An Efficient Hardware Accelerator Design for Dynamic Graph
Convolutional Network (DGCN) Inference

Yingnan Zhao*, Ke Wang§, Jiaqi Yang®, Ahmed Louri*
* The George Washington University, Washington, D.C.
§ University of North Carolina at Charlotte, Charlotte, NC
{yzhao96,Yang_Jiaqi_Cute,louri}@gwu.edu ke.wang@charlotte.edu

ABSTRACT

Dynamic graph convolutional networks (DGCNs) have been in-
creasingly used to extend machine learning techniques to applica-
tions that involve graph-structured data with temporal changes. A
typical DGCN model is comprised of graph convolutional network
(GCN) layers to capture spatial information, followed by recurrent
network (RNN) layers for temporal information. Designing a high-
performance and energy-efficient DGCN accelerator is challenging
due to the distinct computation and communication requirements
of the GCN and RNN layers. Specifically, the computation of GCN
layers can be abstracted as Sparse-dense and General Matrix-matrix
Multiplication (SpMM and GeMM), while RNN layers involve ex-
tensive element-wise addition and Hadamard product in addition
to SpMM and GeMM. For data communication, GCN layers neces-
sitate irregular data memory access due to the unstructured distri-
bution of vertices involved in graphs, whereas RNN layers exhibit
a predictable memory access pattern. We propose E-DGCN, a high-
performance and energy-efficient accelerator design for improved
DGCN inference. The proposed E-DGCN comprises reconfigurable
processing elements that efficiently support diverse types of data
computations required by GCN and RNN layers, a flexible on-chip
interconnection design with an adaptive dataflow to improve data
reuse during DGCN inference, and a lightweight vertex caching
algorithm to leverage data locality and reduce off-chip memory ac-
cess while processing temporal information. Experimental results
show that the E-DGCN achieves 2.2x speed-up and 2.6x energy
savings on average as compared to existing DGCN accelerators.

1 INTRODUCTION

Dynamic graphs are pervasive data structures that model pairwise
interactions between entities in systems that are constantly chang-
ing [1-4]. To extract spatial-temporal features, dynamic graph con-
volutional networks (DGCNs) have been developed to facilitate
machine learning on dynamic graphs applied in a wide variety of
application domains, such as social networks [5], recommendation
systems, traffic forecasting [6], and many others. A typical DGCN
model, as shown in Fig. 1, is comprised of two types of neural
network layers, namely the graph convolutional network (GCN)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06....$15.00
https://doi.org/10.1145/3649329.3658254

Features e Intermediate Final

e | Features Features

N I LEL RNN 5
| i

e | # Layers g D;D g Layers g D;D 5!
¢ Ne—e | : H
Add Vertex-G . CCE Final M Features CII
Features G [Intermediate Final 7y
5 a / : ! Features Features -}
: ER

N [GCN RNN C4
8 " Layers =) [T = | ayers = LT 3

F/ \c —_) ! ° S :‘
Add Vertex-H .. 11 oM

Figure 1: A typical DGCN model includes graph convolu-
tional network (GCN) layers to capture spatial evolution and
recurrent neural network (RNN) layers to capture temporal
information of input graphs.

layers to capture spatial dependencies and perform conventional
static graph learning [7, 8], and the recurrent neural network (RNN)
layers to process temporal information [1, 2, 6] that captures the
dynamic change of graph representations.

In DGCN models, GCN and RNN layers have distinct data com-
putation and communication requirements. Specifically, for com-
putation, each GCN layer takes the adjacency, feature, and weight
matrices as input and performs Sparse-dense and General matrix-
matrix multiplications (SpMM and GeMM). For each RNN layer, it
takes the results of previous GCN and RNN output as input matrices
to be multiplied by weight matrices to perform SpMM. Additionally,
the intermediate matrices of each RNN layer are used to calculate
Hadamard Product [9]. For data communication, GCN layers in-
duce irregular data memory access and unpredictable data reuse,
due to the varying numbers and locations of neighboring nodes of
each vertex in the input graphs. On the contrary, since RNN layers
recurrently use the output matrices of GCN layers whose vertices
share the same weight matrices, it results in a predictable data reuse
pattern and regular data memory access. Therefore, there is a strong
need for a versatile design that can dynamically support diverse
computation types required by RNN and GCN layers, along with a
flexible dataflow to efficiently handle memory access, explore data
locality, and support diverse data reuse patterns.

