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We consider the problem of finding a system with the best primary performance measure among a finite num-
ber of simulated systems in the presence of subjective stochastic constraints on secondary performance mea-
sures. When no feasible system exists, the decision maker may be willing to relax some constraint thresholds.
We take multiple threshold values for each constraint as a user’s input and propose indifference-zone proce-
dures that perform the phases of feasibility check and selection-of-the-best sequentially or simultaneously.
Given that there is no change in the underlying simulated systems, our procedures recycle simulation obser-
vations to conduct feasibility checks across all potential thresholds. We prove that the proposed procedures
yield the best system in the most desirable feasible region possible with at least a pre-specified probability.
Our experimental results show that our procedures perform well with respect to the number of observations
required to make a decision, as compared with straight-forward procedures that repeatedly solve the prob-
lem for each set of constraint thresholds, and that our simultaneously-running procedure provides the best
overall performance.
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1 INTRODUCTION

We consider the problem of selecting the best or near-best system with respect to a primary per-
formance measure among a finite number of simulated systems while also satisfying stochastic
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constraints on one or more secondary performance measures. When no feasible system exists
with respect to a given set of threshold values, the decision maker may be willing to relax the
threshold values of some constraints so that a feasible system can be found. In that sense, con-
straints with multiple thresholds can be considered as subjective constraints. The decision maker
is often uncertain about the values of performance measures of simulated systems. Thus, the de-
cision maker may prefer tight threshold values, but may worry that the desired thresholds will
lead to infeasibility and settle for weaker thresholds. The decision maker could achieve this by
starting with the desired thresholds and relaxing them until at least one feasible system is found.
Alternatively, she could start with the most relaxed thresholds and tighten them until no feasible
system exists. This iterative approach can be tedious and time-consuming. Our approach allows
the decision maker to consider several sets of thresholds at the same time, with statistical validity,
and hence removes the need for both trade-offs between feasible and desirable thresholds, and for
iteratively considering different thresholds. We illustrate this problem with an example.

Suppose a decision maker wants to design an inventory policy such that the expected fill rate
within each review period is maximized. She considers using an (s, S) inventory policy (namely
ordering products to increase the inventory level up to S when the inventory level at a review pe-
riod is below s and placing no order, otherwise). Two constraints exist, namely the probability that
a shortage occurs between two successive review periods should be less than or equal to ¢; = 1%
and the expected cost per review period should be less than or equal to ¢,, where the value of g,
is small. The decision maker thinks g, = $100 is small but is willing to relax the threshold to $105
or $110 if no feasible system can be found with g, = $100. If there is still no feasible systems with
respect to g2 = $110, then the decision maker is willing to raise the threshold ¢; to 5%, still with
three possible values for g,. To solve this problem, a straightforward approach is to first rank the
combinations of the thresholds of both constraints based on how the decision maker prioritizes
the thresholds, for example, the threshold combinations (gi,q2) are preferred following the or-
der of (1%, $100), (1%, $105), (1%, $110), (5%, $100), (5%, $105), and (5%, $110). Then, she can apply
existing constrained optimization procedures repeatedly to identify the optimal system that is fea-
sible with respect to each combination of the thresholds until an optimal feasible system is found.
However, this iterative approach can be computational inefficient. Alternatively, since the decision
maker has some flexibility with respect to the threshold on each constraint, the two constraints
can be viewed as subjective constraints. Identifying the optimal system in the presence of two
subjective constraints, where we consider all threshold combinations simultaneously, provides a
new approach of solving the problem.

Ranking and selection (R&S) aims to identify a system with the best performance among
finitely many systems whose performances are estimated by stochastic simulation. References [13]
and [10] provide literature reviews on R&S. When the problem requires not only selecting the best
system with respect to a primary performance measure but also determining the feasibility with
respect to stochastic constraints on secondary performance measures, it becomes constrained R&S.
There are three major approaches to solving constrained R&S, namely the indifference-zone (I1Z)
approach, the optimal computing budget allocation (OCBA) approach, and the Bayesian ap-
proach. References [11, 17], and [18] propose sampling frameworks that approximate the OCBA
considering stochastic constraints. Reference [21] proposes a sequential policy from the Bayesian
approach for allocating simulation effort to determine a set of systems with mean performance ex-
ceeding a threshold. For the IZ approach, the decision maker usually needs to specify an IZ param-
eter, which corresponds to the smallest significant difference of a performance measure that she
values (see further discussion in Section 2.2). Reference [3] proposes a fully sequential procedure
that finds a set of feasible systems given multiple constraints. Reference [1] proposes procedures
that select the best with respect to the primary performance measure among a finite number of
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simulated systems in the presence of a single stochastic constraint on a secondary performance
measure. Reference [9] applies the concept of dormancy to efficiently solve constrained R&S and
[8] proposes procedures to select the best in the presence of multiple constraints.

For constrained R&S, if each constraint has one fixed threshold value, procedures due to [1] or
[8] can be used. When the decision maker is willing to consider multiple threshold values, one
may consider iteratively applying those procedures “from scratch” to each set of thresholds. How-
ever, this wastes all the information from the previous constrained R&S problems and becomes
computationally inefficient. Given that there is no change in the simulation model of each system,
a natural idea is to recycle simulation observations for constrained R&S with different thresholds.
The idea of recycling simulation observations for computer experiments is proposed in [6]. How-
ever, they focus on estimation rather than comparison. Reference [22] proposes a procedure that
performs feasibility determination when the decision maker wants to consider multiple threshold
values on each constraint. They use the idea of recycling simulation observations and perform
feasibility determination simultaneously with respect to all thresholds so that the overall required
number of observations is reduced. However, their focus is on feasibility determination rather than
on finding the best feasible system in the presence of subjective constraints.

In this article, we adopt the concept of recycling simulation observations in the context of con-
strained R&S when constraint thresholds vary. We provide fully sequential procedures that return
the best feasible system with respect to the most preferred threshold values possible, where the
preference order among thresholds is specified by the user. The threshold values for constraints are
relaxed until there is at least one feasible solution. We prove that our procedures achieve a desired
overall probability of correct selection (PCS) and also perform well in reducing the required
number of observations until a decision is made compared with straight-forward repeating pro-
cedures, namely applying the procedures of [1] or [8] iteratively to each possible set of threshold
values depending on whether the problem has a single constraint or multiple constraints.

It is worth mentioning that, besides the formulation of constrained R&S, there are two other
approaches for dealing with multiple performance measures. A frequently used approach is to
aggregate multiple objectives into a single objective by applying weights or a utility function, as
discussed in [4]. However, determining the appropriate weights or utility function can be tricky,
particularly when the units of the objectives differ (e.g., costs and probabilities). Furthermore, the
optimal solution may vary as the weights or utility function changes. Another approach is to
identify a Pareto set, which comprises non-dominated solutions for multiobjective optimization
problems. A number of ranking and selection procedures have been developed to find Pareto sets
for stochastic multi-objective problems, including [5, 7, 16], and [2]. While the approach of find-
ing a Pareto set is in general applicable to the problem we discuss, our formulation and methods
that utilize subjective constraints provide an alternative approach. Our proposed formulation pro-
vides two potential advantages regarding the problem discussed. First, the Pareto set may include
several alternatives that excel in one performance measure while severely compromising other per-
formance measures. Given that such extreme systems are unlikely to appeal to the decision maker,
the computational effort spent to identify those systems may be avoided. Second, the Pareto set
could consist of a large number of systems, leaving the decision maker with the challenge of identi-
fying all non-dominated systems before eventually selecting one among the many systems present
on the Pareto frontier for implementation. Our formulation overcomes this issue with the Pareto
set formulation, as discussed in further detail in Sections 2.1 and 5 and through a case study in
Section 7. However, there are other circumstances where identifying the entire Pareto set is desir-
able, such as when the decision maker does not aim to optimize a primary performance measure
among all performance measures or when the decision maker wishes to understand the perfor-
mance of all non-dominated systems (e.g., to study trade-offs post hoc). Due to the fact that our
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proposed procedures solve a different problem than MORS procedures (e.g., we optimize a pri-
mary performance measure subject to subjective constraints on secondary performance measures,
rather than identifying the entire Pareto set), we do not directly compare the performance of our
proposed procedures with that of the Pareto set approach.

The rest of the article is organized as follows: Section 2 provides the background for our prob-
lem. Sections 3 and 4 propose and analyze sequentially-running and simultaneously-running pro-
cedures, respectively, for the feasibility check and comparison phases. Section 5 discusses three
major preference orders of the constraint thresholds. In Section 6, we present numerical results for
the proposed procedures and compare their performances with the straight-forward procedures
that apply existing constrained R&S procedures repeatedly to each set of thresholds. Section 7
further demonstrates the implementation and the performance of our proposed procedures
through a case study based on an inventory policy example. Concluding remarks are provided
in Section 8. Finally, the Appendices include the statement of one proposed procedure and two
competing procedures, the detailed proof of the statistical validity of the proposed and competing
procedures, the description of setting the required implementation parameters, and some addi-
tional experimental results.

2 BACKGROUND

In this section, we formulate our problem in Section 2.1 and discuss how we define the correct se-
lection event in Section 2.2. The assumptions for the statistical validity of our proposed procedures
are presented in Section 2.3.

2.1 Problem Formulation

We consider k systems whose primary performance measures, as well as s secondary performance
measures, can be estimated through stochastic simulation. Let I denote the index set of all possible
systems (i.e., I' = {1,...,k}). Let X;, be the observation associated with the primary performance
measure of system i from replication n, and Y;s, be the observation associated with the {th sto-
chastic constraint of system i from replication n, where € = 1,...,s. We also define the expected
values of the primary and secondary performance measures for each system i € I' and constraint
{=1,...,sasx; = E[Xj,] and y;s = E[Yi¢y], respectively. Constrained R&S is to select

arg max;.r  X;
s.t. yie <q¢ foralll=1,...,s,

where g, denotes the constraint threshold for constraint ¢.

For a given threshold vector q = (q1, . . ., ¢s), procedures due to [1] can be used to find the best
system if there is only one constraint. If there are multiple constraints, procedures due to [8] are
suitable. In this article, we assume that the decision maker has a list of possible threshold values
in consideration for each constraint and hopes to select the best system with respect to the most
preferable thresholds possible. We further assume that k > 2 in this article. We let d, denote the
number of distinct threshold values and q,,, denote the mth distinct threshold value on constraint
t,wherem=1,...,dpand € =1,...,s. Weassume q¢; < --- < qz,q4,, Where { =1,...,s.

The threshold values for individual constraints are combined into an ordered list of vectors of
threshold values {q(l), q(z), e, q(d)}, where d denotes the total number of threshold vectors that
the decision maker is interested to test. We assume that q!) is preferred to q'¥), q® is preferred
to q¥, and so on. For the implementation of our procedures, a decision maker can input (i) the
ordered list of threshold vectors, or (ii) an ordered list of threshold values for each constraint and a
mechanism for constructing an ordered list of threshold vectors from the inputted threshold values
(see Section 5). Note that the ordered list of threshold vectors should remain fixed throughout the
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implementation. We let q(e) be the threshold value on constraint £ in q?), where § = 1,...,d
and { = 1,...,s. Then we introduce the threshold index vector I ) to include the indices of the

threshold values that form q'?). Similar to the definition of qi, ), Ié )

represents the threshold index
on constraint £ in q'?).

Consider the example of selecting the best inventory control policy discussed in Section 1. Then
s = 2,d; = 2 (i.e., two threshold values for the first constraint), d, = 3 (i.e., three threshold values
for the second constraint), 1,1 = 1,q1,2 = 5, and gz,1 = 100, gz > = 105, and gz 3 = 110. Moreover,

we consider the following d = 6 ordered threshold vectors

m_|1 @_ |1 @_|1 @_|?° G _ |2 © _
4 [100]’ 4 105}’ d [110]’ d [100’ 47 = | 105+ 2ndd 110

Note that q(l) = qu) = q<13) =1, q<4) = q(ls) q( = 5, while q(l) qgl) = 100, qg = q(zs) = 105, and

qf) = qg@ 110. The threshold index vectors are

o _ |1 @ _ |1 3 _ |1 @ _ |2 ) _ |2 © _ |2
I _|:1:|’ I _|:2:|’ I _|:3’ I _1, I — z,al’ldI = 3.

Hence IV = 1” = 1¥ = 1,1 = [¥ = [V = 2, while I} = ;) = 1,LI[’’ = I = 2, and
V=19 =3

For § < d, we use Ag to denote the region that is feasible under threshold vector q© but
not under threshold vectors q(l), e, q(e‘l) (if @ > 1), and use Ay to denote the region that is
infeasible to all qV, . . ., q'?). More specifically, we let

{(zl,zz,.. ,Zs) Zp<q()€—12 }, if0=1;
Ag = {(zl,zz,.. ,Zs) 1 z¢ < q(e) t=1,2,. }\Ug;iA,c, if0=2,...,d; (1)
]RS\UK1 if0=d+1.

With this definition of Ag, we can say that the decision maker wants to find the best among systems
whose constraint mean configurations fall in A; but would consider systems in A, if no systems
fall in A;. She would further consider systems in As if no systems fall in A; and A; and d > 3, and
SO on.

We assume that the ordered list of threshold vectors is such that when there is no trade-off,
the decision maker always prefers “tighter” combinations of threshold values. Consider a case
where there are two (non-negative) constraints, the first constraint has three thresholds, and the
second constraint has two thresholds. Then it is not possible for the decision maker to prefer
(91,3.92,1) to (q1,2, q2,1) in the preference order. Figure 1 shows A, ..., As for an example with
d = 4 combinations of threshold vectors. We see that q(l) = (41,2, q2,1) does not correspond to the
“tightest” combination of threshold values (i.e., (1.1, q2,1)), and similarly q(d) = (q1.3,q2,1) does not
correspond to the “weakest” combination of threshold values (i.e., (¢1,3, 2.2))-

The following definition will facilitate the efficient implementation of our approaches.

Definition 2.1. Constraint ¢ has an increasing preference if q(e) < qw ) for any 0,0’ =1,2,...,d
with 0 < 6",

We consider the following two examples to further explain Definition 2.1. Figure 2 shows three
preference orders of threshold vectors for two (non-negative) constraints with d; = d; = 3.
Based on our definition of threshold vectors, Figure 2(a) formulates the threshold vectors as

<1) = (q1,1.92,1), q( ) = = (q1,1,92,2)s q< ) = (91,1 92,3)s q( ) = = (q1,2,92,1), and so on. We see that
constramt 1 has increasing preference whereas constraint 2 does not. On the other hand, we have
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Yiz
92,2 As
Ay | As
921
Ay Ay
q11 q1,2 q1,3 Jn

Fig. 1. A preference order where the “tightest” (“weakest”) combination of thresholds is not “most” (“least”)
preferred threshold vector.

Ui Yiz Yiz
Ao Ay Ao

923 q2,3 q23

Az | Ag | Ag As Ayg | A7 | Ay
q2,2 q2,2 q2,2

Ay | As | Ag Ay Ay | As | Ag
g2,1 g2.1 q2.1

Ay | Ay | Ay Ay Ay | Az | Ag

Yi1 Ui Yi1
911 912 913 91,1 912 913 911 912 4913

() (b) ©

Fig. 2. Three preference orders.

d =3,qY = (g1.1.921). 9% = (q1.2.922), and ¢® = (g3, qz.3) in Figure 2(b), which satisfies
Definition 2.1 for both constraints. Finally, in Figures 2(c) and 1, neither constraint has increasing
preference.

2.2 Correct Selection

To solve the constrained R&S problem with subjective constraints described in Section 2.1, we
consider two phases, namely Phase I to identify feasible systems and Phase II to select a system
with the largest x; based on a comparison among feasible systems. These phases are designed
to correctly select the best feasible system with respect to the most preferred threshold vector
possible, as described in this section.

For stochastic constraints, it is not always possible to guarantee a correct feasibility determi-
nation with respect to the stochastic constraints. Instead, [1] introduces a tolerance level, namely
€r > 0, for constraint ¢, which is a positive real value predefined by the decision maker. This is
often interpreted as the amount the decision maker is willing to be off from a given threshold
value. Consider a threshold value g, for m = 1,2,...,ds. Any systems with y;r < qr.m — €/
are considered as desirable systems with respect to constraint £ and threshold value g ,,. We let
D¢(qr,m) denote the set of desirable systems for constraint £ and gz, ,,. Systems with yir > qr.m+€r
are considered as unacceptable systems for constraint £ and threshold g, ,, and are placed in set
Ur(q¢, m)- Systems that fall within a tolerance level of gz, n,, which means g, m—€r < yir < qe,m+€c,
are considered as acceptable systems, placing them in the set Az(q¢, m). More specifically,

De(qe,m) ={i €T | yir < qem — €2}
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Ue(qe,m) = {i €T | yir = qe,m + €¢}; and
Ae(qem) ={i €T | gem — €0 < Yie < qe,m + €¢}-

Remark 1. As discussed in [1], a feasible (infeasible) system i with yir € (qe.m — €£,96,m)
(Yic € (ge.m»> qe.m + €¢)) that falls in the acceptable set with respect to constraint £ may be declared
infeasible (feasible). This leads to potential errors in feasibility decisions, which are analogous to
Type I and II errors of a hypothesis test. Therefore, g¢,» and €, should be chosen based on which
error the decision maker views more important. For example, for the cost constraint of the inven-
tory example in Section 1, if the decision maker wants to select systems whose expected cost is
below 105 but eliminate all systems whose expected cost is above 110, she can set gz, ,,, — €, = 105
and q¢,m + €, = 110, which is equivalent to setting g, ,, = 107.5 and ¢, = 2.5.

When feasibility check is performed to completion (until a decision is made), we let CD;/(qz, m)
denote the correct decision event of system i with respect to constraint ¢ and threshold g, ,, which
is defined as declaring system i as feasible if i € D(q¢, ) and as infeasible if i € Ur(qs, m). Any
feasibility decision is considered correct if i € Az(qy,m). For any threshold vector q'?), we say that
system i is desirable with respect to ) when it is desirable with respect to all the constraints, that
is, i € Dg(qi,e)) forall £ = 1,...,s. System i is unacceptable with respect q'?) if it is unacceptable

with respect to at least one constraint, that is, there exists ¢ such that i € Ug(qg,a) ). When system
i is acceptable to some (or all) the constraints and desirable with respect to the other constraints,
system i is called acceptable with respect to q'?).

To select the best system with respect to the primary performance measure in Phase II, the deci-
sion maker needs to choose an indifference-zone parameter 6, which is the smallest absolute differ-
ence that the decision maker considers significant in terms of the primary performance measure.
More specifically, any system whose primary performance measure is at least 6 smaller (larger)
than system i is considered as inferior (superior) to system i.

Let 6 be the smallest 8 such that Df(qg,g)) # Qforall¢.Ifforeach @ = 1,...,d, there exists at least

one constraint £y such that Dy, (q(é’i)) = (), that is, 0* does not exist, then we set 0* = d+1.If0* < d,

then q©”) is the most preferable threshold vector possible where at least one desirable system exists.
Further, let B denote the set of desirable systems with respect to q7) (i.e., B = ﬂj,leg(q(fg*)) and
let [b] be the index of the best system among the systems in B, so that x| > x; for i, [b] € B. Then
if " < d, the correct selection event is to select a desirable or acceptable system with respect to
q'%") whose primary performance is not inferior to the best system, or an acceptable system with
respect to a preferred threshold vector. More specifically,

CS = {select i such that either i € ﬂ“}:l (D[ (q(;*)) UA, (q%a*))) and x; > x5 — &

ort € Upep- 05y (Do (4) 0 4 (47) }

If 0* = d+1, CSis to either declare that no feasible systems exist or identify any acceptable system
with respect to any of the threshold vectors q'V, . . ., q?.

