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We consider the problem of finding a systemwith the best primary performance measure among a finite num-

ber of simulated systems in the presence of subjective stochastic constraints on secondary performance mea-

sures. When no feasible system exists, the decision maker may be willing to relax some constraint thresholds.

We take multiple threshold values for each constraint as a user’s input and propose indifference-zone proce-

dures that perform the phases of feasibility check and selection-of-the-best sequentially or simultaneously.

Given that there is no change in the underlying simulated systems, our procedures recycle simulation obser-

vations to conduct feasibility checks across all potential thresholds. We prove that the proposed procedures

yield the best system in the most desirable feasible region possible with at least a pre-specified probability.

Our experimental results show that our procedures perform well with respect to the number of observations

required to make a decision, as compared with straight-forward procedures that repeatedly solve the prob-

lem for each set of constraint thresholds, and that our simultaneously-running procedure provides the best

overall performance.
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1 INTRODUCTION

We consider the problem of selecting the best or near-best system with respect to a primary per-
formance measure among a finite number of simulated systems while also satisfying stochastic
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constraints on one or more secondary performance measures. When no feasible system exists
with respect to a given set of threshold values, the decision maker may be willing to relax the
threshold values of some constraints so that a feasible system can be found. In that sense, con-
straints with multiple thresholds can be considered as subjective constraints. The decision maker
is often uncertain about the values of performance measures of simulated systems. Thus, the de-
cision maker may prefer tight threshold values, but may worry that the desired thresholds will
lead to infeasibility and settle for weaker thresholds. The decision maker could achieve this by
starting with the desired thresholds and relaxing them until at least one feasible system is found.
Alternatively, she could start with the most relaxed thresholds and tighten them until no feasible
system exists. This iterative approach can be tedious and time-consuming. Our approach allows
the decision maker to consider several sets of thresholds at the same time, with statistical validity,
and hence removes the need for both trade-offs between feasible and desirable thresholds, and for
iteratively considering different thresholds. We illustrate this problem with an example.
Suppose a decision maker wants to design an inventory policy such that the expected fill rate

within each review period is maximized. She considers using an (s, S) inventory policy (namely
ordering products to increase the inventory level up to S when the inventory level at a review pe-
riod is below s and placing no order, otherwise). Two constraints exist, namely the probability that
a shortage occurs between two successive review periods should be less than or equal to q1 = 1%
and the expected cost per review period should be less than or equal to q2, where the value of q2
is small. The decision maker thinks q2 = $100 is small but is willing to relax the threshold to $105
or $110 if no feasible system can be found with q2 = $100. If there is still no feasible systems with
respect to q2 = $110, then the decision maker is willing to raise the threshold q1 to 5%, still with
three possible values for q2. To solve this problem, a straightforward approach is to first rank the
combinations of the thresholds of both constraints based on how the decision maker prioritizes
the thresholds, for example, the threshold combinations (q1,q2) are preferred following the or-
der of (1%, $100), (1%, $105), (1%, $110), (5%, $100), (5%, $105), and (5%, $110). Then, she can apply
existing constrained optimization procedures repeatedly to identify the optimal system that is fea-
sible with respect to each combination of the thresholds until an optimal feasible system is found.
However, this iterative approach can be computational inefficient. Alternatively, since the decision
maker has some flexibility with respect to the threshold on each constraint, the two constraints
can be viewed as subjective constraints. Identifying the optimal system in the presence of two
subjective constraints, where we consider all threshold combinations simultaneously, provides a
new approach of solving the problem.
Ranking and selection (R&S) aims to identify a system with the best performance among

finitely many systems whose performances are estimated by stochastic simulation. References [13]
and [10] provide literature reviews on R&S. When the problem requires not only selecting the best
system with respect to a primary performance measure but also determining the feasibility with
respect to stochastic constraints on secondary performance measures, it becomes constrained R&S.
There are three major approaches to solving constrained R&S, namely the indifference-zone (IZ)
approach, the optimal computing budget allocation (OCBA) approach, and the Bayesian ap-
proach. References [11, 17], and [18] propose sampling frameworks that approximate the OCBA
considering stochastic constraints. Reference [21] proposes a sequential policy from the Bayesian
approach for allocating simulation effort to determine a set of systems with mean performance ex-
ceeding a threshold. For the IZ approach, the decision maker usually needs to specify an IZ param-
eter, which corresponds to the smallest significant difference of a performance measure that she
values (see further discussion in Section 2.2). Reference [3] proposes a fully sequential procedure
that finds a set of feasible systems given multiple constraints. Reference [1] proposes procedures
that select the best with respect to the primary performance measure among a finite number of
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simulated systems in the presence of a single stochastic constraint on a secondary performance
measure. Reference [9] applies the concept of dormancy to efficiently solve constrained R&S and
[8] proposes procedures to select the best in the presence of multiple constraints.
For constrained R&S, if each constraint has one fixed threshold value, procedures due to [1] or

[8] can be used. When the decision maker is willing to consider multiple threshold values, one
may consider iteratively applying those procedures “from scratch” to each set of thresholds. How-
ever, this wastes all the information from the previous constrained R&S problems and becomes
computationally inefficient. Given that there is no change in the simulation model of each system,
a natural idea is to recycle simulation observations for constrained R&S with different thresholds.
The idea of recycling simulation observations for computer experiments is proposed in [6]. How-
ever, they focus on estimation rather than comparison. Reference [22] proposes a procedure that
performs feasibility determination when the decision maker wants to consider multiple threshold
values on each constraint. They use the idea of recycling simulation observations and perform
feasibility determination simultaneously with respect to all thresholds so that the overall required
number of observations is reduced. However, their focus is on feasibility determination rather than
on finding the best feasible system in the presence of subjective constraints.
In this article, we adopt the concept of recycling simulation observations in the context of con-

strained R&S when constraint thresholds vary. We provide fully sequential procedures that return
the best feasible system with respect to the most preferred threshold values possible, where the
preference order among thresholds is specified by the user. The threshold values for constraints are
relaxed until there is at least one feasible solution. We prove that our procedures achieve a desired
overall probability of correct selection (PCS) and also perform well in reducing the required
number of observations until a decision is made compared with straight-forward repeating pro-
cedures, namely applying the procedures of [1] or [8] iteratively to each possible set of threshold
values depending on whether the problem has a single constraint or multiple constraints.

It is worth mentioning that, besides the formulation of constrained R&S, there are two other
approaches for dealing with multiple performance measures. A frequently used approach is to
aggregate multiple objectives into a single objective by applying weights or a utility function, as
discussed in [4]. However, determining the appropriate weights or utility function can be tricky,
particularly when the units of the objectives differ (e.g., costs and probabilities). Furthermore, the
optimal solution may vary as the weights or utility function changes. Another approach is to
identify a Pareto set, which comprises non-dominated solutions for multiobjective optimization
problems. A number of ranking and selection procedures have been developed to find Pareto sets
for stochastic multi-objective problems, including [5, 7, 16], and [2]. While the approach of find-
ing a Pareto set is in general applicable to the problem we discuss, our formulation and methods
that utilize subjective constraints provide an alternative approach. Our proposed formulation pro-
vides two potential advantages regarding the problem discussed. First, the Pareto set may include
several alternatives that excel in one performancemeasure while severely compromising other per-
formance measures. Given that such extreme systems are unlikely to appeal to the decision maker,
the computational effort spent to identify those systems may be avoided. Second, the Pareto set
could consist of a large number of systems, leaving the decision maker with the challenge of identi-
fying all non-dominated systems before eventually selecting one among the many systems present
on the Pareto frontier for implementation. Our formulation overcomes this issue with the Pareto
set formulation, as discussed in further detail in Sections 2.1 and 5 and through a case study in
Section 7. However, there are other circumstances where identifying the entire Pareto set is desir-
able, such as when the decision maker does not aim to optimize a primary performance measure
among all performance measures or when the decision maker wishes to understand the perfor-
mance of all non-dominated systems (e.g., to study trade-offs post hoc). Due to the fact that our
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proposed procedures solve a different problem than MORS procedures (e.g., we optimize a pri-
mary performance measure subject to subjective constraints on secondary performance measures,
rather than identifying the entire Pareto set), we do not directly compare the performance of our
proposed procedures with that of the Pareto set approach.
The rest of the article is organized as follows: Section 2 provides the background for our prob-

lem. Sections 3 and 4 propose and analyze sequentially-running and simultaneously-running pro-
cedures, respectively, for the feasibility check and comparison phases. Section 5 discusses three
major preference orders of the constraint thresholds. In Section 6, we present numerical results for
the proposed procedures and compare their performances with the straight-forward procedures
that apply existing constrained R&S procedures repeatedly to each set of thresholds. Section 7
further demonstrates the implementation and the performance of our proposed procedures
through a case study based on an inventory policy example. Concluding remarks are provided
in Section 8. Finally, the Appendices include the statement of one proposed procedure and two
competing procedures, the detailed proof of the statistical validity of the proposed and competing
procedures, the description of setting the required implementation parameters, and some addi-
tional experimental results.

2 BACKGROUND

In this section, we formulate our problem in Section 2.1 and discuss how we define the correct se-
lection event in Section 2.2. The assumptions for the statistical validity of our proposed procedures
are presented in Section 2.3.

2.1 Problem Formulation

We consider k systems whose primary performance measures, as well as s secondary performance
measures, can be estimated through stochastic simulation. Let Γ denote the index set of all possible
systems (i.e., Γ = {1, . . . ,k}). Let Xin be the observation associated with the primary performance
measure of system i from replication n, and Yi�n be the observation associated with the �th sto-
chastic constraint of system i from replication n, where � = 1, . . . , s . We also define the expected
values of the primary and secondary performance measures for each system i ∈ Γ and constraint
� = 1, . . . , s as xi = E[Xin] and yi� = E[Yi�n], respectively. Constrained R&S is to select

arg maxi ∈Γ xi
s.t. yi� ≤ q� for all � = 1, . . . , s,

where q� denotes the constraint threshold for constraint �.
For a given threshold vector q = (q1, . . . ,qs ), procedures due to [1] can be used to find the best

system if there is only one constraint. If there are multiple constraints, procedures due to [8] are
suitable. In this article, we assume that the decision maker has a list of possible threshold values
in consideration for each constraint and hopes to select the best system with respect to the most
preferable thresholds possible. We further assume that k ≥ 2 in this article. We let d� denote the
number of distinct threshold values and q�,m denote themth distinct threshold value on constraint
�, wherem = 1, . . . ,d� and � = 1, . . . , s . We assume q�,1 < · · · < q�,d� , where � = 1, . . . , s .

The threshold values for individual constraints are combined into an ordered list of vectors of
threshold values {q(1), q(2), . . . , q(d )}, where d denotes the total number of threshold vectors that
the decision maker is interested to test. We assume that q(1) is preferred to q(2), q(2) is preferred
to q(3), and so on. For the implementation of our procedures, a decision maker can input (i) the
ordered list of threshold vectors, or (ii) an ordered list of threshold values for each constraint and a
mechanism for constructing an ordered list of threshold vectors from the inputted threshold values
(see Section 5). Note that the ordered list of threshold vectors should remain fixed throughout the
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implementation. We let q(θ )
�

be the threshold value on constraint � in q(θ ), where θ = 1, . . . ,d

and � = 1, . . . , s . Then we introduce the threshold index vector I (θ ) to include the indices of the

threshold values that form q(θ ). Similar to the definition of q(θ )
�
, I (θ )

�
represents the threshold index

on constraint � in q(θ ).
Consider the example of selecting the best inventory control policy discussed in Section 1. Then

s = 2,d1 = 2 (i.e., two threshold values for the first constraint), d2 = 3 (i.e., three threshold values
for the second constraint), q1,1 = 1,q1,2 = 5, and q2,1 = 100,q2,2 = 105, and q2,3 = 110. Moreover,
we consider the following d = 6 ordered threshold vectors

q(1) =

[
1
100

]
, q(2) =

[
1
105

]
, q(3) =

[
1
110

]
, q(4) =

[
5
100

]
, q(5) =

[
5
105

]
, and q(6) =

[
5
110

]
.

Note that q(1)1 = q(2)1 = q(3)1 = 1,q(4)1 = q(5)1 = q(6)1 = 5, while q(1)2 = q(4)2 = 100,q(2)2 = q(5)2 = 105, and

q(3)2 = q
(6)
2 = 110. The threshold index vectors are

I (1) =

[
1
1

]
, I (2) =

[
1
2

]
, I (3) =

[
1
3

]
, I (4) =

[
2
1

]
, I (5) =

[
2
2

]
, and I (6) =

[
2
3

]
.

Hence I (1)1 = I (2)1 = I (3)1 = 1, I (4)1 = I (5)1 = I (6)1 = 2, while I (1)2 = I (4)2 = 1, I (2)2 = I (5)2 = 2, and

I (3)2 = I (6)2 = 3.

For θ ≤ d , we use Aθ to denote the region that is feasible under threshold vector q(θ ) but
not under threshold vectors q(1), . . . , q(θ−1) (if θ > 1), and use Ad+1 to denote the region that is
infeasible to all q(1), . . . , q(d ). More specifically, we let

Aθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{
(z1, z2, . . . , zs ) : z� ≤ q(θ )

�
, � = 1, 2, . . . , s

}
, if θ = 1;{

(z1, z2, . . . , zs ) : z� ≤ q(θ )
�
, � = 1, 2, . . . , s

}
\ ∪θ−1

κ=1Aκ , if θ = 2, . . . ,d ;

R
s \ ∪d

κ=1Aκ , if θ = d + 1.

(1)

With this definition ofAθ , we can say that the decisionmaker wants to find the best among systems
whose constraint mean configurations fall in A1 but would consider systems in A2 if no systems
fall in A1. She would further consider systems in A3 if no systems fall in A1 and A2 and d ≥ 3, and
so on.
We assume that the ordered list of threshold vectors is such that when there is no trade-off,

the decision maker always prefers “tighter” combinations of threshold values. Consider a case
where there are two (non-negative) constraints, the first constraint has three thresholds, and the
second constraint has two thresholds. Then it is not possible for the decision maker to prefer
(q1,3,q2,1) to (q1,2,q2,1) in the preference order. Figure 1 shows A1, . . . ,A5 for an example with

d = 4 combinations of threshold vectors. We see that q(1) = (q1,2,q2,1) does not correspond to the

“tightest” combination of threshold values (i.e., (q1,1,q2,1)), and similarly q(d ) = (q1,3,q2,1) does not
correspond to the “weakest” combination of threshold values (i.e., (q1,3,q2,2)).
The following definition will facilitate the efficient implementation of our approaches.

Definition 2.1. Constraint � has an increasing preference if q(θ )
�

≤ q(θ
′)

�
for any θ ,θ ′ = 1, 2, . . . ,d

with θ < θ ′.

We consider the following two examples to further explain Definition 2.1. Figure 2 shows three
preference orders of threshold vectors for two (non-negative) constraints with d1 = d2 = 3.
Based on our definition of threshold vectors, Figure 2(a) formulates the threshold vectors as
q(1) = (q1,1,q2,1), q(2) = (q1,1,q2,2), q(3) = (q1,1,q2,3), q(4) = (q1,2,q2,1), and so on. We see that
constraint 1 has increasing preference whereas constraint 2 does not. On the other hand, we have
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Fig. 1. A preference order where the “tightest” (“weakest”) combination of thresholds is not “most” (“least”)
preferred threshold vector.

Fig. 2. Three preference orders.

d = 3, q(1) = (q1,1,q2,1), q(2) = (q1,2,q2,2), and q(3) = (q1,3,q2,3) in Figure 2(b), which satisfies
Definition 2.1 for both constraints. Finally, in Figures 2(c) and 1, neither constraint has increasing
preference.

2.2 Correct Selection

To solve the constrained R&S problem with subjective constraints described in Section 2.1, we
consider two phases, namely Phase I to identify feasible systems and Phase II to select a system
with the largest xi based on a comparison among feasible systems. These phases are designed
to correctly select the best feasible system with respect to the most preferred threshold vector
possible, as described in this section.
For stochastic constraints, it is not always possible to guarantee a correct feasibility determi-

nation with respect to the stochastic constraints. Instead, [1] introduces a tolerance level, namely
ϵ� > 0, for constraint �, which is a positive real value predefined by the decision maker. This is
often interpreted as the amount the decision maker is willing to be off from a given threshold
value. Consider a threshold value q�,m for m = 1, 2, . . . ,d� . Any systems with yi� ≤ q�,m − ϵ�
are considered as desirable systems with respect to constraint � and threshold value q�,m . We let
D�(q�,m) denote the set of desirable systems for constraint � and q�,m . Systems withyi� ≥ q�,m+ϵ�
are considered as unacceptable systems for constraint � and threshold q�,m , and are placed in set
U�(q�,m). Systems that fall within a tolerance level ofq�,m , whichmeansq�,m−ϵ� < yi� < q�,m+ϵ� ,
are considered as acceptable systems, placing them in the set A�(q�,m). More specifically,

D�(q�,m) = {i ∈ Γ | yi� ≤ q�,m − ϵ�};
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U�(q�,m) = {i ∈ Γ | yi� ≥ q�,m + ϵ�}; and
A�(q�,m) = {i ∈ Γ | q�,m − ϵ� < yi� < q�,m + ϵ�}.

Remark 1. As discussed in [1], a feasible (infeasible) system i with yi� ∈ (q�,m − ϵ�,q�,m)
(yi� ∈ (q�,m ,q�,m +ϵ�)) that falls in the acceptable set with respect to constraint � may be declared
infeasible (feasible). This leads to potential errors in feasibility decisions, which are analogous to
Type I and II errors of a hypothesis test. Therefore, q�,m and ϵ� should be chosen based on which
error the decision maker views more important. For example, for the cost constraint of the inven-
tory example in Section 1, if the decision maker wants to select systems whose expected cost is
below 105 but eliminate all systems whose expected cost is above 110, she can set q�,m − ϵ� = 105
and q�,m + ϵ� = 110, which is equivalent to setting q�,m = 107.5 and ϵ� = 2.5.

When feasibility check is performed to completion (until a decision is made), we let CDi�(q�,m)
denote the correct decision event of system i with respect to constraint � and thresholdq�,m , which
is defined as declaring system i as feasible if i ∈ D�(q�,m) and as infeasible if i ∈ U�(q�,m). Any
feasibility decision is considered correct if i ∈ A�(q�,m). For any threshold vector q(θ ), we say that

system i is desirable with respect to q(θ ) when it is desirable with respect to all the constraints, that

is, i ∈ D�(q(θ )�
) for all � = 1, . . . , s . System i is unacceptable with respect q(θ ) if it is unacceptable

with respect to at least one constraint, that is, there exists � such that i ∈ U�(q(θ )�
). When system

i is acceptable to some (or all) the constraints and desirable with respect to the other constraints,
system i is called acceptable with respect to q(θ ).
To select the best system with respect to the primary performance measure in Phase II, the deci-

sion maker needs to choose an indifference-zone parameter δ , which is the smallest absolute differ-
ence that the decision maker considers significant in terms of the primary performance measure.
More specifically, any system whose primary performance measure is at least δ smaller (larger)
than system i is considered as inferior (superior) to system i .

Letθ ∗ be the smallestθ such thatD�(q(θ )�
) � ∅ for all �. If for eachθ = 1, . . . ,d , there exists at least

one constraint �θ such thatD�θ (q
(θ )
�θ
) = ∅, that is, θ ∗ does not exist, then we set θ ∗ = d+1. If θ ∗ ≤ d ,

then q(θ
∗) is themost preferable threshold vector possible where at least one desirable system exists.

Further, let B denote the set of desirable systems with respect to q(θ
∗) (i.e., B = ∩s

�=1
D�(q(θ

∗)
�

) and
let [b] be the index of the best system among the systems in B, so that x[b] ≥ xi for i, [b] ∈ B. Then
if θ ∗ ≤ d , the correct selection event is to select a desirable or acceptable system with respect to
q(θ

∗) whose primary performance is not inferior to the best system, or an acceptable system with
respect to a preferred threshold vector. More specifically,

CS =

{
select i such that either i ∈ ∩s

�=1

(
D�

(
q(θ

∗)
�

)
∪A�

(
q(θ

∗)
�

))
and xi > x[b] − δ

or i ∈ ∪θ<θ ∗ ∩s
�=1

(
D�

(
q(θ )
�

)
∪A�

(
q(θ )
�

)) }
.

If θ ∗ = d+1, CS is to either declare that no feasible systems exist or identify any acceptable system
with respect to any of the threshold vectors q(1), . . . , q(d ).

