCN models on four datasets (lower is better).

!"!

!""

!"#

0

!"$

Execution Time

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
(C

yc
le

s)

PM RD WI TW PM RD WI TW PM RD WI TW
T-GCN CD-GCN Avg.

PyGT-CPU PyGT-GPU ReaDy I-LSTM E-DGCN
Figure 6: Normalized execution time with two di!erent
DGCN models on four datasets. All the data is evaluated
in cycles (lower is better).

previous approaches for several reasons. Firstly, compared to con-
ventional processing units (CPU and GPU), E-DGCN can directly
utilize the sparse input matrices stored in a compressed format
without under-utilizing hardware resources, such as on-chip data
storage. In comparison to ReaDy, E-DGCN implements a dynamic
data#ow when performing di$erent neural network models to max-
imize on-chip data reuse, thereby reducing o$-chip memory access.
Additionally, bene"ting from the proposed algorithm, E-DGCN can
selectively load required vertices during each GCN layer instead
of loading the entire graph. This approach minimizes unnecessary
data memory access induced by unimpacted vertices when oper-
ations happen, such as when inserting or removing vertices from
the graph. Moreover, the proposed algorithm allows E-DGCN to
e$ectively store the intermediate results of inter-layers of the GCN
model locally instead of writing them back to the main memory. All
methodologies mentioned above help the proposed design reduce
o$-chip data memory access by nearly 50% on average compared
to the ReaDy design.

3.3 Execution Time
Fig. 6 illustrates the execution time of the proposed design in com-
parison to previous works, measured in terms of the total number of
execution cycles. The execution time includes the duration of con-
"guration calculations, the transmission of relevant control signals,
and the setup of the entire architecture. E-DGCN achieves an aver-
age of 54.5% reduced execution time (2.2 ↑ speedup) compared to

5

!"!

!""

!"#

0

!"$

Energy Consumption
No

rm
ali

ze
d

En
er

gy
 C

on
su

m
pt

io
n

PM RD WI TW PM RD WI TW PM RD WI TW
T-GCN CD-GCN Avg.

PyGT-CPU PyGT-GPU ReaDy I-LSTM E-DGCN
Figure 7: Normalized energy consumption with two di!erent
DGCN models on four datasets (lower is better).

previous works. This is because E-DGCN provides improved compu-
tation and communication. Speci"cally, compared to crossbar-based
approaches, the proposed design utilizes the sparse data format
directly, eliminating the time required for data format conversion
from sparse to dense. Furthermore, compared to the tandem-engine
design where two engines may idle while waiting for results from
each other, the uni"ed recon"gurable array helps minimize idle
time, leading to improved performance. Furthermore, the #exible
interconnection design and vertex caching algorithm contribute
to performance improvement with reduced o$-chip data memory
access and "ne-tuned data#ow.
3.4 Energy Consumption
All approaches estimate the related energy consumption according
to [17], and are normalized based on the proposed design. As shown
in Fig. 7, the proposed design achieves around 61.5% (2.6↑) energy
savings on average compared to previous customized designs. This
is because our proposed architecture design has reduced DRAM
accesses, improved on-chip data reuse, and e!cient execution of
data computations.
3.5 Scalability Analysis
We evaluate the scalability of the proposed architecture by varying
the dimension of the uni"ed recon"gurable array, using the T-GCN
model with the Twitter dataset. The array size is scaled from 1↑1 to
8↑8. All performancemetrics aremeasured in cycles and normalized
to the performance of the 1↑1 dimension. As depicted in Fig. 8, even
though the scaling of PE array size continues to induce execution
time reduction, the improvement is diminished. This is because
the main memory bandwidth becomes the primary performance
bottleneck as the dimension of the PE array increases, especially
when substantial computing resources are available for the given
DGCN models in use, according to the Roo#ine model [24].
3.6 Area Consumption
We evaluate the area consumption of the proposed architecture
under TSMC 45 nm technology, and E-DGCN occupies a total area
of 45.58 (𝑈𝑈2). Speci"cally, for the proposed PE, the three types of
input bu$er consume around 68.6% of the total PE area, while the
switch with embedding a FIFO (320 KB) consumes around 30.5%. In
the overall architecture design, the 4 ↑ 4 uni"ed recon"gurable ar-
ray occupies the majority of the area, accounting for approximately
72.3%. The reused vertices table consumes 0.2% chip area.