Remark 2. If €, is small enough that no acceptable systems exist, then a CS event corresponds to
the selection of either system [b] or an acceptable system i with respect to q'°") where x; > X[p] = 0.
However, if there are acceptable systems with respect to q?) for § < 6*, then they may be declared
feasible to q'?). In this case, systems infeasible to q'?) are eliminated including system [b], and a CS
event happens when selecting an acceptable system i (probably with the best primary performance
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Yi2

Yi1

q11 q1,2

Fig. 3. Regions for two secondary performance measures and six threshold vectors.

measure but no guarantee whether x; > x[3) — ) from among those declared feasible with respect
to q(g).

To better illustrate the CS event, we consider a problem with two constraints where the first con-
straint has two thresholds and the second constraint has three thresholds. We consider all d = 6
possible threshold vectors qV, . . ., q(®). Figure 3 presents possible (non-negative) secondary per-
formance means and thresholds where the shaded areas represent acceptable regions with respect
to one or more threshold vectors, and Ay, . . ., A are defined as in Equation (1) and are separated
by the solid lines. Assuming that there are four systems a, b, c, and d, we see that (i) 0* = 5;
(i) a,b € Ugg- Ni_, (De(q”) U A(q'?)); and (i) a,c,d € N3_ (De(q”) U Ar(g)). Then a CS
event is to select system i € {a, c,d} such that x; > x5] — 5. Another possible CS event is to select
a when a is declared feasible to q'") because systems {b, c,d} are infeasible to q'V). Similarly, if a
is declared infeasible to q'*) and q'® but b is declared feasible to q*), then the selection of b is a
CS event. Finally, if a is declared infeasible to ") but both a and b are declared feasible to q*),
then {c, d} are eliminated and the selection of a or b (with a better primary performance measure)
becomes a CS event.

2.3 Notation and Assumptions

Throughout the article, we let 1(-) be the indicator function and |S| be the cardinality of set S, and
use the additional notation defined below:

ny = initial sample size for each system (ny > 2);

r; = number of observations so far for system i (r; > ny);

X;(r;) = average value of X1, . . ., X, for system i;
Yi¢(r;) = average value of Yi1, . . ., Yi¢y, for system i and constraint ¢;
S?Q,»(”O) = sample variance of X;; — Xj1, ..., Xjn, — Xjn, between system i and j;
5?/,.[("0) = sample variance of Yi, . . ., Yjzp, for system i and constraint ¢;
no— 1)wz v
R(r;;v,w, z) = max {0, g - 2—r,~} forv,w,z€ R andc € {1,2,...};
v c

N e\ —(mo-1)/2
DY (1 ~Lig= c)) ‘ (1 N M) |
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a = overall nominal error for a procedure under consideration, where 0 < o < 1.

Note that an integer parameter ¢ is required for both R(rj;v,w,z) and g¢(n). This is
a user-defined parameter that impacts the shape of the continuation region defined by
(=R(ri;v,w, 2), R(ri; v, w, z)) (it becomes a longer triangle as ¢ increases). The choice ¢ = 1 is
recommended as it guarantees a unique and easy solution when computing the implementation
parameter n from g(n). Reference [12] shows the derivation of R(r;; v, w, z) and also suggests that
¢ = 1is a good choice when the decision maker does not have information about the systems’
mean configuration. The experimental results in the article are based on ¢ = 1.

Our statistical analysis of our proposed procedures will rely on the following two assumptions.

ASSUMPTION 1. For each system i, wherei =1, ..., k, we have
Xin X;
Y; i, i
o y:” il n=12...
Yisn Yis

where '~ denotes independent and identically distributed, Ny, denotes (s + 1)-dimensional mul-
tivariate normal, and %; is the (s + 1) X (s + 1) positive definite covariance matrix of the vector

(Xin, Yitn, - - ., Yisn). Furthermore, for the primary performance measure, we have
Xin X1
SN s
Xkn Xk
where X' is the k X k positive definite covariance matrix of the vector (Xipn, . . ., Xkn)-

Normally distributed data is a common assumption used in many R&S procedures due to the
fact that it can be justified by the Central Limit Theorem when observations are either within-
replication averages or batch means ([15]). Moreover, primary and secondary performance mea-
sures are usually correlated. When common random numbers (CRN) are introduced in simulat-
ing observations from each system, observations between systems are correlated. Our formulation
allows correlations between both performance measures and systems. Note that Y;¢, and Yj¢, can
be correlated for i # j if CRNs are used. However, as feasibility determination involves compar-
isons between Y;¢, and thresholds rather than Yj¢,, we do not require any assumptions about their
covariance structure across systems.

(0)

* . 2
ASSUMPTION 2. If0* < d, then for any system i € ﬂj,:l(Dg(q(f Hu Ar(q,

assume x; < X[p] — 6.

), where i # [b], we

Assumption 2 implies that there exists only one best system [b] and any systems that are desir-
able or acceptable with respect to q;@*) for all constraint £ = 1, ..., s are inferior to system [b]. In
reality, one can choose a reasonably small § to satisfy Assumption 2. This assumption is a standard
assumption for proving the statistical validity of IZ approaches in the R&S literature.

3 SEQUENTIALLY-RUNNING PROCEDURES

In this section, we present two procedures, namely ZAKR and ZAK, that implement Phases I
and II sequentially.

References [1] and [8] also propose sequentially-running procedures to select the best system
in the presence of multiple constraints. Our sequentially-running procedures use similar steps in
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Phase II as [1] and [8], but the steps for Phase I are different because [1] and [8] consider one
fixed set of thresholds while we consider multiple thresholds. Our approach for handling multi-
ple threshold values builds on the work of [22] who developed R¥, an efficient fully-sequential
procedure for checking the feasibility of all systems with respect to all constraints and all thresh-
olds simultaneously. Reference [22] show that once a system i is declared feasible with respect to
a threshold g, such that q¢, > yir + €, this system will be declared feasible with respect to
all thresholds q¢, m+1, - - -, qe,4, on constraint £. Similarly, if a system i is declared infeasible with
respect to a threshold g, such that gz, < yi¢r — €¢, then this system will be declared infeasible
with respect to all the thresholds gz 1, . . ., g7, m—1. This fact is essential in our proposed procedures.

The ZAK™R (“restart”) procedure is statistically valid, while the ZAK procedure is heuristic.
The two procedures are similar in the sense that both start by executing Phase I for all systems
to identify the most preferred threshold vector possible, "), as well as the feasible systems with
respect to q(%"). The parameter @ keeps track of our current estimate of * (initially 6 = d), M is
a set of systems that are in consideration (initially M contains all the systems, that is, M = T),
and F is a set of systems that are declared feasible with respect to threshold vector q'? (initially
F = 0). The procedures return Z; ¢ m = 1 (Zi ¢.m = 0) if system i is declared feasible (infeasible)
with respect to constraint ¢ and threshold q}", and Z; ¢,m = 2 if no decision is made about the
feasibility of system i with respect to threshold g, ,, on constraint ¢. Notice that once a system is
declared feasible with respect to threshold vector q?) where 1 < @ < d—1, we do not need to check
feasibility for any systems with respect to the less preferred threshold vectors q?*, ..., q?.

The sequentially-running procedures, ZAKR and ZAK, perform Phase II on the surviving
systems from the completion of Phase I. More specifically, it selects the best system with respect
to the primary performance measure among the subset of systems that are declared feasible with
respect to the most preferred threshold vector possible identified in Phase I. The main difference
between them lies in whether they collect observations on the primary performance measure dur-
ing Phase I and recycle them in Phase II. In order to prove the statistical validity of Z AKR and
avoid storing simulation results, the procedure avoids the correlation between the primary and sec-
ondary performance measures by not recycling any observations from Phase I and instead restart-
ing “from scratch” when implementing comparisons in Phase II. Moreover, when CRN are used to
compare systems in Phase II, we assume that the implementation of CRN is such that the simula-
tion results for any surviving system in Phase II do not depend on the set of surviving systems F
(e.g., the simulation results for any surviving system i would be the same as if F = T'). ZAKR is
described in Algorithm A.1 along with its statistical validity in Appendix A. A discussion about
how to set the implementation parameters for Z AKR is given in Appendix B.1.

As ZAKR starts “from scratch” when performing the comparison, it discards all the informa-
tion related to the primary performance measure obtained in Phase I, which can be quite ineffi-
cient in terms of the computation effort. One may consider collecting and storing all the observa-
tions of the primary performance measure in Phase I and then extracting information related to
the primary performance measure when performing Phase II. However, as Phase I may require a
lot of observations, this approach requires significant memory for storing the observations from
Phase L. [19] proposes the Sequential Selection with Memory procedure (SS M) that is specifically
for use within an optimization-via-simulation algorithm when simulation is costly, and partial or
complete information on solutions previously visited is maintained. When data storage is prohib-
itive, the procedure requires only summary statistics of the simulation output, which solves the
memory space issue discussed above. We then present a sequentially-running procedure, namely
ZAK, that adopts the SSM procedure as its Phase II. The detailed description is shown in
Algorithm 1.
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ALGORITHM 1: Procedure ZAK.

[Setup:] Select the overall nominal confidence level 1 — « and choose 0 < af, @ < 1 such that ¢ + ac = @. Choose

tolerance levels €y, . . ., €, indifference-zone parameter 8, threshold vectors {q(l), q(z), e, q(d) }, and associated index
vectors {I(l), I(Z), ., I(d)}. Set M =Tand Z; ¢, = 2foralli e M, =1,...,s,andm =1,...,d¢.Set F = 0
and 0 = d. Set 1y such that g(r77) = a]’c, where 0 < aj’, < 1/s is set as a solution to

k-1
(1 — min{s, d}a]’r) X (1- sa}) =1- ay, if systems are simulated independently;
and set as
zx} = ag/[(k = 1)min{s, d} + s], if systems are simulated under CRN.
Add any constraint £, where £ = 1, . . ., s, with increasing preference to set IP.
[Initialization for Phase I:]
for each system i € M do
— Obtain ng observations Y;¢1, Yiga, - - ., Yign, for £ =1, 2, ..., s. Also, obtain ng observations X;,, n =1, ..., ny.
— Compute Y;/(ng) and S%,'f(no).
— Compute X;(ng) and Sg(ij(no) for all systems j # i.

—Setr; =ngp, ON; ={1,2,...,s},andON;p = {1,...,dp}for£=1,2,...,s.
end for
[Feasibility Check:]

for each system i € M do
for £ € ON; do
for m € ON;/ do,
If Yie(ri) + R(ris e, 1 5§if(no))/ri < qe,m set Zi ¢, m =1and ON;z = ON;z \ {m}.
If Yie(ri) = R(ris e, 1 Sii()("o))/ri > qe,msset Zi ¢, m = 0and ON;, = ON;¢ \ {m}.
end for '
IFON;, = 0, set ON; = ON; \ {£}.
end for
If 3 minimum x < 6 s.t. H;:l Zi,f,I;K) =1, and either k < @ or i ¢ F, then

— If k < 0, thenset F = 0, 0 = k, and for all j € M delete g, ,, from ON;; if £ € IP and m > I;,g) (if ¢ ¢ IP, then
q¢, m can be removed from ONj, if IE,Q’) # mforall 0" < k), and set ON; = ON; \ {£} if ON;, = 0.
— Add system i to F.
115, Zi,L’,Ii,g) = 0 or 1 and either = 1 or []}_, Zi,l.Iqu)
from M.
end for
[Stopping Condition for Phase I:]
If M # 0, then for each system i € M, set r; = r; + 1, take one additional observation Y;¢,, and X; ;+1, and update
Yi¢(ri) and X;(r;) for £ € ON;, then go to [Feasibility Check]. Else, check the following conditions.
— If |F| = 0, stop and conclude no feasible systems;
— If |F| = 1, stop and return the system in F as the best; or
— If |F| > 1, go to [Initialization for Phase II].
[Initialization for Phase II:] Let 7. be a solution to g(n.) = &/, where

=0forallx =1,...,6 — 1, then remove system i

, 1—(1 = ac)YUFI=D if systems are simulated independently;
{ac/(|F| -1), if systems are simulated under CRN.
Let M = F be the set of systems still in contention. Set r = min;cf r; and go to [Comparison].
[Comparison:] For i, j € M s.t. i # j and
rXi(ri) > rX;(rj) + R(r; 6, ne, Sg(ij(no)),
eliminate j from M.

[Stopping Condition for Phase II:] If |[M| = 1, then stop and return the system in M as the best. Otherwise, for each
system i € M with r; < r, take one additional observation X; ,,+1, set r; = r; + 1 and compute X;(r;). Then, set
r =r + 1and go to [Comparison].
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Similar to the discussion in [1], there are two difficulties in proving the statistical validity of
ZAK. First, as r;, the number of observations X;, collected in Phase I, depends on Y;¢, for sys-
tem i, this dependency affects the comparison in Phase II. This dependency issue can be resolved
by performing Z AKX instead as it restarts “from scratch” for the surviving systems of Phase I.
Second, we use g(1.) = a./(|F| — 1) instead of g(1.) = a./(k — 1) to compute the implementation
parameter 7, for Phase II. Thus, we only allocate the nominal error for Phase II to the comparison
between the best system [b] and the surviving systems from Phase I, rather than all k — 1 other
systems. As the comparison between [b] and the other surviving systems is done with a larger
nominal error, the resulting 7. is smaller, which helps improve the efficiency of our approach. How-
ever, the continuation region in Phase II now depends on the number of surviving systems from
Phase I. We address the dependency between Phases I and II in ZAK by choosing the nominal
errors ay and a, for Phases Tand Il as af + a. = a to incorporate the correlation between the two
phases. While (1 — af)(1 — a.) is always larger than 1 — (af + a.), the difference is typically quite
small. Although we have not proved the statistical validity of ZAK, our experimental results
(discussed in Section 6) do not show any violation of its validity.

The choices of af and . affect the performance of ZAK. Similar to the discussion in
Section B.1, the decision maker may choose e; = af/a. if she has knowledge on the relative
difficulty of Phases I and II. The value of a. can be found by solving e; X o, + a. = @, and the
corresponding value of ay can be found as af = e; X a.. If the decision maker does not have the in-
formation about the relative difficulty of Phases I and II, one possibility is to choose af = a. = a/2.
Similar to ZAKR, another possibility is to choose e; = saj}/aé if s < d or to choose ey = da}/aé
ifd < s. Appendix B.2 provides a detailed discussion on how to set the implementation parameters
a}, al for Phase I.

4 SIMULTANEOUSLY-RUNNING PROCEDURE

In this section, we provide a procedure that implements Phases I and II simultaneously. This pro-
cedure aims to solve the problem from a different perspective. Specifically, by implementing Phase
I and II simultaneously, the elimination of inferior and infeasible systems can happen simultane-
ously throughout the procedure. This procedure increases the opportunity to eliminate systems
whose feasibility are still unknown but are clearly inferior to a certain system. As a result, the
procedure is expected to be more efficient than the sequentially-running procedure. Section 4.1
describes the simultaneously-running procedure and Section 4.2 proves its statistical validity.

4.1 Procedure ZAK+

In this section, we provide a procedure that runs Phases I and II simultaneously in
Algorithm 2. Similar to the sequentially-running procedures Z AKR and ZAK, we use the vari-
able 0 to keep track of the current most preferred threshold vector for which we are trying to deter-
mine feasibility. Initially, 0 is set to d, which is the index of the least preferred threshold vector. We
use sets M and F defined as in Section 3 and additionally define set SS; as a set of systems found to
be superior to system i in terms of the primary performance measure.

Rather than performing Phase I on the surviving systems from Phase I as ZAK" and ZAK
do, we now perform both feasibility check and pairwise comparison for all systems that are still in
consideration (i.e., i € M) within each iteration. More specifically, for each system i € M, we check
whether there exists a minimum threshold vector that system i is feasible with respect to, use 0
to keep track of this threshold index, and update set F if appropriate. When a feasible decision is
made for system i, we perform an additional step in Phase I: eliminate system j € (MUF)if i € SS;
(system i € F is shown to be superior compared with system j) and system j is not feasible with

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 22. Publication date: July 2024.



Selection of the Best in the Presence of Subjective Stochastic Constraints 22:13

respect to any of qV, ..., q'?~V. In Phase II, once a system i is declared superior compared with
system j in Phase II, we add system i to SS;. Furthermore, if system i € (F N SS;) and system j is
infeasible with respect to all q(l), o, q(e’l), then we eliminate system j from M and F.

Note that simultaneously-running procedures in [1] and [8] also use sets M, F, and SS;, and
their [Comparison] step is similar in the sense that pairwise comparison is performed among
the systems whose superiority is not yet determined. However, the procedures in [1] and [8] are
designed for a fixed set of thresholds, and thus there is no search for the most preferred threshold
vector 0, and there is no resetting of set F. By contrast, ZAK+ checks if a more preferred threshold
vector is found at each iteration. Whenever a more preferred threshold vector is found, the index
0 and F are reset, and systems feasible to the updated threshold vector 0 are added to the reset
set F.

A detailed description of the simultaneously-running procedure ZAK+ is shown in
Algorithm 2.

4.2 Statistical Validity of the Simultaneously Running Procedure

In this section, we present the proof of the statistical validity of the simultaneously-running pro-
cedure ZAK+. Before presenting the main results, we need more definitions. Let 6" be defined
as in Section 2.2. We define the sets S,, S,,, So/, and Sy as follows:

S = set of acceptable systems with respect to at least one of the threshold vectors q'?, ..., q¢" Y,
s = set of unacceptable systems with respect to q'°") among systems inT'\ S,,  if 8" < d;
TS if0" =d+1;
g {set of acceptable systems with respect to ") among systems in '\ S,, if 8* < d;
a = .
0, ife" =d+1;

S {set of desirable systems with respect to q'°") among systems in '\ (S, U {[b]}), if 0" < d;
d = .
0, if0* =d+1.

Wethenlet j, = [Sul, jor = |Sa|sja = |Sal, and j, = |Sy|, and therefore j,+jo+ja+j,+1(0" < d) = k.
For correct selection, we must select a system in S, U{[b]} and eliminate the systemsin S,y US;US,,
when 6" < d (under Assumption 2); when 6" = d + 1, CS involves eliminating all systems in S,
and either declaring all systems infeasible or selecting a system in S,.

To illustrate, recall the problem demonstrated in Figure 3, where 8" = 5. Figure 3 shows systems
a and b as two examples of acceptable systems with respect to preferred threshold vectors (i.e.,
a,b € S,). Note that system a is acceptable with respect to q'*), q¢?, ¢, and q* and desirable with
respect to q©°), while system b is acceptable with respect to q* but unacceptable to q, @, q¥,
and q©®). System c is acceptable with respect to q* (i.e., ¢ € S,/) and unacceptable with respect to
qV, .. q.

We then introduce the following definitions for i € I and present two lemmas that are essential
in proving the statistical validity of ZAK+.

AL = {system i is declared infeasible to q(l), R q(min{e*’d})} ;
AL (D) = {system i is declared infeasible to q(l), R q(e*_l) if1 <0< d} ;
B = {system [b] is declared feasible to q'°”) if §* < d} .

LEMMA 4.1. Under Assumption 1, for a particular system i, the [Feasibility Check] steps in
ZAK+ ensure

Pr (A;(i)) > 1 — min{s, d}pr, ifi € Su;

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 22. Publication date: July 2024.



22:14 Y. Zhou et al.

ALGORITHM 2: ZAK+.
[Setup:] Choose confidence level 1 -, tolerance levels €1, . . . €, indifference-zone parameter §, threshold
vectors {q(l),q(z), L q(d)}, and associated index vectors {I<1),I(2), ... ,I(d)}. Set M = TI,S8S; = 0, and
Zigom =2forallie M, =1,...,s,andm = 1,...,dp. Set F = 0 and 6 = d. Choose 0 < iy < 1/5,0 <
Pe < 1 that satisfy
min {(1 — min{s, d}ﬂf)j X (1= min{s,d - 1} — Be)k 1 — sﬂf]}

0<j<k-1

=1-aand0 < 1-min{s,d - 1}ff - fc <1,

if systems are simulated independently;

min {1 — [jmin{s,d} + (k — j — 1) min{s,d — 1} +s]pp—-(k—j- l)ﬂc} =1-a,
0<j<k-1

if systems are simulated under CRN.