Remark 2. If ϵ� is small enough that no acceptable systems exist, then a CS event corresponds to
the selection of either system [b] or an acceptable system i with respect to q(θ

∗) where xi > x[b] −δ .
However, if there are acceptable systems with respect to q(θ ) for θ < θ ∗, then they may be declared
feasible to q(θ ). In this case, systems infeasible to q(θ ) are eliminated including system [b], and a CS
event happens when selecting an acceptable system i (probably with the best primary performance
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Fig. 3. Regions for two secondary performance measures and six threshold vectors.

measure but no guarantee whether xi > x[b] −δ ) from among those declared feasible with respect

to q(θ ).
To better illustrate the CS event, we consider a problemwith two constraints where the first con-

straint has two thresholds and the second constraint has three thresholds. We consider all d = 6
possible threshold vectors q(1), . . . , q(6). Figure 3 presents possible (non-negative) secondary per-
formance means and thresholds where the shaded areas represent acceptable regions with respect
to one or more threshold vectors, and A1, . . . ,A6 are defined as in Equation (1) and are separated
by the solid lines. Assuming that there are four systems a,b, c , and d , we see that (i) θ ∗ = 5;

(ii) a,b ∈ ∪θ<θ ∗ ∩s
�=1

(D�(q(θ )�
) ∪ A�(q(θ )�

)); and (iii) a, c,d ∈ ∩s
�=1

(D�(q(5)�
) ∪ A�(q(5)�

)). Then a CS
event is to select system i ∈ {a, c,d} such that xi > x[b] − δ . Another possible CS event is to select

a when a is declared feasible to q(1) because systems {b, c,d} are infeasible to q(1). Similarly, if a
is declared infeasible to q(1) and q(3) but b is declared feasible to q(3), then the selection of b is a
CS event. Finally, if a is declared infeasible to q(1) but both a and b are declared feasible to q(3),
then {c,d} are eliminated and the selection of a or b (with a better primary performance measure)
becomes a CS event.

2.3 Notation and Assumptions

Throughout the article, we let 1(·) be the indicator function and |S | be the cardinality of set S , and
use the additional notation defined below:

n0 ≡ initial sample size for each system (n0 ≥ 2);
ri ≡ number of observations so far for system i (ri ≥ n0);

X̄i (ri ) ≡ average value of Xi1, . . . ,Xiri for system i;

Ȳi�(ri ) ≡ average value of Yi�1, . . . ,Yi�ri for system i and constraint �;

S2Xi j
(n0) ≡ sample variance of Xi1 − X j1, . . . ,Xin0 − X jn0 between system i and j;

S2Yi� (n0) ≡ sample variance of Yi�1, . . . ,Yi�n0 for system i and constraint �;

R(ri ;v,w, z) ≡ max

{
0,
(n0 − 1)wz

v
− v

2c
ri

}
for v,w, z ∈ R+ and c ∈ {1, 2, . . .};

д(η) ≡
c∑
j=1

(−1)j+1
(
1 − 1

2
1(j = c)

)
×

(
1 +

2η(2c − j)j
c

)−(n0−1)/2
;
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α ≡ overall nominal error for a procedure under consideration, where 0 < α < 1.

Note that an integer parameter c is required for both R(ri ;v,w, z) and д(η). This is
a user-defined parameter that impacts the shape of the continuation region defined by
(−R(ri ;v,w, z),R(ri ;v,w, z)) (it becomes a longer triangle as c increases). The choice c = 1 is
recommended as it guarantees a unique and easy solution when computing the implementation
parameter η from д(η). Reference [12] shows the derivation of R(ri ;v,w, z) and also suggests that
c = 1 is a good choice when the decision maker does not have information about the systems’
mean configuration. The experimental results in the article are based on c = 1.
Our statistical analysis of our proposed procedures will rely on the following two assumptions.

Assumption 1. For each system i , where i = 1, . . . ,k , we have⎡⎢⎢⎢⎢⎢⎢⎢⎣
Xin

Yi1n
...

Yisn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
iid∼ Ns+1

������
⎡⎢⎢⎢⎢⎢⎢⎢⎣

xi
yi1
...

yis

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Σi

������
, n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, Ns+1 denotes (s + 1)-dimensional mul-

tivariate normal, and Σi is the (s + 1) × (s + 1) positive definite covariance matrix of the vector

(Xin ,Yi1n , . . . ,Yisn). Furthermore, for the primary performance measure, we have⎡⎢⎢⎢⎢⎢⎣
X1n

...
Xkn

⎤⎥⎥⎥⎥⎥⎦
iid∼ Nk

����
⎡⎢⎢⎢⎢⎢⎣
x1
...
xk

⎤⎥⎥⎥⎥⎥⎦ , Σ
′���� ,

where Σ′ is the k × k positive definite covariance matrix of the vector (X1n , . . . ,Xkn).

Normally distributed data is a common assumption used in many R&S procedures due to the
fact that it can be justified by the Central Limit Theorem when observations are either within-
replication averages or batch means ([15]). Moreover, primary and secondary performance mea-
sures are usually correlated. When common randomnumbers (CRN) are introduced in simulat-
ing observations from each system, observations between systems are correlated. Our formulation
allows correlations between both performance measures and systems. Note that Yi�n and Yj�n can
be correlated for i � j if CRNs are used. However, as feasibility determination involves compar-
isons betweenYi�n and thresholds rather thanYj�n , we do not require any assumptions about their
covariance structure across systems.

Assumption 2. If θ ∗ ≤ d , then for any system i ∈ ∩s
�=1

(D�(q(θ
∗)

�
) ∪ A�(q(θ

∗)
�

)), where i � [b], we
assume xi ≤ x[b] − δ .

Assumption 2 implies that there exists only one best system [b] and any systems that are desir-

able or acceptable with respect to q(θ
∗)

�
for all constraint � = 1, . . . , s are inferior to system [b]. In

reality, one can choose a reasonably small δ to satisfy Assumption 2. This assumption is a standard
assumption for proving the statistical validity of IZ approaches in the R&S literature.

3 SEQUENTIALLY-RUNNING PROCEDURES

In this section, we present two procedures, namely ZAKR and ZAK , that implement Phases I
and II sequentially.
References [1] and [8] also propose sequentially-running procedures to select the best system

in the presence of multiple constraints. Our sequentially-running procedures use similar steps in
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Phase II as [1] and [8], but the steps for Phase I are different because [1] and [8] consider one
fixed set of thresholds while we consider multiple thresholds. Our approach for handling multi-
ple threshold values builds on the work of [22] who developed RF , an efficient fully-sequential
procedure for checking the feasibility of all systems with respect to all constraints and all thresh-
olds simultaneously. Reference [22] show that once a system i is declared feasible with respect to
a threshold q�,m such that q�,m ≥ yi� + ϵ� , this system will be declared feasible with respect to
all thresholds q�,m+1, . . . ,q�,d� on constraint �. Similarly, if a system i is declared infeasible with
respect to a threshold q�,m such that q�,m ≤ yi� − ϵ� , then this system will be declared infeasible
with respect to all the thresholds q�,1, . . . ,q�,m−1. This fact is essential in our proposed procedures.

The ZAKR (“restart”) procedure is statistically valid, while the ZAK procedure is heuristic.
The two procedures are similar in the sense that both start by executing Phase I for all systems
to identify the most preferred threshold vector possible, q(θ

∗), as well as the feasible systems with
respect to q(θ

∗). The parameter θ keeps track of our current estimate of θ ∗ (initially θ = d), M is
a set of systems that are in consideration (initially M contains all the systems, that is, M = Γ),
and F is a set of systems that are declared feasible with respect to threshold vector q(θ ) (initially
F = ∅). The procedures return Zi, �,m = 1 (Zi, �,m = 0) if system i is declared feasible (infeasible)
with respect to constraint � and threshold qm

�
, and Zi, �,m = 2 if no decision is made about the

feasibility of system i with respect to threshold q�,m on constraint �. Notice that once a system is

declared feasible with respect to threshold vector q(θ ) where 1 ≤ θ ≤ d−1, we do not need to check
feasibility for any systems with respect to the less preferred threshold vectors q(θ+1), . . . , q(d ).

The sequentially-running procedures, ZAKR and ZAK , perform Phase II on the surviving
systems from the completion of Phase I. More specifically, it selects the best system with respect
to the primary performance measure among the subset of systems that are declared feasible with
respect to the most preferred threshold vector possible identified in Phase I. The main difference
between them lies in whether they collect observations on the primary performance measure dur-

ing Phase I and recycle them in Phase II. In order to prove the statistical validity of ZAKR and
avoid storing simulation results, the procedure avoids the correlation between the primary and sec-
ondary performance measures by not recycling any observations from Phase I and instead restart-
ing “from scratch” when implementing comparisons in Phase II. Moreover, when CRN are used to
compare systems in Phase II, we assume that the implementation of CRN is such that the simula-
tion results for any surviving system in Phase II do not depend on the set of surviving systems F

(e.g., the simulation results for any surviving system i would be the same as if F = Γ). ZAKR is
described in Algorithm A.1 along with its statistical validity in Appendix A. A discussion about

how to set the implementation parameters for ZAKR is given in Appendix B.1.

As ZAKR starts “from scratch” when performing the comparison, it discards all the informa-
tion related to the primary performance measure obtained in Phase I, which can be quite ineffi-
cient in terms of the computation effort. One may consider collecting and storing all the observa-
tions of the primary performance measure in Phase I and then extracting information related to
the primary performance measure when performing Phase II. However, as Phase I may require a
lot of observations, this approach requires significant memory for storing the observations from
Phase I. [19] proposes the Sequential Selection with Memory procedure (SSM) that is specifically
for use within an optimization-via-simulation algorithm when simulation is costly, and partial or
complete information on solutions previously visited is maintained. When data storage is prohib-
itive, the procedure requires only summary statistics of the simulation output, which solves the
memory space issue discussed above. We then present a sequentially-running procedure, namely
ZAK , that adopts the SSM procedure as its Phase II. The detailed description is shown in
Algorithm 1.
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ALGORITHM 1: ProcedureZAK .

[Setup:] Select the overall nominal confidence level 1 − α and choose 0 < αf , αc < 1 such that αf + αc = α . Choose

tolerance levels ϵ1, . . . , ϵs , indifference-zone parameter δ , threshold vectors {q(1), q(2), . . . , q(d ) }, and associated index
vectors {I (1), I (2), . . . , I (d ) }. Set M = Γ and Zi, �,m = 2 for all i ∈ M, � = 1, . . . , s , andm = 1, . . . , d� . Set F = ∅
and θ = d . Set ηf such that д(ηf ) = α ′

f
, where 0 < α ′

f
< 1/s is set as a solution to(

1 −min{s, d }α ′
f

)k−1
× (1 − sα ′

f ) = 1 − αf , if systems are simulated independently;

and set as

α ′
f = αf /[(k − 1)min{s, d } + s] , if systems are simulated under CRN.

Add any constraint �, where � = 1, . . . , s , with increasing preference to set IP.

[Initialization for Phase I:]

for each system i ∈ M do

— Obtain n0 observations Yi�1, Yi�2, . . . , Yi�n0 for � = 1, 2, . . . , s . Also, obtain n0 observations Xin, n = 1, . . . , n0.

— Compute Ȳi� (n0) and S2Yi� (n0).
— Compute X̄i (n0) and S2Xij (n0) for all systems j � i .

— Set ri = n0, ONi = {1, 2, . . . , s }, and ONi� = {1, . . . , d� } for � = 1, 2, . . . , s .

end for

[Feasibility Check:]

for each system i ∈ M do

for � ∈ ONi do

form ∈ ONi� do,

If Ȳi� (ri ) + R(ri ; ϵ�, ηf , S2Yi� (n0))/ri ≤ q�,m , set Zi, �,m = 1 and ONi� = ONi� \ {m }.
If Ȳi� (ri ) − R(ri ; ϵ�, ηf , S2Yi� (n0))/ri ≥ q�,m , set Zi, �,m = 0 and ONi� = ONi� \ {m }.

end for

If ONi� = ∅, set ONi = ONi \ {� }.
end for

If ∃ minimum κ ≤ θ s.t.
∏s

�=1 Zi, �, I (κ )
�

= 1, and either κ < θ or i � F , then

— If κ < θ , then set F = ∅, θ = κ , and for all j ∈ M delete q�,m from ONj� if � ∈ IP andm > I
(θ )
�

(if � � IP, then

q�,m can be removed from ONj� if I
(θ ′)
�
�m for all θ ′ ≤ κ ), and set ONj = ONj \ {� } if ONj� = ∅.

— Add system i to F .

If
∏s

�=1 Zi, �, I (θ )
�

= 0 or 1 and either θ = 1 or
∏s

�=1 Zi, �, I (κ )
�

= 0 for all κ = 1, . . . , θ − 1, then remove system i

from M .

end for

[Stopping Condition for Phase I:]

If M � ∅, then for each system i ∈ M , set ri = ri + 1, take one additional observation Yi�ri and Xi,ri+1, and update

Ȳi� (ri ) and X̄i (ri ) for � ∈ ONi , then go to [Feasibility Check]. Else, check the following conditions.

— If |F | = 0, stop and conclude no feasible systems;

— If |F | = 1, stop and return the system in F as the best; or

— If |F | > 1, go to [Initialization for Phase II].

[Initialization for Phase II:] Let ηc be a solution to д(ηc ) = α ′
c , where

α ′
c =

{
1 − (1 − αc )1/(|F |−1), if systems are simulated independently;

αc /( |F | − 1), if systems are simulated under CRN.

Let M = F be the set of systems still in contention. Set r = mini∈F ri and go to [Comparison].

[Comparison:] For i, j ∈ M s.t. i � j and

r X̄i (ri ) > r X̄ j (r j ) + R(r ; δ, ηc , S2Xij (n0)),

eliminate j from M .

[Stopping Condition for Phase II:] If |M | = 1, then stop and return the system in M as the best. Otherwise, for each

system i ∈ M with ri ≤ r , take one additional observation Xi,ri+1, set ri = ri + 1 and compute X̄i (ri ). Then, set
r = r + 1 and go to [Comparison].
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Similar to the discussion in [1], there are two difficulties in proving the statistical validity of
ZAK . First, as ri , the number of observations Xin collected in Phase I, depends on Yi�n for sys-
tem i , this dependency affects the comparison in Phase II. This dependency issue can be resolved

by performing ZAKR instead as it restarts “from scratch” for the surviving systems of Phase I.
Second, we use д(ηc ) = αc/(|F | − 1) instead of д(ηc ) = αc/(k − 1) to compute the implementation
parameter ηc for Phase II. Thus, we only allocate the nominal error for Phase II to the comparison
between the best system [b] and the surviving systems from Phase I, rather than all k − 1 other
systems. As the comparison between [b] and the other surviving systems is done with a larger
nominal error, the resultingηc is smaller, which helps improve the efficiency of our approach. How-
ever, the continuation region in Phase II now depends on the number of surviving systems from
Phase I. We address the dependency between Phases I and II in ZAK by choosing the nominal
errors αf and αc for Phases I and II as αf + αc = α to incorporate the correlation between the two
phases. While (1 − αf )(1 − αc ) is always larger than 1 − (αf + αc ), the difference is typically quite
small. Although we have not proved the statistical validity of ZAK , our experimental results
(discussed in Section 6) do not show any violation of its validity.

The choices of αf and αc affect the performance of ZAK . Similar to the discussion in
Section B.1, the decision maker may choose e1 = αf /αc if she has knowledge on the relative
difficulty of Phases I and II. The value of αc can be found by solving e1 × αc + αc = α , and the
corresponding value of αf can be found as αf = e1×αc . If the decision maker does not have the in-
formation about the relative difficulty of Phases I and II, one possibility is to choose αf = αc = α/2.
Similar to ZAKR , another possibility is to choose e2 = sα ′

f
/α ′

c if s ≤ d or to choose e2 = dα
′
f
/α ′

c

if d < s . Appendix B.2 provides a detailed discussion on how to set the implementation parameters
α ′
f
,α ′

c for Phase I.

4 SIMULTANEOUSLY-RUNNING PROCEDURE

In this section, we provide a procedure that implements Phases I and II simultaneously. This pro-
cedure aims to solve the problem from a different perspective. Specifically, by implementing Phase
I and II simultaneously, the elimination of inferior and infeasible systems can happen simultane-
ously throughout the procedure. This procedure increases the opportunity to eliminate systems
whose feasibility are still unknown but are clearly inferior to a certain system. As a result, the
procedure is expected to be more efficient than the sequentially-running procedure. Section 4.1
describes the simultaneously-running procedure and Section 4.2 proves its statistical validity.

4.1 Procedure ZAK+

In this section, we provide a procedure that runs Phases I and II simultaneously in

Algorithm 2. Similar to the sequentially-running proceduresZAKR andZAK , we use the vari-
able θ to keep track of the current most preferred threshold vector for which we are trying to deter-
mine feasibility. Initially, θ is set to d , which is the index of the least preferred threshold vector. We
use setsM and F defined as in Section 3 and additionally define set SSi as a set of systems found to
be superior to system i in terms of the primary performance measure.

Rather than performing Phase II on the surviving systems from Phase I as ZAKR and ZAK
do, we now perform both feasibility check and pairwise comparison for all systems that are still in
consideration (i.e., i ∈ M) within each iteration. More specifically, for each system i ∈ M , we check
whether there exists a minimum threshold vector that system i is feasible with respect to, use θ
to keep track of this threshold index, and update set F if appropriate. When a feasible decision is
made for system i , we perform an additional step in Phase I: eliminate system j ∈ (M ∪F ) if i ∈ SS j
(system i ∈ F is shown to be superior compared with system j) and system j is not feasible with
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respect to any of q(1), . . . , q(θ−1). In Phase II, once a system i is declared superior compared with
system j in Phase II, we add system i to SS j . Furthermore, if system i ∈ (F ∩ SS j ) and system j is

infeasible with respect to all q(1), . . . , q(θ−1), then we eliminate system j fromM and F .
Note that simultaneously-running procedures in [1] and [8] also use sets M , F , and SS j , and

their [Comparison] step is similar in the sense that pairwise comparison is performed among
the systems whose superiority is not yet determined. However, the procedures in [1] and [8] are
designed for a fixed set of thresholds, and thus there is no search for the most preferred threshold
vectorθ , and there is no resetting of set F . By contrast,ZAK+ checks if amore preferred threshold
vector is found at each iteration. Whenever a more preferred threshold vector is found, the index
θ and F are reset, and systems feasible to the updated threshold vector θ are added to the reset
set F .
A detailed description of the simultaneously-running procedure ZAK+ is shown in

Algorithm 2.

4.2 Statistical Validity of the Simultaneously Running Procedure

In this section, we present the proof of the statistical validity of the simultaneously-running pro-
cedure ZAK+. Before presenting the main results, we need more definitions. Let θ ∗ be defined
as in Section 2.2. We define the sets Sa , Su , Sa′ , and Sd as follows:

Sa = set of acceptable systems with respect to at least one of the threshold vectors q(1), . . . , q(θ
∗−1);

Su =

{
set of unacceptable systems with respect to q(θ

∗) among systems in Γ \ Sa , if θ ∗ ≤ d ;

Γ \ Sa , if θ ∗ = d + 1;

Sa′ =

{
set of acceptable systems with respect to q(θ

∗) among systems in Γ \ Sa , if θ ∗ ≤ d ;

∅, if θ ∗ = d + 1;

Sd =

{
set of desirable systems with respect to q(θ

∗) among systems in Γ \ (Sa ∪ {[b]}), if θ ∗ ≤ d ;

∅, if θ ∗ = d + 1.

We then let ja = |Sa |, ja′ = |Sa′ |, jd = |Sd |, and ju = |Su |, and therefore ja+ja′+jd+ju+1(θ ∗ ≤ d) = k .
For correct selection, wemust select a system in Sa∪{[b]} and eliminate the systems in Sa′ ∪Sd∪Su
when θ ∗ ≤ d (under Assumption 2); when θ ∗ = d + 1, CS involves eliminating all systems in Su ,
and either declaring all systems infeasible or selecting a system in Sa .
To illustrate, recall the problem demonstrated in Figure 3, where θ ∗ = 5. Figure 3 shows systems

a and b as two examples of acceptable systems with respect to preferred threshold vectors (i.e.,
a,b ∈ Sa ). Note that system a is acceptable with respect to q(1), q(2), q(3), and q(4) and desirable with
respect to q(5), while system b is acceptable with respect to q(3) but unacceptable to q(1), q(2), q(4),
and q(5). System c is acceptable with respect to q(5) (i.e., c ∈ Sa′) and unacceptable with respect to
q(1), . . . , q(4).
We then introduce the following definitions for i ∈ Γ and present two lemmas that are essential

in proving the statistical validity of ZAK+.