In this paper, we propose E-DGCN, an efficient architecture
design aimed at accelerating DGCN inference with improved per-
formance and reduced energy consumption. The key contributions
are abstracted as follows:

e E-DGCN features a unified computing array that includes
multiple reconfigurable Processing Elements (PEs). Each PE
can dynamically adjust its functionality to efficiently sup-
port various computations required by GCN and RNN layers,
including SpMM, GeMM, element-addition, Hadamard prod-
uct, and diverse activation functions.

e E-DGCN deploys an adaptive on-chip dataflow facilitated
by a flexible interconnection design. According to GCN
and RNN workloads, the flexible interconnection enables

https://doi.org/10.1145/3649329.3658254
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3658254&domain=pdf&date_stamp=2024-11-07

=—=): On-chip Data
———): Off-chip Data

Global Buffer

(GLB) ik
i

=

Host Interface

- -
ofSotvare . SR
GeneaeEyy 4

Figure 2: The overall architecture of the proposed design
includes Processing Elements (PEs) and Switches (S) used for
on-chip data computation and communication, respectively.
The Global Buffer (GLB) stores the required data loaded from
DRAM. The Unified Controller, connected to the software
scheduler, selects the configuration of PEs and switches based
on the input workload. The Reused Vertices Table records the
indices of vertices that can be further reused, as determined
by the proposed algorithm.

the most efficient dataflow (i.e., inter-PE data transmission,
spatial-temporal decision, and on-chip buffering strategy)
that explores data locality to improve data reuse among PEs.
e E-DGCN integrates a lightweight vertex caching algorithm
that exploits the intra-layer and inter-layer data dependen-
cies to locate the dynamic change of the graph (e.g., addi-
tion and removal of nodes/edges). Using the proposed algo-
rithm, E-DGCN selectively loads the vertices impacted by
the temporal change from the main memory to the accelera-
tor during DGCN inference, which significantly contributes
to reducing off-chip data memory access.

Evaluation results with real-world datasets show that the pro-
posed E-DGCN achieves a factor of 2.2x speed-up and 2.6x energy

savings on average as compared to previous designs.

2 PROPOSED E-DGCN DESIGN

2.1 Architecture Overview

Fig. 2 demonstrates the overall architecture of the proposed E-
DGCN. E-DGCN implements a tile-based unified reconfigurable
array that includes customized Processing Elements (PE) and an
interconnection design with reconfigurable switches (S) to fulfill
the diverse data computation and communication requirements
that exist in the DGCN model, respectively. Specifically, based on
the input workload, the proposed PE can adjust its functionality to
perform various types of computations, including matrix-matrix
multiplication, Hadamard product, and activation functions. Each
PE is connected to its local reconfigurable switch, and switches are
interconnected to support an adaptive dataflow and manage the
on-chip data communication efficiently. Details of the proposed
E-DGCN PEs and switches are introduced in Sec. 2.2 and Sec. 2.3, re-
spectively. The Global Buffer (GLB) is implemented as a multi-bank
scratchpad memory, where each bank can be shared by different
PEs through E-DGCN switches. Additionally, E-DGCN features a
unified controller connected to the off-chip software scheduler. In
response to the input workload from the software scheduler, the
unified controller selects the configuration for both E-DGCN PEs

Control | Local _ Control Signals E-DGCN Processing Element (PE)
Signals Controller I 1
loaded data . !
Input Sparse Sparse Input L |
T Buffer [¥ 1
' '
U (FU) 1
Pl e | | ;
Blower |2 v |il(a)
H 2 H i
Bl surer || 3 g 2
H 1
Accumulation Buffer| | |
Kxm I
— | TKxNFUAmay | !
inal Results U T i
Rorhpe ______ E-DGCN Switch (S)
£, Local
" “|__Controller ¢ — — — - <ontre!
1 -_———— - Signals
0 | yWest (b)
F[I[F|o| PE
PE
South'PE
ol r----- [i b 7o
Input-2 J A | I 0
Right 1
Input-] L 2he Jrih)
Right / Muttpter
(©
| sian t ™
bit To
00— Output
Functional Unit (FU) Buffer