Setny and ¢ such that g(ng) = B and g(1c) = fc. Add any constraint £, where £ = 1,.. ., s, with increasing
preference to set IP.
[Initialization:]
for each system i € M do
— Obtain ng observations from system i.
— Compute X;(ng), Yig(no),Sg(ij(no), and S?,M(no) foralli,j € M, wherei # j,and { = 1,...,s.
—Setr =np,ON; ={1,...,s},and ON;, = {1,...,dp}for £ =1,...,s.
end for
[Feasibility Check:]
forie Mdo
for £ € ON; do
for m € ON;, do
If Y;(r) + R(r; €, qf,Sg,M(no))/r < qge.m>set Zi g, m = 1and ON;p = ON;p \ {m};
If Yie(r) = R(riec, np, S5, (n0))/7 2 qg,m. set Zj ¢,m = 0 and ONj¢ = ONj \ {m}.
end for
If ON;, = 0, set ON; = ON; \ {¢}.
end for

If 3 minimum « < 0 s.t. ]—Ij,:1 Z. , ) = 1,and either k < O or i ¢ F, then

LI

—Ifx < 0, thenset F = 0,0 = k, and for all j € M delete q¢, ,,, from ONj if £ € IP and m > IE,H) (if ¢ ¢ IP,

then g, can be removed from ON;, iflga/) # m for all ¢’ < ), and set ON; = ONj \ {¢} if ON;, = 0.
— Add system i to F.
— Forallj € M,ifi € SSj and either 0 = 1or []5_, Zj

j from M and F (if j € F) and delete SS;.

If either [15_, Zi,f,I;K) =0foralll <k <0,0r6>1L[l;_,Z

there exists j € F N SS;, then remove i from M and delete SS;.
end for
[Comparison:] Fori,j € Ms.t.i # j,i ¢ SSj,j ¢ SSi, and

rXi(r) > rXj(r) + R(r: 8, 1. 8%, (no)),

£ = Oforallk =1,...,60—1, then remove system
b dp

= < < —
i,l’,I;K) Oforalll1 < x <60 -1, and

add systemito SS;.Ifi € F, then remove system j from M and F (if j € F)if either 6 = 1 or H;_l Zj = 0
T Ol

forallx =1,...,0 - 1, and delete SS;.

[Stopping Condition:] If M = F and |F| = 1, then stop and return the system in F as the best system. Else
if M = F and |F| = 0, then stop and return no feasible systems exist. Otherwise, for alli € M, setr =r +1,
take one additional observation, update X;(r) and Y;4(r) for all £ € ONj, and go to [Feasibility Check].
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Pr (A3(i)) = 1 —min{s,d — 1}ff, ifi € SqU Sy and 1 < 0" < d;
Pr(8;) > 1-sp, if 0" < d.

LEMMA 4.2. Under Assumption 1, given i such that x; < x[p) — 0, the [Comparison] steps in
ZAK+ run to completion ensure Pr(CS;) > 1 — f..

The proofs of Lemmas 4.1 and 4.2 are essentially the same as those of Lemmas A.2 and A.3 that
are used to prove the statistical validity of ZAKR. This is because both 0(]’, of ZAK™R and Br of
ZAK+ are the nominal error of feasibility check for one constraint of one system with a fixed
threshold, and both &/ of Z AKX and Be of ZAK+ are the nominal error of comparison between
an inferior system and the best system [b].

We are now ready to prove the statistical validity of ZAK+.

THEOREM 4.3. Under Assumptions 1 and 2, the ZAK+ procedure guarantees Pr{CS} > 1 — a.

The proof of Theorem 4.3 is provided in Appendix C.

We now discuss how to choose implementation parameters r and f8. in simultaneous-running
procedure ZAK+. One approach is to first decide the choice of e = sfs/B. when s < d and
e = dfr/B. when s > d. Recall that this is the ratio of the error for a feasibility check of one
system for all constraints and all thresholds to the error of a comparison between two systems.
The ratio should be decided based on the decision maker’s idea on whether she wants to allocate
more error to feasibility check or comparison. A detailed discussion on how we compute f and
Be is included in Appendix D.

In reality, as the decision maker usually does not have detailed information on the mean per-
formance measures, choosing the value of e is not straightforward. [8] consider a single threshold
vector and choose e = 1 to balance the errors assigned to feasibility check and comparison. As it is
reasonable to allocate more of the errors to feasibility check when multiple threshold vectors are
under consideration, we use e = 2 for our experimental results to demonstrate the performance of
our proposed procedure (based on the discussion in Section 6.2).

5 DIFFERENT PREFERENCE ORDERS OF INPUT THRESHOLD VECTORS

As discussed in Section 1, our procedures Z?W(R,Zﬂ‘](, and ZAK+ require lists of thresh-
old vectors {q(l), q<2>, o, q(d)} and index vectors {I(l), 9 .. I(d)}. Having to manually enter
preference order is tedious from both a problem formulation and implementation points of view.
Techniques for facilitating this makes our approach more practical and useful. In this section, we
discuss three preference orders for formulating the input threshold vectors, namely ranked con-
straints, equally important constraints, and total violation with ranked constraints. The experi-
mental results for multiple constraints shown in Section 6 are based on these three preference
orders.

Ranked constraints: The constraints are ranked with respect to their importance and the decision
maker wants to relax the least important constraint first while keeping the rest of the constraints
fixed at the current threshold values, and then move to the second least important constraint, and
so on. Figure 2(a) shows Ag for 0 = 1,...,9whens = 2and d; = d; = 3, the secondary performance
measures are non-negative, and constraint 1 is more important than constraint 2. The inventory
example discussed in Sections 1 and 2 also has ranked constraints with constraint 1 being more
important than constraint 2.

Equally important constraints: All constraints are equally important and the decision maker
wants to relax all constraints by one threshold at the same time. If the constraints do not all have
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the same number of thresholds, then constraints that have gone through all their thresholds keep
the “loosest” threshold (i.e., gz 4, for constraint £) while the other constraints relax. Figure 2(b)
shows this case for two constraints and three thresholds on each constraint.

Total violation with ranked constraints: The decision maker wants to minimize the number of
total violations on ranked constraints. For constraint ¢ with threshold g, its violation is defined
as m—1 (relative to the tightest threshold g, 1). Then the total violation is defined as the sum of the
violations for all constraints. The decision maker always prefers threshold vectors that have fewer
total violations, and among threshold vectors that have the same total violation, her preference
order is based the priority of the constraints. In Figure 2(c), constraint 1 more important than
constraint 2. Region A; is defined with respect to (¢1.1, g2.1) and has total violation 0. Regions A,
and A; are defined with respect to (q1,1, q2,2) and (q1,2, 2,1), respectively, and have total violation
1, with A; preferred to As due to the ranking of constraints 1 and 2. In this preference order, we
start with a threshold vector with total violation equal to 0 and then relax the total violation by
relaxing the less important constraint first. The largest total violation is >\;_,(d¢ — 1).

The detailed algorithm statements of how to construct the three preference orders are included
in Appendix E.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate the performances of our proposed
procedures ZAKR, ZAK, and ZAK+. We compare them with alternative procedures that iter-
atively apply sequential or simultaneous procedures to threshold vectors qV, .. ., q'@. If a single
constraint is considered, our alternative procedures use AK or AK+ due to [1] for each thresh-
old value. If multiple constraints are considered, our alternative procedures use HAK or HAK+
due to [8] for each threshold vector. We name the procedures that iteratively implement AKX
and AKX+ as Restart* and Restart?%*, respectively. Similarly, we name the procedures that it-
eratively implement HAK and HAK+ as RestartT"X and Restart "X+ respectively. Notice
that Restart”"% (Restart™%™) is the special case of Restart” % (Restart”%*) when the num-
ber of constraints is one and therefore does not need to be considered separately. We provide
the algorithm statements and discussions of the statistical validity of procedures Restart’*% and
Restart™ "%+ in Appendices F and G, respectively.

All the experimental results are based on 10,000 macro replications with & = 0.05 and ny = 20
and we report average numbers of observations (OBS) and estimated PCS. We set k = 100 and
0 = €¢ = 1/4/ng, where £ = 1,...,s. We discuss the experimental configurations in Section 6.1
and how we set the implementation parameters for our proposed procedures in Section 6.2. We
then provide the experimental results to show that our proposed procedures are statistically valid
and efficient in Sections 6.3 and 6.4, respectively. Experimental results for the inventory example
discussed in Sections 1 and 2 are provided in Section 7. Appendix J discusses the impact of applying
CRN in our proposed procedures.

6.1 Experimental Configurations

In this section, we discuss the mean and variance configurations for primary and secondary per-
formance measures. We consider three mean configurations of systems, namely difficult means
(DM), monotone increasing means (MIM), and monotone decreasing means (MDM). All
the configurations depend on the number of systems b that are desirable with respect to thresh-
old vector q?”). As the existence of acceptable systems will not lower the PCS (because declar-
ing acceptable systems feasible or infeasible with respect to a specific threshold value are both
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considered as correct feasibility decisions) and as [1] show by experiments that the presence of
acceptable systems does not significantly affect the overall performance of procedures AK and
AK+, we do not include acceptable systems in our three configurations.

As the purpose of the DM configuration is to demonstrate the performance of the proposed
procedures under a difficult case, we set the difference between any two consecutive thresholds
on one constraint to the minimum possible value, so that the boundary of the unacceptable region
of gz, m is the boundary of the desirable region of gz, m+1. This is achieved by setting q¢. m+1 — gz, m
equal to 2¢, for all m and €. When 0" < d, the means of all secondary performance measures
are set to the boundary of the desirable region of q'?") for b systems (i.e., the mean of secondary
performance measure ¢ for b systems is q(t,e*) — ¢€¢). For the other (k — b) systems, to make the
feasibility check difficult, the means of their secondary measures are set to the boundary of the
desirable region of q'?"*?) (i.e., the means of secondary performance measure ¢ for (k — b) systems
is q(t,ﬁ*ﬂ) —€7). When 0* = d, the b systems that are feasible to q°") are set the same as when 8* < d.
For the remaining (k — b) systems, we set them at the boundary of the unacceptable region for the
largest threshold of all constraints ¢ (i.e., yi¢ = q¢,q, + € Wheni=b+1,...,k). When 0" =d +1,
as all systems are infeasible to all the threshold vectors considered (i.e., b = 0), the means of the
secondary performance measures of all the systems are set as y;r = q 4, + €, for all i and ¢.

Moreover, the DM configuration has one system whose mean performance of the primary per-
formance is 8, the other systems that are feasible with respect to q'°") have primary performances
equal to 0, and all infeasible systems with respect to q°") have 26 as their primary performance
measures. This means that all the infeasible systems are superior compared with the best system
while all other feasible systems are only § inferior compared with the best system, which makes
the comparison also difficult. More specifically, in the DM configuration,

0, i=12,....,b—1,
Xi =E[Xin] = (S, i=b,
26, i=b+1,... k.

For all constraints £ =1,...,s,if 1 < 0* <d -1,

(07) ;
o L q, ' — € i=1,2,...,b,
e = Bllien] = { ¢ e, i=b+1,...,k
it 0" =d,
(6°) -
yif=E[Yi€n]={ Ie «“ 1.—1,2,...,17,
qed, +€, i=b+1,....k
and if 0° = d + 1, yi¢r = E[Yizn] = qe,4, + €¢ for all i. We consider the case when the decision maker
prefers threshold g, 1 = 0 for constraint ¢, and relax the constraint threshold by 2¢, every time
when she wants to consider a “looser” threshold value on that constraint. For example, we choose
thresholds {0, 2e,} and {0, 2¢,, 4€¢, 6€¢} on constraint £ when there are two or four thresholds in
consideration, respectively.

On the other hand, as the purpose of the MIM and the MDM configurations is to show the
efficiency of the proposed procedures in realistic settings, we set the differences between two
consecutive thresholds larger than in the DM configuration to see how effectively the proposed
procedures remove infeasible systems. In particular, we choose the smallest distance between two
consecutive thresholds on constraint ¢ in the MIM and MDM configurations as 4e,. When 6* < d,
the means of all secondary performance measures are set to the interior of the desirable region
of q'9) for b systems and the other (k — b) systems are evenly distributed over the interiors of
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A9 +1)s - - - » A(g+1) With respect to their secondary performance measures (i.e., for the systems in
A(g), the mean of secondary performance measure ¢ is set within the desirable region of q? as

q(t,w —2¢, where 0 = 0*,...,d,and as q; 4, +2€, when 0 = d+1). When 0" = d +1, we set the means
of the secondary performance measures to the interior of the unacceptable region for the largest
thresholds of all constraints ¢ (i.e., y;¢ = qr,q4, + 2€¢ for all constraint £). We also let the means of
the primary performance measure be monotonically increasing from 0 with an increment of § for
the MIM configuration, and let the primary performance measure be monotonically decreasing
from (k —1)é with a decrement of § for the MDM configuration. This makes the comparison easier
than in the DM configuration.

More specifically, we set x; = E[X;,] = (i —1)d,i = 1,...,k for the MIM configuration and
set x; = E[X;,] = (k —i)d,i = 1,...,k for the MDM configuration. The means of the secondary
performance measures of the MIM and the MDM configurations are the same. For all constraints
=1,...,sif1<0" <d,

(07)

q, - 2, i=1,2,...,b,
q([9*+1)—2€[, i=b+1,... rb+d+1 0*],
0 +2
D) _2er, i=Tb+ XL 41, b+ 2k,

yie = E[Yien] =

‘IE’d) — 2eg, i=[b+(d-0" - 1)d+l 9*1 1., [b+(d- 9*)d+1 9*]

qc,d, + 2¢€¢, i=[b+(d- 9*)d+1 9*] +1,...,k;

and if 0" = d + 1, yir = E[Yien] = qr,q, + 2€¢ for all i. The decision maker prefers .1 = 0, and we
relax the constraint threshold by 4e, when she wants to consider “looser” threshold values. For ex-
ample, for the cases of two and four thresholds, we choose thresholds {0, 4¢,} and {0, 4¢¢, 8e¢, 12€/}
on constraint £, respectively.

We consider three variance configurations to test different levels of relative difficulty of the fea-
sibility check and the comparison. We use o7, to denote the variance of the primary performance
from system i, cry . to denote the variance of the secondary performance ¢ from system i, and con-
sider both low variance (L) and high variance (H). When the difficulty between feasibility checks
and comparison are similar, we set oﬁi =1land oﬁi , = 1(L/L); when the comparison is relatively
more difficult than the feasibility checks, we set oﬁi = 5and oﬁi , =1 (H/L); and when the feasibility
checks are relatively more difficult than comparison, we set oﬁi =1land créi , =5 (L/H).

Reference [1] shows that the correlation between the primary and secondary performance mea-
sures does not have a significant impact on the experimental results. References [8] and [22] also
report the same tendency. Therefore, we assume the observations for the primary and secondary
performance measures from each system are independent normal random variables through
Sections 6.2-6.4. Section 7 illustrates how to apply our procedures in an inventory example where
the observations are not necessarily normally distributed, the primary and secondary performance
measures are correlated, and the secondary performance measures are also correlated.

With 10,000 macro replications, the first four digits of the OBS showed in the tables are mean-
ingful, and the estimated PCS values are meaningful up to the 0.001th digit.

6.2 Implementation Parameters

In this section, we discuss how we set the implementation parameters ej, e;, and e for the proposed
procedures ZAKR, ZAK, and ZAK+.
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As discussed in Appendix B, we introduce two approaches of setting the implementation param-
eters for procedures ZAKR and ZAK, namely setting e; = ay[a. and setting e, = sa}/aé. We

let Zﬂ‘K'lR (ZAK,) denote the version of procedure ZAKR (ZAK) that sets the implementa-
tion parameter as e; = ay/a.. Similarly, we let Zﬂ?(f (ZAK:,) be the corresponding procedure
that uses e; = saj’[ /a. Note that ZAK+ only has one setting of its implementation parameters,
namely e = sf¢/f., as discussed in Sections 4.2 and Appendix D.

For brevity, experimental settings and results are given in Appendix H. As discussed in
Appendices B and D, the optimal values of ey, e, or e (that result in the smallest OBS) depend
on the mean and variance configurations of the primary and secondary performance measures of
the systems. In the experimental results we test, the difficulty of feasibility check for one threshold
of one constraint is similar as for comparing one system with the best system [b]. This suggests
that e; = e, = e = s might be a good choice. In fact, the OBS achieves its minimum value for
different choices of ey, e, or e ranging from 1 to 7. In addition, we notice that the OBS is quite flat
around the ey, e;, or e with the smallest OBS for each proposed procedure. We also notice that the
OBS is similar between the two settings of the implementation parameters (e; and e;) of ZAKX
and ZAK, respectively. For these reasons, in the remaining sections we only consider ZAKK
and ZAK, with e, = 2 = sa}/aé and ZAK+ with e = 2 = 5B/, (see also the discussion in
Appendices B and D). In all cases, the minimum OBS is no more than 2.36% from the OBS when e;
or e equals 2.

6.3 Statistical Validity

In this section, we present experimental results that document the statistical validity of our pro-
posed procedures. The experimental results shown in this section are all under the DM mean
configuration since correct selection is more difficult in the DM mean configuration than in the
MIM or MDM mean configurations.

We first consider the case of a single constraint with four thresholds {0, 2¢;, 4€1, 6¢1}. Table 1
shows the estimated PCS under our three variance configurations and all possible 8" when b €
{25,50,75} (except that b = 0 when 0" = 5 because all systems are infeasible). We see that the
estimated PCS values of all proposed procedures are above the nominal level 0.95 under all variance
configurations, all possible values of %, and all values of b considered. One may also notice that
0" = 5and 0% = 1 (to a lesser extent) achieve higher estimated PCS compared with other values
of 6*. During Phase I, one needs to ensure that three events happen, namely declaring systems
in S, infeasible to threshold vectors qV, ..., q¢"), declaring the best system [b] feasible to q'?"),
and declaring systems in S, U S, infeasible to threshold vectors qV, ..., q? =V (see the detailed
analysis in Sections A and 4.2). Moreover, when 6* = d + 1, the best system does not exist and
therefore we do not need to perform Phase II to achieve CS. As a more preferred threshold vector
does not exist when 6 = 1 and the best system does not exist when 6" = 5, we have fewer sources
of error and therefore achieve a higher estimated PCS under those two cases.

Table 1 also indicates that for 1 < 0" < d, the estimated PCS decreases in general when b
increases. As the three events required by Phase I involve essentially making one difficult feasibility
decision correctly for each system (i.e., declaring systems in S,, infeasible to q'?"), declaring system
[b] feasible to q'°"), and declaring the remaining b— 1 systems infeasible to q'? V), different values
of b do not affect the difficulty of Phase I much. However, increasing b requires more correct
comparison decisions in order to eliminate the inferior systems (compared to [b]) that are feasible
to q'%") in Phase II. Combining Phases I and II, the estimated PCS is expected to decrease as b
increases. On the other hand, when 0* = 1, as there does not exist threshold vector q(e*_l), there is
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Table 1. Estimated PCS of Zﬂ?(R, ZAK, and ZAK+ for k = 100 Systems and s = 1 Constraint
with four Thresholds under the DM Configuration

ZAKK ZAK ZAK+
0 |b=25 b=50 b=75|b=25 b=50 b=75|b=25 b=50 b=75
1 0.985 0.986 0.985 0.979 0.981 0.987 0.986 0.986 0.987
LL 2 0.977 0.971 0.964 0.971 0.971 0.963 0.977 0.972 0.967
3 0.976 0.971 0.961 0.973 0.968 0.967 0.977 0.973 0.967
4 0.981 0.969 0.967 0.974 0.969 0.965 0.978 0.973 0.962
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.984 0.986 0.987 0.986 0.991 0.995 0.985 0.987 0.988
L/H 2 0.976 0.967 0.962 0.980 0.978 0.973 0.978 0.970 0.969
3 0.977 0.967 0.966 0.980 0.973 0.972 0.978 0.973 0.964
4 0.977 0.971 0.963 0.977 0.977 0.973 0.980 0.968 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.985 0.986 0.986 0.978 0.977 0.983 0.984 0.988 0.986
H/L 2 0.978 0.970 0.965 0.969 0.965 0.964 0.977 0.973 0.964
3 0.979 0.970 0.963 0.970 0.964 0.962 0.977 0.972 0.964
4 0.979 0.973 0.967 0.969 0.964 0.961 0.979 0.970 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

one less source of concluding incorrect decisions in Phase I (i.e., declaring b — 1 systems infeasible
to q'%"~1). Thus increasing b makes Phase I less difficult. Combining Phases I and II, depending
on the value of b and the error allocated to feasibility checks or comparison, the estimated PCS
may behave differently. When 0 = d + 1, all systems are infeasible, which means that b remains
0. For simplicity, we fixed b = 25 when 6" < d for the remainder of this section. Note that the
estimated PCS values do not differ much for different variance configurations, thus, we also fix the
L/L variance configuration in the rest of this section.