A∗
1(i) =

{
system i is declared infeasible to q(1), . . . , q(min{θ ∗,d })

}
;

A∗
2(i) =

{
system i is declared infeasible to q(1), . . . , q(θ

∗−1) if 1 < θ ∗ ≤ d
}
;

B∗
1 =

{
system [b] is declared feasible to q(θ

∗) if θ ∗ ≤ d
}
.

Lemma 4.1. Under Assumption 1, for a particular system i , the [Feasibility Check] steps in

ZAK+ ensure

Pr
(
A∗

1(i)
)
≥ 1 −min{s,d}βf , if i ∈ Su ;
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ALGORITHM 2:ZAK+.

[Setup:] Choose confidence level 1−α , tolerance levels ϵ1, . . . ϵs , indifference-zone parameter δ , threshold

vectors {q(1), q(2), . . . , q(d )}, and associated index vectors {I (1), I (2), . . . , I (d )}. Set M = Γ, SSi = ∅, and
Zi, �,m = 2 for all i ∈ M, � = 1, . . . , s , andm = 1, . . . ,d� . Set F = ∅ and θ = d . Choose 0 < βf < 1/s, 0 <
βc < 1 that satisfy

min
0≤j≤k−1

{
(1 −min{s,d}βf )j ×

[
(1 −min{s,d − 1}βf − βc )k−j−1 − sβf

]}
= 1 − α and 0 < 1 −min{s,d − 1}βf − βc < 1,

if systems are simulated independently;

min
0≤j≤k−1

{
1 − [jmin{s,d} + (k − j − 1)min{s,d − 1} + s] βf − (k − j − 1)βc

}
= 1 − α ,

if systems are simulated under CRN.

Setηf andηc such thatд(ηf ) = βf andд(ηc ) = βc . Add any constraint �, where � = 1, . . . , s , with increasing
preference to set IP.

[Initialization:]

for each system i ∈ M do

— Obtain n0 observations from system i .
— Compute X̄i (n0), Ȳi�(n0),S2Xi j

(n0), and S2Yi� (n0) for all i, j ∈ M , where i � j, and � = 1, . . . , s .

— Set r = n0,ONi = {1, . . . , s}, and ONi� = {1, . . . ,d�} for � = 1, . . . , s .
end for

[Feasibility Check:]

for i ∈ M do

for � ∈ ONi do

form ∈ ONi� do

If Ȳi�(r ) + R(r ; ϵ� ,ηf ,S2Yi� (n0))/r ≤ q�,m , set Zi, �,m = 1 and ONi� = ONi� \ {m};
If Ȳi�(r ) − R(r ; ϵ� ,ηf ,S2Yi� (n0))/r ≥ q�,m , set Zi, �,m = 0 and ONi� = ONi� \ {m}.

end for

If ONi� = ∅, set ONi = ONi \ {�}.
end for

If ∃ minimum κ ≤ θ s.t.
∏s

�=1
Z
i, �, I

(κ )
�

= 1, and either κ < θ or i � F , then

— If κ < θ , then set F = ∅,θ = κ, and for all j ∈ M delete q�,m from ONj� if � ∈ IP andm > I
(θ )
�

(if � � IP,

then q�,m can be removed from ONj� if I
(θ ′)
�
�m for all θ ′ ≤ κ), and set ONj = ONj \ {�} if ONj� = ∅.

— Add system i to F .
— For all j ∈ M , if i ∈ SS j and either θ = 1 or

∏s
�=1

Z
j, �, I

(κ )
�

= 0 for all κ = 1, . . . ,θ −1, then remove system

j fromM and F (if j ∈ F ) and delete SS j .
If either

∏s
�=1

Z
i, �, I

(κ )
�

= 0 for all 1 ≤ κ ≤ θ , or θ > 1,
∏s

�=1
Z
i, �, I

(κ )
�

= 0 for all 1 ≤ κ ≤ θ − 1, and

there exists j ∈ F ∩ SSi , then remove i fromM and delete SSi .
end for

[Comparison:] For i, j ∈ M s.t. i � j, i � SS j , j � SSi , and

rX̄i (r ) > rX̄ j (r ) + R(r ;δ ,ηc ,S2Xi j
(n0)),

add system i to SSj . If i ∈ F , then remove system j fromM and F (if j ∈ F ) if eitherθ = 1 or
∏s

�=1
Z
j, �, I

(κ )
�

= 0

for all κ = 1, . . . ,θ − 1, and delete SSj .
[Stopping Condition:] IfM = F and |F | = 1, then stop and return the system in F as the best system. Else

ifM = F and |F | = 0, then stop and return no feasible systems exist. Otherwise, for all i ∈ M , set r = r + 1,
take one additional observation, update X̄i (r ) and Ȳi�(r ) for all � ∈ ONi , and go to [Feasibility Check].
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Pr
(
A∗

2(i)
)
≥ 1 −min{s,d − 1}βf , if i ∈ Sd ∪ Sa′ and 1 < θ ∗ ≤ d ;

Pr
(
B∗
1

)
≥ 1 − sβf , if θ

∗ ≤ d .

Lemma 4.2. Under Assumption 1, given i such that xi ≤ x[b] − δ , the [Comparison] steps in

ZAK+ run to completion ensure Pr (CSi ) ≥ 1 − βc .

The proofs of Lemmas 4.1 and 4.2 are essentially the same as those of Lemmas A.2 and A.3 that

are used to prove the statistical validity of ZAKR . This is because both α ′
f
of ZAKR and βf of

ZAK+ are the nominal error of feasibility check for one constraint of one system with a fixed

threshold, and both α ′
c ofZAKR and βc ofZAK+ are the nominal error of comparison between

an inferior system and the best system [b].
We are now ready to prove the statistical validity of ZAK+.

Theorem 4.3. Under Assumptions 1 and 2, theZAK+ procedure guarantees Pr{CS} ≥ 1 − α .

The proof of Theorem 4.3 is provided in Appendix C.
We now discuss how to choose implementation parameters βf and βc in simultaneous-running

procedure ZAK+. One approach is to first decide the choice of e = sβf /βc when s < d and
e = dβf /βc when s ≥ d . Recall that this is the ratio of the error for a feasibility check of one
system for all constraints and all thresholds to the error of a comparison between two systems.
The ratio should be decided based on the decision maker’s idea on whether she wants to allocate
more error to feasibility check or comparison. A detailed discussion on how we compute βf and
βc is included in Appendix D.
In reality, as the decision maker usually does not have detailed information on the mean per-

formance measures, choosing the value of e is not straightforward. [8] consider a single threshold
vector and choose e = 1 to balance the errors assigned to feasibility check and comparison. As it is
reasonable to allocate more of the errors to feasibility check when multiple threshold vectors are
under consideration, we use e = 2 for our experimental results to demonstrate the performance of
our proposed procedure (based on the discussion in Section 6.2).

5 DIFFERENT PREFERENCE ORDERS OF INPUT THRESHOLD VECTORS

As discussed in Section 1, our procedures ZAKR ,ZAK , and ZAK+ require lists of thresh-

old vectors {q(1), q(2), . . . , q(d )} and index vectors {I (1), I (2), . . . , I (d )}. Having to manually enter
preference order is tedious from both a problem formulation and implementation points of view.
Techniques for facilitating this makes our approach more practical and useful. In this section, we
discuss three preference orders for formulating the input threshold vectors, namely ranked con-
straints, equally important constraints, and total violation with ranked constraints. The experi-
mental results for multiple constraints shown in Section 6 are based on these three preference
orders.

Ranked constraints: The constraints are rankedwith respect to their importance and the decision
maker wants to relax the least important constraint first while keeping the rest of the constraints
fixed at the current threshold values, and then move to the second least important constraint, and
so on. Figure 2(a) showsAθ forθ = 1, . . . , 9when s = 2 andd1 = d2 = 3, the secondary performance
measures are non-negative, and constraint 1 is more important than constraint 2. The inventory
example discussed in Sections 1 and 2 also has ranked constraints with constraint 1 being more
important than constraint 2.

Equally important constraints: All constraints are equally important and the decision maker
wants to relax all constraints by one threshold at the same time. If the constraints do not all have
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the same number of thresholds, then constraints that have gone through all their thresholds keep
the “loosest” threshold (i.e., q�,d� for constraint �) while the other constraints relax. Figure 2(b)
shows this case for two constraints and three thresholds on each constraint.

Total violation with ranked constraints: The decision maker wants to minimize the number of
total violations on ranked constraints. For constraint � with threshold q�,m , its violation is defined
asm−1 (relative to the tightest threshold q�,1). Then the total violation is defined as the sum of the
violations for all constraints. The decision maker always prefers threshold vectors that have fewer
total violations, and among threshold vectors that have the same total violation, her preference
order is based the priority of the constraints. In Figure 2(c), constraint 1 more important than
constraint 2. Region A1 is defined with respect to (q1,1,q2,1) and has total violation 0. Regions A2

and A3 are defined with respect to (q1,1,q2,2) and (q1,2,q2,1), respectively, and have total violation
1, with A2 preferred to A3 due to the ranking of constraints 1 and 2. In this preference order, we
start with a threshold vector with total violation equal to 0 and then relax the total violation by
relaxing the less important constraint first. The largest total violation is

∑s
�=1(d� − 1).

The detailed algorithm statements of how to construct the three preference orders are included
in Appendix E.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate the performances of our proposed

proceduresZAKR ,ZAK , andZAK+. We compare them with alternative procedures that iter-
atively apply sequential or simultaneous procedures to threshold vectors q(1), . . . , q(d ). If a single
constraint is considered, our alternative procedures use AK or AK+ due to [1] for each thresh-
old value. If multiple constraints are considered, our alternative procedures useHAK orHAK+
due to [8] for each threshold vector. We name the procedures that iteratively implement AK
and AK+ as RestartAK and RestartAK+, respectively. Similarly, we name the procedures that it-

eratively implement HAK and HAK+ as RestartHAK and RestartHAK+, respectively. Notice
that RestartAK (RestartAK+) is the special case of RestartHAK (RestartHAK+) when the num-
ber of constraints is one and therefore does not need to be considered separately. We provide

the algorithm statements and discussions of the statistical validity of procedures RestartHAK and

RestartHAK+ in Appendices F and G, respectively.
All the experimental results are based on 10,000 macro replications with α = 0.05 and n0 = 20

and we report average numbers of observations (OBS) and estimated PCS. We set k = 100 and
δ = ϵ� = 1/√n0, where � = 1, . . . , s . We discuss the experimental configurations in Section 6.1
and how we set the implementation parameters for our proposed procedures in Section 6.2. We
then provide the experimental results to show that our proposed procedures are statistically valid
and efficient in Sections 6.3 and 6.4, respectively. Experimental results for the inventory example
discussed in Sections 1 and 2 are provided in Section 7. Appendix J discusses the impact of applying
CRN in our proposed procedures.

6.1 Experimental Configurations

In this section, we discuss the mean and variance configurations for primary and secondary per-
formance measures. We consider three mean configurations of systems, namely difficult means

(DM), monotone increasing means (MIM), and monotone decreasing means (MDM). All
the configurations depend on the number of systems b that are desirable with respect to thresh-
old vector q(θ

∗). As the existence of acceptable systems will not lower the PCS (because declar-
ing acceptable systems feasible or infeasible with respect to a specific threshold value are both

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 22. Publication date: July 2024.



Selection of the Best in the Presence of Subjective Stochastic Constraints 22:17

considered as correct feasibility decisions) and as [1] show by experiments that the presence of
acceptable systems does not significantly affect the overall performance of procedures AK and
AK+, we do not include acceptable systems in our three configurations.
As the purpose of the DM configuration is to demonstrate the performance of the proposed

procedures under a difficult case, we set the difference between any two consecutive thresholds
on one constraint to the minimum possible value, so that the boundary of the unacceptable region
of q�,m is the boundary of the desirable region of q�,m+1. This is achieved by setting q�,m+1 − q�,m
equal to 2ϵ� for all m and �. When θ ∗ < d , the means of all secondary performance measures
are set to the boundary of the desirable region of q(θ

∗) for b systems (i.e., the mean of secondary

performance measure � for b systems is q(θ
∗)

�
− ϵ�). For the other (k − b) systems, to make the

feasibility check difficult, the means of their secondary measures are set to the boundary of the
desirable region of q(θ

∗+1) (i.e., the means of secondary performance measure � for (k −b) systems

is q(θ
∗+1)

�
−ϵ�). When θ ∗ = d , the b systems that are feasible to q(θ

∗) are set the same as when θ ∗ < d .
For the remaining (k −b) systems, we set them at the boundary of the unacceptable region for the
largest threshold of all constraints � (i.e., yi� = q�,d� + ϵ� when i = b + 1, . . . ,k). When θ ∗ = d + 1,
as all systems are infeasible to all the threshold vectors considered (i.e., b = 0), the means of the
secondary performance measures of all the systems are set as yi� = q�,d� + ϵ� for all i and �.
Moreover, the DM configuration has one system whose mean performance of the primary per-

formance is δ , the other systems that are feasible with respect to q(θ
∗) have primary performances

equal to 0, and all infeasible systems with respect to q(θ
∗) have 2δ as their primary performance

measures. This means that all the infeasible systems are superior compared with the best system
while all other feasible systems are only δ inferior compared with the best system, which makes
the comparison also difficult. More specifically, in the DM configuration,

xi = E [Xin] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i = 1, 2, . . . ,b − 1,

δ , i = b,

2δ , i = b + 1, . . . ,k .

For all constraints � = 1, . . . , s , if 1 ≤ θ ∗ ≤ d − 1,

yi� = E[Yi�n] =
{

q(θ
∗)

�
− ϵ�, i = 1, 2, . . . ,b,

q(θ
∗+1)

�
− ϵ�, i = b + 1, . . . ,k ;

if θ ∗ = d ,

yi� = E[Yi�n] =
{

q(θ
∗)

�
− ϵ�, i = 1, 2, . . . ,b,

q�,d� + ϵ�, i = b + 1, . . . ,k ;

and if θ ∗ = d + 1, yi� = E[Yi�n] = q�,d� +ϵ� for all i . We consider the case when the decision maker
prefers threshold q�,1 = 0 for constraint �, and relax the constraint threshold by 2ϵ� every time
when she wants to consider a “looser” threshold value on that constraint. For example, we choose
thresholds {0, 2ϵ�} and {0, 2ϵ�, 4ϵ�, 6ϵ�} on constraint � when there are two or four thresholds in
consideration, respectively.
On the other hand, as the purpose of the MIM and the MDM configurations is to show the

efficiency of the proposed procedures in realistic settings, we set the differences between two
consecutive thresholds larger than in the DM configuration to see how effectively the proposed
procedures remove infeasible systems. In particular, we choose the smallest distance between two
consecutive thresholds on constraint � in the MIM and MDM configurations as 4ϵ� . When θ ∗ ≤ d ,
the means of all secondary performance measures are set to the interior of the desirable region
of q(θ

∗) for b systems and the other (k − b) systems are evenly distributed over the interiors of
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A(θ ∗+1), . . . ,A(d+1) with respect to their secondary performance measures (i.e., for the systems in

A(θ ), the mean of secondary performance measure � is set within the desirable region of q(θ ) as

q(θ )
�

−2ϵ� where θ = θ ∗, . . . ,d , and as q�,d� +2ϵ� when θ = d+1). When θ ∗ = d+1, we set the means
of the secondary performance measures to the interior of the unacceptable region for the largest
thresholds of all constraints � (i.e., yi� = q�,d� + 2ϵ� for all constraint �). We also let the means of
the primary performance measure be monotonically increasing from 0 with an increment of δ for
the MIM configuration, and let the primary performance measure be monotonically decreasing
from (k −1)δ with a decrement of δ for the MDM configuration. This makes the comparison easier
than in the DM configuration.
More specifically, we set xi = E [Xin] = (i − 1)δ , i = 1, . . . ,k for the MIM configuration and

set xi = E [Xin] = (k − i)δ , i = 1, . . . ,k for the MDM configuration. The means of the secondary
performance measures of the MIM and the MDM configurations are the same. For all constraints
� = 1, . . . , s , if 1 ≤ θ ∗ ≤ d ,

yi� = E[Yi�n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(θ
∗)

�
− 2ϵ�, i = 1, 2, . . . ,b,

q(θ
∗+1)

�
− 2ϵ�, i = b + 1, . . . , �b + k−b

d+1−θ ∗ �,

q(θ
∗+2)

�
− 2ϵ�, i = �b + k−b

d+1−θ ∗ � + 1, . . . , �b + 2 k−b
d+1−θ ∗ �,

. . .

q(d )
�

− 2ϵ�, i = �b + (d − θ ∗ − 1) k−b
d+1−θ ∗ � + 1, . . . , �b + (d − θ ∗) k−b

d+1−θ ∗ �,

q�,d� + 2ϵ�, i = �b + (d − θ ∗) k−b
d+1−θ ∗ � + 1, . . . ,k ;

and if θ ∗ = d + 1, yi� = E[Yi�n] = q�,d� + 2ϵ� for all i . The decision maker prefers q�,1 = 0, and we
relax the constraint threshold by 4ϵ� when she wants to consider “looser” threshold values. For ex-
ample, for the cases of two and four thresholds, we choose thresholds {0, 4ϵ�} and {0, 4ϵ�, 8ϵ�, 12ϵ�}
on constraint �, respectively.

We consider three variance configurations to test different levels of relative difficulty of the fea-
sibility check and the comparison. We use σ 2

xi
to denote the variance of the primary performance

from system i , σ 2
yi�

to denote the variance of the secondary performance � from system i , and con-
sider both low variance (L) and high variance (H). When the difficulty between feasibility checks
and comparison are similar, we set σ 2

xi
= 1 and σ 2

yi�
= 1 (L/L); when the comparison is relatively

more difficult than the feasibility checks, we set σ 2
xi
= 5 and σ 2

yi�
= 1 (H/L); andwhen the feasibility

checks are relatively more difficult than comparison, we set σ 2
xi
= 1 and σ 2

yi�
= 5 (L/H).

Reference [1] shows that the correlation between the primary and secondary performance mea-
sures does not have a significant impact on the experimental results. References [8] and [22] also
report the same tendency. Therefore, we assume the observations for the primary and secondary
performance measures from each system are independent normal random variables through
Sections 6.2–6.4. Section 7 illustrates how to apply our procedures in an inventory example where
the observations are not necessarily normally distributed, the primary and secondary performance
measures are correlated, and the secondary performance measures are also correlated.
With 10,000 macro replications, the first four digits of the OBS showed in the tables are mean-

ingful, and the estimated PCS values are meaningful up to the 0.001th digit.

6.2 Implementation Parameters

In this section, we discuss howwe set the implementation parameters e1, e2, and e for the proposed
proceduresZAKR ,ZAK , andZAK+.
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As discussed in Appendix B, we introduce two approaches of setting the implementation param-

eters for procedures ZAKR and ZAK , namely setting e1 = αf /αc and setting e2 = sα ′
f
/α ′

c . We

let ZAKR
1 (ZAK1) denote the version of procedure ZAKR (ZAK) that sets the implementa-

tion parameter as e1 = αf /αc . Similarly, we letZAKR
2 (ZAK2) be the corresponding procedure

that uses e2 = sα ′
f
/α ′

c . Note that ZAK+ only has one setting of its implementation parameters,

namely e = sβf /βc , as discussed in Sections 4.2 and Appendix D.
For brevity, experimental settings and results are given in Appendix H. As discussed in

Appendices B and D, the optimal values of e1, e2, or e (that result in the smallest OBS) depend
on the mean and variance configurations of the primary and secondary performance measures of
the systems. In the experimental results we test, the difficulty of feasibility check for one threshold
of one constraint is similar as for comparing one system with the best system [b]. This suggests
that e1 = e2 = e = s might be a good choice. In fact, the OBS achieves its minimum value for
different choices of e1, e2, or e ranging from 1 to 7. In addition, we notice that the OBS is quite flat
around the e1, e2, or e with the smallest OBS for each proposed procedure. We also notice that the
OBS is similar between the two settings of the implementation parameters (e1 and e2) of ZAKR

and ZAK , respectively. For these reasons, in the remaining sections we only consider ZAKR
2

and ZAK2 with e2 = 2 = sα ′
f
/α ′

c and ZAK+ with e = 2 = sβf /βc (see also the discussion in

Appendices B and D). In all cases, the minimum OBS is no more than 2.36% from the OBS when e2
or e equals 2.