Figure 3: Architecture design of the proposed E-DGCN pro-
cessing elements (PEs). The multiplier array followed by
accumulation buffers, is implemented for Sparse-dense, Gen-
eral matrix-matrix multiplication (SpMM or GeMM), and
element-wise addition. (b) Architecture design of the pro-
posed switch (S) for managing on-chip data communication.
(c) Functional units (FUs) perform Hadamard Product and
activation functions for both GCN and RNN layers. Black and
blue links represent data and control signal transmission.

and switches, forwarding the corresponding control signals to the
entire reconfigurable array. To efficiently manage data communica-
tion between E-DGCN and DRAM while avoiding repeated access
to the same set of vertices, a table is utilized to record indices of
reused vertices that is directed by a proposed lightweight vertex
caching algorithm which is detailed in Sec. 2.4.

2.2 E-DGCN Processing Element (PE)

Fig. 3 (a) depicts details of the proposed E-DGCN Processing Ele-
ment (PE). Specifically, considering that the input matrices for both
GCN and RNN layers consist of both sparse and dense matrices
stored in different formats, each modified PE incorporates separate
input sparse and dense buffers to store input data separately for
improved storage efficiency. To facilitate data synchronization dur-
ing computations, when the sparse input data is streamed into the
First-In-First-Out (FIFO) from the input sparse buffer, the indexes
of non-zero elements are sent to the Dense Row Prefetcher. Subse-
quently, these indexes are forwarded to the input dense buffer to
load the specific row. Additionally, each PE integrates a dense out-
put buffer to store the intermediate results or the final outputs of the
RNN and GCN layers. The local controller receives the control sig-
nal based on the input workload and configures MUX-DeMUZXes to
manage the local communication. To perform diverse types of com-
putations, each PE consists of three main hardware components:
a multiplier array, an accumulation buffer array, and a versatile
functional unit (FU) array.

For GCN layers: Each GCN layer takes the normalized adja-
cency matrix (A), feature matrix (X), and weight matrix (W) as
inputs to calculate the final output X E*+1 =(Ax K w &)} where
K represents the number of GCN layer. The computation consists

Stack

Root Veﬂex'G]Traverss
Input Graph _J Graph E

Features

» \ / g ‘ Stack
8 s BQ
/ \ .2 Global Buffer
F c E e A
1 o |Vertices
Input Graph (a) = (c)

Stack
ot Grapn] rag> B C |
Stack
B C
[Global Buffer |
A

~

Index of
vertices

-

Feature
Matrix

Adjacency
Matrix

Load
Vertices

CN Layer-2. GCN Layer-1

£
]
=

Memory|

B C

In(;)ut Matrices (X)(b) (d) o

A —> » =
2 @ | Operations List
H
D A’ B % ; T
>B< ¢ A % > % Comb. A
o o omb.
¢ e—e EEEEN ° 8
Vertices for Y)\ Y J
updates Aggregation Combination (e)
Updat Features b ing Verti
rocessing Vertices:
e\. I a —» A,B,C,and G - "
S H [N - Operations List
"
NP A ® s g | Agg | A
8 | c ® Py B ¢
F/ \c E —>B © 2
- D g E Comb.| A
o B
Vertices for Djjj:‘ 5 \)

updates

Processing Vertices:
Aand G

Update Features

[
Combilnalion (f)

T
Aggregation

Figure 4: (a) Insert a new vertex (G) into the given graph G=(V, E), where the values of both V and E are six in this example. (b)
The update of both adjacency and feature matrices after inserting vertex-G. Note that in real applications, the adjacency matrix
is typically normalized. In this example, we set values of the adjacency matrix to 0 or 1 for simplicity. (c) and (d) illustrate
the evolution of loaded vertices stored in the global buffer for two GCN layers, respectively. The stack is used to record the
datapath during graph traversal. Additionally, (e) and (f) depict the processing of aggregation and combination phases of loaded
vertices, providing a detailed list of the operations that occurred.

of an aggregation phase (SpMM) and a combination phase (GeMM).
In this case, each PE activates the unified multiplier array followed
by accumulation buffers to perform the required computations.
Those multipliers located within the same row/column share the
same data from the input dense/sparse buffers, respectively. Partial
sums of multipliers are then forwarded to the accumulation buffers
through a permutation network for further addition. The permuta-
tion network is controlled by the index of data stored within the
FIFO and is used to pair the multipliers with the corresponding ac-
cumulation buffers. Additionally, each PE applies the Outer Product
(OP) loop unrolling technique when performing SpMM and GeMM.
Compared to the other two common loop unrolling techniques,
namely Inner Product (IP) [10] and Row-based Product (RP), OP
can mitigate the impact of the workload imbalance induced by the
sparsity of the graph’s structure [11-14]. Each functional unit, as
shown in Fig. 3 (c), is configured to perform activation functions,
such as ReLU and Sigmoid.