We then consider a case when two constraints are present. Each constraint contains three thresh-
olds {0, 2es,4€,} for ¢ = 1,2. Figure 4 shows the estimated PCS of the proposed procedures
ZAKR, ZAK, and ZAK+ with respect to all possible values of 8* under our three prefer-
ence orders. Thus, d = 9 for the ranked constraints and the total violation with ranked constraints
formulations and d = 3 for the equally important constraints formulation.

Figure 4 indicates that all three proposed procedures are statistically valid under our three pref-
erence orders. Note that the PCS is quite flat for all 8 under the equally important constraints for-
mulation. As the equally important constraints formulation relaxes all constraints by one threshold
(if the constraint has at least one “looser” threshold) every time when one considers a less preferred
threshold vector, declaring systems in S,, is easier than in the other two preference orders. There-
fore, the estimated PCS for different 6* under equally important constraints is relatively high in
general. For the ranked constraints and the total violation with ranked constraints formulations,
due to a similar reason as in the single constraint case, 6 = 1 and 0" = d + 1 achieve higher
estimated PCS compared with the other 6*. One may notice that 8" = d also achieves a relatively
high estimated PCS under these two preference orders. This is due to the mean configuration of
the secondary performances we use for the systems that are infeasible to q?). In the DM configura-
tion, we allocate b systems in Ag- and (k — b) systems to Ag- ;. When 0" = d, we set all secondary
performance measures of the (k — b) systems that are infeasible to q9) equal to y;; = 5¢, (see the
discussion in Section 6.1), which makes the detection of infeasibility of those systems easy (as the
systems are infeasible to both constraints).
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Fig. 4. Estimated PCS when s = 2 under our three threshold formulations as a function of 6*.

6.4 Efficiency

In this section, we address the efficiency of our proposed procedures compared with the alternative
procedures Restart™ A% and Restart ™A%+ under the DM, MIM, and MDM configurations.

Table 2 shows OBS for the single constraint case under the DM configuration with four thresh-
olds (the same experimental setting as in Table 1). We see that ZAK requires fewer OBS compared
with ZAKR when 1 < % < 4. This is expected as ZAK sets the implementation parameter for
Phase Il more efficiently than Z AKX (see the discussion in Section 3). When 6* = 5, ZAKR and
ZAK have similar performance as all systems are infeasible to q'¥) and Phase II is not needed
to achieve CS. Therefore, we omit the results for ZAKR from now on. We also see that the OBS
increases with b for all three procedures. This is due to the fact that having more inferior systems
that are feasible to q'?) requires more correct feasibility and comparison decisions to achieve the
final CS (on top of the feasibility decisions). One may also notice that all three proposed proce-
dures require much fewer observations when 8" = 5 compared with other values of 6*. This is
because all systems are infeasible when 6* = 5 and thus do not require observations for Phase II
to achieve correct selection. In terms of the comparison between ZAK and ZAK+, we see that
ZAK is more efficient than ZAK+ in general under the L/L and H/L variance configurations
while ZAK+ is more efficient in general under the L/H variance configuration. This is because
ZAK+ performs the feasibility checks and comparison simultaneously. Hence inferior feasible
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Table 2. Average Number of Observations of Zﬂ‘KR, ZAK, and ZAK+ for k = 100 Systems and s = 1
Constraint with four Thresholds under the DM Configuration

ZAKR ZAK ZAK+
0| b=25 b=50 b=75|b=25 b=50 b=75|b=25 b=50 b=75
1 22,659 29,344 35,537 17,350 20,628 24,208 19,037 22,218 24,885
LL 2 | 23,261 30,454 37,087 | 17,559 20,906 24,555 | 19,112 22,348 25,231
3 | 23,241 30,416 37,008 | 17,531 20,891 24,580 | 19,119 22,350 25,231
4 | 23,225 30,396 37,055 | 17,506 20,876 24,543 | 19,077 22,377 25,238
5 8,904 8,904 8,904 8,924 8,924 8,924 8,893 8,893 8,893
1 | 81,402 87,996 94,254 | 73,911 73,924 74,139 | 65,610 59,200 52,238
L/H 2 | 84,708 94,334 103,777 | 77,111 80,405 83,861 | 71,847 73,425 74,957
3 | 84,711 94,421 103,925 | 77,160 80,383 83,867 | 71,764 73,383 75,001
4 | 84,539 94,381 103,789 | 76,941 80,383 83,846 71,692 73,345 74,945
5 | 44,119 44,119 44,119 | 44,215 44,215 44,215 44,065 44,065 44,065
1 | 53,562 86,764 117,509 | 39,708 69,173 100,260 | 50,006 79,456 106,285
H/L 2 | 54,008 86,959 117,396 | 39,392 68,505 98,487 | 49,681 78,348 104,534
3 53,975 87,151 117,446 | 39,476 68,365 98,184 | 49,537 78,446 104,392
4 | 53,957 87,024 117,576 | 39,440 68,321 98,170 | 49,672 78,297 104,480
5 8,904 8,904 8,904 8,924 8,924 8,924 8,893 8,893 8,893

systems with respect to q") can be eliminated before knowing their feasibility with respect to
q'%"), and this benefit is more obvious when the comparison is easier than the feasibility checks
(i.e., L/H variance configuration). Also, we observe that the L/L variance configuration requires
the smallest number of OBS. This is expected because lower variance results in an easier problem.
However, H/L requires fewer OBS compared with L/H when b is relatively small (e.g., b = 25)
whereas L/H is better when b is relatively large (e.g., b = 75). This is reasonable because the b
inferior but feasible systems are often eliminated by comparison. Hence, the H/L variance con-
figuration performs better when b is small. For simplicity, we fixed b = 25 and the L/L variance
configuration in the rest of this section.

We then consider the single constraint case with ten thresholds under the L/L variance con-
figuration. Figure 5 shows the results for OBS of the proposed procedures ZAK and ZAK+
and their competing procedures Restart”® and Restart”** under the DM and MIM configura-
tion (the corresponding results for the MDM configuration are provided in Figure A.3). We see
that ZAK and ZAK+ outperform Restart™ and Restart”X*, respectively. This is expected as
Restart”* and Restart”* allocate the nominal error for the ten thresholds and thus the resulting
continuation regions used for feasibility check and for comparison are larger than those of ZAK
and ZAK+. We also see that the required observations increase dramatically for Restart”” and
Restart™®* when 6* increases, while the required observations for ZAK and ZAK+ remain
steady for all possible 6*. This is because Restart™” and Restart"** need to implement AK or
AK+ multiple times when 0" gets larger and thus become very conservative, while ZAK and
ZAK+ are designed for one critical threshold per constraint regardless of the number of thresh-
old values on that constraint. Note that ZAK and ZAK+ require much fewer OBS when 0" = 11
compared with other values of 0* (except for ZAK+ under the MDM configuration). This is due
to a similar reason as in the four thresholds case as all systems are eliminated by their infeasibility
when 6" = 11 and thus we do not need to wait for comparison among feasible systems to be com-
pleted. (The different behavior of ZAK+ under the MDM configuration is because under MDM
the system with the highest mean falls in the most preferred region, and hence when 6* < 10, the
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Fig. 5. Average number of observations of ZAK, Restartﬂ'K, ZAK+ and Restart?%* as functions of 0*
for k = 100 systems and s = 1 constraint with ten thresholds under the DM and the MIM configurations.

infeasible systems can be eliminated by both feasibility check and comparison while the infeasible
systems under MIM can only be eliminated by the feasibility check.) We see that Restart”* and
Restart?% also show a sharp decrease in OBS when 6* = 11 (except for Restart”** under the
MDM configuration), whereas OBS keeps increasing from 6 = 1 to 10. This is due to similar rea-
sons as for ZAK and ZAK+. However, as Restart' X and Restart %+ perform AK and AK+
eleven times until its termination, the OBS is still relatively high when 8 = 11. As the performance
of ZAK and ZAK+ is expected to be significantly better than Restart”* and Restart**, we
omit the results for Restart”® and Restart™** (and Restart"* and Restart "** when multiple
constraints are considered) and focus on comparing the performance of ZAK and ZAK+ in the
remainder of this section. Our results comparing all four procedures in the multiple constraints
case are included in Appendix 1. We see that ZAK+ performs better or similar to ZAK and
Restart”X performs better than Restart’* "% under all cases we consider.

We now consider the two constraints case where each constraint contains three thresholds un-
der the ranked constraints formulation and the MIM and MDM configurations (same experimental
setting as when s = 2 under the ranked constraints formulation in Section 6.3 except for the mean
configuration). Figure 6 shows the results of OBS for procedures ZAK and ZAK+. We see that
ZAK+ performs significantly better than ZAK under the MDM configuration, while their per-
formance is similar under the MIM configuration. This is because under the MDM configuration,
the best system [b] is feasible to the most preferred threshold vector q). As ZAK+ does not re-
quire both the comparison and feasibility decisions to be concluded to eliminate inferior systems
or infeasible systems with respect to q'%") (while ZAK needs to complete the feasibility check
phase to eliminate infeasible systems with respect to ")), when the best system [b] is feasible to
q", it can eliminate inferior systems once their feasibility is known to be no better than that of
[b] (this does not require concluding feasibility decisions for all the possible threshold vectors). On
the other hand, the MIM configuration sets the infeasible systems with respect to q°) as superior
systems compared with [b], and hence those systems can only be eliminated once we make sure
that they are not feasible to an improved threshold vector.

Figure 7 also shows the experimental results for two constraints with three thresholds on each
constraint for the equally important constraints formulation and the MIM and the MDM config-
urations (same setting as in Figure 6 except for the preference order). The result shows a similar
pattern as under the ranked constraints formulation. The dominance of ZA%K+ is more obvious
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Fig. 6. Average number of observations of ZAK and ZAK+ as functions of 6* for k = 100 systems and
s = 2 constraints under the MIM and MDM configurations for the ranked constraints formulation.
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Fig. 7. Average number of observations of ZAK and ZAK+ as functions of 8" for k = 100 systems and
s = 2 constraints under the MIM and MDM configurations for the equally important constraints formulation.

under the MDM configuration than under the MIM configuration. As the results for the total vio-
lation with ranked constraints formulation also show a similar pattern, we omit them here for the
sake of space and include them in Appendix 1.

As the MIM and MDM configurations aim to show the performance of the proposed procedures
in realistic settings, we focus on the comparison between ZAK and ZAK+ under those two
configurations. Based on the results shown in this section and Appendix I, we see that ZAK+
shows a significant improvement over ZAK under the MDM configuration while also outper-
forming ZAK in most cases under the MIM configuration. Therefore, since the decision maker
usually does not have much information about the means of the systems in practice, we recom-
mend ZAK+ as it provides the best overall performance.

7 INVENTORY POLICY EXAMPLE

In this section, we study the implementation and performance of ZAK and ZAK+, as well as
their competing procedures Restart”% and Restart”*%* on an (s, S) inventory policy example
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based on a similar setting as in [14]. Note that this example is similar to the problem we discussed
in Sections 1 and 2 but with additional thresholds.

A decision maker controls inventory using an (s, S) policy, and the costs are given as (i) ordering
cost at 3 per item; (ii) fixed ordering cost at 32 per order; (iii) holding cost at 1 per item per review
period; and (iv) penalty cost at 5 per item of unsatisfied demand. Systems in consideration are
given as

I'={(,S)|s=20+2m’,S =40+ 10n’, where m’ =0,1,2,...,10, andn’ =0,1,2,...,6},

which contains 77 systems in total. Demand during each review period is assumed independent
for different review periods and follows a Poisson distribution with mean 25. The decision maker
particularly cares about three performance measures: (1) the fill rate per review period, which
is the percentage of orders that can be fulfilled without running out of inventory, (2) the failure
probability, which is the probability that a shortage occurs between two successive review peri-
ods; and (3) the expected cost per review period, which is the average total cost for each review
period. In practice, performance measures often conflict with each other, such as fill rate and cost.
Therefore, it is rare for one system to perform the best with respect to all performance measures
under consideration. Instead, the decision maker may prioritize one performance measure and set
it as the primary performance measure while treating the others as constraints to ensure that their
values are within acceptable ranges. If she chooses her most preferred (fixed) threshold on each
constraint, this may lead to no feasible systems when the chosen thresholds are too strict. Alter-
natively, she could consider multiple thresholds on each constraint so that she can identify both
her most preferred combination of threshold values possible (that lead to some feasible systems)
as well as the best system among the feasible systems with respect to the most preferred thresh-
olds possible. In other words, she can formulate subjective stochastic constraints on the secondary
performance measures. With a set of thresholds specified for each constraint, the decision maker
has the flexibility to restrict the secondary performance measures to tighter ranges than would be
possible using her weakest acceptable threshold values on all constraints. In this inventory prob-
lem, we assume that the decision maker treats the fill rate measure as the most important measure,
meaning that she aims to maximize the fill rate as much as she can subject to maintaining reason-
able values of the measures of failure probability and expected cost per review period. Thus, the
problem can be formulated as described in Section 2 where the primary performance measure is
set as the fill rate and the two secondary performance measures are set as the failure probability
(¢ = 1) and the expected cost per review period (¢ = 2).

In our experiments, we set the run-length for each replication to 100 review periods and obtain
one observation for the fill rate, failure probability, and average cost per review period from each
replication, respectively, to estimate the primary and secondary performance measures. We also
estimate the correlation between the primary performance measure and each constraint, as well as
the correlation between the two constraints, based on 1,000 observations. The range of the corre-
lation between the primary performance measure and the failure probability constraint (expected
cost constraint) ranges from -1 to -0.7781 (from -0.7355 to 0.0731). The correlation between the
two constraints ranges from -0.2334 to 0.5489.

We now address the selection of the implementation parameters. The choice of @ € (0, 1) de-
pends on the desired nominal error and typically satisfies @ € {0.01,0.05,0.1}. The value of ng
determines the number of initial observations, which are used for the variance estimation, and
one should choose it neither too large (which can result in collecting unnecessary observations)
nor too small (which can result in a poor estimation of the variances). In the experiments, we
set « = 0.05 and ny = 20, which are common choices in the literature. Before implementing
the proposed procedures ZAK and ZAK+ to identify the most preferred system possible, the
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decision maker needs to specify additional implementation parameters, including the thresholds
on the constraints, the associated tolerance levels of each constraint, the IZ parameter, and the
choice of the preference order for the constraints. We now discuss how to choose those parameters
separately.

Thresholds on the constraints. The choice of the thresholds on a particular constraint depends
on the nature of the constraint and the expectation of the decision maker. One recommendation
is to first choose (rough) lower and upper bounds for the constraint, which should be possible
based on past or similar experiences or industry data, and then consider a relaxation level for each
constraint and choose the thresholds based on an increment of the relaxation level. For example,
the thresholds on the failure probability constraint should be limited between 0 and 1. Moreover,
since identifying systems that are feasible to large thresholds, say 0.8 or 0.9, does not yield practi-
cal decisions (as decision maker is likely to expect the failure probability be lower than a relatively
small value), it is natural to consider small thresholds. If the decision maker is willing to relax the
constraints by roughly 5% every time, she may choose thresholds 0.01, 0.05, 0.1, 0.15, and so on.
For the expected cost, thresholds from a wider (positive) range can be chosen. If she wants to relax
the expected cost constraint by $5 every time, she may consider thresholds such as $100, $105,
$110, and so on. As discussed in Sections 3 and 4, nominal errors such as «/, Pr,and B, depend on

min{s, d}. In practice, s is typically smaller than d, which further implies that the nominal errors
likely only depend on the number of constraints (rather than the number of threshold vectors).
Thus, ZAK and ZAK+ scale well with respect to the number of thresholds on the constraints
and the decision maker can simply choose all possible thresholds that she is willing to consider if
she does not have a clear idea on the performance of the constraints. In this case study, we partic-
ularly consider three thresholds on the first constraint (¢; € {0.01,0.05, 0.1}) and eight thresholds
on the second constraint (g2 € {100, 105, 110, 115, 120, 125, 130, 135}).

IZ parameter and Tolerance levels. The 1Z parameter and the tolerance levels measure the abso-
lute amount that the decision maker is indifferent to for the primary and secondary performance
measures, respectively. Given that the primary performance measure, that is, the fill rate, has range
in between 0 and 1, we assume that the decision maker has a small indifference level, say 0.1% of the
range, and set § = 0.001. While the choices of the tolerance levels on the secondary performance
measures depend on what differences the decision maker considers significant, the choices of the
thresholds on the constraints also provide additional guidance. In general, when the thresholds
are dense for a particular constraint, a smaller tolerance level is expected. This is because a dense
set of thresholds usually indicates that the decision maker is more sensitive to the constraints and
is less likely to accept a large amount off each threshold on that constraint. For the opposite rea-
son, the decision maker may consider a larger tolerance level when the thresholds are sparse. In
our experiments, with a relatively dense set of thresholds {0.01, 0.05,0.1} on the failure probabil-
ity constraint, we set the tolerance level as €; = 0.001; and with a relatively sparse threshold set
{100, 105, 110, . . ., 130, 135} on the expected cost constraint, we set €; = 0.5.

Preference order. With the chosen threshold constants on each constraint, the decision maker’s
preferred threshold combinations across all constraints depend on how much she prioritizes each
constraint. Section 5 discusses three useful formulations. When the decision maker does not have
a clear idea on how she prioritizes the constraints, choosing the equally important constraints
formulation is natural and recommended. On the other hand, the decision maker should choose
the ranked constraints formulation if she has a clear preference on the importance among the
constraints. Finally, if the decision maker thinks all the constraints are important but she also
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Fig. 8. The values of the secondary performance measures for all the systems. The best system (s, S) = (28, 60)
(highlighted in red) has a fill rate of 0.9981, a failure probability of 0.0211, and an expected cost per review
period of 113.9701. The good system (s, S) = (26, 60) (highlighted in yellow) has a fill rate of 0.9972, a failure
probability of 0.0279, and an expected cost per review period of 113.2690.

has a preference among them, then she may want to relax the constraints one at a time follow-
ing her preference. This can be modeled by choosing the total violation with ranked constraints
formulation. In our experiments, we test all three preference order proposed in Section 5. For the
ranked constraints and the total violation with ranked constraints formulations, consistent with
the discussion in Section 1, we prioritize the first constraint over the second constraint (relax the
second constraint first) and have 24 feasible regions (i.e., d = 24). For the equally important con-
straints formulation, we have 8 feasible regions (i.e., d = 8).