6.3 Statistical Validity

In this section, we present experimental results that document the statistical validity of our pro-
posed procedures. The experimental results shown in this section are all under the DM mean
configuration since correct selection is more difficult in the DM mean configuration than in the
MIM or MDM mean configurations.
We first consider the case of a single constraint with four thresholds {0, 2ϵ1, 4ϵ1, 6ϵ1}. Table 1

shows the estimated PCS under our three variance configurations and all possible θ ∗ when b ∈
{25, 50, 75} (except that b = 0 when θ ∗ = 5 because all systems are infeasible). We see that the
estimated PCS values of all proposed procedures are above the nominal level 0.95 under all variance
configurations, all possible values of θ ∗, and all values of b considered. One may also notice that
θ ∗ = 5 and θ ∗ = 1 (to a lesser extent) achieve higher estimated PCS compared with other values
of θ ∗. During Phase I, one needs to ensure that three events happen, namely declaring systems
in Su infeasible to threshold vectors q(1), . . . , q(θ

∗), declaring the best system [b] feasible to q(θ
∗),

and declaring systems in Sa′ ∪ Sd infeasible to threshold vectors q(1), . . . , q(θ
∗−1) (see the detailed

analysis in Sections A and 4.2). Moreover, when θ ∗ = d + 1, the best system does not exist and
therefore we do not need to perform Phase II to achieve CS. As a more preferred threshold vector
does not exist when θ ∗ = 1 and the best system does not exist when θ ∗ = 5, we have fewer sources
of error and therefore achieve a higher estimated PCS under those two cases.
Table 1 also indicates that for 1 < θ ∗ ≤ d , the estimated PCS decreases in general when b

increases. As the three events required by Phase I involve essentiallymaking one difficult feasibility
decision correctly for each system (i.e., declaring systems in Su infeasible to q(θ

∗), declaring system
[b] feasible to q(θ ∗), and declaring the remaining b−1 systems infeasible to q(θ

∗−1)), different values
of b do not affect the difficulty of Phase I much. However, increasing b requires more correct
comparison decisions in order to eliminate the inferior systems (compared to [b]) that are feasible
to q(θ

∗) in Phase II. Combining Phases I and II, the estimated PCS is expected to decrease as b
increases. On the other hand, when θ ∗ = 1, as there does not exist threshold vector q(θ

∗−1), there is
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Table 1. Estimated PCS of ZAKR ,ZAK , andZAK+ for k = 100 Systems and s = 1 Constraint
with four Thresholds under the DM Configuration

ZAKR ZAK ZAK+
θ ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 0.985 0.986 0.985 0.979 0.981 0.987 0.986 0.986 0.987
2 0.977 0.971 0.964 0.971 0.971 0.963 0.977 0.972 0.967
3 0.976 0.971 0.961 0.973 0.968 0.967 0.977 0.973 0.967
4 0.981 0.969 0.967 0.974 0.969 0.965 0.978 0.973 0.962
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L/H

1 0.984 0.986 0.987 0.986 0.991 0.995 0.985 0.987 0.988
2 0.976 0.967 0.962 0.980 0.978 0.973 0.978 0.970 0.969
3 0.977 0.967 0.966 0.980 0.973 0.972 0.978 0.973 0.964
4 0.977 0.971 0.963 0.977 0.977 0.973 0.980 0.968 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H/L

1 0.985 0.986 0.986 0.978 0.977 0.983 0.984 0.988 0.986
2 0.978 0.970 0.965 0.969 0.965 0.964 0.977 0.973 0.964
3 0.979 0.970 0.963 0.970 0.964 0.962 0.977 0.972 0.964
4 0.979 0.973 0.967 0.969 0.964 0.961 0.979 0.970 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

one less source of concluding incorrect decisions in Phase I (i.e., declaring b − 1 systems infeasible
to q(θ

∗−1)). Thus increasing b makes Phase I less difficult. Combining Phases I and II, depending
on the value of b and the error allocated to feasibility checks or comparison, the estimated PCS
may behave differently. When θ ∗ = d + 1, all systems are infeasible, which means that b remains
0. For simplicity, we fixed b = 25 when θ ∗ ≤ d for the remainder of this section. Note that the
estimated PCS values do not differ much for different variance configurations, thus, we also fix the
L/L variance configuration in the rest of this section.
We then consider a casewhen two constraints are present. Each constraint contains three thresh-

olds {0, 2ϵ�, 4ϵ�} for � = 1, 2. Figure 4 shows the estimated PCS of the proposed procedures
ZAKR , ZAK , and ZAK+ with respect to all possible values of θ ∗ under our three prefer-
ence orders. Thus, d = 9 for the ranked constraints and the total violation with ranked constraints
formulations and d = 3 for the equally important constraints formulation.
Figure 4 indicates that all three proposed procedures are statistically valid under our three pref-

erence orders. Note that the PCS is quite flat for all θ ∗ under the equally important constraints for-
mulation. As the equally important constraints formulation relaxes all constraints by one threshold
(if the constraint has at least one “looser” threshold) every timewhen one considers a less preferred
threshold vector, declaring systems in Su is easier than in the other two preference orders. There-
fore, the estimated PCS for different θ ∗ under equally important constraints is relatively high in
general. For the ranked constraints and the total violation with ranked constraints formulations,
due to a similar reason as in the single constraint case, θ ∗ = 1 and θ ∗ = d + 1 achieve higher
estimated PCS compared with the other θ ∗. One may notice that θ ∗ = d also achieves a relatively
high estimated PCS under these two preference orders. This is due to the mean configuration of
the secondary performances we use for the systems that are infeasible to q(d ). In the DM configura-
tion, we allocate b systems in Aθ ∗ and (k −b) systems to Aθ ∗+1. When θ ∗ = d , we set all secondary
performance measures of the (k − b) systems that are infeasible to q(d ) equal to yi� = 5ϵ� (see the
discussion in Section 6.1), which makes the detection of infeasibility of those systems easy (as the
systems are infeasible to both constraints).
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Fig. 4. Estimated PCS when s = 2 under our three threshold formulations as a function of θ∗.

6.4 Efficiency

In this section, we address the efficiency of our proposed procedures compared with the alternative

procedures RestartHAK and RestartHAK+ under the DM, MIM, and MDM configurations.
Table 2 shows OBS for the single constraint case under the DM configuration with four thresh-

olds (the same experimental setting as in Table 1).We see thatZAK requires fewer OBS compared
with ZAKR when 1 ≤ θ ∗ ≤ 4. This is expected as ZAK sets the implementation parameter for
Phase II more efficiently thanZAKR (see the discussion in Section 3). When θ ∗ = 5,ZAKR and
ZAK have similar performance as all systems are infeasible to q(d ) and Phase II is not needed
to achieve CS. Therefore, we omit the results for ZAKR from now on. We also see that the OBS
increases with b for all three procedures. This is due to the fact that having more inferior systems
that are feasible to q(θ

∗) requires more correct feasibility and comparison decisions to achieve the
final CS (on top of the feasibility decisions). One may also notice that all three proposed proce-
dures require much fewer observations when θ ∗ = 5 compared with other values of θ ∗. This is
because all systems are infeasible when θ ∗ = 5 and thus do not require observations for Phase II
to achieve correct selection. In terms of the comparison betweenZAK andZAK+, we see that
ZAK is more efficient than ZAK+ in general under the L/L and H/L variance configurations
while ZAK+ is more efficient in general under the L/H variance configuration. This is because
ZAK+ performs the feasibility checks and comparison simultaneously. Hence inferior feasible
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Table 2. Average Number of Observations ofZAKR ,ZAK , andZAK+ for k = 100 Systems and s = 1

Constraint with four Thresholds under the DM Configuration

ZAKR ZAK ZAK+
θ ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 22,659 29,344 35,537 17,350 20,628 24,208 19,037 22,218 24,885
2 23,261 30,454 37,087 17,559 20,906 24,555 19,112 22,348 25,231
3 23,241 30,416 37,008 17,531 20,891 24,580 19,119 22,350 25,231
4 23,225 30,396 37,055 17,506 20,876 24,543 19,077 22,377 25,238
5 8,904 8,904 8,904 8,924 8,924 8,924 8,893 8,893 8,893

L/H

1 81,402 87,996 94,254 73,911 73,924 74,139 65,610 59,200 52,238
2 84,708 94,334 103,777 77,111 80,405 83,861 71,847 73,425 74,957
3 84,711 94,421 103,925 77,160 80,383 83,867 71,764 73,383 75,001
4 84,539 94,381 103,789 76,941 80,383 83,846 71,692 73,345 74,945
5 44,119 44,119 44,119 44,215 44,215 44,215 44,065 44,065 44,065

H/L

1 53,562 86,764 117,509 39,708 69,173 100,260 50,006 79,456 106,285
2 54,008 86,959 117,396 39,392 68,505 98,487 49,681 78,348 104,534
3 53,975 87,151 117,446 39,476 68,365 98,184 49,537 78,446 104,392
4 53,957 87,024 117,576 39,440 68,321 98,170 49,672 78,297 104,480
5 8,904 8,904 8,904 8,924 8,924 8,924 8,893 8,893 8,893

systems with respect to q(θ
∗) can be eliminated before knowing their feasibility with respect to

q(θ
∗), and this benefit is more obvious when the comparison is easier than the feasibility checks

(i.e., L/H variance configuration). Also, we observe that the L/L variance configuration requires
the smallest number of OBS. This is expected because lower variance results in an easier problem.
However, H/L requires fewer OBS compared with L/H when b is relatively small (e.g., b = 25)
whereas L/H is better when b is relatively large (e.g., b = 75). This is reasonable because the b
inferior but feasible systems are often eliminated by comparison. Hence, the H/L variance con-
figuration performs better when b is small. For simplicity, we fixed b = 25 and the L/L variance
configuration in the rest of this section.
We then consider the single constraint case with ten thresholds under the L/L variance con-

figuration. Figure 5 shows the results for OBS of the proposed procedures ZAK and ZAK+
and their competing procedures RestartAK and RestartAK+ under the DM and MIM configura-
tion (the corresponding results for the MDM configuration are provided in Figure A.3). We see

thatZAK andZAK+ outperform RestartAK and RestartAK+, respectively. This is expected as
RestartAK and RestartAK+ allocate the nominal error for the ten thresholds and thus the resulting
continuation regions used for feasibility check and for comparison are larger than those ofZAK
andZAK+. We also see that the required observations increase dramatically for RestartAK and

RestartAK+ when θ ∗ increases, while the required observations for ZAK and ZAK+ remain

steady for all possible θ ∗. This is because RestartAK and RestartAK+ need to implement AK or
AK+ multiple times when θ ∗ gets larger and thus become very conservative, while ZAK and
ZAK+ are designed for one critical threshold per constraint regardless of the number of thresh-
old values on that constraint. Note thatZAK andZAK+ require much fewer OBS when θ ∗ = 11
compared with other values of θ ∗ (except forZAK+ under the MDM configuration). This is due
to a similar reason as in the four thresholds case as all systems are eliminated by their infeasibility
when θ ∗ = 11 and thus we do not need to wait for comparison among feasible systems to be com-
pleted. (The different behavior of ZAK+ under the MDM configuration is because under MDM
the system with the highest mean falls in the most preferred region, and hence when θ ∗ ≤ 10, the
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Fig. 5. Average number of observations of ZAK,RestartAK ,ZAK+ and RestartAK+ as functions of θ∗

for k = 100 systems and s = 1 constraint with ten thresholds under the DM and the MIM configurations.

infeasible systems can be eliminated by both feasibility check and comparison while the infeasible

systems under MIM can only be eliminated by the feasibility check.) We see that RestartAK and

RestartAK+ also show a sharp decrease in OBS when θ ∗ = 11 (except for RestartAK+ under the
MDM configuration), whereas OBS keeps increasing from θ ∗ = 1 to 10. This is due to similar rea-

sons as forZAK andZAK+. However, as RestartAK and RestartAK+ perform AK and AK+
eleven times until its termination, the OBS is still relatively high when θ ∗ = 11. As the performance

of ZAK and ZAK+ is expected to be significantly better than RestartAK and RestartAK+, we
omit the results for RestartAK and RestartAK+ (and RestartHAK and RestartHAK+ whenmultiple
constraints are considered) and focus on comparing the performance ofZAK andZAK+ in the
remainder of this section. Our results comparing all four procedures in the multiple constraints
case are included in Appendix I. We see that ZAK+ performs better or similar to ZAK and

RestartHAK performs better than RestartHAK+ under all cases we consider.
We now consider the two constraints case where each constraint contains three thresholds un-

der the ranked constraints formulation and the MIM andMDM configurations (same experimental
setting as when s = 2 under the ranked constraints formulation in Section 6.3 except for the mean
configuration). Figure 6 shows the results of OBS for proceduresZAK andZAK+. We see that
ZAK+ performs significantly better thanZAK under the MDM configuration, while their per-
formance is similar under the MIM configuration. This is because under the MDM configuration,
the best system [b] is feasible to the most preferred threshold vector q(1). As ZAK+ does not re-
quire both the comparison and feasibility decisions to be concluded to eliminate inferior systems
or infeasible systems with respect to q(θ

∗) (while ZAK needs to complete the feasibility check
phase to eliminate infeasible systems with respect to q(θ

∗)), when the best system [b] is feasible to
q(1), it can eliminate inferior systems once their feasibility is known to be no better than that of
[b] (this does not require concluding feasibility decisions for all the possible threshold vectors). On
the other hand, the MIM configuration sets the infeasible systems with respect to q(θ

∗) as superior
systems compared with [b], and hence those systems can only be eliminated once we make sure
that they are not feasible to an improved threshold vector.
Figure 7 also shows the experimental results for two constraints with three thresholds on each

constraint for the equally important constraints formulation and the MIM and the MDM config-
urations (same setting as in Figure 6 except for the preference order). The result shows a similar
pattern as under the ranked constraints formulation. The dominance of ZAK+ is more obvious
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Fig. 6. Average number of observations of ZAK and ZAK+ as functions of θ∗ for k = 100 systems and
s = 2 constraints under the MIM and MDM configurations for the ranked constraints formulation.

Fig. 7. Average number of observations of ZAK and ZAK+ as functions of θ∗ for k = 100 systems and
s = 2 constraints under theMIMandMDMconfigurations for the equally important constraints formulation.

under the MDM configuration than under the MIM configuration. As the results for the total vio-
lation with ranked constraints formulation also show a similar pattern, we omit them here for the
sake of space and include them in Appendix I.
As the MIM and MDM configurations aim to show the performance of the proposed procedures

in realistic settings, we focus on the comparison between ZAK and ZAK+ under those two
configurations. Based on the results shown in this section and Appendix I, we see that ZAK+
shows a significant improvement over ZAK under the MDM configuration while also outper-
forming ZAK in most cases under the MIM configuration. Therefore, since the decision maker
usually does not have much information about the means of the systems in practice, we recom-
mend ZAK+ as it provides the best overall performance.

7 INVENTORY POLICY EXAMPLE

In this section, we study the implementation and performance of ZAK and ZAK+, as well as
their competing procedures RestartHAK and RestartHAK+, on an (s, S) inventory policy example
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based on a similar setting as in [14]. Note that this example is similar to the problem we discussed
in Sections 1 and 2 but with additional thresholds.

A decision maker controls inventory using an (s, S) policy, and the costs are given as (i) ordering
cost at 3 per item; (ii) fixed ordering cost at 32 per order; (iii) holding cost at 1 per item per review
period; and (iv) penalty cost at 5 per item of unsatisfied demand. Systems in consideration are
given as

Γ = {(s, S) | s = 20 + 2m′, S = 40 + 10n′, wherem′ = 0, 1, 2, . . . , 10, and n′ = 0, 1, 2, . . . , 6} ,

which contains 77 systems in total. Demand during each review period is assumed independent
for different review periods and follows a Poisson distribution with mean 25. The decision maker
particularly cares about three performance measures: (1) the fill rate per review period, which
is the percentage of orders that can be fulfilled without running out of inventory, (2) the failure
probability, which is the probability that a shortage occurs between two successive review peri-
ods; and (3) the expected cost per review period, which is the average total cost for each review
period. In practice, performance measures often conflict with each other, such as fill rate and cost.
Therefore, it is rare for one system to perform the best with respect to all performance measures
under consideration. Instead, the decision maker may prioritize one performance measure and set
it as the primary performance measure while treating the others as constraints to ensure that their
values are within acceptable ranges. If she chooses her most preferred (fixed) threshold on each
constraint, this may lead to no feasible systems when the chosen thresholds are too strict. Alter-
natively, she could consider multiple thresholds on each constraint so that she can identify both
her most preferred combination of threshold values possible (that lead to some feasible systems)
as well as the best system among the feasible systems with respect to the most preferred thresh-
olds possible. In other words, she can formulate subjective stochastic constraints on the secondary
performance measures. With a set of thresholds specified for each constraint, the decision maker
has the flexibility to restrict the secondary performance measures to tighter ranges than would be
possible using her weakest acceptable threshold values on all constraints. In this inventory prob-
lem, we assume that the decision maker treats the fill rate measure as the most important measure,
meaning that she aims to maximize the fill rate as much as she can subject to maintaining reason-
able values of the measures of failure probability and expected cost per review period. Thus, the
problem can be formulated as described in Section 2 where the primary performance measure is
set as the fill rate and the two secondary performance measures are set as the failure probability
(� = 1) and the expected cost per review period (� = 2).

In our experiments, we set the run-length for each replication to 100 review periods and obtain
one observation for the fill rate, failure probability, and average cost per review period from each
replication, respectively, to estimate the primary and secondary performance measures. We also
estimate the correlation between the primary performance measure and each constraint, as well as
the correlation between the two constraints, based on 1,000 observations. The range of the corre-
lation between the primary performance measure and the failure probability constraint (expected
cost constraint) ranges from -1 to -0.7781 (from -0.7355 to 0.0731). The correlation between the
two constraints ranges from -0.2334 to 0.5489.
We now address the selection of the implementation parameters. The choice of α ∈ (0, 1) de-

pends on the desired nominal error and typically satisfies α ∈ {0.01, 0.05, 0.1}. The value of n0
determines the number of initial observations, which are used for the variance estimation, and
one should choose it neither too large (which can result in collecting unnecessary observations)
nor too small (which can result in a poor estimation of the variances). In the experiments, we
set α = 0.05 and n0 = 20, which are common choices in the literature. Before implementing
the proposed procedures ZAK and ZAK+ to identify the most preferred system possible, the
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decision maker needs to specify additional implementation parameters, including the thresholds
on the constraints, the associated tolerance levels of each constraint, the IZ parameter, and the
choice of the preference order for the constraints. We now discuss how to choose those parameters
separately.

Thresholds on the constraints. The choice of the thresholds on a particular constraint depends
on the nature of the constraint and the expectation of the decision maker. One recommendation
is to first choose (rough) lower and upper bounds for the constraint, which should be possible
based on past or similar experiences or industry data, and then consider a relaxation level for each
constraint and choose the thresholds based on an increment of the relaxation level. For example,
the thresholds on the failure probability constraint should be limited between 0 and 1. Moreover,
since identifying systems that are feasible to large thresholds, say 0.8 or 0.9, does not yield practi-
cal decisions (as decision maker is likely to expect the failure probability be lower than a relatively
small value), it is natural to consider small thresholds. If the decision maker is willing to relax the
constraints by roughly 5% every time, she may choose thresholds 0.01, 0.05, 0.1, 0.15, and so on.
For the expected cost, thresholds from a wider (positive) range can be chosen. If she wants to relax
the expected cost constraint by $5 every time, she may consider thresholds such as $100, $105,
$110, and so on. As discussed in Sections 3 and 4, nominal errors such as α ′

f
, βf , and βc depend on

min{s,d}. In practice, s is typically smaller than d , which further implies that the nominal errors
likely only depend on the number of constraints (rather than the number of threshold vectors).
Thus, ZAK and ZAK+ scale well with respect to the number of thresholds on the constraints
and the decision maker can simply choose all possible thresholds that she is willing to consider if
she does not have a clear idea on the performance of the constraints. In this case study, we partic-
ularly consider three thresholds on the first constraint (q1 ∈ {0.01, 0.05, 0.1}) and eight thresholds
on the second constraint (q2 ∈ {100, 105, 110, 115, 120, 125, 130, 135}).