For RNN layers: Each RNN layer utilizes the output of previ-
ous GCN and RNN layers as inputs (x(t) and h(t-1)) multiplied by
weight matrices to produce the final result. The computation can
be abstracted as h(t) = f(U X x(t) + W X h(t — 1)), where U and W
represent the weight matrices, and f is a function that calculates
the Hadamard product. Similarly to the GCN layer, the SpMM in
the RNN layer is performed by the multiplier array and the accumu-
lation buffers. Additionally, the accumulation buffers also perform
element-wise addition on the matrix level with intermediate results
of RNN layers. Each FU serves two functionalities: (1) calculating
the Hadamard products, and (2) performing activation functions,
including ReLU, Sigmoid, and Tanh.

2.3 Flexible Interconnection Design

To effectively manage data communication among PEs and support
the adaptive dataflow, the proposed design integrates a flexible inter-
connection design with reconfigurable switches, as shown in Fig. 3
(b). Each switch features two input ports, two output ports, a local
port, and a First-In-First-Out (FIFO) buffer. The input/output ports
are used to share data communication with adjacency switches. The
FIFO is used to store the data received from the corresponding PE
or neighboring switches. Additionally, several MUX/DEMUXes are

used to adjust the directions of data transmission, which are config-
ured by the local controller according to the required dataflow. To
ensure data synchronization and eliminate per-hop control timing
overhead, those switches within the same row or column work
in a systolic manner, wherein all the tiles are simultaneously sent
across the PE array. The working of the proposed interconnection
network and supported dataflows for the GCN and RNN layers are
detailed as follows.

For GCN layers: Given that E-DGCN follows a tile-based archi-
tecture, both adjacency and feature matrices are partitioned into
compact tiles to align with on-chip storage constraints. Each PE
handles the computation of a specific pair of tiles. During the aggre-
gation phase, to maintain data synchronization, PEs in the same
row are assigned to the same set of vertices, while those PEs in the
same column manage identical sets of feature vectors. Additionally,
each simplified switch configures local MUX-DeMUXes to establish
links with neighboring switches in the same row, and each E-DGCN
PE is set up to execute Sparse-dense/General Matrix Multiplication
(SpMM/GeMM) computations. During the combination phase,
the horizontal connections remain active. Given that the weight
matrix of the GCN layer is small and dense [13], each PE stores the
weight matrix directly in its local input dense buffer without shar-
ing. Once the combination phase is completed, different features of
the same vertex in those PEs in the same row are streamed to the
GLB and then forwarded to the DRAM.

For RNN layers: Each RNN layer includes multiple gate func-
tions and each gate function has two types of input matrices: one
is the result of the current GCN layer (A) and the other is the result
of the latest RNN layer (B). Each gate function utilizes two dis-
tinct weight matrices to separately multiply two types of input and
perform the element addition at the end [1, 2]. Therefore, the two
types of input matrices are shared among diverse gate functions.
Under this circumstance, E-DGCN assigns the entire row of PEs to
the same set of vertices and the entire column of PEs to the same
type of weight matrix. During the computations, the tiles of the
input matrix are shared by PEs horizontally. After finishing the
transmission of the input B matrix, the A matrix will be streamed
in the same way as the B matrix. Concurrently, the result of each
PE stays locally for accumulation. When completing both types of

Algorithm 1 Light-weight Vertex Caching Algorithm

- Inputs: The number of vertices (V), the graph structure
(adjacency_matrix), the root vertex (R), the array includes the
id of vertices located in global buffer (array_reuse_vertices[]),
and the layer number of the ongoing GCN model (n)

2. Outputs: The array that includes the required vertices to be
loaded from the main memory.

: Begin:

: /[record the visit status of vertices.