Figure 8 shows the analytical values of the secondary performance measures of all the systems
based on a Markov chain model. The value of 6 is 11, 4, and 11 for ranked constraints, equally
important constraints, and total violation with ranked constraints, respectively, which corresponds
to the threshold vector (g1, g2) = (0.05, 115) for ranked constraints and total violation with ranked
constraints and (q1,q2) = (0.1,115) for equally important constraints. The identity of the best
system, (s, S) = (28, 60), remains the same for all three preference orders considered. Note that the
chosen IZ parameter § = 0.001 does not satisfy Assumption 2 (since the system (s, S) = (26, 60)
is feasible with respect to threshold vector q'°") and has primary performance in a § range of the
best system under all three preference orders). Nevertheless, we do not see the statistical validity
violated in the experiments.

We expect the comparison phase to be easier than the feasibility check phase because the vari-
ance of the difference in the fill rate is very small compared to the variance of cost per review
period. Thus we do not employ CRN. The experimental results are based on 10,000 replications
and are shown in Table 3. We see that under the ranked constraints and equally important con-
straints formulations, ZAK spends around 44% and 48% of the observations compared to those
of Restart ™% whereas ZAK+ spends around 34% and 33% compared with Restart™ A%+ re-
spectively. When it comes to the total violation with ranked constraints formulation, the savings
is more pronounced as ZAK and ZAK+ spend around 29% and 23% of the observations com-
pared to those of Restart”% and Restart "%+ respectively. Both proposed procedures perform
much better than their alternative procedures, while also remaining statistically valid (even though
Assumption 2 is not satisfied). In terms of the comparison between ZAK and ZAK+, we ob-
serve that ZAK+ performs better under all three threshold formulations, while the advantage of
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Table 3. Average Number of Observations and Estimated PCS (Reported
in Parentheses) of ZAK, Restart(HﬂW, ZAK+ and Restart HAK+
for the Inventory Policy Example

Preference Order ‘Zﬂ?( Restart ™K Z AK+ Restart AKX+

Ranked constraints 9,547 21,769 6,066 17,799
(1.000)  (1.000) (1.000) (1.000)

Equally important 7,819 16,240 2,490 7,475
constraints (1.000) (1.000) (1.000) (1.000)
Total violation with | 8,778 30,158 6,034 26,023
ranked constraints | (1.000) (1.000) (1.000) (1.000)

ZAK+ is more obvious under the equally important constraints formulation. We also see that the
comparison between Restart /" and Restart”* shows a similar pattern as Restart "%+ per-
forms better than Restart”"* under all three threshold formulations and the equally important
constraints formulation makes the dominance more clear. Note that this agrees with the results in
Section 6.4.

8 CONCLUSION

We consider the selection-of-the-best problem when subjective stochastic constraints are present.
When a decision maker has flexibility with thresholds, this allows her to start with tight threshold
values for each constraint and then relax the thresholds until feasible systems are found and com-
pared. We discuss how to combine thresholds on constraints into threshold vectors based on how a
decision maker prioritizes each constraint. We propose two procedures that select the best system
with respect to a primary performance measure while also satisfying constraints on secondary per-
formance measures with respect to the most preferred thresholds possible. Our procedures differ
in that one runs feasibility check and comparison sequentially while the other runs them simul-
taneously. We discuss how to set the implementation parameters for our procedures and prove
their statistical validity. We also demonstrate through experiments that the required number of
observations remains steady when the number of threshold vectors grows and address the impact
of applying CRN when performing our procedures. Finally, our experimental results show that
the proposed procedures perform well in reducing the average number of needed observations
as compared with procedures that repeatedly solve the problem for each threshold vector. Over-
all, we recommend our simultaneously-running procedure as it provides the best performance
in general.

APPENDICES

In Appendix A, we provide the detailed algorithm statement of Procedure ZAK™® from Section 3
along with the discussion on its statistical validity. Appendix B describes how we set implemen-
tation parameters for the proposed sequentially-running procedures. We provide the proof of the
statistical validity of Procedure ZAK+ in Appendix C and include how to set its implementation
parameters in Appendix D. Appendix E includes the algorithms that we use to generate the three
example preference orders discussed in Section 5. In Appendices F and G, we describe procedures
Restart""% and Restart”%* and discuss their statistical validity, respectively. Appendices H
and I provide additional experimental results that are used to set the implementation parameters
of our proposed procedures and to demonstrate the efficiency of our proposed procedures, respec-
tively. Finally, Appendix ] provides experimental results and a discussion on the impact of using
CRNE.
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A PROCEDURE ZAKR

In this section, we provide the detailed description of the ZAKR procedure and prove its statis-
tical validity.

Algorithm A.1 gives the full description of ZAKR. Note that it is possible to use r rather than
r; in Phase I in ZAKX. To prove the statistical validity of Z AKR, we start with the following
lemma.

LEmMMA A.1. Under Assumption 1, for system i and constraint £ with specific threshold value q¢, .,
the [Feasibility Check] steps in ZAKR that run to completion ensure Pr(CD;s(qe.m)) = 1 — aj}.

Proor. When system i and constraint ¢ with specific threshold g, ,,, are considered separately,
the [Feasibility Check] steps in Z AKX either conclude a feasibility decision or eliminate thresh-
old q¢,m for further consideration (when system i is declared feasible with respect to a threshold
vector and all preferred threshold vectors do not involve threshold value g, , on constraint £). We
see that when a feasibility decision is concluded, the [Feasibility Check] steps in ZAKX are
essentially the same as for the statistically-valid feasibility check procedure ¥ in [1] for a single
system and a single constraint with one threshold value with confidence level 1 — a}’r. The result

now follows from the special case of Theorem 1 in [1] with k = 1. O

We use the same notation for i € I as in Section 4 as follows.

A = {system i is declared infeasible to q(l), R q(min{e*’d})} ;
AL () = {system i is declared infeasible to q(l), R q(etl) if1 <6< d} ;
Bl = {system [b] is declared feasible to q'?") if 6% < d} .

LeEmMA A.2. Under Assumption 1, for a particular system i, the [Feasibility Check] steps in
ZAKR ensure

Pr (A;(i)) = 1 — min{s, d}a}, ifi € Su;
Pr (A3(i)) > 1 —min{s,d — 1}a;, ifi € SqU Sy and1 < 0" < d;
Pr(8;) > 1—sa}, ifo* <d.

Proor. First, consider i € S,,. We discuss the following two cases depending on whether 6" < d
or0* =d+1.

When 6* < d, system i must be unacceptable to q',...,q%") because it is unacceptable to
q?"), not in S, and there are no desirable systems with respect to qV, ..., q®""). As system i
is unacceptable with respect to q(l), e, q(e*), then for each x = 1,..., 0%, there exist at least one

constraint £, such that y;¢, > q;K) + ¢¢,.. Then we have

o
Pr (AL(i)) > Pr (ﬁ§;1CDigk (q(f’j)) >1- 3 Pr (ICD,-{»K (q(i))) > 1~ daf, @)
k=1
where we use ICD;(qr,m) to denote the event of incorrect decision of system i with respect to
constraint ¢ and threshold g ,. The first inequality holds because declaring system i infeasible
to constraint £, is sufficient to declare system i infeasible to threshold vector q*) and it is not
possible to declare a system feasible with respect to a threshold vector without completing the
comparison with all thresholds in that vector. The second inequality holds due to the Bonferroni
inequality, and the last inequality holds due to Lemma A.1 and the fact of 6" < d.
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ALGORITHM A.1: Procedure ZAKX.

[Setup:] Select the overall nominal confidence level 1 — & and choose 0 < af, ac <1 such that (1 — af)(l —ae) =

1 — a. Choose tolerance levels €y, . . ., €5, indifference-zone parameter 8, threshold vectors {q(l), q(z), e, q(d) }, and
associated index vectors {I(l), I(z), R I(d)}. Set M =T and Z; ¢y, = 2foralli e M, =1,...,s,and m =
1,...,d¢.Set F=0and 0 = d. Set 17y such that g(n5) = 0{}, where 0 < aj’c < 1/s is set as a solution to
k-1
(1 — min{s, d}aj’,) x(1- sa}) =1- ay, if systems are simulated independently;

and set as
a} = ap/[(k —1)min{s, d} + 5], if systems are simulated under CRN.

Add any constraint £, where £ = 1, . . ., s, with increasing preference to set IP.
[Initialization for Phase I:]
for each system i € M do

— Obtain ng observations Y;¢1, Yiea, - . ., Yign, for £ =1,2, ..., s.

— Compute Y;¢(no) and S%,i[(no).

—Setr; =np,ON; = {1,2,...,s},andON;, = {1, ...,dp}for £ =1,2, ..., s.
end for

[Feasibility Check:]

for each system i € M do
for £ € ON; do
for m € ON;;, do,
If Yi(r:) + R(ri; €c, np, Sii[(no))/ri < qr,m.set Zi ¢,m = 1and ONjz = ON;z \ {m}.
If Yie(ri) = R(ris ec, nps Séi[(no))/ri > q¢,m, set Zi ¢,m = 0and ON;z = ON;¢ \ {m}.
end for '
IfONip = 0, set ONi = ONi \ {f}
end for

If 3 minimum k < 0 s.t. ]_[;:1 Zi g0 = 1, and either k < @ or i ¢ F, then
0T

—1Ifx < 6,thenset F = 0, 0 = k, and for all j € M delete q¢, ,, from ONj, if £ € IP and m > I;g) (if ¢ ¢ IP, then

q¢, m can be removed from ONj;, if I;)B,> # mforall 0" < k), and set ON; = ON; \ {£} if ONj, = 0.
— Add system i to F.
IfIl;_, 2

from M.

end for

[Stopping Condition for Phase I:]

If M # 0, then for each system i € M, set r; = r; + 1, take one additional observation Y;¢,,;, and update Yi¢(r;) for
¢ € ONj, then go to [Feasibility Check]. Else, check the following conditions.

—If |F| = 0, stop and conclude no feasible systems;

— If |F| = 1, stop and return the system in F as the best; or

—If |F| > 1, go to [Initialization for Phase II].

[Initialization for Phase II:] Let 7. be a solution to g(#¢) = ., where

ien? = 0 or 1and either 6 = 1 or [];_, Zi,(,’,l}”) =0forall x = 1,..., 0 — 1, then remove system i

, 1—(1—ae)/* =D, if systems are simulated independently;
ac/(k - 1), if systems are simulated under CRN.

Let M = F be the set of systems still in contention. For each system i € M, perform an entirely new simulation and
obtain Xjy, . . ., Xjn, independent of any Y;,, generated in Phase I. Compute Xi(ng) and Sg(ij(no) for i, j € M and
i # j.Set r = ng and go to [Comparison].
[Comparison:] For i, j € M s.t. i # j and

rXi(r) > rX;(r) + R(r; 8, nc, Sggij(no)),
eliminate j from M.
[Stopping Condition for Phase II:] If |[M| = 1, then stop and select the system in M as the best. Otherwise, for

each system i € M, take one additional observation X; ,.; independent of any Y;,,, generated in Phase I and compute
X;(r +1). Then, set r = r + 1 and go to [Comparison].
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Observe that since there are only s constraints, the set L = {{1,...,{p-} can have at most s
distinct values. For ¢ € L, let I;; denote the largest threshold index on constraint £ that system i is
unacceptable to, that is,

Lip = max {m: vy > +ert.
il \<m<d, { Yir qe,m t’}

Thus, we know that g1 < qr2 < -+ < qe,1,, < Yir — € on constraint £. Due to the discussion in

[22], we know that CDye(qe.1,,) € -+ € CDie(qe,2) € CDie(qe,1)- Then CDie(qe,1,,) € CDye(q)
fork =1,...,0% with {,, = £. Thus, we also have

Pr (A}(i)) > Pr (ﬁz;CDit’K(qZ))) > Pr(N¢erCDie(qe,1,,))
>1- ZPr (ICDse(qr,1,,) = 1 |Llerf > 1= sa, 3)
lel

where the third inequality is due to the Bonferroni inequality and the forth inequality is due to
Lemma A.1. By comparing Equations (2) and (3), we conclude that Pr (A} (i)) > 1 — min{s, d}a}’c.
When 6* = d + 1, a similar argument yields

U

Pr (A1) 2 Pr (Nd_,CDir, (q1)) = 1= )" Pr (ICDy, (1)) = 1 - day,

k=1

and, defining L = {1, ...,{4},
Pr (A1) 2 Pr (N¢_,CDir, (q1)) = Pr (e CDiclar.r,)

>1- ZPr (ICD¢(qe,1,,)) = 1 - |L|a]'p >1- sa]’c.
tel
Therefore, Pr (A (i)) > 1 — min{s, d}a}.
Now, consideri € S;US, with1 < 0" < d. As system i is notin S, and there are no desirable sys-
tems with respect to q', . .., q? =Y, system i must be unacceptable with respect to q, ..., q¢ .

Then for each k = 1,...,0" — 1, there exist at least one constraint £, such that y;,, > q(KK) + €¢,.
Due to a similar argument as for i € S,,, we have

0" -1
Pr (AL(i)) > Pr (mﬁ":;lcmgk(qi,’?)) >1- ) Pr (ICDigK(q(['Z))) >1-(d-1)a).

K=

Based on a similar definition L = {{1, ..., {gp-_1} and the discussion above, we have
Pr (A3(0)) 2 Pr (n0CDir, (g)) = Pr (Nrer CDie(ge.1,)

>1- ZPr (ICDy¢(qe,1,,)) = 1 - |L|aj'c >1- sa}.
el

Therefore, we have Pr (A;(i)) > 1 — min{s,d — l}aJ’c.
Finally, for [b], when 6* < d, we have

Pr(8!) = Pr (ﬁ;:ICDi(e(q(fe*))) >1- ZPr (ICDig(qi,e*))) >1-sap,
=1

where the last inequality is due to Lemma A.1. O
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For Lemma A.2, one may notice thatd > s holds in most cases, and therefore Pr (ﬂ;‘ (1)) > 1—sa}

and Pr (A;(1)) > 1 - sa}i hold in most cases. Note that when d > s and the systems are simulated
independently, the implementation parameter a} has a closed-form solution as

’ 1 k
ap =< [1—(1—af)1/ .
When d < s, one may need to find a} by numerically solving (1 — da})k_l X (1- sa}) =1-ay.As
we always have (1-dXx0)* 1 x(1-sx0)—(1—ay) = af > 0and (1-dx 1) Ix(1-sx1)-(1-af) =
ay — 1 < 0, there will always be a solution aji satisfying 0 < a} < %

We then use CS; to denote the correct selection between system i € S;» US; and the best system
[b] and introduce the following lemma.

LEmMA A.3. Under Assumption 1, given i such that x; < x[p) — 6, the [Comparison] steps for
system i and [b] in ZAK™R that run to completion ensure
Pr(CS;) > 1-a,.

Proor. When only system i and [b] are considered, the [Comparison] steps in ZAK™X are

the same as in the statistically-valid selection-of-the-best procedure provided in [12] when two

systems are considered with confidence level 1 — .. Therefore, the result follows from the special
case of Theorem 1 of [12] with k = 2. O

We are now ready to give the main theorem about the statistical validity of Z AKR and provide
the detailed proof of Theorem A 4.

THEOREM A.4. Under Assumptions 1 and 2, the ZAKR procedure guarantees
Pr{CS} >1-a.

Proor. We consider two cases, namely when 0" < d and 6" = d + 1.
Case 1: 0" < d.
Note that any systems in (S, USy) should not be declared feasible with respect to a more preferred
threshold vector q'V,...,q% " as they could be selected as the best system otherwise. More
specifically, we consider the following four events.

Al = {all systems in S, are eliminated by infeasibility = N iesuﬂf(i)} ;
Ay = {all systems in (S, U Sy) are declared infeasible to thresholds q(l), A q(e*‘l)}
= {Nics, us, A3 (i) when 6 > 1} ;
B, = {system [b] would be selected as the best system among the systems in Spr U Sz} ;

B = {system [b] is declared feasible with respect to q(‘g*) and is selected as the best system

among the surviving systems from Phase I}.
Notice that 8] N B; C B and A; is not defined when 0* = 1. This means
Pr(A; N B7), it 0* = 1;
Pr(A]NA; NB*), ifo" > 1.

We see that Pr{CS} achieves its lower bound when 0" > 1 (because the bounds on Pr(A7), Pr(B7),
and Pr(8;) below do not depend on the value of 8*), and thus we focus on the case when 6* > 1. We
also see that A}, A;, and B} are independent events when systems are simulated independently

Pr{CS} > {
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but are dependent events when systems are simulated under CRN. As we discard observations
from Phase I and completely restart for Phase II, and as 8, involves making the correct selection
from all systems in S,» U S4 (not only the ones surviving from Phase I), 8 is independent from
AL, A, and B]. We have

Pr{CS} = Pr(A; N A, N B*) = Pr(A; N A, N B N B,)
_ | Pr(A]) X Pr(A7) x Pr(B)) X Pr(B;), if systems are simulated independently;
B [Pr(ﬂf) + Pr(A;) + Pr(B;) - 2] x Pr(8;), if systems are simulated under CRN.

We discuss the cases depending on whether systems are simulated independently or under CRN.
When systems are simulated independently, by Lemma A.2, we have

Pr(A;) = (1 — min{s, d}aj’f)j“;

Pr(A;) > (1 — min{s,d — 1}a})fa/+J'd = (1 — min{s,d — 1}a})k_j“_j“_l;
Pr(B)=1- sa}.

Let Nj; denote the number of observations taken for system i before a comparison decision is

made between systems i and j, and let N; denote the maximum number of observations that system
i takes within Phase II. That is

2ene(ng — 1)S%, (no)
Nij = 52

}, and N; = I?ngij'
Then we have
Pr(8;) > Pr (Njes, us,CSi)
= [Pr{icts 0 CHXios - - Xpo1 30 S5, (10} |
]

=FE 1—[ Pr {CSi|X[b]1, - aX[b],N[,,], Sg(i[b](no)}
i€(SqUSy)

4)
> E [Pr{CSifXio1 -+ Xiol iy Sk (20}
i€(SqUSy)
= 1—[ Pr{CS;} > 1_[ (1-al)
i€(SqUSyr) i€(SqUSyr)

=(1- aé)jd+ja’ > (1- aé)k_ju_ja_l,

where the second inequality holds due to Lemma 2.4 in [20] and the third inequality follows from
Lemma A.3.
Thus, we know that

Pr{CS} = (1 — min{s, d}a})j" X (1 — min{s,d — 1}05]1)k‘j“‘ju‘1 X (1= sap) x (1- ol)kumia=1
> (1 - min{s,d}apy* x (1 - min{s, d}ozj’c)k’ja’flﬁ1 x (1= sap) x (1 - A e
= (1 - minfs, dyar))* 7+ x (1 = sa) x (1 = @))f Fe e

> (1 — min{s, d}ocj'p)k_1 X (1- sa}) X (1- oté)k_1

= (1-apx [1-a) ] T =1 ap - =1

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 22. Publication date: July 2024.



22:34 Y. Zhou et al.

where the third inequality holds since the lower bound of (1 —min{s, d ]»oz]i)k‘j“‘1 is achieved when
Jja = 0when 0 < a}’( < 1/s, and the lower bound of (1 — oté)k_j“_ja_1 is achieved when j, = j, =0
for0<1-a. <1
When systems are simulated under CRN, by Lemmas A.2, A.3, and the Bonferroni inequality,
we have
Pr(A}) > 1 — j, min{s,d}a};
Pr(A3) = 1 - (jor + jg) min{s,d — 1}0{} =1-(k—-j4—ju.—1)min{s,d — 1}a};
Pr(B)=1- sa};
Pr(B;) = Pr (Nies,us,CSi) = 1~ Z Pr(ICS;) > 1 = (ja + ja ),
ie(SqUS,r)
=1-(k—ju—Jja— 1)‘3{;,
where ICS; denotes the incorrect selection event between system i € S;US, and system [b]. Thus,
Pr{CS} > [1 — j, min{s, d}aj’( +1—(k—js—ju—1)min{s,d — 1}0{} +1- socj’r - 2]
X [1 —(k=ju—Ja— 1)0(:,]
> [1 — j, min{s, d}aj’( +1-(k —jg — ju — 1)min{s, d}a} +1- sa} - 2]
X [1 —(k=Jju—Ja— 1)0(('.]
_ [1 ~ (k = ja ~ Dmin{s, d}aj - sa}] x [1 = (k = ju = ja - D]
> [1 - (k ~ 1) min{s. d}a} - sa]:] x[1=(k-Dall=(1-a)(1-a)=1-a

where the third inequality holds since a},aé > 0, and hence the lower bound of (k — j, —
1) min{s, d}a]’c is achieved when j, = 0, and the lower bound of 1 — (k — j,, — j, — 1)a/. is achieved
when j, = j, = 0.