IZ parameter and Tolerance levels. The IZ parameter and the tolerance levels measure the abso-
lute amount that the decision maker is indifferent to for the primary and secondary performance
measures, respectively. Given that the primary performancemeasure, that is, the fill rate, has range
in between 0 and 1, we assume that the decisionmaker has a small indifference level, say 0.1% of the
range, and set δ = 0.001. While the choices of the tolerance levels on the secondary performance
measures depend on what differences the decision maker considers significant, the choices of the
thresholds on the constraints also provide additional guidance. In general, when the thresholds
are dense for a particular constraint, a smaller tolerance level is expected. This is because a dense
set of thresholds usually indicates that the decision maker is more sensitive to the constraints and
is less likely to accept a large amount off each threshold on that constraint. For the opposite rea-
son, the decision maker may consider a larger tolerance level when the thresholds are sparse. In
our experiments, with a relatively dense set of thresholds {0.01, 0.05, 0.1} on the failure probabil-
ity constraint, we set the tolerance level as ϵ1 = 0.001; and with a relatively sparse threshold set
{100, 105, 110, . . . , 130, 135} on the expected cost constraint, we set ϵ2 = 0.5.

Preference order. With the chosen threshold constants on each constraint, the decision maker’s
preferred threshold combinations across all constraints depend on how much she prioritizes each
constraint. Section 5 discusses three useful formulations. When the decision maker does not have
a clear idea on how she prioritizes the constraints, choosing the equally important constraints
formulation is natural and recommended. On the other hand, the decision maker should choose
the ranked constraints formulation if she has a clear preference on the importance among the
constraints. Finally, if the decision maker thinks all the constraints are important but she also
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Fig. 8. The values of the secondary performancemeasures for all the systems. The best system (s,S) = (28, 60)
(highlighted in red) has a fill rate of 0.9981, a failure probability of 0.0211, and an expected cost per review
period of 113.9701. The good system (s,S) = (26, 60) (highlighted in yellow) has a fill rate of 0.9972, a failure
probability of 0.0279, and an expected cost per review period of 113.2690.

has a preference among them, then she may want to relax the constraints one at a time follow-
ing her preference. This can be modeled by choosing the total violation with ranked constraints
formulation. In our experiments, we test all three preference order proposed in Section 5. For the
ranked constraints and the total violation with ranked constraints formulations, consistent with
the discussion in Section 1, we prioritize the first constraint over the second constraint (relax the
second constraint first) and have 24 feasible regions (i.e., d = 24). For the equally important con-
straints formulation, we have 8 feasible regions (i.e., d = 8).
Figure 8 shows the analytical values of the secondary performance measures of all the systems

based on a Markov chain model. The value of θ ∗ is 11, 4, and 11 for ranked constraints, equally
important constraints, and total violationwith ranked constraints, respectively, which corresponds
to the threshold vector (q1,q2) = (0.05, 115) for ranked constraints and total violation with ranked
constraints and (q1,q2) = (0.1, 115) for equally important constraints. The identity of the best
system, (s, S) = (28, 60), remains the same for all three preference orders considered. Note that the
chosen IZ parameter δ = 0.001 does not satisfy Assumption 2 (since the system (s, S) = (26, 60)
is feasible with respect to threshold vector q(θ

∗) and has primary performance in a δ range of the
best system under all three preference orders). Nevertheless, we do not see the statistical validity
violated in the experiments.

We expect the comparison phase to be easier than the feasibility check phase because the vari-
ance of the difference in the fill rate is very small compared to the variance of cost per review
period. Thus we do not employ CRN. The experimental results are based on 10,000 replications
and are shown in Table 3. We see that under the ranked constraints and equally important con-
straints formulations, ZAK spends around 44% and 48% of the observations compared to those

of RestartHAK whereas ZAK+ spends around 34% and 33% compared with RestartHAK+, re-
spectively. When it comes to the total violation with ranked constraints formulation, the savings
is more pronounced as ZAK and ZAK+ spend around 29% and 23% of the observations com-

pared to those of RestartHAK and RestartHAK+, respectively. Both proposed procedures perform
much better than their alternative procedures, while also remaining statistically valid (even though
Assumption 2 is not satisfied). In terms of the comparison between ZAK and ZAK+, we ob-
serve thatZAK+ performs better under all three threshold formulations, while the advantage of
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Table 3. Average Number of Observations and Estimated PCS (Reported
in Parentheses) ofZAK , RestartHAK ,ZAK+ and RestartHAK+

for the Inventory Policy Example

Preference Order ZAK RestartHAK ZAK+ RestartHAK+

Ranked constraints
9,547 21,769 6,066 17,799
(1.000) (1.000) (1.000) (1.000)

Equally important 7,819 16,240 2,490 7,475
constraints (1.000) (1.000) (1.000) (1.000)

Total violation with 8,778 30,158 6,034 26,023
ranked constraints (1.000) (1.000) (1.000) (1.000)

ZAK+ is more obvious under the equally important constraints formulation. We also see that the

comparison between RestartHAK and RestartHAK shows a similar pattern as RestartHAK+ per-
forms better than RestartHAK under all three threshold formulations and the equally important
constraints formulation makes the dominance more clear. Note that this agrees with the results in
Section 6.4.

8 CONCLUSION

We consider the selection-of-the-best problem when subjective stochastic constraints are present.
When a decision maker has flexibility with thresholds, this allows her to start with tight threshold
values for each constraint and then relax the thresholds until feasible systems are found and com-
pared.We discuss how to combine thresholds on constraints into threshold vectors based on how a
decision maker prioritizes each constraint. We propose two procedures that select the best system
with respect to a primary performance measure while also satisfying constraints on secondary per-
formance measures with respect to the most preferred thresholds possible. Our procedures differ
in that one runs feasibility check and comparison sequentially while the other runs them simul-
taneously. We discuss how to set the implementation parameters for our procedures and prove
their statistical validity. We also demonstrate through experiments that the required number of
observations remains steady when the number of threshold vectors grows and address the impact
of applying CRN when performing our procedures. Finally, our experimental results show that
the proposed procedures perform well in reducing the average number of needed observations
as compared with procedures that repeatedly solve the problem for each threshold vector. Over-
all, we recommend our simultaneously-running procedure as it provides the best performance
in general.

APPENDICES

In Appendix A, we provide the detailed algorithm statement of ProcedureZAKR from Section 3
along with the discussion on its statistical validity. Appendix B describes how we set implemen-
tation parameters for the proposed sequentially-running procedures. We provide the proof of the
statistical validity of ProcedureZAK+ in Appendix C and include how to set its implementation
parameters in Appendix D. Appendix E includes the algorithms that we use to generate the three
example preference orders discussed in Section 5. In Appendices F and G, we describe procedures

RestartHAK and RestartHAK+ and discuss their statistical validity, respectively. Appendices H
and I provide additional experimental results that are used to set the implementation parameters
of our proposed procedures and to demonstrate the efficiency of our proposed procedures, respec-
tively. Finally, Appendix J provides experimental results and a discussion on the impact of using
CRNs.
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A PROCEDURE ZAKR

In this section, we provide the detailed description of the ZAKR procedure and prove its statis-
tical validity.

Algorithm A.1 gives the full description ofZAKR . Note that it is possible to use r rather than
ri in Phase I in ZAKR . To prove the statistical validity of ZAKR , we start with the following
lemma.

Lemma A.1. Under Assumption 1, for system i and constraint � with specific threshold value q�,m ,

the [Feasibility Check] steps inZAKR that run to completion ensure Pr(CDi�(q�,m)) ≥ 1 − α ′
f
.

Proof. When system i and constraint � with specific threshold q�,m are considered separately,

the [Feasibility Check] steps inZAKR either conclude a feasibility decision or eliminate thresh-
old q�,m for further consideration (when system i is declared feasible with respect to a threshold
vector and all preferred threshold vectors do not involve threshold value q�,m on constraint �). We

see that when a feasibility decision is concluded, the [Feasibility Check] steps in ZAKR are
essentially the same as for the statistically-valid feasibility check procedure F in [1] for a single
system and a single constraint with one threshold value with confidence level 1 − α ′

f
. The result

now follows from the special case of Theorem 1 in [1] with k = 1. �

We use the same notation for i ∈ Γ as in Section 4 as follows.

A∗
1(i) =

{
system i is declared infeasible to q(1), . . . , q(min{θ ∗,d })

}
;

A∗
2(i) =

{
system i is declared infeasible to q(1), . . . , q(θ

∗−1) if 1 < θ ∗ ≤ d
}
;

B∗
1 =

{
system [b] is declared feasible to q(θ

∗) if θ ∗ ≤ d
}
.

Lemma A.2. Under Assumption 1, for a particular system i , the [Feasibility Check] steps in

ZAKR ensure

Pr
(
A∗

1(i)
)
≥ 1 −min{s,d}α ′

f , if i ∈ Su ;

Pr
(
A∗

2(i)
)
≥ 1 −min{s,d − 1}α ′

f , if i ∈ Sd ∪ Sa′ and 1 < θ ∗ ≤ d ;

Pr
(
B∗
1

)
≥ 1 − sα ′

f , if θ
∗ ≤ d .

Proof. First, consider i ∈ Su . We discuss the following two cases depending on whether θ ∗ ≤ d
or θ ∗ = d + 1.

When θ ∗ ≤ d , system i must be unacceptable to q(1), . . . , q(θ
∗) because it is unacceptable to

q(θ
∗), not in Sa , and there are no desirable systems with respect to q(1), . . . , q(θ

∗−1). As system i
is unacceptable with respect to q(1), . . . , q(θ

∗), then for each κ = 1, . . . ,θ ∗, there exist at least one

constraint �κ such that yi�κ ≥ q(κ)
�κ
+ ϵ�κ . Then we have

Pr
(
A∗

1(i)
)
≥ Pr

(
∩θ ∗
κ=1CDi�κ (q

(κ)
�κ
)
)
≥ 1 −

θ ∗∑
κ=1

Pr
(
ICDi�κ (q

(κ)
�κ
)
)
≥ 1 − dα ′

f , (2)

where we use ICDi�(q�,m) to denote the event of incorrect decision of system i with respect to
constraint � and threshold q�,m . The first inequality holds because declaring system i infeasible
to constraint �κ is sufficient to declare system i infeasible to threshold vector q(κ) and it is not
possible to declare a system feasible with respect to a threshold vector without completing the
comparison with all thresholds in that vector. The second inequality holds due to the Bonferroni
inequality, and the last inequality holds due to Lemma A.1 and the fact of θ ∗ ≤ d .
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ALGORITHM A.1: ProcedureZAKR .

[Setup:] Select the overall nominal confidence level 1 − α and choose 0 < αf , αc < 1 such that (1 − αf )(1 − αc ) =
1 − α . Choose tolerance levels ϵ1, . . . , ϵs , indifference-zone parameter δ , threshold vectors {q(1), q(2), . . . , q(d ) }, and
associated index vectors {I (1), I (2), . . . , I (d ) }. Set M = Γ and Zi, �,m = 2 for all i ∈ M, � = 1, . . . , s , and m =

1, . . . , d� . Set F = ∅ and θ = d . Set ηf such that д(ηf ) = α ′
f
, where 0 < α ′

f
< 1/s is set as a solution to(

1 −min{s, d }α ′
f

)k−1
× (1 − sα ′

f ) = 1 − αf , if systems are simulated independently;

and set as

α ′
f = αf /[(k − 1)min{s, d } + s] , if systems are simulated under CRN.

Add any constraint �, where � = 1, . . . , s , with increasing preference to set IP.

[Initialization for Phase I:]

for each system i ∈ M do

— Obtain n0 observations Yi�1, Yi�2, . . . , Yi�n0 for � = 1, 2, . . . , s .

— Compute Ȳi� (n0) and S2Yi� (n0).
— Set ri = n0, ONi = {1, 2, . . . , s }, and ONi� = {1, . . . , d� } for � = 1, 2, . . . , s .

end for

[Feasibility Check:]

for each system i ∈ M do

for � ∈ ONi do

form ∈ ONi� do,

If Ȳi� (ri ) + R(ri ; ϵ�, ηf , S2Yi� (n0))/ri ≤ q�,m , set Zi, �,m = 1 and ONi� = ONi� \ {m }.
If Ȳi� (ri ) − R(ri ; ϵ�, ηf , S2Yi� (n0))/ri ≥ q�,m , set Zi, �,m = 0 and ONi� = ONi� \ {m }.

end for

If ONi� = ∅, set ONi = ONi \ {� }.
end for

If ∃ minimum κ ≤ θ s.t.
∏s

�=1 Zi, �, I (κ )
�

= 1, and either κ < θ or i � F , then

— If κ < θ , then set F = ∅, θ = κ , and for all j ∈ M delete q�,m from ONj� if � ∈ IP andm > I
(θ )
�

(if � � IP, then

q�,m can be removed from ONj� if I
(θ ′)
�
�m for all θ ′ ≤ κ ), and set ONj = ONj \ {� } if ONj� = ∅.

— Add system i to F .

If
∏s

�=1 Zi, �, I (θ )
�

= 0 or 1 and either θ = 1 or
∏s

�=1 Zi, �, I (κ )
�

= 0 for all κ = 1, . . . , θ − 1, then remove system i

from M .

end for

[Stopping Condition for Phase I:]

If M � ∅, then for each system i ∈ M , set ri = ri + 1, take one additional observation Yi�ri , and update Ȳi� (ri ) for
� ∈ ONi , then go to [Feasibility Check]. Else, check the following conditions.

— If |F | = 0, stop and conclude no feasible systems;

— If |F | = 1, stop and return the system in F as the best; or

— If |F | > 1, go to [Initialization for Phase II].

[Initialization for Phase II:] Let ηc be a solution to д(ηc ) = α ′
c , where

α ′
c =

{
1 − (1 − αc )1/(k−1), if systems are simulated independently;

αc /(k − 1), if systems are simulated under CRN.

Let M = F be the set of systems still in contention. For each system i ∈ M , perform an entirely new simulation and

obtain Xi1, . . . , Xin0 independent of any Yj�n generated in Phase I. Compute X̄i (n0) and S2Xij (n0) for i, j ∈ M and

i � j . Set r = n0 and go to [Comparison].

[Comparison:] For i, j ∈ M s.t. i � j and

r X̄i (r ) > r X̄ j (r ) + R(r ; δ, ηc , S2Xij (n0)),

eliminate j from M .

[Stopping Condition for Phase II:] If |M | = 1, then stop and select the system in M as the best. Otherwise, for

each system i ∈ M , take one additional observation Xi,r+1 independent of any Yj�n generated in Phase I and compute

X̄i (r + 1). Then, set r = r + 1 and go to [Comparison].
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Observe that since there are only s constraints, the set L = {�1, . . . , �θ ∗ } can have at most s
distinct values. For � ∈ L, let Ii� denote the largest threshold index on constraint � that system i is
unacceptable to, that is,

Ii� = max
1≤m≤d�

{
m : yi� ≥ q�,m + ϵ�

}
.

Thus, we know that q�,1 < q�,2 < · · · < q�, Ii� ≤ yi� − ϵ� on constraint �. Due to the discussion in

[22], we know that CDi�(q�, Ii� ) ⊆ · · · ⊆ CDi�(q�,2) ⊆ CDi�(q�,1). Then CDi�(q�, Ii� ) ⊆ CDi�(q(κ)�
)

for κ = 1, . . . ,θ ∗ with �κ = �. Thus, we also have

Pr
(
A∗

1(i)
)
≥ Pr

(
∩θ ∗
κ=1CDi�κ (q

(κ)
�κ
)
)
≥ Pr

(
∩�∈LCDi�(q�, Ii� )

)
≥ 1 −

∑
�∈L

Pr
(
ICDi�(q�, Ii� )

)
≥ 1 − |L|α ′

f ≥ 1 − sα ′
f , (3)

where the third inequality is due to the Bonferroni inequality and the forth inequality is due to
Lemma A.1. By comparing Equations (2) and (3), we conclude that Pr

(
A∗

1(i)
)
≥ 1 −min{s,d}α ′

f
.

When θ ∗ = d + 1, a similar argument yields

Pr
(
A∗

1(i)
)
≥ Pr

(
∩d
κ=1CDi�κ (q

(κ)
�κ
)
)
≥ 1 −

d∑
κ=1

Pr
(
ICDi�κ (q

(κ)
�κ
)
)
≥ 1 − dα ′

f ,

and, defining L = {�1, . . . , �d },

Pr
(
A∗

1(i)
)
≥ Pr

(
∩d
κ=1CDi�κ (q

(κ)
�κ
)
)
≥ Pr

(
∩�∈LCDi�(q�, Ii� )

)
≥ 1 −

∑
�∈L

Pr
(
ICDi�(q�, Ii� )

)
≥ 1 − |L|α ′

f ≥ 1 − sα ′
f .

Therefore, Pr
(
A∗

1(i)
)
≥ 1 −min{s,d}α ′

f
.

Now, consider i ∈ Sd∪Sa′ with 1 < θ ∗ ≤ d . As system i is not in Sa and there are no desirable sys-
tems with respect to q(1), . . . , q(θ

∗−1), system i must be unacceptable with respect to q1, . . . , q(θ
∗−1).

Then for each κ = 1, . . . ,θ ∗ − 1, there exist at least one constraint �κ such that yi�κ ≥ q(κ)
�κ
+ ϵ�κ .

Due to a similar argument as for i ∈ Su , we have

Pr
(
A∗

2(i)
)
≥ Pr

(
∩θ ∗−1
κ=1 CDi�κ (q

(κ)
�κ
)
)
≥ 1 −

θ ∗−1∑
κ=1

Pr
(
ICDi�κ (q

(κ)
�κ
)
)
≥ 1 − (d − 1)α ′

f .

Based on a similar definition L = {�1, . . . , �θ ∗−1} and the discussion above, we have

Pr
(
A∗

2(i)
)
≥ Pr

(
∩θ ∗−1
κ=1 CDi�κ (q

(κ)
�κ
)
)
≥ Pr

(
∩�∈LCDi�(q�, Ii� )

)
≥ 1 −

∑
�∈L

Pr
(
ICDi�(q�, Ii� )

)
≥ 1 − |L|α ′

f ≥ 1 − sα ′
f .

Therefore, we have Pr
(
A∗

2(i)
)
≥ 1 −min{s,d − 1}α ′

f
.

Finally, for [b], when θ ∗ ≤ d , we have

Pr
(
B∗
1

)
= Pr

(
∩s
�=1CDi�(q(θ

∗)
�

)
)
≥ 1 −

s∑
�=1

Pr
(
ICDi�(q(θ

∗)
�

)
)
≥ 1 − sα ′

f ,

where the last inequality is due to Lemma A.1. �
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For LemmaA.2, onemay notice thatd > s holds inmost cases, and therefore Pr
(
A∗

1(1)
)
≥ 1−sα ′

f

and Pr
(
A∗

2(1)
)
≥ 1 − sα ′

f
hold in most cases. Note that when d ≥ s and the systems are simulated

independently, the implementation parameter α ′
f
has a closed-form solution as

α ′
f =

1

s

[
1 − (1 − αf )1/k

]
.

When d < s , one may need to find α ′
f
by numerically solving (1−dα ′

f
)k−1 × (1− sα ′

f
) = 1−αf . As

we always have (1−d×0)k−1×(1−s×0)−(1−αf ) = αf > 0 and (1−d× 1
s
)k−1×(1−s× 1

s
)−(1−αf ) =

αf − 1 < 0, there will always be a solution α ′
f
satisfying 0 < α ′

f
< 1

s
.

We then use CSi to denote the correct selection between system i ∈ Sa′ ∪Sd and the best system
[b] and introduce the following lemma.

Lemma A.3. Under Assumption 1, given i such that xi ≤ x[b] − δ , the [Comparison] steps for

system i and [b] inZAKR that run to completion ensure

Pr (CSi ) ≥ 1 − α ′
c .

Proof. When only system i and [b] are considered, the [Comparison] steps in ZAKR are
the same as in the statistically-valid selection-of-the-best procedure provided in [12] when two
systems are considered with confidence level 1−α ′

c . Therefore, the result follows from the special
case of Theorem 1 of [12] with k = 2. �

We are now ready to give the main theorem about the statistical validity ofZAKR and provide
the detailed proof of Theorem A.4.