: boolean visited[V]

- level = 0 // record the height of the DFS tree

- // Initialize the status of all vertices to un-visited

;. for vinV do

visited[v] = false

10: end for

11: stack(G) // the datapath for recording traversal

12: // A DFS-based recursive traverse function

13: traverse(R, adjacency_List[R], level)

14: // record the vertices needed from the main memory

15: array = stack() - array_reuse_vertices[]

16: return array

N -

=

input matrices, vertical links are active while horizontal links are
disabled for result accumulation.

2.4 Lightweight Vertex Caching Algorithm

Dynamic graphs encompass various operations involving the ad-
dition or removal of edges, features, and vertices over time [3, 15].
These operations impact DGCN inference as changes occur in the
input adjacency and feature matrices. Fig. 4 shows an example
of the addition of vertices in DGCN, with other operations being
abstracted similarly. We utilize a DGCN model that includes two
conventional GCN layers in this example. As shown in Fig. 4 (a), the
system inserts a new vertex (G) to the given graph G=(V, E), where
V and E represent the number of vertices and edges, respectively
(both V and E are six in this example). By adding the new vertex,
modifications occur in both the adjacency and feature matrices,
as illustrated in Fig. 4 (b). In this scenario, only vertices A and G
undergo the aggregation and combination phases of GCN Layer-1.
This is because the addition of vertex-G specifically influences the
arrangement of vertex-A’s neighbors. Following the completion
of Layer-1, the updated features of vertices A and G necessitate
updates in the second GCN layer for vertices A, B, C, and G, as
illustrated in Fig. 4 (d). This is because the update of vertex A has an
impact on both vertices B and C. With two GCN layers, the opera-
tion of inserting a new vertex G only impacts the results of vertices
A, B, and C, which is limited for DGCN inference. Additionally,
throughout the entire GCN inference, the values of the adjacency
list and intermediate results of vertices A and G can be reused.
Based on the aforementioned observation, E-DGCN deploys a
lightweight vertex caching algorithm based on Deep-First Search
(DFS) to efficiently locate those vertices impacted by the update,
efficiently manage, and avoid redundant data memory access, as
illustrated in Algorithm-1. Specifically, the proposed algorithm
designates the updated vertex (N) as the root node and loads the
adjacency list of the vertex N to an array. Subsequently, the pro-
posed algorithm calls a recursive traverse function, as shown in
Algorithm-2, which takes the root node and the adjacency list as
inputs to traverse the graph, identifying those vertices impacted by

Algorithm 2 Recursive Traverse Function

1: Inputs: Root vertex (R), adjacency List of vertex-R
(adjacency_List[R]), the degree of the DFS tree (level)

2: Begin:

3: void traverse (Vertex R, Adjacency_List adjacency_List[R], int
level)

4. for v in adjacency_List[R] do

5. if visited[v] then

6 // v is already in the stack

7. else

8 stack(v)

o visited(v) = true

10: endif

11: if level == n then

12: // Begin backtrace, and the recursion is finished.

13 else

14: traverse (v, adjacency_List[v], level+1)

15. endif

16: end for

the updated vertex N. The termination condition for the recursive
function is based on the height of the search tree. The maximum
value of the height is determined by the total number of GCN layers
involved in DGCN models. After the traverse function is completed,
the system receives an array (stack), including vertices that need to
be loaded for the current GCN layer. As the number of processing
GCN layers increases, the height of the traversal tree also grows.
Moreover, vertices at the top of the tree are frequently accessed.
To avoid redundant off-chip memory access of these vertices, the
proposed design records the index of these vertices using an addi-
tional array and stores the intermediate results of these vertices
on-chip for subsequent reuse, thus reducing data memory access.
Given a DGCN model with N GCN layers, the time complexity of
the proposed algorithm is O(V+E), where V and E represent the
number of vertices and edges traversed by the algorithm.

An example of the proposed vertex caching algorithm is demon-
strated in Fig. 4. As shown in Fig. 4, the proposed algorithm des-
ignates the inserted vertex G as the root node. Subsequently, the
system traverses all its neighbors (A in this example) and stacks
them for the first GCN layer. Fig. 4 (c) and (e) illustrate the ver-
tices stored inside the global buffer and the detailed operations
performed on the loaded vertices for the first GCN layer, respec-
tively. After completing the aggregation and combination phases
for all the loaded vertices, the proposed algorithm uses these loaded
vertices as root nodes to explore new required vertices at a deeper
level through the traverse function. Simultaneously, the results of
both vertex A and G from the first GCN layer are stored within
the on-chip buffer for future data reuse. The index and the height
of A and G are stored in the on-chip table for easy lookup. Fig. 4
(d) and (f) illustrate the vertices stored inside the global buffer and
the detailed operations performed on the loaded vertices for the
Layer-2 of GCN inference, respectively.