Case 2: 0" =d + 1.

If 6 = d + 1, there are no desirable systems for any threshold vector. Based on the definition of
CS, CS is to either declare all systems are infeasible or to select an acceptable system with respect
to any of the threshold vectors q'V, . . ., q?). Therefore, CS is ensured by correctly concluding fea-
sibility decisions for all system i € S,,. Then Pr (CS) > Pr(A;) and Lemma A.2 and the Bonferroni
inequality yield

(1 — min{s, d}a]i)j”, if systems are simulated independently,

Pr{CS} > {

1 —j, min{s,d}a,  if systems are simulated under CRN,

{(1 — min{s, d}a})k , if systems are simulated independently,
>

1 —kmin{s,d}a,,  if systems are simulated under CRN,

where the last inequality is due to the fact that 1 < j, < kand 0 < min{s,d }0{} < 1. When systems
are simulated independently, we have

Pr{CS} > (1 — min{s, d}a})k > (1 — min{s, d}aj})k_l (1= sap)

=1—af>1—0(.
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When systems are simulated under CRN, we have

Pr{CS} > 1 — kmin{s,d}a; > 1 — (k — 1) min{s, d}a} - sa]’c

l-ar>1-a. O

B IMPLEMENTATION PARAMETERS FOR ZAK® AND ZAK

In this section, we provide detailed discussion about how we set the implementation parameters
for the two proposed sequentially-running procedures ZAK® and ZAK in Appendices B.1 and
B.2, respectively.

B.1 Implementation Parameters for ZAKR

The choices of af and a. affect the performance of the ZAKR procedure. If Phase I is difficult
(e.g., the secondary performance measures of many systems are close to some of the threshold
values in threshold vectors qV, . . ., q'?")), one may want to choose a larger value for ay than a, to
improve the efficiency. On the other hand, if Phase I is relatively easy compared with Phase II, then
it is more efficient to assign a larger value of a, than ay. If the decision maker has knowledge on
the relative difficulty of the feasibility checks and the comparison, she may first decide the choice
of ey = af [, the ratio of the nominal error of Phase I to Phase II. Then we have

(1—61Xac)(l—ac)zelaf—(el+1)ac+1=1—a.

Since the left-hand side equals 1 when @, = 0 and 0 when o, = min{1,1/e;}, there must be

er+1-V(e1+1)?—4e

exactly one root o, with a, e; X a, € (0,1). We have a, = 5o (the other root does
not satisfy a. < min{1,1/e;}) and af = e; X a.. However, the decision maker usually does not
have such information about the mean configurations of the primary and secondary performance
measures of the systems. One possibility is to select ay = ac =1 - (1 - a)'/?.

If s < d, the formulas for selecting a; and «/ in Algorithm A.1 suggest one may first choose
ey = sa}/ al (the ratio of the nominal error for feasibility checks across all the constraints for one
system and the nominal error for the comparison between best system [b] and one inferior system)
and further find aj’( and «. depending on the value of e,. Similarly, one may consider e, = da} Jal
ifd <s.

We start with the case when s < d. When systems are simulated independently, we know that

l—a=(1-ap)(l-a)=(1- sa]',)k X(1—a))' = (1 - epal)f(1 - al)*,

where one can numerically solve for  and a. = e;a./s. Since the right-hand side equals 1 when
al = 0 and 0 when a, = min{1, 1/e;}, there must be one exactly root « with «, e, X o, € (0,1)
and it follows that 0 < a)’, = eya, /s < 1/s as desired. When systems are simulated under CRN, we
know that

l—a=00-ap)(1-a;)=(1- ksa}) x(1=(k-1al)=(1-keyr) x (1= (k- 1)a.)
= epk(k — 1)(a))* — (e2k + k — el + 1.

Since the right-hand side equals 1 when @ = 0 and 0 when a/ = min{, e%k} there must be

. k+k-1— k+k-1)>~4esk(k-1
exactly one root o, with (k—1)a., e;ka, € (0,1). Thus, we have a/, = 2= V(;izz(k_l)) ekl la

(the other root does not satisfy a < min{ 35, e%k}).
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We then discuss the case when d < s. We set e; = da]’,/aé and find o by solving

(1-ea))f ' x(1-eSa))x(1-a))*'=1-a, if systems are simulated independently;
(1-e(k—1+3)al)x[1-(k-1a.|] =1—-a, if systems are simulated under CRN.

The former can be solved numerically. As the left-hand side equals 1 when a, = 0 and 0 when
%, 1}, there must be a root a with eya, %aé, al € (0,1) and it follows that 0 <

= esal/d < 1/s as desired. For the latter, since the left-hand side equals 1 when o = 0 and 0

a, = min{
a/

f
when a/ = min{ﬁ, m}, there must be one root o with (k — 1)a/, ea(k — 1 + %)aé € (0,1).

k=1+3)+k—1-/[e2(k—1+ %) +k—1]>—4es(k—1+ 35 )(k-1
Therefore, we have a, = elklrg)t \/[Z(Z (k_Jlr f;;(k_l]) clkttg)k e as the other root does not
d

satisty a/ < min{ﬁ, m}.

In reality, the decision maker usually does not have detailed information regarding the mean
performance of each system. One recommendation is to balance the error between the feasibility
checks and the comparison. For example, if one has a single threshold vector and wishes to allo-
cate the same amount of error for feasibility checks for all constraints of one system as for the
comparison of one system with the best system [b], then e; = 1 and e, = 1 are appropriate choices.
On the other hand, if one wants to allocate the same error for feasibility check for one constraint
of one system as for comparison of one system with the best system [b], then e; = s and e; = s are
appropriate. Note that this agrees with the discussion from [8] who consider a single threshold
vector under the MIM configuration and test the formulation using e; = 1. They recommend to
set the ratio of the difficulty between feasibility checks and comparison to 1 on the grounds that
this choice is robust to differing numbers of constraints, numbers of feasible systems, and variance
configurations. When multiple threshold vectors are considered, we need to ensure more correct
events during the feasibility checks (see the detailed analysis in the proof of statistical validity
of ZAKR in this section and further analysis in Section 4.2). Therefore, larger values of e; and
e; may be more appropriate than in the single threshold vector case. More specifically, most of
our experimental results (Section 6) consider the e; formulation with e, = 2 (see the analysis in
Section 6.2).

B.2 Implementation Parameters for ZAK
To find the values of a]i and «a, after choosing the value of e;, one needs to solve

a=1-(1- min{s,d}otj’,)k_1 x(1-— Sa}) +1-(1- rxé)'Fl_l, if systems are simulated independently;
a = [(k —1)min{s,d} + s]a]i + (|F| = D/, if systems are simulated under CRN.

©)

As the decision maker does not have the information on the number of surviving systems for Phase

II (i.e., the value of |F|) prior to the execution of Algorithm 1, she may first find a}’c by assuming

that the number of surviving systems for Phase Il is k (i.e., by assuming |F| = k).
When s < d, one may find &/ by solving

a=1-(1- ezaé)k +1-(1- aé)k_l, if systems are simulated independently;
a = keya! + (k- 1)al. if systems are simulated under CRN,

When systems are simulated independently, the right-hand side equals 0 when «, = 0. When
al = min{1, 6—12}, one of the terms 1—(1— ezaé)k, 1-(1- oré)k’1 on the right-hand side equals 1 and
the other is positive, and hence the right-hand side is greater than 1. Thus, there must be a root
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al with af, e;a € (0,1) and it follows that 0 < a} = eyac/s < 1/s as desired. When systems are
simulated under CRN, we find a; = 77— The corresponding a} can be found as a]’, = eya,/s.
When d < s, one may find «. by solving

{a =1-(1-ea)f ' x (1 - Sepa)) +1—- (1 —a)*7!, if systems are simulated independently;

a= %ezaé + (k= Dal, if systems are simulated under CRN.

When systems are simulated independently, the right-hand side equals 0 when . = 0. When
al = min{%, 1}, the right-hand side is greater than 1 (because one of the terms (1 — eya/)*~! x
(1-Feza;), 1-(1- océ)k_1 equals 1 and the other one is positive). Thus, there must be a root ¢, with
exal, %aé, a;, € (0,1) and hence 0 < 05} = epal/d < 1/s as desired. When systems are simulated

o The corresponding ap can be found as ap = exal/d.

After the completion of Phase I, with the information on the number of surviving systems |F|,
we may solve for an updated value for a/, namely «.’, by solving Equation (5) where o/ and a/ are

’ _ a
under CRN, we find a, = W
d

replaced by the value of a} we already computed (i.e., a} = e;al /min{s, d}) and a’, respectively.

C STATISTICAL VALIDITY OF ZAK+

In this section, we provide the proof of Theorem 4.3.

Proor. We consider two cases, namely when 0" < d and 6* =d + 1.

Case 1: 0* < d.
We consider the events A7, A, B], and B; defined in Section A. Notice that A; N B is the event
that all systems in S;» U S; are declared infeasible to threshold vectors q(l), R q(g*_l) and are

eliminated by comparison with system [b], that is, A, N B = Nics,us,, A, (i) N CS;. Similarly,
?q = miesuﬂi(i)-

We discuss the cases depending on whether systems are simulated independently or under CRN.
When systems are simulated independently, as ZAK+ performs Phases I and II simultaneously,
events A, B, and B are dependent whereas A; is independent of A; N B} N B;. We then have

Pr{CS} > Pr {A; N A; n B N B;}
= Pr (A]) x Pr (A; N 8] N B;)
> Pr (A]) x [Pr (A; N B;) +Pr (B;) —1].
By Lemma 4.1, we have
Pr (A7) > (1 - min{s,d} )™ ;
Pr(8]) > 1-sps.
We use the same notation N;; from the proof of Theorem A.4 and have

Pr (A; N B;) = Pr(Nie(s,us,) (A3 (i) N CS;))

= B [Pr{nieis,us, (P50 0 CS:) [Xiogoo - Xy v Sk, (10}

=F l_[ Pr {ﬂ;(l) N CSi‘X[b]l, <o X[b], Ny S)Z(i[b](no)}
i€(SqUSy)

> [ e[| nesXun - Xprn S, 0]
i€(S4US )
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> 1-E [Pr {(ﬂ;(l))c XipJ1s - - ,X[bJ,N[b], SX?[b](nO)H
i€(SqUS,r)
—E|Pr {Ics,- IXteps -+ X, N[b],SXlg[b](no)} H

= [1-Pr{(A;(1)°} - Pr{ICS;}]
i€(SqUS )

> (1-min{s,d = 1} — B) = (1 - min{s,d — 1} — )/

i€(SqUSy)

(1 —min{s,d — 1} - ﬁc)k_j“_j"_l ,

where we use A® to denote the complement event of A. The first inequality is from Lemma 2.4 of
[20], the second inequality holds due to the Bonferroni inequality, and the last inequality is from

Lemmas 4.1 and 4.2.
Thus, we know that

Pr{CS} > (1 - min{s,d} ;)" x [(1 —min{s,d — 1} — fe) 77 + (1-sp;) - 1]
> (1 - min{s, d} 7)™ x [(1 — min{s,d — 1} — Be)< 7! - sﬁf] ,

where the second inequality holds since the lower bound of (1 — min{s,d — 1}y — Be)fIamiu=1 ig
achieved when j, = 0 for 0 < 1 -min{s,d -1}y — f. < 1. As 0 < j,, < k-1 (because 6" < d), we
know that

Pr{CS} > min {(1 — min{s, d}ﬁf)j X [(1 —min{s,d — 1} — ﬁc)kﬁ-71 - Sﬁf]} =1-a.

0<j<k-1

When systems are simulated under CRN, events A}, A;, By, and B, are all dependent. Thus,
we have

Pr{CS} > Pr{A; N A; N B; N B;} > Pr (A;) + Pr (A; N B}) +Pr(B]) - 2.
By Lemmas 4.1 and 4.2, and the Bonferroni inequality, we have
Pr (A}) > 1 - j, min{s,d}fr;
Pr (Bl*) >1-sfp;
Pr (A3 N B;) = Pr (Nie(s,us,) (A3 (D) N CS;))

>1- Z [Pr (A1) + Pr(ICS;)]
i€(SqUSyr)

>1- Z [min{s,d - 1}f + ]
i€(SqUSyr)

=1-(a+ja) [min{s,d -1} + ﬁc]
=1—-(k—Jja—Jju—-1) [min{s,d— 1}Br +,BC] ,
where the first inequality holds due to the Bonferroni inequality and the second inequality holds

by Lemmas 4.1 and 4.2.
Thus, we know that

Pr{CS} > 1 — j, min{s,d}fr + {1 —(k—Jja—Jju—1) [min{s,d -1} + /J’C]} +1-sfr-2
1 — jy, min{s,d}fr — (k = ju — 1) [min{s,d - 1}pr + ﬂc] - spr

\%
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=1~ [jy min{s,d} + (k — j, — 1) min{s,d — 1} + 5] Br — (k — ju — Df.,

where the second inequality holds since the lower bound of 1—-(k—j,—j,—1) [min{s, d—1}pr + ﬁc]
is achieved when j, = 0. As 0 < j,, < k — 1, we know that

Pr{CS} > . mi? 1{1 = [jmin{s,d} + (k —j— 1)min{s,d — 1} +s] Br — (k - j - l)ﬁc} =1-a.
<j<k-

Case 2: 0" =d + 1.

If 6* = d + 1, there are no desirable systems for any threshold vector. Similar to the discussion
in the proof of Theorem A.4, CS is ensured by correctly concluding feasibility decisions for all
systems i € S,,. Then Pr{CS} > Pr(A]) and Lemma 4.1 and the Bonferroni inequality yield

(1 — min{s, d}ﬂf)j“, if systems are simulated independently,

Pr{CS} > {

1 - jymin{s,d}Br, if systems are simulated under CRN.

>

(1 — min{s, d}ﬂf)k , if systems are simulated independently,
1 - kmin{s,d}fr, if systems are simulated under CRN,

where the last inequality is due to the fact that 1 < j, < kand 0 < min{s, d}Sr < 1. When systems
are simulated independently, we have

Pr{CS} > (1 — min{s, d}ﬁf)k > (1 — min{s, d}ﬂf)kf1 (1-spy)
= (1 - min{s, d} ;)" [(1 — min{s,d — 1}, — fe)F "V - sﬁf]
> min {(1 — min{s, d}ﬁf)j [(1 —min{s,d - 1}fr - ﬂc)k_j_l - sﬂf]}

0<j<k-1
=1—-a,
where the second inequality holds since min{s,d} < s and 0 < min{s,d}Br < 1 and the first
equality holds since (1 — min{s,d — 1} — f.)° = 1.
When systems are simulated under CRN, we have
Pr{CS} > 1 — kmin{s,d}fr > 1 - [(k — 1) min{s,d} + s]|Bf
=1-[(k = 1)min{s,d} + (k= (k= 1) = 1)min{s,d — 1} +s] By — (k = (k = 1) = 1),

> . miil : [1—[1’min{s,d}+(k—j— D)min{s,d — 1} +s] fr — (k—j - l)ﬁc]
<j<k-

=1-a. O

D IMPLEMENTATION PARAMETERS FOR ZAK+

We start by considering the case when s < d, and the systems are simulated independently. In this
case, we need to find ffy and f. such that

Osr]nsigil {(1 — min{s, d}ﬂf)j X [(1 —min{s,d — 1}ff - Be)k 7t~ S,Bf]} =1-a.
Let f = sfr = ef.. Then we have
Pr(CS) 2 min_ {(1 ~BY x [(1 C(1+1/e)p) - ﬂ” .

Let £(j) be a function of j such that f(j) = (1 - B) x [(1 - (1 + 1/e)B)* /™ — B]. We need to find
the lower bound of f(j) given that 0 < j < k — 1. Treating j as a continuous variable, the first
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derivative of £(j)is
S50 = (1= Y log1 = p) (1 1+ 1/00p)T =

(=B (1= +1/)p) T log (1~ (1 +1/e)p)

= (1= Y {[log(1 - B ~ log(1 - (1 + 1/} (1 = (1 + 1/} = Blog(1 - p)} > 0,

where the last inequality holds since log(1 — ) > log(1—(1+ 1/e)f) and log(1 — ) < 0. Therefore,
we know that f(j) is increasing. Given that 0 < j < k — 1, f(j) achieves its minimum when j = 0.
Hence, to find ﬁf and f., we solve

(=P x |1 = @+ 1/pf " = p| == (1 +1/pF " - f=1-a

The resulting f is the common value of ef. and sfr. We see that (1 — (1 + 1/e)B)*~' — B equals
1 when § = 0 and is negative when f§ = 5. Thus, there exists a solution f with 0 < g < &

that solves (1 — (1 + 1 / e)ﬁ)k’1 p = 1 — a, which can be found numerically. It follows that
0<pr=p/s< mx << 0 < fc= ﬁ < e+1 <1l,and 0 < 1—(1+%)ﬁ < l—min{s,d—l}é—é =
1 -min{s,d — 1}fr — f. < 1 as de51red

We then consider the case when s < d and the systems are simulated under CRN. We need to

find f; and B, such that
min {1—[}m1n{s d} + (k—j—1)min{s,d — 1} +s] Br — (k—j—l)ﬁc} =1-a.

0<j<k-1
By setting 8 = sfr = ef., we have
k—j—1 k-1
Pr{CS}> min {—(k—i— J )ﬁ}:l—(k+—)ﬁ,
<j<k-1 e e

and the value of s and eﬁc can be found as sfr = eff. = a/[k + (k — 1)/e].
When s > d, by setting f = dfi; = eff., we need to find f§ such that

1—a =minggj<i—1 {(1 - BY x [(1 - %ﬂ - ﬁ]} if systems are simulated independently;

(d*l)(k*j*l)Jrs k _/ 1
d

1—a =minycj<k—1 {1 - [j + if systems are simulated under CRN.

When systems are simulated independently, for a fixed jsuch that 0 < j < k -1, (1 - ﬂ)j
[(1- %ﬂ - %ﬂ)k‘j—1 5B equals 1 when = 0 and is non- p0s1t1ve when f = mln{ 1 T S}
(because (1 — Y > 0 and (1 — %ﬂ 1ﬁ)k‘f 1= 0when g = 1 T and 5f = 1whenﬁ ).

Thus, there must be a solution §; with (1 - E + %)/)’j, 2B € (o, 1) We then let f;j(f) be a function
of f with a fixed j such that f;(8) = (1 - Y x [(1 - %ﬁ - %ﬁ)k_j_l — 5 B]. The first derivative of
fi() is

ﬁl

. . 1 1 1 1)\
—(1—ﬁ)J|:(k—]—1)(1—a+z)(1—(1—34';)‘&) +a

41 such that fi(B) > 0. Given that -2 fj(ﬁ) <

0 when fj(f) > 0, we know that the solutlon ,8] is unique. We set jo € argming<j<x_1 5. As
5p f](ﬂ) < 0, which implies that f;(f) is a decreasing function in terms of f for a particular j,

1

fJ(ﬁ) —j(1 - gy [(1 - (1 - % + _)/3)“l _

Ul »

p

e

<0,

where the inequality holds for 0 < f < min{——

lss
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we know that fj(B;) > 1 —aforalll < j < k—1and fj(Bj,) = 1 — a. We find ﬂ as /)’ Bios
which is the common value of eff. and dfy. It follows that 0 < fr = 3 Lp < min{

d+d1$

<
0<fe=4f<min{ =i, 3} < oy < Land0 < 1- (42 + 1) = 1 - min{s,d -1 18 -2 -

1 —-min{s,d — 1}fr - ,BC < 1 as desired.
When systems are simulated under CRN, we find f such that

d-D)k-j-1)+s k-j-1
d i e P
. 1 1 1
m}?{l‘ (3‘;)1 (“a* )("‘1” ﬁ}
-3+ ) k-1 +3]B ifd>e,
- (k-1+ %) B, ifd <e,
and the value of df and efl; can be found as

a/[(l——+%)( —1)+§], ifd > e,
b= al(k-1+3), ifd <e.