Theorem A.4. Under Assumptions 1 and 2, theZAKR procedure guarantees

Pr{CS} ≥ 1 − α .

Proof. We consider two cases, namely when θ ∗ ≤ d and θ ∗ = d + 1.
Case 1: θ ∗ ≤ d .
Note that any systems in (Sa′ ∪Sd ) should not be declared feasible with respect to a more preferred
threshold vector q(1), . . . , q(θ

∗−1) as they could be selected as the best system otherwise. More
specifically, we consider the following four events.

A∗
1 =

{
all systems in Su are eliminated by infeasibility = ∩i ∈SuA∗

1(i)
}
;

A∗
2 =

{
all systems in (Sa′ ∪ Sd ) are declared infeasible to thresholds q(1), . . . , q(θ

∗−1)
}

=
{
∩i ∈Sa′∪SdA

∗
2(i) when θ ∗ > 1

}
;

B∗
2 = {system [b] would be selected as the best system among the systems in Sa′ ∪ Sd } ;

B∗ =
{
system [b] is declared feasible with respect to q(θ

∗) and is selected as the best system

among the surviving systems from Phase I
}
.

Notice that B∗
1 ∩ B∗

2 ⊆ B∗ and A∗
2 is not defined when θ ∗ = 1. This means

Pr{CS} ≥
{
Pr(A∗

1 ∩ B∗), if θ ∗ = 1;

Pr(A∗
1 ∩ A∗

2 ∩ B∗), if θ ∗ > 1.

We see that Pr{CS} achieves its lower bound when θ ∗ > 1 (because the bounds on Pr(A∗
1), Pr(B∗

1 ),
and Pr(B∗

2 ) below do not depend on the value of θ ∗), and thus we focus on the case when θ ∗ > 1.We
also see that A∗

1,A∗
2, and B∗

1 are independent events when systems are simulated independently
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but are dependent events when systems are simulated under CRN. As we discard observations
from Phase I and completely restart for Phase II, and as B∗

2 involves making the correct selection
from all systems in Sa′ ∪ Sd (not only the ones surviving from Phase I), B∗

2 is independent from
A∗

1,A∗
2, and B∗

1 . We have

Pr{CS} ≥ Pr(A∗
1 ∩ A∗

2 ∩ B∗) ≥ Pr(A∗
1 ∩ A∗

2 ∩ B∗
1 ∩ B∗

2 )

=

{
Pr(A∗

1) × Pr(A∗
2) × Pr(B∗

1 ) × Pr(B∗
2 ), if systems are simulated independently;[

Pr(A∗
1) + Pr(A∗

2) + Pr(B∗
1 ) − 2

]
× Pr(B∗

2 ), if systems are simulated under CRN.

We discuss the cases depending on whether systems are simulated independently or under CRN.
When systems are simulated independently, by Lemma A.2, we have

Pr(A∗
1) ≥ (1 −min{s,d}α ′

f )
ju ;

Pr(A∗
2) ≥ (1 −min{s,d − 1}α ′

f )
ja′+jd = (1 −min{s,d − 1}α ′

f )
k−ja−ju−1;

Pr(B∗
1 ) ≥ 1 − sα ′

f .

Let Ni j denote the number of observations taken for system i before a comparison decision is
made between systems i and j, and letNi denote themaximum number of observations that system
i takes within Phase II. That is

Ni j =

⌈
2cηc (n0 − 1)S2Xi j

(n0)
δ 2

⌉
, and Ni = max

j�i
Ni j .

Then we have

Pr(B∗
2 ) ≥ Pr

(
∩i ∈Sa′∪SdCSi

)
= E

[
Pr

{
∩i ∈(Sd∪Sa′ )CSi

+++X[b]1, . . . ,X[b],N[b] , S
2
Xi [b]

(n0)
}]

= E

⎡⎢⎢⎢⎢⎣
∏

i ∈(Sd∪Sa′ )
Pr

{
CSi

+++X[b]1, . . . ,X[b],N[b] , S
2
Xi [b]

(n0)
}⎤⎥⎥⎥⎥⎦

≥
∏

i ∈(Sd∪Sa′ )
E

[
Pr

{
CSi

+++X[b]1, . . . ,X[b],N[b] , S
2
Xi [b]

(n0)
}]

=
∏

i ∈(Sd∪Sa′ )
Pr {CSi } ≥

∏
i ∈(Sd∪Sa′ )

(1 − α ′
c )

= (1 − α ′
c )jd+ja′ ≥ (1 − α ′

c )k−ju−ja−1,

(4)

where the second inequality holds due to Lemma 2.4 in [20] and the third inequality follows from
Lemma A.3.
Thus, we know that

Pr{CS} ≥ (1 −min{s,d}α ′
f )

ju × (1 −min{s,d − 1}α ′
f )

k−ja−ju−1 × (1 − sα ′
f ) × (1 − α ′

c )k−ju−ja−1

≥ (1 −min{s,d}α ′
f )

ju × (1 −min{s,d}α ′
f )

k−ja−ju−1 × (1 − sα ′
f ) × (1 − α ′

c )k−ju−ja−1

= (1 −min{s,d}α ′
f )

k−ja−1 × (1 − sα ′
f ) × (1 − α ′

c )k−ju−ja−1

≥ (1 −min{s,d}α ′
f )

k−1 × (1 − sα ′
f ) × (1 − α ′

c )k−1

= (1 − αf ) ×
[
(1 − αc )1/(k−1)

]k−1
= (1 − αf )(1 − αc ) = 1 − α ,
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where the third inequality holds since the lower bound of (1−min{s,d}α ′
f
)k−ja−1 is achieved when

ja = 0 when 0 < α ′
f
< 1/s , and the lower bound of (1 − α ′

c )k−ju−ja−1 is achieved when ja = ju = 0

for 0 ≤ 1 − α ′
c < 1.

When systems are simulated under CRN, by Lemmas A.2, A.3, and the Bonferroni inequality,
we have

Pr(A∗
1) ≥ 1 − ju min{s,d}α ′

f ;

Pr(A∗
2) ≥ 1 − (ja′ + jd )min{s,d − 1}α ′

f = 1 − (k − ja − ju − 1)min{s,d − 1}α ′
f ;

Pr(B∗
1 ) ≥ 1 − sα ′

f ;

Pr(B∗
2 ) ≥ Pr

(
∩i ∈Sa′∪SdCSi

)
≥ 1 −

∑
i ∈(Sd∪Sa′ )

Pr(ICSi ) ≥ 1 − (jd + ja′ )α ′
c

= 1 − (k − ju − ja − 1)α ′
c ,

where ICSi denotes the incorrect selection event between system i ∈ Sd ∪Sa′ and system [b]. Thus,

Pr{CS} ≥
[
1 − ju min{s,d}α ′

f + 1 − (k − ja − ju − 1)min{s,d − 1}α ′
f + 1 − sα ′

f − 2
]

×
[
1 − (k − ju − ja − 1)α ′

c

]
≥

[
1 − ju min{s,d}α ′

f + 1 − (k − ja − ju − 1)min{s,d}α ′
f + 1 − sα ′

f − 2
]

×
[
1 − (k − ju − ja − 1)α ′

c

]
=

[
1 − (k − ja − 1)min{s,d}α ′

f − sα ′
f

]
×

[
1 − (k − ju − ja − 1)α ′

c

]
≥

[
1 − (k − 1)min{s,d}α ′

f − sα ′
f

]
× [1 − (k − 1)α ′

c ] = (1 − αf )(1 − αc ) = 1 − α ,

where the third inequality holds since α ′
f
,α ′

c > 0, and hence the lower bound of (k − ja −
1)min{s,d}α ′

f
is achieved when ja = 0, and the lower bound of 1 − (k − ju − ja − 1)α ′

c is achieved

when ja = ju = 0.
Case 2: θ ∗ = d + 1.
If θ ∗ = d + 1, there are no desirable systems for any threshold vector. Based on the definition of
CS, CS is to either declare all systems are infeasible or to select an acceptable system with respect
to any of the threshold vectors q(1), . . . , q(d ). Therefore, CS is ensured by correctly concluding fea-
sibility decisions for all system i ∈ Su . Then Pr (CS) ≥ Pr(A∗

1) and Lemma A.2 and the Bonferroni
inequality yield

Pr{CS} ≥
{
(1 −min{s,d}α ′

f
)ju , if systems are simulated independently,

1 − ju min{s,d}α ′
f
, if systems are simulated under CRN,

≥
{
(1 −min{s,d}α ′

f
)k , if systems are simulated independently,

1 − k min{s,d}α ′
f
, if systems are simulated under CRN,

where the last inequality is due to the fact that 1 ≤ ju ≤ k and 0 < min{s,d}α ′
f
< 1. When systems

are simulated independently, we have

Pr{CS} ≥ (1 −min{s,d}α ′
f )

k ≥ (1 −min{s,d}α ′
f )

k−1 · (1 − sα ′
f )

= 1 − αf > 1 − α .
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When systems are simulated under CRN, we have

Pr{CS} ≥ 1 − k min{s,d}α ′
f ≥ 1 − (k − 1)min{s,d}α ′

f − sα ′
f

= 1 − αf > 1 − α . �

B IMPLEMENTATION PARAMETERS FOR ZAKR ANDZAK
In this section, we provide detailed discussion about how we set the implementation parameters

for the two proposed sequentially-running proceduresZAKR andZAK in Appendices B.1 and
B.2, respectively.

B.1 Implementation Parameters for ZAKR

The choices of αf and αc affect the performance of the ZAKR procedure. If Phase I is difficult
(e.g., the secondary performance measures of many systems are close to some of the threshold
values in threshold vectors q(1), . . . , q(θ

∗)), one may want to choose a larger value for αf than αc to
improve the efficiency. On the other hand, if Phase I is relatively easy compared with Phase II, then
it is more efficient to assign a larger value of αc than αf . If the decision maker has knowledge on
the relative difficulty of the feasibility checks and the comparison, she may first decide the choice
of e1 = αf /αc , the ratio of the nominal error of Phase I to Phase II. Then we have

(1 − e1 × αc )(1 − αc ) = e1α
2
c − (e1 + 1)αc + 1 = 1 − α .

Since the left-hand side equals 1 when αc = 0 and 0 when αc = min{1, 1/e1}, there must be

exactly one root αc with αc , e1 × αc ∈ (0, 1). We have αc =
e1+1−

√
(e1+1)2−4e1α
2e1

(the other root does

not satisfy αc < min{1, 1/e1}) and αf = e1 × αc . However, the decision maker usually does not
have such information about the mean configurations of the primary and secondary performance
measures of the systems. One possibility is to select αf = αc = 1 − (1 − α)1/2.

If s ≤ d , the formulas for selecting α ′
f
and α ′

c in Algorithm A.1 suggest one may first choose

e2 = sα
′
f
/α ′

c (the ratio of the nominal error for feasibility checks across all the constraints for one

system and the nominal error for the comparison between best system [b] and one inferior system)
and further find α ′

f
and α ′

c depending on the value of e2. Similarly, one may consider e2 = dα
′
f
/α ′

c

if d < s .
We start with the case when s ≤ d . When systems are simulated independently, we know that

1 − α = (1 − αf )(1 − αc ) = (1 − sα ′
f )

k × (1 − α ′
c )k−1 = (1 − e2α

′
c )k (1 − α ′

c )k−1,

where one can numerically solve for α ′
c and α

′
f
= e2α

′
c/s . Since the right-hand side equals 1 when

α ′
c = 0 and 0 when α ′

c = min{1, 1/e2}, there must be one exactly root α ′
c with α ′

c , e2 × α ′
c ∈ (0, 1)

and it follows that 0 < α ′
f
= e2α

′
c/s < 1/s as desired. When systems are simulated under CRN, we

know that

1 − α = (1 − αf )(1 − αc ) = (1 − ksα ′
f ) × (1 − (k − 1)α ′

c ) = (1 − ke2α
′
c ) × (1 − (k − 1)α ′

c )

= e2k(k − 1)(α ′
c )2 − (e2k + k − 1)α ′

c + 1.

Since the right-hand side equals 1 when α ′
c = 0 and 0 when α ′

c = min{ 1
k−1 ,

1
e2k

}, there must be

exactly one root α ′
c with (k−1)α ′

c , e2kα
′
c ∈ (0, 1). Thus, we have α ′

c =
e2k+k−1−

√
(e2k+k−1)2−4e2k (k−1)α
2e2k (k−1)

(the other root does not satisfy α ′
c < min{ 1

k−1 ,
1
e2k

}).
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We then discuss the case when d < s . We set e2 = dα
′
f
/α ′

c and find α ′
c by solving{

(1 − e2α
′
c )k−1 × (1 − e2

s
d
α ′
c ) × (1 − α ′

c )k−1 = 1 − α , if systems are simulated independently;(
1 − e2

(
k − 1 + s

d

)
α ′
c

)
×

[
1 − (k − 1)α ′

c

]
= 1 − α , if systems are simulated under CRN.

The former can be solved numerically. As the left-hand side equals 1 when α ′
c = 0 and 0 when

α ′
c = min{ d

se2
, 1}, there must be a root α ′

c with e2α
′
c ,

se2
d
α ′
c ,α

′
c ∈ (0, 1) and it follows that 0 <

α ′
f
= e2α

′
c/d < 1/s as desired. For the latter, since the left-hand side equals 1 when α ′

c = 0 and 0

when α ′
c = min{ 1

k−1 ,
1

e2(k−1+ s
d
) }, there must be one root α ′

c with (k − 1)α ′
c , e2(k − 1 + 2

d
)α ′

c ∈ (0, 1).

Therefore, we have α ′
c =

e2(k−1+ s
d
)+k−1−

√
[e2(k−1+ s

d
)+k−1]2−4e2(k−1+ s

d
)(k−1)α

2e2(k−1+ s
d
)(k−1) as the other root does not

satisfy α ′
c < min{ 1

k−1 ,
1

e2(k−1+ 2
d
) }.

In reality, the decision maker usually does not have detailed information regarding the mean
performance of each system. One recommendation is to balance the error between the feasibility
checks and the comparison. For example, if one has a single threshold vector and wishes to allo-
cate the same amount of error for feasibility checks for all constraints of one system as for the
comparison of one system with the best system [b], then e1 = 1 and e2 = 1 are appropriate choices.
On the other hand, if one wants to allocate the same error for feasibility check for one constraint
of one system as for comparison of one system with the best system [b], then e1 = s and e2 = s are
appropriate. Note that this agrees with the discussion from [8] who consider a single threshold
vector under the MIM configuration and test the formulation using e1 = 1. They recommend to
set the ratio of the difficulty between feasibility checks and comparison to 1 on the grounds that
this choice is robust to differing numbers of constraints, numbers of feasible systems, and variance
configurations. When multiple threshold vectors are considered, we need to ensure more correct
events during the feasibility checks (see the detailed analysis in the proof of statistical validity
of ZAKR in this section and further analysis in Section 4.2). Therefore, larger values of e1 and
e2 may be more appropriate than in the single threshold vector case. More specifically, most of
our experimental results (Section 6) consider the e2 formulation with e2 = 2 (see the analysis in
Section 6.2).

B.2 Implementation Parameters for ZAK
To find the values of α ′

f
and α ′

c , after choosing the value of e2, one needs to solve{
α = 1 − (1 −min{s,d}α ′

f
)k−1 × (1 − sα ′

f
) + 1 − (1 − α ′

c ) |F |−1, if systems are simulated independently;

α = [(k − 1)min{s,d} + s]α ′
f
+ (|F | − 1)α ′

c , if systems are simulated under CRN.

(5)

As the decisionmaker does not have the information on the number of surviving systems for Phase
II (i.e., the value of |F |) prior to the execution of Algorithm 1, she may first find α ′

f
by assuming

that the number of surviving systems for Phase II is k (i.e., by assuming |F | = k).
When s ≤ d , one may find α ′

c by solving{
α = 1 − (1 − e2α

′
c )k + 1 − (1 − α ′

c )k−1, if systems are simulated independently;

α = ke2α
′
c + (k − 1)α ′

c . if systems are simulated under CRN,

When systems are simulated independently, the right-hand side equals 0 when α ′
c = 0. When

α ′
c = min{1, 1

e2
}, one of the terms 1−(1−e2α ′

c )k , 1−(1−α ′
c )k−1 on the right-hand side equals 1 and

the other is positive, and hence the right-hand side is greater than 1. Thus, there must be a root
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α ′
c with α ′

c , e2α
′
c ∈ (0, 1) and it follows that 0 < α ′

f
= e2αc/s < 1/s as desired. When systems are

simulated under CRN, we find α ′
c =

α
ke2+k−1 . The corresponding α

′
f
can be found as α ′

f
= e2α

′
c/s .

When d < s , one may find α ′
c by solving{

α = 1 − (1 − e2α
′
c )k−1 × (1 − s

d
e2α

′
c ) + 1 − (1 − α ′

c )k−1, if systems are simulated independently;

α = (k−1)d+s
d

e2α
′
c + (k − 1)α ′

c , if systems are simulated under CRN.

When systems are simulated independently, the right-hand side equals 0 when α ′
c = 0. When

α ′
c = min{ d

se2
, 1}, the right-hand side is greater than 1 (because one of the terms (1 − e2α

′
c )k−1 ×

(1− s
d
e2α

′
c ), 1−(1−α ′

c )k−1 equals 1 and the other one is positive). Thus, there must be a root α ′
c with

e2α
′
c ,

se2
d
α ′
c ,α

′
c ∈ (0, 1) and hence 0 < α ′

f
= e2α

′
c/d < 1/s as desired. When systems are simulated

under CRN, we find α ′
c =

α
(k−1)d+s

d
e2+k−1

. The corresponding α ′
f
can be found as α ′

f
= e2α

′
c/d .

After the completion of Phase I, with the information on the number of surviving systems |F |,
we may solve for an updated value for α ′

c , namely α ′′
c , by solving Equation (5) where α ′

f
and α ′

c are

replaced by the value of α ′
f
we already computed (i.e., α ′

f
= e2α

′
c/min{s,d}) and α ′′

c , respectively.

C STATISTICAL VALIDITY OFZAK+
In this section, we provide the proof of Theorem 4.3.

Proof. We consider two cases, namely when θ ∗ ≤ d and θ ∗ = d + 1.
Case 1: θ ∗ ≤ d .
We consider the eventsA∗

1,A∗
2,B∗

1 , and B∗
2 defined in Section A. Notice thatA∗

2 ∩B∗
2 is the event

that all systems in Sa′ ∪ Sd are declared infeasible to threshold vectors q(1), . . . , q(θ
∗−1) and are

eliminated by comparison with system [b], that is, A∗
2 ∩ B∗

2 = ∩i ∈Sd∪Sa′A∗
2(i) ∩ CSi . Similarly,

A∗
1 = ∩i ∈SuA∗

1(i).
We discuss the cases depending on whether systems are simulated independently or under CRN.

When systems are simulated independently, as ZAK+ performs Phases I and II simultaneously,
events A∗

2,B∗
1 , and B∗

2 are dependent whereasA∗
1 is independent ofA∗

2 ∩B∗
1 ∩B∗

2 . We then have

Pr{CS} ≥ Pr
{
A∗

1 ∩ A∗
2 ∩ B∗

1 ∩ B∗
2

}
= Pr

(
A∗

1

)
× Pr

(
A∗

2 ∩ B∗
1 ∩ B∗

2

)
≥ Pr

(
A∗

1

)
×

[
Pr

(
A∗

2 ∩ B∗
2

)
+ Pr

(
B∗
1

)
− 1

]
.

By Lemma 4.1, we have

Pr
(
A∗

1

)
≥

(
1 −min{s,d}βf

) ju ;
Pr

(
B∗
1

)
≥ 1 − sβf .