3 EVALUATION AND ANALYSIS
3.1 Experiment Setup

Hardware simulator. We build a cycle-accurate simulator in C++
language to model the hardware behavior and evaluate the perfor-
mance of the proposed design. Specifically, the designed simulator

Table 1: Details of datasets used for evaluation

Datasets Vertices | Edges | Features Description
Wikipedia (WI) | 9,227 157,474 172 Citation Graph
Reddit (RD) 55,863 | 858,490 602 Social Graph
Twitter (TW) 8,861 119,872 768 Sharing Graph
PubMed (PM) 1,917 88,648 500 Citation Graph

precisely counts the exact number of on/off-chip data memory read
and write operations, which is used to estimate the energy consump-
tion of the memory access according to [16]. To measure the area
consumption, we model all the proposed hardware logic, including
the unified reconfigurable array, controller, MUX-DeMUXes, FI-
FOs, and other hardware components. We use the Synopsys Design
Compiler with the TSMC 45nm library for the synthesis. We set
the clock frequency at 1 GHz. We use Cacti 6.0 [17] to estimate the
area, power, and access latency of all types of on-chip buffers.

Architecture Configuration. We implement the proposed de-
sign including KxK PEs/simplified routers array. Each PE includes
an NXN multiplier array connected to an accumulation buffer with
NxN adders. Additionally, each PE includes NXN functional units
for required activation functions. During the evaluation, we set the
values of K and N to be 8 and 4, respectively. Additionally, in Sec. 3.5,
we conduct a scalability analysis to illustrate the relationship be-
tween performance and the dimensions of the unified array. Since
the proposed E-DGCN is a tile-based architecture, the capacity of
the input sparse/dense buffer within PEs is 320 KB and 4 KB to
accommodate the required data of each tile. The output buffer used
to store the intermediate and final matrices is 256 KB. The capacity
of the FIFO inside each simplified router is 320 KB, designed to
accommodate the largest tile of data that needs to be transferred
between modified PEs such as feature matrices.

Datasets and Benchmarks. Table 1 illustrates four dynamic
graphs used for evaluation in this paper with the number of ver-
tices and edges [1, 18, 19]. We consider two typical DGCN models:
T-GCN [6] and CD-GCN [1]. Specifically, T-GCN includes GCN and
Gated Recurrent Unit (GRU). CD-GCN includes GCN and Long-
Short-Term-Memory (LSTM) models. The 32-bit floating-point rep-
resentation is used in the evaluation, which proves to be sufficient
for maintaining inference accuracy [20, 21].

Baselines. To perform fair cross-platform comparisons, we com-
pare E-DGCN to the state-of-the-art DGCN software framework,
PyGT [22], on CPU (Intel Xeon V4) and GPU (NVIDIA A100), iden-
tified as PyGT-CPU and PyGT-GPU, respectively. We also compare
E-DGCN to prior work on DGCNs such as ReaDy [2]. Additionally,
since DGCNs mainly include two basic kernels, GCN and RNN,
we compare E-DGCN to the combination of state-of-the-art GCN
(I-GCN [12]) and RNN (ERA-LSTM [23]) accelerators, connecting
as a tandem-engine architecture (denoted as I-LSTM).

3.2 Data Memory Access

Fig. 5 shows the normalized off-chip data memory access of the
proposed design (E-DGCN) compared to previous works. All the
evaluation results are normalized to the proposed design, and a
lower value indicates better performance. E-DGCN outperforms

Data Memory Access

PM RD WI TW PM RD WI TW PM RD Wi
T-GCN CD-GCN Avg.
= PyGT-CPU m PyGT-GPU " ReaDy = |-LSTM = E-DGCN
Figure 5: Normalized off-chip data memory access with two

different DGCN models on four datasets (lower is better).