1-—a= min {1—[j+
0<j<k-1

We also see that 0 < fr = 3/3 < d(k‘—”i) < %andO < e = %ﬁ < pf < 1life > 1and
O<ﬁc=%/3§e(é)<life<lsd,asdesired.

E ALGORITHMS THAT CONSTRUCT THE THREE EXAMPLE PREFERENCE ORDERS

In this section, we include the algorithms used to generate the three example preference orders
discussed in Section 5. More specifically, Algorithms A.2 — A.4 show the algorithm that generates
ranked constraints, equally important constraints, and the total violation with ranked constraints
formulation, respectively.

Note that the ranked constraints and the total violation with ranked constraints formulation
require the rankings among constraints, without loss of generality, Algorithm A.2 and A.4 assume
that the constraints are ranked from constraint 1 to constraint s.

ALGORITHM A.2: Constructing Threshold Vectors for Ranked Constraints.

Input qs , forall £ =1,...,sandm =1,...,ds. Let Q be an empty list of threshold vectors and
let threshold be a vector of length s.
form;=1,...,d; do

formy, =1,...,d, do

forms; =1,...,ds; do
for{=1,...,sdo
Set threshold[{] = q¢,m,-
end for
Add threshold to Q.
end for
end for
end for
return Q
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ALGORITHM A.3: Constructing Threshold Vectors for Equally Important Constraints.

Input gs , forall ¢ =1,...,sandm = 1,...,dr. Let Q be an empty list of threshold vectors and
let threshold be a vector of length s. Set L = max,—1, . d;.
form=1,...,Ldo
for{=1,...,sdo
if m < d, then
Set threshold[¢] = g/, m-
else
Set threshold[{] = g/ 4,
end if
end for
Add threshold to Q.
end for
return Q

ALGORITHM A .4: Constructing Threshold Vectors for Total Violation with Ranked Constraints.

Input qs,, forall ¢ =1,...,sandm = 1,...,ds. Let Q be an empty list of threshold vectors and
let threshold be a vector of length s.
forv=0,...,%7 (d—1)do

forv; =0,...,vdo
forv, =0,...,v—10v; do
forov; =0,...,0—(v; + vy) do

forv, = v — Z;,_:ll ve do
for{=1,...,sdo
Set threshold[{] = q¢, v, +1-
end for
end for
end for
Add threshold to Q.
end for
end for
end for
return Q

F PROCEDURES Restart”* AND Restart”'%

In this section, we discuss the algorithms Restart”* and Restart” and their statistical validity.
As Restart” s a special case of Restart”"”*’C when the number of constraints in consideration is
one, we omit the discussion on the algorithm statement and the statistical validity of procedure
Restart” for the sake of space.

Procedure Restart7A% performs HAK, due to [8], for threshold vectors q(l), q(z), R q(g*) in-
dependently when 1 < 6* < d, and for threshold vectors q'*),q®, ..., q? independently when
0" = d + 1. As discussed in [8], HAK requires the user to choose a feasibility check procedure.
In our experiments, we choose TBI in [8] as the feasibility check procedure. HAK also requires
a user to input the ratio, denoted a; /@, of the error for the feasibility checks and the comparison.
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We set a;/a; = 1 as recommended in [8] and the initial sample size when Restart” % applies
HAK with respect to each threshold vector as ny = 20. Note that the results in this section can
be easily generalized to a different a; /e, ratio. A detailed description of Restart”% is shown in
Algorithm A.5.

ALGORITHM A.5: Procedure Restart”#%

[Setup:] Select the overall nominal confidence level 1 — «. Choose tolerance levels ey, . . ., €,

indifference-zone parameter 8, and threshold vectors {q"), q?, . . ., q'?}. Choose the procedure

7‘;;7 as the feasibility check procedure and set &’ = 1 — (1 — a)'/%.

for6=1,...,ddo
[Setup] for HAK: Same as in HAK except that « is replaced by a’. Set a; = ap = &’ /2.
[Initialization], [Feasibility Check], [Feasibility Stopping Rule], [Setup for
Comparison], [Comparison], and [Comparison Stopping Rule] are the same as
in HAK.
[Stopping Condition]: If one system is found in [Comparison Stopping Rule], terminate
the algorithm and select the system as the best. If no system is found in [Feasibility
Stopping Rule] and 0 = d, declare no feasible system exists with respect to the given
threshold vectors.

end for

As HAK is heuristic and Restart” % essentially applies HAK for threshold vectors
qV,q®, ..., qmn10%4D) we do not prove the statistical validity of Restart”™%. However, if we
consider a variation of HAK, namely HAKR (“restart”), with a slight modification in the [Setup]
for HAK (as Phases I and I are independent in H AKX) and two changes in the [Setup for Com-
parison], we are able to prove the statistical validity of procedure Restart"A%" that implements
HAKR for threshold vectors ¢V, q?, . . ., q™n1¢"-4}) independently:

— In [Setup] for HAK:

Set
1—(1—a")k/ttD), if systems are simulated independently;
o =0 =
! : % (k +1—+/(k+1)2 - 4ka’) , if systems are simulated under CRN.

Note that ; and a;, are well-defined when systems are simulated under CRN since (k +1)? —
4ka’ > 0 always holds. This is because 0 < a’ < 1 and thus (k + 1)? — 4ka’ > (k+1)? — 4k =
(k-1)?>0.

— In [Setup for Comparison] in HAK:

— Instead of using the observations of the primary performance measure Xji, ..., Xj,, col-
lected from the [Feasibility Check] in HAK, we perform a completely new simulation
and collect Xj1, . . ., Xip, for system i € F, and compute X;(n) and ngij(”()) fori,j € F. Set
ri = ng for each system i € F.

1—(1—a)*=V if systems are simulated independently;

~ Change f, = a/(IF| - 1) to f, = {az/(k -1), if sistems are simulated undez‘ CRN. Y

Note that [8] use F to denote the set of systems that are declared feasible with respect to q°") in

Phase I.
To prove the statistical validity of Restart "A%” e consider similar notation as in Section 2.2.
Recall that we use [b] to denote the index of the best system among the desirable systems with

respect to ("), We further let CS® be the correct selection event with respect to threshold vector
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q(e). Thenif 6 = 1,...,min{6",d},

cs'? = {

We let CSRestart be the correct selection event of Restart"#%”  As RestartA%" iteratively ap-
plies HAKXR for threshold vectors V), q?, . ..,q") when 1 < 6* < d and for threshold vectors
q",q?,...,q9 when 6* = d + 1, we have 021:;{0 4} g(0) o CgRestart

Before we prove the statistical validity of Restart” AK® e first introduce the following nota-

declare no feasible system exists or select i such that i € 02:1 (Dg (qi,e)) UAg (qge)))} , if @ < 0%

select i such that i € ﬂfel (Dg (q(rg)) UAp (q(;))) and x; > x[p] — 5} s if 0 = 6*.

tion:
Sée) = set of acceptable systems with respect to threshold vector q'?;

51(49) = set of unacceptable systems with respect to threshold vector q(e).

Note that there do not exist desirable systems with respect to q'?) when @ < *. We then let

509 _ set of desirable systems with respect to q(‘g*) among systems in I' \ {[b]}, if 6" <d;
a o, if0* =d+1,

and let nge*) be the correct selection event between system i € Sfle*) U S;e*) and the best system
[b].

We then present two lemmas that we use to prove the statistical validity of Restart TAK".

LemmA F.1. Under Assumption 1, for system i and constraint { with threshold q, the [Feasibility
Check] steps in HAKR that run to completion ensure Pr(CD;/(qe)) = 1 — fy.

LEmMA F.2. Under Assumption 1, given i such that x; < x|p) — 6, the [Comparison] steps for
system i and [b] in HAKR that run to completion ensure

Pr (CSE."*)) >1- B,

The proofs of Lemmas F.1 and F.2 are essentially same as those of Lemmas A.1 and A.3 when
¢ = 1 (the case considered by [8]) because a]’, (al) from ZAKR and p; (B;) from HAKR both
denote the nominal error of feasibility check for one constraint of one system with a fixed threshold
(comparison between an inferior system and the best system [b]). We prove the statistical validity

of Restart """ in the following theorem.
THEOREM F.3. Under Assumptions 1 and 2, the procedure RestartHA%" guarantees
pr{cstestarty > 1 _ g

Proor. We consider two cases, namely when 0" < d and 6" = d + 1.
Case 1: 0" < d.
Recall from Section A that B} denotes the event that system [b] is declared feasible to q'%"). Similar
to B and A7 in the proof of Theorem A.4, we define @; as the event that selects the best system

[b] among the systems in S;e*) U sze*) and

A = { all systems in S,(f) are declared infeasible with respect to q(e), where 0 =1,..., d} .
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Note that when 0 < 0%, CS'®) can be ensured by only guaranteeing A When 6 = 6%, CS@ ¢
A N B N B;. Thus,

0 * R* . _ n*

(CS<9)) Pr (ﬂ( )OBI ﬂBZ), if 0 = 6%,

Pr (A®), if 0 < 6"
As CS@ achieves its lower bound when 6 = 6* (because otherwise there is no need to make
correct comparison decisions), we focus on this case. One may also notice that A" and B are

independent if systems are simulated independently and are dependent if systems are simulated
under CRN. As we discard observations from Phase I and completely restart for Phase Il in HAKX,

and f?; involves making the correct selection from all systems in 5519*) U S;e*), ZNE; is independent
from A" and B]. Then, we have
Pr (AY)) x Pr (8;) x Pr (Z?;‘ ) , if systems are simulated independently,

Pr (cs(e*)) > ; .
[Pr (A©)) +Pr (B;) —1] x Pr (B;) ,  if systems are simulated under CRN.

We let ](9) denote the number of unacceptable systems with respect to q(g) that is, ](9) |S(9)| We
then discuss the cases depending on whether systems are simulated independently or under CRN.

When systems are simulated independently, by Lemma F.1 and the Bonferroni inequality, we
have

Pr (5‘((9*)) > Pr( es(@") Ny_, CDlp(q(e ) ) n Pr (ﬂ[ ICD,[(q(Q )))
ies?”)

> ]_[ 1—2Pr(ICD,-g(q(f*)))l > (1= spy s
=1

ies®
Pr(8B;) =Pr (ﬁ(, ,CDpp f(q(e ))) >1- ZPr (ICD ((q(e ))) >1-sp.

We use a similar approach as in Equation (4) from the proof of Theorem A.4 by replacing S
and Sy with sﬁf’ ) and SEIG ), respectively. We then have
- (6%)
Pr(B;) > (1 - o) 7.

Thus, we have
(0%) -

Pr (cs<9*>) > (1= By 1 (1 = fy)E

To find a lower bound of the above expression, we need to either maximize ] Dif1- spr<1-p

or minimize ]u Vif1 - sp1 > 1 — f. We also know that 0 < ](9 ) <k-1.When1- sp1 <1 - P,
we have

(0%) 0 ~ o
(1 =spy)™ Hx(l_ﬁz)k Ju Tl > (1—Sﬁ1)(k D+ X(l—ﬁz)k (k=1)-1
=(1-sp)f=1-a,

where the last equality holds since procedure HAK sets f; = (1 — (1 — a;)/¥)/s when systems
are independent. When 1 — sf; > 1 — f3,, we have

(1 _ sﬁl}ii{g*)“'l > (1 _ ﬂz)k_js,te*)_l > (1 _ S,Bl)OH « (1 _ ,Bz)k_o_l
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= (1=sp) x (1= )"
=(1-a)/* x(1-a)
= (1— ay)*V/E,
where the second equality holds as HAK sets f; = (1 — (1 — a;)/%)/s and HAKR sets f, =
1— (1 = a)/**=V when systems are independent. Therefore, we have
Pr (CS(B*)) > min [l —a,(1- al)(k+1)/k] =(1- al)(k+1)/k
](k+1)/k

’

= [1 — (1= (1= )k/tk+D)y =1-a

When systems are simulated under CRN, by Lemma F.1 and the Bonferroni inequality, we have
S
Pr (ﬂw*)) > Pr( 40 M5y CDie(q” >)) >1- 3 S epiq) = 1- 4 spus
iesl? (=1
Pr(B]) > 1-spy;
D% 0" 0"
Pr (BZ) > Pr (nie(sg,,*,usy*))csﬁ. )) >1- Z Pr(ICS;) > 1 - (k - j%) = 1)B.
ie(S(ae*)USfjg*))
Thus, we have
Pr (cs“’*)) > [ — (9 ¥ 1)spy ] [1 C (k- jO - 1)/32] .

To find a lower bound of [1 (9 ) 4 1)sp1 ] [ — (k- ](0 ) _ l)ﬁg],we see that

G+ s [1- G- - 0o
= —sBfo X GOV + [k = 2)sB1 By — sPr + Ba] X i + (1 = sp) [1 = (k = 1)Ba].

Given that 0 < ](9 ) < k-1, we see that the above quadratic function achieves its minimum either
it )—Oor](e) k-1 Whenj(e)—o we have

1= G+ 03| [1= = 17 = 0| = (1= 5Bt - (k= 1))
= (1 —(Zl/k)(l —az)
= (1= ar/k)(1 - aty),

where the second equality holds since procedure HAK sets f; = a;/(ks) and HAKR sets f =
0 _ 1

when j,,

a3 /(k — 1) when systems are correlated. When j,, — 1, we have

1= 0sp| [1- =17 = 0] = (1 - ksp) = 1 - an,

where the second equality holds since HAK sets f; = a;/(ks) when systems are correlated.
Therefore, we have

Pr (CS(Q*)) >min[1— o, (1 — o1 /k)(1 = ay)]
1, k+1

=(1-a/k)1-0a1) = Eal Ttxl +1
2
= % [% (k+1—\/(k+ 1)? —4ka')] kz";l (k+ 1-V(k+ 1) —4ka') +1
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=1-a'.
Note that although setting o; = % (k +1++/(k+1)%- 4ka’) also yields Pr(CS")) > 1 — o/, it is

not valid. This is because % (k +1+ M) > % (k +1+ M) =k >1(as
0 < @’ < 1) and hence selecting ¢; in this manner violates the fact that 0 < a; < 1.

Thus, we see that Pr (CS(H)) > Pr (CS(Q*) ) > 1 — o’ regardless whether systems are simulated
independently or under CRN. Therefore, we have

d
Pr(Cs*e@t} > Pr(ng_ 5@} > Pr(nd_,cs@) = [ | pr (cs“’))
0=1
>1-a)=(1-(1-1-a)/))=1-qa.
Case 2: 0* =d + 1.
If 0" = d + 1, there are no desirable systems for any threshold vector. Therefore, CS® is ensured

by correctly concluding feasibility decisions for all systems i € S,(f). Then Pr(CS?) > Pr(A®)
and Lemma F.1 and the Bonferroni inequality yields

Pr(CS©) > (1- sﬂl)jf), if systems are simulated independently,
T 1= j,(f)sﬁl, if systems are simulated under CRN,

>

(1-sBy)k, if systems are simulated independently,
1—ksps, if systems are simulated under CRN,

where the last inequality is due to the fact that 0 < j§,9> < k forany 6 = 1,...,d. When systems
are simulated independently, we have

Pr {CS(‘Q)} >(1- sﬂl)k =l-o>1-0a'.
When systems are simulated under CRN, we have

Pr {cs<9>} >(1-ksp)=1-a >1-a'.

Thus, we have Pr (CS<9)) > 1 — o’ regardless whether systems are simulated independently or
under CRN. Then it follows that

d
Pr{csfetaty > prng_ cs®y = [ | Pr (cs<9>) >(1-a)=1-a. O
0=1

Remark 3. There are two potential improvement for Restart "% in terms of setting the imple-
ment parameters:

(1) The proof of Theorem F.3 computes Pr(A)) > (1 - sﬁl)j;e " when systems are simulated

independently and Pr(AY)) > 1- jﬁf*)sﬁl when systems are simulated under CRN, which is
consistent with the choice of implementation parameters in Procedure H AK in Healey et al.
[8]. However, these bounds can be improved using ideas in this article. In particular, similar

to the argument in the proof of Lemma 2, for each system i € Sie*), let ¢; be a constraint
such that system i is infeasible to threshold vector qif ). To declare system i infeasible to

threshold vector q(‘g*), it is sufficient to make a correct feasibility decision for constraint ¢;
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with respect to threshold q(;*). Therefore, one may improve the efficiency of RestartAK"
by computing Pr(A")) as

Pr (ﬂ“’*)) > Pr (miesy*)CDi&(q(éf*) ) =[] e (CDigi(qf“))
iest?”
0 0
= [T [r-Pr(1epiig™)] = a-po".
iesif*)
when systems are simulated independently, and
* 0" 0* (0"
Pr (ﬂ(‘" )) > Pr (ﬁiesag*)CD,-gi(qi,i ))) >1- Z Pr (ICD,-gi(q(é,l_ ))) >1-79p,.
ies)

when systems are simulated under CRN.
(2) The proof of Theorem F.3 allocates error to both Phases I and II in order to achieve CS@ for

alld =1,...,60% One may improve the efficiency of RestartHA%" by not allocating error to
Phase II when 6 < 6* (since there are no feasible systems exists with respect to q?) when
0 < 0").

As the current approach is a natural and statistical valid way of restarting H AK for different
threshold vectors, we do not consider an improved version of Restart "A%” since this is not the
main focus of the article.

As Restart”% reuses the observations from Phase I and assigns the error in Phase Il more effi-
ciently, it is expected to perform better than Restart TAK" Although we do not prove the statistical
validity of Restart”*% we have not found any experiments that violate the statistical guarantee.
We believe that Restart %" and Restart /1% are appropriate choices of sequentially-running

approaches for comparison with ZAKR and ZAK, respectively.

G PROCEDURES Restart™** AND Restart” A%+

In this section, we discuss the algorithms Restart”™** and Restart "+ and their statistical valid-
ity. Similar to Appendix F, as Restart”%* is a special case of Restart””"** when the number of
constraints is one, we omit a separate discussion of Restart? %+,

Restart”%* performs procedure HAK+ due to [8] independently for the threshold vectors
qP,q?,...,q"%) when 1 < 6* < d, and for threshold vectors q'¥),q?, ..., q? independently
when 6* = d +1. As discussed in [8], HAK+ requires user to choose a feasibility check procedure.
In our experiments, we choose 771;7 in [8] as the feasibility check procedure. HAK+ also requires
a user's input for the ratio, namely e = sp;/f,, of the error for the feasibility checks and the
comparison. We set e = 1 as recommended in [8] and the initial sample size when Restart %+
applies HAK+ with respect to each threshold vector is set as ny = 20. Note that the procedure
and the proof discussed in this section can be easily generalized to a different value of e. A detailed
algorithm description is shown in Algorithm A.6.

We utilize the same notation of 51(19), jl(f), CS@ and CSRe™ a5 in Appendix F, and prove the
statistical validity of Restart”%* in the following theorem.

THEOREM G.1. Under Assumptions 1 and 2, the procedure Restart” % guarantees
Pr{CSRestart} >1-a.