We use the same notation Ni j from the proof of Theorem A.4 and have

Pr
(
A∗

2 ∩ B∗
2

)
= Pr

(
∩i ∈(Sd∪Sa′ )

(
A∗

2(i) ∩ CSi
) )

= E
[
Pr

{
∩i ∈(Sd∪Sa′ )

(
A∗

2(i) ∩ CSi
) +++X[b]1, . . . ,X[b],N[b] , S

2
Xi [b]

(n0)
}]

= E

⎡⎢⎢⎢⎢⎣
∏

i ∈(Sd∪Sa′ )
Pr

{
A∗

2(i) ∩ CSi

+++X[b]1, . . . ,X[b],N[b] , S
2
Xi [b]

(n0)
}⎤⎥⎥⎥⎥⎦

≥
∏

i ∈(Sd∪Sa′ )
E

[
Pr

{
A∗

2(i) ∩ CSi

+++X[b]1, . . . ,X[b],N[b] , S
2
Xi [b]

(n0)
}]
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≥
∏

i ∈(Sd∪Sa′ )

[
1 − E

[
Pr

{(
A∗

2(i)
)c +++X[b]1, . . . ,X[b],N[b] , SX 2

i [b]
(n0)

}]
− E

[
Pr

{
ICSi

++X[b]1, . . . ,X[b],N[b] , SX 2
i [b]

(n0)
} ]]

=
∏

i ∈(Sd∪Sa′ )

[
1 − Pr

{(
A∗

2(i)
)c } − Pr {ICSi }

]
≥

∏
i ∈(Sd∪Sa′ )

(
1 −min{s,d − 1}βf − βc

)
=

(
1 −min{s,d − 1}βf − βc

) jd+ja′
=

(
1 −min{s,d − 1}βf − βc

)k−ja−ju−1 ,
where we use Ac to denote the complement event of A. The first inequality is from Lemma 2.4 of
[20], the second inequality holds due to the Bonferroni inequality, and the last inequality is from
Lemmas 4.1 and 4.2.
Thus, we know that

Pr{CS} ≥
(
1 −min{s,d}βf

) ju ×
[ (
1 −min{s,d − 1}βf − βc

)k−ja−ju−1 + (
1 − sβf

)
− 1

]
≥

(
1 −min{s,d}βf

) ju ×
[ (
1 −min{s,d − 1}βf − βc

)k−ju−1 − sβf

]
,

where the second inequality holds since the lower bound of (1 −min{s,d − 1}βf − βc )k−ja−ju−1 is
achieved when ja = 0 for 0 < 1−min{s,d − 1}βf − βc < 1. As 0 ≤ ju ≤ k − 1 (because θ ∗ ≤ d), we
know that

Pr{CS} ≥ min
0≤j≤k−1

{(
1 −min{s,d}βf

) j × [ (
1 −min{s,d − 1}βf − βc

)k−j−1 − sβf

]}
= 1 − α .

When systems are simulated under CRN, events A∗
1,A∗

2,B∗
1 , and B∗

2 are all dependent. Thus,
we have

Pr {CS} ≥ Pr
{
A∗

1 ∩ A∗
2 ∩ B∗

1 ∩ B∗
2

}
≥ Pr

(
A∗

1

)
+ Pr

(
A∗

2 ∩ B∗
2

)
+ Pr

(
B∗
1

)
− 2.

By Lemmas 4.1 and 4.2, and the Bonferroni inequality, we have

Pr
(
A∗

1

)
≥ 1 − ju min{s,d}βf ;

Pr
(
B∗
1

)
≥ 1 − sβf ;

Pr
(
A∗

2 ∩ B∗
2

)
= Pr

(
∩i ∈(Sd∪Sa′ )

(
A∗

2(i) ∩ CSi
) )

≥ 1 −
∑

i ∈(Sd∪Sa′ )

[
Pr

(
A∗

2(i)
)c
+ Pr(ICSi )

]
≥ 1 −

∑
i ∈(Sd∪Sa′ )

[
min{s,d − 1}βf + βc

]
= 1 − (jd + ja′ )

[
min{s,d − 1}βf + βc

]
= 1 − (k − ja − ju − 1)

[
min{s,d − 1}βf + βc

]
,

where the first inequality holds due to the Bonferroni inequality and the second inequality holds
by Lemmas 4.1 and 4.2.
Thus, we know that

Pr{CS} ≥ 1 − ju min{s,d}βf +
{
1 − (k − ja − ju − 1)

[
min{s,d − 1}βf + βc

]}
+ 1 − sβf − 2

≥ 1 − ju min{s,d}βf − (k − ju − 1)
[
min{s,d − 1}βf + βc

]
− sβf
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= 1 − [ju min{s,d} + (k − ju − 1)min{s,d − 1} + s] βf − (k − ju − 1)βc ,

where the second inequality holds since the lower bound of 1−(k−ja−ju−1)
[
min{s,d − 1}βf + βc

]
is achieved when ja = 0. As 0 ≤ ju ≤ k − 1, we know that

Pr{CS} ≥ min
0≤j≤k−1

{
1 − [jmin{s,d} + (k − j − 1)min{s,d − 1} + s] βf − (k − j − 1)βc

}
= 1 − α .

Case 2: θ ∗ = d + 1.
If θ ∗ = d + 1, there are no desirable systems for any threshold vector. Similar to the discussion
in the proof of Theorem A.4, CS is ensured by correctly concluding feasibility decisions for all
systems i ∈ Su . Then Pr{CS} ≥ Pr(A∗

1) and Lemma 4.1 and the Bonferroni inequality yield

Pr{CS} ≥
{
(1 −min{s,d}βf )ju , if systems are simulated independently,

1 − ju min{s,d}βf , if systems are simulated under CRN.

≥
{
(1 −min{s,d}βf )k , if systems are simulated independently,

1 − k min{s,d}βf , if systems are simulated under CRN,

where the last inequality is due to the fact that 1 ≤ ju ≤ k and 0 < min{s,d}βf < 1. When systems
are simulated independently, we have

Pr {CS} ≥
(
1 −min{s,d}βf

)k ≥
(
1 −min{s,d}βf

)k−1 (
1 − sβf

)
=

(
1 −min{s,d}βf

)k−1 [ (
1 −min{s,d − 1}βf − βc

)k−(k−1)−1 − sβf

]
≥ min

0≤j≤k−1

{(
1 −min{s,d}βf

) j [ (
1 −min{s,d − 1}βf − βc

)k−j−1 − sβf

]}
= 1 − α ,

where the second inequality holds since min{s,d} ≤ s and 0 < min{s,d}βf < 1 and the first

equality holds since (1 −min{s,d − 1}βf − βc )0 = 1.
When systems are simulated under CRN, we have

Pr{CS} ≥ 1 − k min{s,d}βf ≥ 1 − [(k − 1)min{s,d} + s]βf
= 1 − [(k − 1)min{s,d} + (k − (k − 1) − 1)min{s,d − 1} + s] βf − (k − (k − 1) − 1)βc
≥ min

0≤j≤k−1

[
1 − [jmin{s,d} + (k − j − 1)min{s,d − 1} + s] βf − (k − j − 1)βc

]
= 1 − α . �

D IMPLEMENTATION PARAMETERS FOR ZAK+
We start by considering the case when s < d , and the systems are simulated independently. In this
case, we need to find βf and βc such that

min
0≤j≤k−1

{
(1 −min{s,d}βf )j ×

[
(1 −min{s,d − 1}βf − βc )k−j−1 − sβf

]}
= 1 − α .

Let β = sβf = eβc . Then we have

Pr{CS} ≥ min
0≤j≤k−1

{
(1 − β)j ×

[
(1 − (1 + 1/e)β)k−j−1 − β

]}
.

Let f (j) be a function of j such that f (j) = (1 − β)j ×
[
(1 − (1 + 1/e)β)k−j−1 − β

]
. We need to find

the lower bound of f (j) given that 0 ≤ j ≤ k − 1. Treating j as a continuous variable, the first
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derivative of f (j) is
∂

∂j
f (j) = (1 − β)j log(1 − β)

[
(1 − (1 + 1/e)β)k−j−1 − β

]
− (1 − β)j (1 − (1 + 1/e)β)k−j−1 log (1 − (1 + 1/e)β)

= (1 − β)j
{
[log(1 − β) − log(1 − (1 + 1/e)β)] (1 − (1 + 1/e)β)k−j−1 − β log(1 − β)

}
> 0,

where the last inequality holds since log(1− β) > log(1− (1+ 1/e)β) and log(1− β) < 0. Therefore,
we know that f (j) is increasing. Given that 0 ≤ j ≤ k − 1, f (j) achieves its minimum when j = 0.
Hence, to find βf and βc , we solve

(1 − β)0 ×
[
(1 − (1 + 1/e)β)k−0−1 − β

]
= (1 − (1 + 1/e)β)k−1 − β = 1 − α .

The resulting β is the common value of eβc and sβf . We see that (1 − (1 + 1/e)β)k−1 − β equals
1 when β = 0 and is negative when β = e

e+1 . Thus, there exists a solution β with 0 < β < e
e+1

that solves (1 − (1 + 1/e)β)k−1 − β = 1 − α , which can be found numerically. It follows that

0 < βf = β/s < e
e+1 ×

1
s
< 1

s
, 0 < βc =

β

e
< 1

e+1 < 1, and 0 < 1−(1+ 1
e
)β ≤ 1−min{s,d−1} β

s
− β

e
=

1 −min{s,d − 1}βf − βc < 1 as desired.
We then consider the case when s < d and the systems are simulated under CRN. We need to

find βf and βc such that

min
0≤j≤k−1

{
1 − [jmin{s,d} + (k − j − 1)min{s,d − 1} + s] βf − (k − j − 1)βc

}
= 1 − α .

By setting β = sβf = eβc , we have

Pr {CS} ≥ min
0≤j≤k−1

{
1 −

(
k +

k − j − 1

e

)
β

}
= 1 −

(
k +

k − 1

e

)
β,

and the value of sβf and eβc can be found as sβf = eβc = α/[k + (k − 1)/e].
When s ≥ d , by setting β = dβf = eβc , we need to find β such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − α = min0≤j≤k−1

{
(1 − β )j ×

[(
1 − d−1

d
β − 1

e
β

)k−j−1
− s

d
β

]}
, if systems are simulated independently;

1 − α = min0≤j≤k−1

{
1 −

[
j +

(d−1)(k−j−1)+s
d

+
k−j−1
e

]
β

}
, if systems are simulated under CRN.

When systems are simulated independently, for a fixed j such that 0 ≤ j ≤ k − 1, (1 − β)j ×
[(1 − d−1

d
β − 1

e
β)k−j−1 − s

d
β] equals 1 when β = 0 and is non-positive when β = min{ 1

1− 1
d
+ 1
e

, d
s
}

(because (1 − β)j ≥ 0 and (1 − d−1
d
β − 1

e
β)k−j−1 = 0 when β = 1

1− 1
d
+ 1
e

and s
d
β = 1 when β = d

s
).

Thus, there must be a solution βj with (1 − 1
d
+ 1

e
)βj , sd βj ∈ (0, 1). We then let fj (β) be a function

of β with a fixed j such that fj (β) = (1 − β)j × [(1 − d−1
d
β − 1

e
β)k−j−1 − s

d
β]. The first derivative of

fj (β) is

∂

∂β
fj (β) = −j(1 − β)j−1

[(
1 −

(
1 − 1

d
+
1

e

)
β

)k−j−1
− s

d
β

]
− (1 − β)j

[
(k − j − 1)

(
1 − 1

d
+
1

e

) (
1 −

(
1 − 1

d
+
1

e

)
β

)k−j−2
+

s

d

]
< 0,

where the inequality holds for 0 < β < min{ 1
1− 1

d
+ 1
e

, d
s
} such that fj (β) > 0. Given that ∂

∂β fj (β) <
0 when fj (β) > 0, we know that the solution βj is unique. We set j0 ∈ argmin0≤j≤k−1 βj . As
∂
∂β fj (β) < 0, which implies that fj (β) is a decreasing function in terms of β for a particular j,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 22. Publication date: July 2024.



Selection of the Best in the Presence of Subjective Stochastic Constraints 22:41

we know that fj (βj0 ) ≥ 1 − α for all 1 ≤ j ≤ k − 1 and fj0(βj0 ) = 1 − α . We find β as β = βj0 ,
which is the common value of eβc and dβf . It follows that 0 < βf =

1
d
β < min{ 1

d+ de −1
, 1
s
} ≤ 1

s
,

0 < βc =
1
e
β < min{ 1

e− e
d
+1 ,

1
e
} ≤ 1

1+e(1− 1
d
) ≤ 1, and 0 < 1− (d−1

d
+ 1

e
)β = 1−min{s,d − 1} β

d
− β

e
=

1 −min{s,d − 1}βf − βc < 1 as desired.
When systems are simulated under CRN, we find β such that

1 − α = min
0≤j≤k−1

{
1 −

[
j +

(d − 1)(k − j − 1) + s
d

+
k − j − 1

e

]
β

}
= min

0≤j≤k−1

{
1 −

[(
1

d
− 1

e

)
j +

(
1 − 1

d
+
1

e

)
(k − 1) + s

d

]
β

}
=

{
1 −

[ (
1 − 1

d
+ 1

e

)
(k − 1) + s

d

]
β, if d ≥ e,

1 −
(
k − 1 + s

d

)
β, if d < e,

and the value of dβf and eβc can be found as

β =

{
α/

[ (
1 − 1

d
+ 1

e

)
(k − 1) + s

d

]
, if d ≥ e,

α/
(
k − 1 + s

d

)
, if d < e .

We also see that 0 < βf =
1
d
β ≤ α

d (k−1+ s
d
) <

1
s
and 0 < βc =

1
e
β ≤ β < 1 if e ≥ 1 and

0 < βc =
1
e
β ≤ α

e( k−1e ) < 1 if e < 1 ≤ d , as desired.

E ALGORITHMS THAT CONSTRUCT THE THREE EXAMPLE PREFERENCE ORDERS

In this section, we include the algorithms used to generate the three example preference orders
discussed in Section 5. More specifically, Algorithms A.2 – A.4 show the algorithm that generates
ranked constraints, equally important constraints, and the total violation with ranked constraints
formulation, respectively.
Note that the ranked constraints and the total violation with ranked constraints formulation

require the rankings among constraints, without loss of generality, Algorithm A.2 and A.4 assume
that the constraints are ranked from constraint 1 to constraint s .

ALGORITHM A.2: Constructing Threshold Vectors for Ranked Constraints.

Input q�,m for all � = 1, . . . , s andm = 1, . . . ,d� . Let Q be an empty list of threshold vectors and
let threshold be a vector of length s .
form1 = 1, . . . ,d1 do

form2 = 1, . . . ,d2 do
. . .
forms = 1, . . . ,ds do

for � = 1, . . . , s do
Set threshold[�] = q�,m� .

end for

Add threshold to Q.
end for

. . .
end for

end for

return Q
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ALGORITHM A.3: Constructing Threshold Vectors for Equally Important Constraints.

Input q�,m for all � = 1, . . . , s andm = 1, . . . ,d� . Let Q be an empty list of threshold vectors and
let threshold be a vector of length s . Set L = max�=1, ...,s d� .
form = 1, . . . ,L do

for � = 1, . . . , s do
if m ≤ d� then

Set threshold[�] = q�,m .
else

Set threshold[�] = q�,d� .
end if

end for

Add threshold to Q.
end for

return Q

ALGORITHMA.4: Constructing Threshold Vectors for Total Violation with Ranked Constraints.

Input q�,m for all � = 1, . . . , s andm = 1, . . . ,d� . Let Q be an empty list of threshold vectors and
let threshold be a vector of length s .
for v = 0, . . . ,

∑s
�=1(d� − 1) do

for v1 = 0, . . . ,v do

for v2 = 0, . . . ,v −v1 do
for v3 = 0, . . . ,v − (v1 +v2) do
. . .
for vs = v −

∑s−1
�′=1v�′ do

for � = 1, . . . , s do
Set threshold[�] = q�,v�+1.

end for

end for

. . .
end for

Add threshold to Q.
end for

end for

end for

return Q

F PROCEDURES RestartAK AND RestartHAK

In this section, we discuss the algorithms RestartAK and RestartHAK and their statistical validity.

As RestartAK is a special case of RestartHAK when the number of constraints in consideration is
one, we omit the discussion on the algorithm statement and the statistical validity of procedure

RestartAK for the sake of space.

Procedure RestartHAK performs HAK , due to [8], for threshold vectors q(1), q(2), . . . , q(θ
∗) in-

dependently when 1 ≤ θ ∗ ≤ d , and for threshold vectors q(1), q(2), . . . , q(d ) independently when
θ ∗ = d + 1. As discussed in [8], HAK requires the user to choose a feasibility check procedure.

In our experiments, we choose F I
B in [8] as the feasibility check procedure. HAK also requires

a user to input the ratio, denoted α1/α2, of the error for the feasibility checks and the comparison.
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We set α1/α2 = 1 as recommended in [8] and the initial sample size when RestartHAK applies
HAK with respect to each threshold vector as n0 = 20. Note that the results in this section can

be easily generalized to a different α1/α2 ratio. A detailed description of RestartHAK is shown in
Algorithm A.5.

ALGORITHM A.5: Procedure RestartHAK .

[Setup:] Select the overall nominal confidence level 1 − α . Choose tolerance levels ϵ1, . . . , ϵs ,
indifference-zone parameter δ , and threshold vectors {q(1), q(2), . . . , q(d )}. Choose the procedure
F I
B as the feasibility check procedure and set α ′ = 1 − (1 − α)1/d .

for θ = 1, . . . ,d do

[Setup] for HAK : Same as in HAK except that α is replaced by α ′. Set α1 = α2 = α ′/2.
[Initialization], [Feasibility Check], [Feasibility Stopping Rule], [Setup for

Comparison], [Comparison], and [Comparison Stopping Rule] are the same as
inHAK .
[Stopping Condition]: If one system is found in [Comparison Stopping Rule], terminate
the algorithm and select the system as the best. If no system is found in [Feasibility
Stopping Rule] and θ = d , declare no feasible system exists with respect to the given
threshold vectors.

end for

As HAK is heuristic and RestartHAK essentially applies HAK for threshold vectors

q(1), q(2), . . . , q(min{θ ∗,d }), we do not prove the statistical validity of RestartHAK . However, if we
consider a variation ofHAK , namelyHAKR (“restart”), with a slightmodification in the [Setup]
forHAK (as Phases I and II are independent inHAKR ) and two changes in the [Setup for Com-

parison], we are able to prove the statistical validity of procedure RestartHAKR
that implements

HAKR for threshold vectors q(1), q(2), . . . , q(min{θ ∗,d }) independently:

— In [Setup] for HAK :
Set

α1 = α2 =

{
1 − (1 − α ′)k/(k+1), if systems are simulated independently;
1
2

(
k + 1 −

√
(k + 1)2 − 4kα ′

)
, if systems are simulated under CRN.

Note that α1 and α2 are well-defined when systems are simulated under CRN since (k +1)2−
4kα ′ > 0 always holds. This is because 0 < α ′ < 1 and thus (k + 1)2 − 4kα ′ > (k + 1)2 − 4k =
(k − 1)2 ≥ 0.

— In [Setup for Comparison] inHAK :
– Instead of using the observations of the primary performance measure Xi1, . . . ,Xiri col-
lected from the [Feasibility Check] inHAK , we perform a completely new simulation
and collect Xi1, . . . ,Xin0 for system i ∈ F , and compute X̄i (n0) and S2Xi j

(n0) for i, j ∈ F . Set

ri = n0 for each system i ∈ F .

– Change β2 = α2/(|F | − 1) to β2 =

{
1 − (1 − α2)1/(k−1), if systems are simulated independently;

α2/(k − 1), if systems are simulated under CRN.

Note that [8] use F to denote the set of systems that are declared feasible with respect to q(θ
∗) in

Phase I.
To prove the statistical validity of RestartHAKR

, we consider similar notation as in Section 2.2.
Recall that we use [b] to denote the index of the best system among the desirable systems with

respect to q(θ
∗). We further let CS(θ ) be the correct selection event with respect to threshold vector
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q(θ ). Then if θ = 1, . . . ,min{θ ∗,d},

CS(θ ) =

⎧⎪⎪⎨⎪⎪⎩
{
declare no feasible system exists or select i such that i ∈ ∩s

�=1

(
D�

(
q
(θ )
�

)
∪ A�

(
q
(θ )
�

))}
, if θ < θ ∗;{

select i such that i ∈ ∩s
�=1

(
D�

(
q
(θ )
�

)
∪ A�

(
q
(θ )
�

))
and xi > x[b] − δ

}
, if θ = θ ∗ .

We let CSRestart be the correct selection event of RestartHAKR
. As RestartHAKR

iteratively ap-
plies HAKR for threshold vectors q(1), q(2), . . . , q(θ

∗) when 1 ≤ θ ∗ ≤ d and for threshold vectors

q(1), q(2), . . . , q(d ) when θ ∗ = d + 1, we have ∩min{θ ∗,d }
θ=1

CS(θ ) ⊂ CSRestart.

Before we prove the statistical validity of RestartHAKR
, we first introduce the following nota-

tion:

S (θ )a = set of acceptable systems with respect to threshold vector q(θ );

S (θ )u = set of unacceptable systems with respect to threshold vector q(θ ).