1

=]

=
™

1

=)
A

1

1

Normalized Data Memory Access
=)
>

o

Execution Time

3|

PM RD WI TW PM RD WI TW PM RD Wi

T-GCN CD-GCN Avg.
= PyGT-CPU = PyGT-GPU " ReaDy = |-LSTM = E-DGCN
Figure 6: Normalized execution time with two different
DGCN models on four datasets. All the data is evaluated

in cycles (lower is better).

- [[
=) = =]
N

Normalized Execution Time (Cycles)
=
=)
>

o

previous approaches for several reasons. Firstly, compared to con-
ventional processing units (CPU and GPU), E-DGCN can directly
utilize the sparse input matrices stored in a compressed format
without under-utilizing hardware resources, such as on-chip data
storage. In comparison to ReaDy, E-DGCN implements a dynamic
dataflow when performing different neural network models to max-
imize on-chip data reuse, thereby reducing off-chip memory access.
Additionally, benefiting from the proposed algorithm, E-DGCN can
selectively load required vertices during each GCN layer instead
of loading the entire graph. This approach minimizes unnecessary
data memory access induced by unimpacted vertices when oper-
ations happen, such as when inserting or removing vertices from
the graph. Moreover, the proposed algorithm allows E-DGCN to
effectively store the intermediate results of inter-layers of the GCN
model locally instead of writing them back to the main memory. All
methodologies mentioned above help the proposed design reduce
off-chip data memory access by nearly 50% on average compared
to the ReaDy design.

3.3 Execution Time

Fig. 6 illustrates the execution time of the proposed design in com-
parison to previous works, measured in terms of the total number of
execution cycles. The execution time includes the duration of con-
figuration calculations, the transmission of relevant control signals,
and the setup of the entire architecture. E-DGCN achieves an aver-
age of 54.5% reduced execution time (2.2 X speedup) compared to

Energy Consumption

102,
101
100 I II i

PM RD WI TW PM RD WI TW PM RD WwWI Tw

T-GCN CD-GCN Avg.
= PyGT-CPU m PyGT-GPU " ReaDy ® |-LSTM = E-DGCN

Figure 7: Normalized energy consumption with two different
DGCN models on four datasets (lower is better).

Normalized Energy Consump(ion

previous works. This is because E-DGCN provides improved compu-
tation and communication. Specifically, compared to crossbar-based
approaches, the proposed design utilizes the sparse data format
directly, eliminating the time required for data format conversion
from sparse to dense. Furthermore, compared to the tandem-engine
design where two engines may idle while waiting for results from
each other, the unified reconfigurable array helps minimize idle
time, leading to improved performance. Furthermore, the flexible
interconnection design and vertex caching algorithm contribute
to performance improvement with reduced off-chip data memory
access and fine-tuned dataflow.

3.4 Energy Consumption

All approaches estimate the related energy consumption according
to [17], and are normalized based on the proposed design. As shown
in Fig. 7, the proposed design achieves around 61.5% (2.6X) energy
savings on average compared to previous customized designs. This
is because our proposed architecture design has reduced DRAM
accesses, improved on-chip data reuse, and efficient execution of
data computations.

3.5 Scalability Analysis

We evaluate the scalability of the proposed architecture by varying
the dimension of the unified reconfigurable array, using the T-GCN
model with the Twitter dataset. The array size is scaled from 1x1 to
8x8. All performance metrics are measured in cycles and normalized
to the performance of the 1x1 dimension. As depicted in Fig. 8, even
though the scaling of PE array size continues to induce execution
time reduction, the improvement is diminished. This is because
the main memory bandwidth becomes the primary performance
bottleneck as the dimension of the PE array increases, especially
when substantial computing resources are available for the given
DGCN models in use, according to the Roofline model [24].

3.6 Area Consumption

We evaluate the area consumption of the proposed architecture
under TSMC 45 nm technology, and E-DGCN occupies a total area
of 45.58 (mm?). Specifically, for the proposed PE, the three types of
input buffer consume around 68.6% of the total PE area, while the
switch with embedding a FIFO (320 KB) consumes around 30.5%. In
the overall architecture design, the 4 X 4 unified reconfigurable ar-
ray occupies the majority of the area, accounting for approximately
72.3%. The reused vertices table consumes 0.2% chip area.