4 CONCLUSION
We propose an e!cient accelerator design named E-DGCN for high-
performance and energy-e!cient Dynamic Graph Convolutional

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1x1 2x2 4x4 8x8

Scalability Analysis
(Performance and Dimensions of PE Array)

Dimensions of PE Array

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Figure 8: Normalized execution time when scaling the dimen-
sions of the uni"ed recon"gurable array (lower is better).

Network (DGCN) inference. Speci"cally, E-DGCN includes recon-
"gurable Processing Elements (PEs) with a #exible interconnection
design to support diverse types of data computations and various
data#ows, with maximized on-chip data reuse and hardware uti-
lization. Additionally, a lightweight vertex caching algorithm is
proposed to exploit data locality, enabling E-DGCN to selectively
load required vertices from the main memory during DGCN infer-
ence, thereby reducing o$-chip data memory access.

REFERENCES
[1] Aldo Pareja et al. Evolvegcn: Evolving graph convolutional networks for dynamic

graphs. In Proc.of AAAI’20, 2020.
[2] Yu Huang et al. Ready: A reram-based processing-in-memory accelerator for

dynamic graph convolutional networks. In TCAD, 2022.
[3] Mahbod Afarin et al. Commongraph: Graph analytics on evolving data. In Proc.of

ASPLOS’23, 2023.
[4] Emanuele Rossi et al. Temporal graph networks for deep learning on dynamic

graphs. arXiv preprint arXiv:2006.10637, 2020.
[5] Avery Ching et al. One trillion edges: Graph processing at facebook-scale. Proc.

of the VLDB Endowment, 2015.
[6] Ling Zhao et al. T-gcn: A temporal graph convolutional network for tra!c

prediction. In ITS, 2019.
[7] Justin Gilmer et al. Neural message passing for quantum chemistry. In Proc. of

ICML’17, 2017.
[8] Thomas N Kipf and Max Welling. Semi-supervised classi"cation with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[9] Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math, 1990.
[10] Shmuel Winograd. A new algorithm for inner product. In TC, 1968.
[11] Tong Geng et al. Awb-gcn: A graph convolutional network accelerator with

runtime workload rebalancing. In Proc. of MICRO’21, 2020.
[12] Tong Geng et al. I-gcn: A graph convolutional network accelerator with runtime

locality enhancement through islandization. In Proc. of MICRO’21, 2021.
[13] Jiajun Li et al. Gcnax: A #exible and energy-e!cient accelerator for graph

convolutional neural networks. In Proc. of HPCA’21, 2021.
[14] Jiajun Li et al. Sgcnax: A scalable graph convolutional neural network accelerator

with workload balancing. In TPDS, 2021.
[15] Maciej Besta et al. Practice of streaming processing of dynamic graphs: Concepts,

models, and systems. In TPDS, 2021.
[16] Song Han and Others. Eie: E!cient inference engine on compressed deep neural

network. ACM SIGARCH Computer Architecture News, 2016.
[17] Naveen Muralimanohar et al. Cacti 6.0: A tool to understand large caches.

University of Utah and Hewlett Packard Laboratories, Tech. Rep, 2009.
[18] Palash Goyal et al. Dyngem: Deep embedding method for dynamic graphs. arXiv

preprint arXiv:1805.11273, 2018.
[19] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive

graph analytics and visualization. In Proc. of AAAI’15, 2015.
[20] Seyed Mehran Kazemi et al. Representation learning for dynamic graphs: A

survey. The Journal of Machine Learning Research, 2020.
[21] Mingyu Yan et al. Hygcn: A gcn accelerator with hybrid architecture. In Proc. of

HPCA’20, 2020.
[22] Benedek Rozemberczki et al. Pytorch geometric temporal: Spatiotemporal signal

processing with neural machine learning models. In Proc. of CIKM’21, 2021.
[23] Jianhui Han et al. Era-lstm: An e!cient reram-based architecture for long short-

term memory. In TPDS, 2019.
[24] Samuel Williams et al. Roo#ine: an insightful visual performance model for

multicore architectures. Communications of the ACM, 2009.

6

	Abstract
	1 Introduction
	2 Proposed E-DGCN Design
	2.1 Architecture Overview
	2.2 E-DGCN Processing Element (PE)
	2.3 Flexible Interconnection Design
	2.4 Lightweight Vertex Caching Algorithm

	3 Evaluation and Analysis
	3.1 Experiment Setup
	3.2 Data Memory Access
	3.3 Execution Time
	3.4 Energy Consumption
	3.5 Scalability Analysis
	3.6 Area Consumption

	4 Conclusion
	References