Proor. We consider two cases, namely 0* < d and 0" =d + 1.
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ALGORITHM A.6: Procedure Restart7%+

[Setup:] Select the overall nominal confidence level 1 — a. Choose tolerance levels €y, . . ., €5,
indifference-zone parameter §, and threshold vectors {q"), q?, . .., q/¥}. Choose procedure Té—

as the feasibility check procedure and set &’ = 1 — (1 — a)!/.

for6=1,...,ddo
[Setup] for HAK+: Same as in HAK+ except that « is replaced by a’. Note that we set
f, to the solution of f; + 2[1 — (1 — o)*"V/2] = &’ when systems are simulated
independently and set i = a’/k when systems are simulated under CRN. We also set
pr = Pa/s.
[Initialization], [Feasibility Check], [Comparison], and [Stopping Rule] are the same
as in HAK+.
[Stopping Condition:] If one system is found in [Stopping Rule], terminate the algorithm
and select the system as the best. If no system is found in [Stopping Rule] and 6 = d,
declare no feasible system exists with respect to the given threshold vectors.

end for

Case 1: 6" < d.

When systems are simulated independently and Assumptions 1 and 2 hold, due to Lemmas F.1 and
F.2 and the arguments in the proof of Theorem F.3, the feasibility check and comparison procedures
of HAK+ satisfy Assumptions 3 and 5 of [8], respectively. Thus, we are able to apply Lemma 4.2
of [8]. That is, we have

Prics@h > (1= B + (1= spy) + (1 - fo) 1 -2, ©)

when jﬁf’) < k and Pr(CS?) > (1 - sB;)* when jff) = k. Also, Remark 4.3 of [8] discusses that the

smallest lower bond on Pr {CS(9>} is always achieved when jl(,e) < k. As we set ff, = sf; and S, as

the solution to S + 2[1 — (1 — ,)*V/2] = o', we know that
(1= 5B + (1 =) + (1= f)F 7 =2 = (1= B 4 (1= o) + (1= p) 1 =2
2 (1= BT+ (1 fo) + (1= fp) T -2
=1- (ﬁz +2 [1 -(1- /32)("‘”/2])
=1-a,

where the inequality holds as the lower bound is achieved when j,(f) = (k — 1)/2. By Theorem 4.4
of [8], we know that Pr(CS¥)) > 1 — o’.

When systems are simulated under CRN and Assumptions 1 and 2 hold, due to Lemmas F.1
and F.2 and the arguments in the proof of Theorem F.3, the feasibility check procedure and the
comparison procedure of HAK+ satisfy Assumptions 4 and 6. With Assumption 1, we apply
Lemma 4.6 of [8] and have

Pr{cs®} 2 1- G + sy - (k= 1 - D, (7)
when j,(f) < kand Pr{CS?} > 1 — ksf; when jf,e) = k. As we set ff, = sf; = &’ /k, we know that
1-G P+ 0sp k=10 -1y =1-kpy=1-2’.
Then by Theorem 4.8 of [8], we know that Pr(CS(?)) > 1 — o’.
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As we have Pr(CS?)) > 1 — &’ regardless of whether the systems are simulated independently
or under CRN, we have

Pr{CsFey > Pr{ng_,cs@} > Pr {ng_,cs?} = ]_[Pr( s)

>(1-a)=(1-01-1-at)'=1

Case 2: 0" =d + 1.
If 0* = d + 1, there are no desirable systems for any threshold vector. This means that we have
]1(19) k for any 0 = 1,...,d. Similar to the proof of Theorem F.3, CS® is ensured by cor-

rectly concluding feasibility decisions for all systems i € S,(,e). By Lemmas 4.2 and 4.6 from [8],
we have

(CS(Q)) (1—spy)k, if systems are simulated independently,
1—kspy, if systems are simulated under CRN.

When systems are simulated independently, by Remark 4.3 of [8], the lower bound of (1 —sf;)*
is never smaller than the Right-Hand Side (RHS) of Equation (6) when ](9 )=k -1. Therefore,
we have (1 —sp)f > 1-a’.

When systems are simulated under CRN, by Remark 4.7 of [8], the lower bound of 1 — ksf; is
equal to the RHS of Equation (7) when ](9 ) = k — 1. Therefore, we have 1 — kspr > 1-a’.

Thus, we have Pr(CS?)) > 1 — o’ both when the systems are simulated independently or under
CRN. It then follows that

d
Pr{cstesterty > pring_ cs®} = [ [ pr (cs“’)) >(1-a)=1-a. O

Remark 4. Similar as in Appendix F, there are two potential improvement for Restart”?%* in
terms of setting the implementation parameters:

(1) Due a similar reason as in Remark 1, the computation of Pr(CS®)) in the proof of
Theorem G.1 can be improved. When systems are simulated independently, Equation (6)
can be improved as

Pe{Cs@) = (1= 4 (1= )+ (1= o1
When systems are simulated under CRN, Equation (7) can be improved as
Prics@} > 1- () + 0 - k-1 - DB

(2) The proof of Theorem G.1 allocates error to both Phases I and Il for all 0 = 1,..., 6% One
may improve the efficiency of Restart”*%** by not allocating error to Phase Il when 6 < 0*
(since there are no feasible systems exists with respect to q'¥) when 6 < 6*).

As the current setting is a natural and statistical valid way of restarting HAK+ for different
threshold vectors, we do not consider an improved version of Restart"#%+ since this is not the
main focus of the article.
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Table A.1. Threshold Configuration for the four
Constraints (s = 4) Case

Constraint ‘ Threshold values of constraint £

=1 0,261,461,661
(=2 0, 2¢ey
=3 0,263,463
=14 0, 264, 464,664
sxm" 5><104
—o ZAKR —o ZAKR
o ZAKR o ZAKR
45 —o ZAK, 45| ZAK,
— o ZAK, o ZAK,
. N — ZAK+ ol BAK
N -0
\ PSS
Bos e Bosl -
RS 1 E L
gt PPN S-S S S
3t Y= 3%
\\ ~wo
X " g SRk ’
25 S — e 1 25 e
2 2
025 05 1 2 3 4 5 6 7 025 05 1 2 3 4 5 6 7
€ =€ =€ ep=e =e
(a) OBS when s =2 and b =50 (b) OBS when s =4 and b = 25

Fig. A.1. Average number of observations of procedures Z.?’IWR, ZJ*’I‘KR, ZAK, ZAK,, and ZAK+ as
functions of ey, ez, and e for k = 100 systems and s = 2 and 4 constraints.

H EXPERIMENTAL RESULTS FOR IMPLEMENTATION PARAMETERS

In this section, we present the experimental results that we use to choose the implementation
parameters for the proposed procedures ZAKR, ZAK, and ZAK+.

We test the performance of our proposed procedures in the DM mean configuration, the L/L
variance configuration, and the ranked constraints preference order (where the constraints are
ranked from constraint 1 to constraint s) when k = 100, s = 2,4,6, and b = 25,50. When s = 2,
both constraints have three thresholds {0, 2e¢, 4€,}, for all £ = 1,2, and 6* is set as 8* = 5. When
s = 4, we consider the threshold values of each constraint shown in Table A.1 and 8" = 50. When
s = 6, we let constraint £ have two thresholds {0, 2¢,}, where £ = 1,...,6, and 8" = 30. The
results of OBS when s = 2 and b = 50 and when s = 4 and b = 25 are shown in Figure A.1.
Figures A.2(a) and A.2(b) show the experimental results for the case, where s = 2 and b = 25 and
the case, where s = 4 and b = 50, respectively. The results for the six constraints case, where
b = 25 and 50 are shown in Figures A.2(c) and A.2(d), respectively. Note that we fixed the ranges
of e, e5,e € {0.25,0.5,1,2,...,7} and depict OBS on the scale {2, 2.5, ..., 5} x 10 in all the figures
to facilitate the comparison.

We see that for the four cases shown in Figure A.2, the values of ey, ez, and e where OBS
achieves its minimum value ranges from 2 to 7 and the OBS is flat within this range. Note that the
OBS is also similar between the two settings of the implementation parameters of ZAKR and

ZAK.
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Fig. A.2. Average number of observations of procedures Zﬂ‘?(R, Z.?(WR, ZAK 1, ZAK,, and ZAK+ as
functions of e1, ez, and e for k = 100 systems and s = 2,4, 6 constraints.

I ADDITIONAL EXPERIMENTAL RESULTS FOR EFFICIENCY

In this section, we provide additional experimental results aimed at comparing the efficiency
among all proposed procedures. Note that all the experimental results in this section are based
on the L/L variance configuration.

Figure A.3 shows the OBS for a single constraint with ten thresholds under the MDM config-
uration (same experimental setting as in Figure 5 except for the mean configuration) for all four
procedures ZAK, Restart?X | Z AK+, and Restart***. The pattern is similar when 1 < 6* < 10
as in Figure 5(b) except that the benefit of ZAK+ over ZAK is more substantial. When 6* = 11,
ZAK+ and Restart< AN+ require more OBS than when 8* = 10. Since the problem is easier un-
der the MDM configuration than with the MIM configuration for both Z A%+ and Restart< %+
when 1 < 6* < 10 and becomes the same when 0* = 11, this is expected. Both ZAK and ZAK+
perform significantly better than the alternative procedures Restart”* and Restart”%*.

Figures A.4, A5, and A.6 show the OBS for two constraints with three thresholds on
each constraint (same experimental setting as in Figures 6 and 7) for all four procedures
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Fig. A.3. Average number of observations of ZAK, Restart X ZAK+, and Restart™ X+ as functions of
0" for k = 100 systems and s = 1 constraint with ten thresholds under the MDM configuration.

ZAK, Restart K, Z AK+, and Restart™ X under the ranked constraints, equally important con-
straints, and total violation with ranked constraints formulations, respectively. Each figure also
contains the DM, MIM, and MDM configurations. As in the single constraint case, both ZAK and
ZAK+ show significant improvement compared with their competing procedures Restart’#%
and Restart”**** under all threshold formulations and all mean configurations. Note that the re-
sults of ZAK and ZAK+ under the MIM and MDM configurations with the ranked constraints
and equally important constraints formulations (Figures A.4(b), A.4(c), A.5(b), and A.5(c)) are the
same as in Figures 6 and 7, but are shown on different scales because Restart”*’ and Restart "%+
require much more observations than ZAK and ZAK+.

Finally, Figure A.7 shows the experimental results for two constraints with three thresholds
on each constraint for procedures ZAK and ZAK+ under the total violation with ranked con-
straints formulation and the MIM and MDM configurations (same setting as in Figures 6 and 7
except for the preference order). As discussed and explained in Section 6.4, the result shows a sim-
ilar pattern as in Figure 6. We see that ZAK+ performs slightly better or very similar to ZAK
under the MIM configuration and performs significantly better than ZAXK under the MDM con-
figuration. Note that although the results for ZAK and ZAK+ in Figures A.7(a) and A.7(b) are
the same as in Figures A.6(b) and A.6(c), the scales of the plots are different due to the fact that
Restart”% and Restart”%* require much more observations.

J EXPERIMENTAL RESULTS FOR THE IMPACT OF USING CRN

In this section, we discuss the impact of using CRN when applying the proposed procedures. To
account for the dependency across systems induced by the use of CRN, the implementation pa-
rameters of both procedures take more conservative values than those with independent sampling.
However, CRN often reduces the variance of the difference in the primary performance measures
among systems. Thus, the feasibility check tends to require more observations while the compari-
son tends to require fewer observations. Whether CRN helps the overall performance of proposed
procedures depends on how much savings we get in the comparison compared to the increment
in observations in the feasibility check.
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Fig. A.4. Average number of observations of ZAK, Restartﬂﬂq{, ZAK+, and Restart T AK+ as functions
of 6* for k = 100 systems and s = 2 constraints under the DM, MIM, and MDM configurations for the ranked
constraints formulation.

We consider the case of a single constraint with two thresholds (d = 2) under the DM config-
uration and three different variance configurations (H/L, L/L, and L/H). Let p be the correlation
between each pair of systems for the primary performance measure. Then the variance of the dif-
ference in the primary performance measure between two systems equals Zaﬁi(l — p), while the
variance of the secondary performance measure of each system is crji ,- When systems are simu-
lated independently (i.e., p = 0), the first two variance configurations (H/L and L/L) have more
difficult comparison than feasibility check due to the larger value of 202, than 051_ ,- On the other
hand, the L/H configuration has easier comparison than feasibility check. Thus, we expect the H/L
and L/L variance configurations to show the benefit of CRN but not the L/H configuration. In our
experiments, we consider p € {0.25,0.5,0.75} and all possible values of 6* (i.e., 0* € {1, 2,3}), and
fix b = 25. The results for the H/L, L/L, and L/H variance configurations are shown in Tables A.2,
A.3, and A4, respectively.

From Tables A.2 and A.3, we see that under the H/L and L/L variance configurations, ZAK
and ZAK+ both require fewer observations when CRN is applied with 0* € {1,2} and p €
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Fig. A.5. Average number of observations of ZAK, Restart(H“ﬂ'K, ZAK+, and Restart AK+ a5 functions
of 0" for k = 100 systems and s = 2 constraints under the DM, MIM, and MDM configurations for the
equally important constraints formulation.

{0.25,0.5,0.75}. As the variance of the pairwise comparison is reduced due to the CRN, the
continuation region for comparison gets shorter and narrower and thus it takes fewer observa-
tions to complete the comparison among systems deemed feasible. Note that when 0* = 3, all
systems are infeasible with respect to all threshold vectors considered, which means that the
procedures are likely to be terminated by all systems deemed infeasible and there is no need
to wait for the comparison decisions to be completed. Thus applying CRN does not help in
this case. One may notice that the benefit of applying CRN is more obvious in Table A.2 than
that in Table A.3. This is expected because the variance of the primary performance measure
in the H/L configuration (Table A.2) is much larger than that in the L/L configuration (Ta-
ble A.3). Therefore, reducing the variance of the pairwise comparison benefits the overall perfor-
mance a lot more under the H/L configuration. We also see that for a fixed p, the performance
of ZAK (ZAK+) is similar under §* = 1 or 2. This is expected as procedures ZAK and
ZAK+ are robust with respect to the values of 0*. The OBS decreases when p increases for
both ZAK and ZAK+ when 0* € {1,2}. This is because higher correlation across systems
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Fig. A.6. Average number of observations of ZAK, Restartﬂﬂq{, ZAK+, and Restart T AK+ as functions
of 0% for k = 100 systems and s = 2 constraints under the DM, MIM, and MDM configurations for the total
violation with ranked constraints formulation.

reduces the variance of the difference in the primary performance measures among systems, and
thus both procedures become more efficient with larger p. When 6* = 3, however, as there
are no feasible systems, reducing the variance of the difference in the primary performance
measures among systems does not improve performance because no comparison is required to
achieve CS.

Table A.4 shows the experimental results when the variance configuration is set to L/H. As the
feasibility check is considered to be more difficult than the pairwise comparison, the benefit of CRN
is expected to be smaller. Indeed, we do not see much savings in observations for both procedures.
[8] discuss the required correlation to overcome the conservative Bonferroni bound required for
the proof of the statistical validity of the proposed procedures under CRN. They show that the
cross-correlation p needs to be sufficiently large to achieve a smaller number of observations under
CRN than under independent sampling. When 6* = 1, our problem configuration becomes similar
to that of [8] and we do see savings in observations for ZAK+ (but not for ZAK) when p is
sufficiently large, which is consistent with the findings from [8]. When 0* = 2, 3, the benefit of
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Fig. A.7. Average number of observations of ZAK and ZAK+ as functions of 0* for k = 100 systems and
s = 2 constraints under the MIM, and MDM configurations for the total violation with ranked constraints

formulation.

Table A.2. Average Number of Observations and Estimated PCS
(Reported in Parentheses) of ZAK and ZAK+ for k = 100 System
and s = 1 Constraint with Two Thresholds Under the DM and
H/L Configurations and p € {0.25,0.5,0.75}

With CRN Without CRN
p [ZAK ZAKT | ZAK ZAK+

37,610 47,509

0251 (0.969)  (0.974)
0" =1 05 32,316 40,273 39,429 49,674
- 2] (0.965)  (0.973) || (0.964)  (0.974)

23,429 28,165

0751 0.953)  (0.972)

37,409 47,265

.2 bl bl

0251 0.960)  (0.968)
9% = 2 05 32,084 40,059 39,357 49,381
- 2 | (0.955)  (0.967) || (0.960)  (0.965)

23,351 28,041

0751 (0.949)  (0.967)

15,015 14,896

0251 (0972)  (0.971)
0" =3 05 15,020 14,888 14,986 14,814
- 2] 0970)  (0.973) || (0.969)  (0.968)

15,014 14,884

0751 (0.972)  (0.973)

CRN does not exist in this setting. When the feasibility check is more difficult than the pairwise
comparison in the sense that it takes more observations to complete, it is possible that the use of
CRN makes the overall performance worse than independent sampling. However, Table A.4 shows
that the increment in observations does not seem significant.
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Table A.3. Average Number of Observations and Estimated

PCS (Reported in Parentheses) of ZAK and ZAK+ for

k = 100 System and s = 1 Constraint with Two Thresholds
Under the DM and L/L Configurations and p € {0.25,0.5,0.75}

With CRN Without CRN
p [ZAK ZAKT || ZAK ZAKT
17,033 18,647
025 | (0.966)  (0.975)
0 =1 05 16,202 17,305 17,334 19,021
- 0.968)  (0.972) || (0.967) (0.974)
15,221 15,306
075 | (0.956)  (0.977)
17,212 18,675
0251 0.960)  (0.967)
0" =2 05 16,492 17,475 17,462 19,043
- 21 (0.958)  (0.967) || (0.961)  (0.968)
15,729 15,873
075 | (0.956)  (0.968)
15,022 14,880
025\ (0.973)  (0.971)
0" =3 05 15,023 14,885 14,985 14,807
- 2 1 (0.969)  (0.970) || (0.970)  (0.971)
15,014 14,875
075 | (0.973)  (0.971)

In summary, there is a trade-off between the required number of observations in the feasibil-
ity check and pairwise comparison when CRN is applied. CRN is unlikely to help when (i) the
comparison is easier than the feasibility check or (ii) the induced correlation across systems for
the primary performance measure is small. If the decision maker knows that the comparison is
easier than the feasibility check or that the correlation is small, then it is better to use independent
sampling. However, the decision maker may not have this information in practice. In that case, we
recommend that the decision maker uses CRN because there is a possibility that CRN will reduce
the number of observations significantly and, even when it does not, the number of observations
with CRN appears to be similar to or only slightly larger than that with independent sampling.

Based on the results in Tables A.2, A.3, and A.4, we also observe that ZAK performs better
than ZAK+ when 6* € {1,2} under the H/L and L/L configurations while ZAK+ dominates
ZAK when 6° € {1,2} under the L/H configuration. Both ZAK and ZAK+ perform similar
when 0* = 3. This agrees with the finding from the single constraint with four thresholds case
discussed in Section 6.4 (Table 2).
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Table A.4. Average Number of Observations and Estimated

PCS (Reported in Parentheses) of ZAK and ZAK+ for

k = 100 System and s = 1 Constraint with Two Thresholds
Under the DM and L/H Configuration and p € {0.25,0.5,0.75}

With CRN Without CRN
p [ZAK ZAKT || ZAK ZAKT
74,008 69,321
0251 0.978)  (0.976)
0" =1 05 73,930 68,283 73,842 69,288
- 21 (0.975)  (0.974) || (0.977)  (0.972)
73,912 66,547
0751 (0.979)  (0.975)
77,149 75,501
0-25 1 0.969)  (0.967)
0" = 2 05 77,159 75,241 76,959 75,239
- 2 1 (0.969)  (0.967) || (0.967)  (0.966)
77,176 74,959
0751 (0.971)  (0.969)
74,484 73,521
0251 0.970)  (0.967)
0 =3 05 74,506 73,528 74,339 73,266
- 2 1(0.969)  (0.971) || (0.969)  (0.966)
74,493 73,492
0751 (0.970)  (0.968)
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