4 CONCLUSION

We propose an efficient accelerator design named E-DGCN for high-
performance and energy-efficient Dynamic Graph Convolutional

Scalability Analysis
(Performance and Dimensions of PE Array)
1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Normalized Execution Time

1x1 2x2 4x4 8x8
Dimensions of PE Array

Figure 8: Normalized execution time when scaling the dimen-
sions of the unified reconfigurable array (lower is better).

Network (DGCN) inference. Specifically, E-DGCN includes recon-
figurable Processing Elements (PEs) with a flexible interconnection
design to support diverse types of data computations and various
dataflows, with maximized on-chip data reuse and hardware uti-
lization. Additionally, a lightweight vertex caching algorithm is
proposed to exploit data locality, enabling E-DGCN to selectively
load required vertices from the main memory during DGCN infer-
ence, thereby reducing off-chip data memory access.

REFERENCES

[1] Aldo Pareja et al. Evolvegen: Evolving graph convolutional networks for dynamic
graphs. In Proc.of AAAI’20, 2020.
[2] Yu Huang et al. Ready: A reram-based processing-in-memory accelerator for
dynamic graph convolutional networks. In TCAD, 2022.
[3] Mahbod Afarin et al. Commongraph: Graph analytics on evolving data. In Proc.of
ASPLOS’23, 2023.
[4] Emanuele Rossi et al. Temporal graph networks for deep learning on dynamic
graphs. arXiv preprint arXiv:2006.10637, 2020.
[5] Avery Ching et al. One trillion edges: Graph processing at facebook-scale. Proc.
of the VLDB Endowment, 2015.
[6] Ling Zhao et al. T-gen: A temporal graph convolutional network for traffic
prediction. In ITS, 2019.
[7] Justin Gilmer et al. Neural message passing for quantum chemistry. In Proc. of
ICML’17, 2017.
[8] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[9] Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math, 1990.
[10] Shmuel Winograd. A new algorithm for inner product. In TC, 1968.
[11] Tong Geng et al. Awb-gen: A graph convolutional network accelerator with
runtime workload rebalancing. In Proc. of MICRO’21, 2020.
[12] Tong Geng et al. I-gen: A graph convolutional network accelerator with runtime
locality enhancement through islandization. In Proc. of MICRO21, 2021.
[13] Jiajun Li et al. Genax: A flexible and energy-efficient accelerator for graph
convolutional neural networks. In Proc. of HPCA’21, 2021.
Jiajun Li et al. Sgenax: A scalable graph convolutional neural network accelerator
with workload balancing. In TPDS, 2021.
[15] Maciej Besta et al. Practice of streaming processing of dynamic graphs: Concepts,
models, and systems. In TPDS, 2021.
[16] Song Han and Others. Eie: Efficient inference engine on compressed deep neural
network. ACM SIGARCH Computer Architecture News, 2016.
[17] Naveen Muralimanohar et al. Cacti 6.0: A tool to understand large caches.
University of Utah and Hewlett Packard Laboratories, Tech. Rep, 2009.
Palash Goyal et al. Dyngem: Deep embedding method for dynamic graphs. arXiv
preprint arXiv:1805.11273, 2018.
[19] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive
graph analytics and visualization. In Proc. of AAAI'15, 2015.
Seyed Mehran Kazemi et al. Representation learning for dynamic graphs: A
survey. The Journal of Machine Learning Research, 2020.
Mingyu Yan et al. Hygen: A gen accelerator with hybrid architecture. In Proc. of
HPCA’20, 2020.
Benedek Rozemberczki et al. Pytorch geometric temporal: Spatiotemporal signal
processing with neural machine learning models. In Proc. of CIKM’21, 2021.
[23] Jianhui Han et al. Era-Istm: An efficient reram-based architecture for long short-
term memory. In TPDS, 2019.
Samuel Williams et al. Roofline: an insightful visual performance model for
multicore architectures. Communications of the ACM, 2009.

(14

[18

[20

[21

[22

[24

	Abstract
	1 Introduction
	2 Proposed E-DGCN Design
	2.1 Architecture Overview
	2.2 E-DGCN Processing Element (PE)
	2.3 Flexible Interconnection Design
	2.4 Lightweight Vertex Caching Algorithm

	3 Evaluation and Analysis
	3.1 Experiment Setup
	3.2 Data Memory Access
	3.3 Execution Time
	3.4 Energy Consumption
	3.5 Scalability Analysis
	3.6 Area Consumption

	4 Conclusion
	References