Note that there do not exist desirable systems with respect to q(θ ) when θ < θ ∗. We then let

S (θ
∗)

d
=

{
set of desirable systems with respect to q(θ

∗) among systems in Γ \ {[b]}, if θ ∗ ≤ d ;

∅, if θ ∗ = d + 1,

and let CS
(θ ∗)
i be the correct selection event between system i ∈ S (θ

∗)
a ∪ S (θ

∗)
d

and the best system
[b].
We then present two lemmas that we use to prove the statistical validity of RestartHAKR

.

Lemma F.1. Under Assumption 1, for system i and constraint � with threshold q� , the [Feasibility
Check] steps inHAKR that run to completion ensure Pr(CDi�(q�)) ≥ 1 − β1.

Lemma F.2. Under Assumption 1, given i such that xi ≤ x[b] − δ , the [Comparison] steps for

system i and [b] inHAKR that run to completion ensure

Pr
(
CS

(θ ∗)
i

)
≥ 1 − β2.

The proofs of Lemmas F.1 and F.2 are essentially same as those of Lemmas A.1 and A.3 when
c = 1 (the case considered by [8]) because α ′

f
(α ′

c ) from ZAKR and β1 (β2) from HAKR both

denote the nominal error of feasibility check for one constraint of one systemwith a fixed threshold
(comparison between an inferior system and the best system [b]). We prove the statistical validity

of RestartHAKR
in the following theorem.

Theorem F.3. Under Assumptions 1 and 2, the procedure RestartHAKR
guarantees

Pr{CSRestart} ≥ 1 − α .

Proof. We consider two cases, namely when θ ∗ ≤ d and θ ∗ = d + 1.
Case 1: θ ∗ ≤ d .
Recall from Section A that B∗

1 denotes the event that system [b] is declared feasible to q(θ ∗). Similar

to B∗
2 and A∗

1 in the proof of Theorem A.4, we define B̃∗
2 as the event that selects the best system

[b] among the systems in S (θ
∗)

d
∪ S (θ

∗)
a and

A(θ ) =
{
all systems in S (θ )u are declared infeasible with respect to q(θ ), where θ = 1, . . . ,d

}
.
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Note that when θ < θ ∗, CS(θ ) can be ensured by only guaranteeing A(θ ). When θ = θ ∗, CS(θ ) ⊆
A(θ ) ∩ B∗

1 ∩ B̃∗
2 . Thus,

Pr
(
CS(θ )

)
≥

{
Pr

(
A(θ ) ∩ B∗

1 ∩ B̃∗
2

)
, if θ = θ ∗,

Pr
(
A(θ )) , if θ < θ ∗.

As CS(θ ) achieves its lower bound when θ = θ ∗ (because otherwise there is no need to make
correct comparison decisions), we focus on this case. One may also notice that A(θ ∗) and B∗

1 are
independent if systems are simulated independently and are dependent if systems are simulated
under CRN. Aswe discard observations from Phase I and completely restart for Phase II inHAKR ,

and B̃∗
2 involves making the correct selection from all systems in S (θ

∗)
a ∪ S (θ

∗)
d

, B̃∗
2 is independent

from A(θ ∗) and B∗
1 . Then, we have

Pr
(
CS(θ

∗)
)
≥

⎧⎪⎪⎨⎪⎪⎩
Pr

(
A(θ ∗)) × Pr

(
B∗
1

)
× Pr

(
B̃∗
2

)
, if systems are simulated independently,[

Pr
(
A(θ ∗)) + Pr (

B∗
1

)
− 1

]
× Pr

(
B̃∗
2

)
, if systems are simulated under CRN.

We let j(θ )u denote the number of unacceptable systems with respect to q(θ ), that is, j(θ )u = |S (θ )u |. We
then discuss the cases depending on whether systems are simulated independently or under CRN.
When systems are simulated independently, by Lemma F.1 and the Bonferroni inequality, we

have

Pr
(
A(θ ∗)

)
≥ Pr

(
∩
i ∈S (θ ∗)

u
∩s
�=1 CDi�(q(θ

∗)
�

)
)
=

∏
i ∈S (θ ∗)

u

Pr
(
∩s
�=1CDi�(q(θ

∗)
�

)
)

≥
∏

i ∈S (θ ∗)
u

[
1 −

s∑
�=1

Pr
(
ICDi�(q(θ

∗)
�

)
)]

≥ (1 − sβ1)j
(θ ∗)
u ;

Pr
(
B∗
1

)
= Pr

(
∩s
�=1CD[b]�(q(θ

∗)
�

)
)
≥ 1 −

s∑
�=1

Pr
(
ICD[b]�(q(θ

∗)
�

)
)
≥ 1 − sβ1.

We use a similar approach as in Equation (4) from the proof of Theorem A.4 by replacing Sa′

and Sd with S (θ
∗)

a and S (θ
∗)

d
, respectively. We then have

Pr(B̃∗
2 ) ≥ (1 − β2)k−j

(θ ∗)
u −1.

Thus, we have

Pr
(
CS(θ

∗)
)
≥ (1 − sβ1)j

(θ ∗)
u +1 × (1 − β2)k−j

(θ ∗)
u −1.

To find a lower bound of the above expression, we need to either maximize j(θ
∗)

u if 1− sβ1 ≤ 1− β2
or minimize j(θ

∗)
u if 1 − sβ1 > 1 − β2. We also know that 0 ≤ j(θ

∗)
u ≤ k − 1. When 1 − sβ1 ≤ 1 − β2,

we have

(1 − sβ1)j
(θ ∗)
u +1 × (1 − β2)k−j

(θ ∗)
u −1 ≥ (1 − sβ1)(k−1)+1 × (1 − β2)k−(k−1)−1

= (1 − sβ1)k = 1 − α1,

where the last equality holds since procedure HAK sets β1 = (1 − (1 − α1)1/k )/s when systems
are independent. When 1 − sβ1 > 1 − β2, we have

(1 − sβ1)j
(θ ∗)
u +1 × (1 − β2)k−j

(θ ∗)
u −1 ≥ (1 − sβ1)0+1 × (1 − β2)k−0−1
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= (1 − sβ1) × (1 − β2)k−1

= (1 − α1)1/k × (1 − α2)

= (1 − α1)(k+1)/k ,

where the second equality holds as HAK sets β1 = (1 − (1 − α1)1/k )/s and HAKR sets β2 =
1 − (1 − α2)1/(k−1) when systems are independent. Therefore, we have

Pr
(
CS(θ

∗)
)
≥ min

[
1 − α1, (1 − α1)(k+1)/k

]
= (1 − α1)(k+1)/k

=
[
1 − (1 − (1 − α ′)k/(k+1))

] (k+1)/k
= 1 − α ′.

When systems are simulated under CRN, by Lemma F.1 and the Bonferroni inequality, we have

Pr
(
A(θ ∗)

)
≥ Pr

(
∩
i ∈S (θ ∗)

u
∩s
�=1 CDi�(q(θ

∗)
�

)
)
≥ 1 −

∑
i ∈S (θ ∗)

u

s∑
�=1

CDi�(q(θ
∗)

�
) ≥ 1 − j(θ

∗)
u sβ1;

Pr
(
B∗
1

)
≥ 1 − sβ1;

Pr
(
B̃∗
2

)
≥ Pr

(
∩
i ∈

(
S
(θ ∗)
a ∪S (θ ∗)

d

)CS(θ ∗)
i

)
≥ 1 −

∑
i ∈

(
S
(θ ∗)
a ∪S (θ ∗)

d

) Pr (ICSi ) ≥ 1 − (k − j(θ
∗)

u − 1)β2.

Thus, we have

Pr
(
CS(θ

∗)
)
≥

[
1 − (j(θ

∗)
u + 1)sβ1

] [
1 − (k − j(θ

∗)
u − 1)β2

]
.

To find a lower bound of
[
1 − (j(θ

∗)
u + 1)sβ1

] [
1 − (k − j(θ

∗)
u − 1)β2

]
, we see that[

1 − (j(θ
∗)

u + 1)sβ1
] [

1 − (k − j(θ
∗)

u − 1)β2
]

= −sβ1β2 × (j(θ
∗)

u )2 + [(k − 2)sβ1β2 − sβ1 + β2] × j(θ
∗)

u + (1 − sβ1) [1 − (k − 1)β2] .

Given that 0 ≤ j(θ
∗)

u ≤ k − 1, we see that the above quadratic function achieves its minimum either

when j(θ
∗)

u = 0 or j(θ
∗)

u = k − 1. When j(θ
∗)

u = 0, we have[
1 − (j(θ

∗)
u + 1)sβ1

] [
1 − (k − j(θ

∗)
u − 1)β2

]
= (1 − sβ1)(1 − (k − 1)β2)

= (1 − α1/k)(1 − α2)
= (1 − α1/k)(1 − α1),

where the second equality holds since procedure HAK sets β1 = α1/(ks) and HAKR sets β2 =

α2/(k − 1) when systems are correlated. When j(θ
∗)

u = k − 1, we have[
1 − (j(θ

∗)
u + 1)sβ1

] [
1 − (k − j(θ

∗)
u − 1)β2

]
= (1 − ksβ1) = 1 − α1,

where the second equality holds since HAK sets β1 = α1/(ks) when systems are correlated.
Therefore, we have

Pr
(
CS(θ

∗)
)
≥ min [1 − α1, (1 − α1/k)(1 − α1)]

= (1 − α1/k)(1 − α1) =
1

k
α2
1 −

k + 1

k
α1 + 1

=
1

k

[
1

2

(
k + 1 −

√
(k + 1)2 − 4kα ′

)]2
− k + 1

2k

(
k + 1 −

√
(k + 1)2 − 4kα ′

)
+ 1
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= 1 − α ′.

Note that although setting α1 =
1
2

(
k + 1 +

√
(k + 1)2 − 4kα ′

)
also yields Pr(CS(θ ∗)) ≥ 1 − α ′, it is

not valid. This is because 1
2

(
k + 1 +

√
(k + 1)2 − 4kα ′

)
> 1

2

(
k + 1 +

√
(k + 1)2 − 4k

)
= k ≥ 1 (as

0 < α ′ < 1) and hence selecting α1 in this manner violates the fact that 0 < α1 < 1.

Thus, we see that Pr
(
CS(θ )

)
≥ Pr

(
CS(θ

∗)
)
≥ 1 − α ′ regardless whether systems are simulated

independently or under CRN. Therefore, we have

Pr{CSRestart} ≥ Pr{∩θ ∗

θ=1CS
(θ )} ≥ Pr{∩d

θ=1CS
(θ )} =

d∏
θ=1

Pr
(
CS(θ )

)
≥ (1 − α ′)d = (1 − (1 − (1 − α)1/d ))d = 1 − α .

Case 2: θ ∗ = d + 1.
If θ ∗ = d + 1, there are no desirable systems for any threshold vector. Therefore, CS(θ ) is ensured

by correctly concluding feasibility decisions for all systems i ∈ S (θ )u . Then Pr(CS(θ )) ≥ Pr(A(θ ))
and Lemma F.1 and the Bonferroni inequality yields

Pr(CS(θ )) ≥
{
(1 − sβ1)j

(θ )
u , if systems are simulated independently,

1 − j(θ )u sβ1, if systems are simulated under CRN,

≥
{
(1 − sβ1)k , if systems are simulated independently,

1 − ksβ1, if systems are simulated under CRN,

where the last inequality is due to the fact that 0 ≤ j(θ )u ≤ k for any θ = 1, . . . ,d . When systems
are simulated independently, we have

Pr
{
CS(θ )

}
≥ (1 − sβ1)k = 1 − α1 > 1 − α ′.

When systems are simulated under CRN, we have

Pr
{
CS(θ )

}
≥ (1 − ksβ1) = 1 − α1 > 1 − α ′.

Thus, we have Pr
(
CS(θ )

)
≥ 1 − α ′ regardless whether systems are simulated independently or

under CRN. Then it follows that

Pr
{
CSRestart

}
≥ Pr{∩d

θ=1CS
(θ )} =

d∏
θ=1

Pr
(
CS(θ )

)
≥ (1 − α ′)d = 1 − α . �

Remark 3. There are two potential improvement for RestartHAKR
in terms of setting the imple-

ment parameters:

(1) The proof of Theorem F.3 computes Pr(A(θ ∗)) ≥ (1 − sβ1)j
(θ ∗)
u when systems are simulated

independently and Pr(A(θ ∗)) ≥ 1− j(θ
∗)

u sβ1 when systems are simulated under CRN, which is
consistent with the choice of implementation parameters in ProcedureHAK in Healey et al.
[8]. However, these bounds can be improved using ideas in this article. In particular, similar

to the argument in the proof of Lemma 2, for each system i ∈ S (θ
∗)

u , let �i be a constraint

such that system i is infeasible to threshold vector q(θ
∗)

�i
. To declare system i infeasible to

threshold vector q(θ
∗), it is sufficient to make a correct feasibility decision for constraint �i
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with respect to threshold q(θ
∗)

�i
. Therefore, one may improve the efficiency of RestartHAKR

by computing Pr(A(θ ∗)) as

Pr
(
A(θ ∗)

)
≥ Pr

(
∩
i ∈S (θ ∗)

u
CDi�i (q

(θ ∗)
�i

)
)
=

∏
i ∈S (θ ∗)

u

Pr
(
CDi�i (q

(θ ∗)
�i

)
)

=
∏

i ∈S (θ ∗)
u

[
1 − Pr

(
ICDi�i (q

(θ ∗)
�i

)
)]

≥ (1 − β1)j
(θ ∗)
u .

when systems are simulated independently, and

Pr
(
A(θ ∗)

)
≥ Pr

(
∩
i ∈S (θ ∗)

u
CDi�i (q

(θ ∗)
�i

)
)
≥ 1 −

∑
i ∈S (θ ∗)

u

Pr
(
ICDi�i (q

(θ ∗)
�i

)
)
≥ 1 − j(θ

∗)
u β1.

when systems are simulated under CRN.

(2) The proof of Theorem F.3 allocates error to both Phases I and II in order to achieve CS(θ ) for

all θ = 1, . . . ,θ ∗. One may improve the efficiency of RestartHAKR
by not allocating error to

Phase II when θ < θ ∗ (since there are no feasible systems exists with respect to q(θ ) when
θ < θ ∗).

As the current approach is a natural and statistical valid way of restarting HAK for different

threshold vectors, we do not consider an improved version of RestartHAKR
since this is not the

main focus of the article.

As RestartHAK reuses the observations from Phase I and assigns the error in Phase II more effi-

ciently, it is expected to perform better than RestartHAKR
. Althoughwe do not prove the statistical

validity of RestartHAK , we have not found any experiments that violate the statistical guarantee.

We believe that RestartHAKR
and RestartHAK are appropriate choices of sequentially-running

approaches for comparison withZAKR andZAK , respectively.

G PROCEDURES RestartAK+ AND RestartHAK+

In this section, we discuss the algorithms RestartAK+ and RestartHAK+ and their statistical valid-
ity. Similar to Appendix F, as RestartAK+ is a special case of RestartHAK+ when the number of

constraints is one, we omit a separate discussion of RestartAK+.
RestartHAK+ performs procedure HAK+ due to [8] independently for the threshold vectors

q(1), q(2), . . . , q(θ
∗) when 1 ≤ θ ∗ ≤ d , and for threshold vectors q(1), q(2), . . . , q(d ) independently

when θ ∗ = d+1. As discussed in [8],HAK+ requires user to choose a feasibility check procedure.
In our experiments, we choose F I

B in [8] as the feasibility check procedure.HAK+ also requires
a user‘s input for the ratio, namely e = sβ1/β2, of the error for the feasibility checks and the

comparison. We set e = 1 as recommended in [8] and the initial sample size when RestartHAK+

applies HAK+ with respect to each threshold vector is set as n0 = 20. Note that the procedure
and the proof discussed in this section can be easily generalized to a different value of e . A detailed
algorithm description is shown in Algorithm A.6.

We utilize the same notation of S (θ )u , j
(θ )
u , CS(θ ), and CSRestart as in Appendix F, and prove the

statistical validity of RestartHAK+ in the following theorem.

Theorem G.1. Under Assumptions 1 and 2, the procedure RestartHAK+ guarantees

Pr{CSRestart} ≥ 1 − α .

Proof. We consider two cases, namely θ ∗ ≤ d and θ ∗ = d + 1.
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ALGORITHM A.6: Procedure RestartHAK+.

[Setup:] Select the overall nominal confidence level 1 − α . Choose tolerance levels ϵ1, . . . , ϵs ,
indifference-zone parameter δ , and threshold vectors {q(1), q(2), . . . , q(d )}. Choose procedure F I

B
as the feasibility check procedure and set α ′ = 1 − (1 − α)1/d .
for θ = 1, . . . ,d do

[Setup] for HAK+: Same as in HAK+ except that α is replaced by α ′. Note that we set
β2 to the solution of β2 + 2[1 − (1 − β2)(k−1)/2] = α ′ when systems are simulated
independently and set β2 = α ′/k when systems are simulated under CRN. We also set
β1 = β2/s .
[Initialization], [Feasibility Check], [Comparison], and [Stopping Rule] are the same
as in HAK+.
[Stopping Condition:] If one system is found in [Stopping Rule], terminate the algorithm
and select the system as the best. If no system is found in [Stopping Rule] and θ = d ,
declare no feasible system exists with respect to the given threshold vectors.

end for

Case 1: θ ∗ ≤ d .
When systems are simulated independently and Assumptions 1 and 2 hold, due to Lemmas F.1 and
F.2 and the arguments in the proof of Theorem F.3, the feasibility check and comparison procedures
ofHAK+ satisfy Assumptions 3 and 5 of [8], respectively. Thus, we are able to apply Lemma 4.2
of [8]. That is, we have

Pr
{
CS(θ )

}
≥ (1 − sβ1)j

(θ )
u + (1 − sβ1) + (1 − β2)k−j

(θ )
u −1 − 2, (6)

when j(θ )u < k and Pr(CS(θ )) ≥ (1 − sβ1)k when j(θ )u = k . Also, Remark 4.3 of [8] discusses that the

smallest lower bond on Pr
{
CS(θ )

}
is always achieved when j(θ )u < k . As we set β2 = sβ1 and β2 as

the solution to β2 + 2[1 − (1 − β2)(k−1)/2] = α ′, we know that

(1 − sβ1)j
(θ )
u + (1 − sβ1) + (1 − β2)k−j

(θ )
u −1 − 2 = (1 − β2)j

(θ )
u + (1 − β2) + (1 − β2)k−j

(θ )
u −1 − 2

≥ (1 − β2)(k−1)/2 + (1 − β2) + (1 − β2)(k−1)/2 − 2

= 1 −
(
β2 + 2

[
1 − (1 − β2)(k−1)/2

] )
= 1 − α ′,

where the inequality holds as the lower bound is achieved when j(θ )u = (k − 1)/2. By Theorem 4.4

of [8], we know that Pr(CS(θ )) ≥ 1 − α ′.
When systems are simulated under CRN and Assumptions 1 and 2 hold, due to Lemmas F.1

and F.2 and the arguments in the proof of Theorem F.3, the feasibility check procedure and the
comparison procedure of HAK+ satisfy Assumptions 4 and 6. With Assumption 1, we apply
Lemma 4.6 of [8] and have

Pr
{
CS(θ )

}
≥ 1 − (j(θ )u + 1)sβ1 − (k − j(θ )u − 1)β2, (7)

when j(θ )u < k and Pr{CS(θ )} ≥ 1 − ksβ1 when j(θ )u = k . As we set β2 = sβ1 = α ′/k , we know that

1 − (j(θ )u + 1)sβ1 − (k − j(θ )u − 1)β2 = 1 − kβ2 = 1 − α ′.

Then by Theorem 4.8 of [8], we know that Pr(CS(θ )) ≥ 1 − α ′.
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As we have Pr(CS(θ )) ≥ 1 − α ′ regardless of whether the systems are simulated independently
or under CRN, we have

Pr{CSRestart} ≥ Pr
{
∩θ ∗

θ=1CS
(θ )

}
≥ Pr

{
∩d
θ=1CS

(θ )
}
=

d∏
θ=1

Pr
(
CS(θ )

)
≥ (1 − α ′)d = (1 − (1 − (1 − α)1/d ))d = 1 − α .

Case 2: θ ∗ = d + 1.
If θ ∗ = d + 1, there are no desirable systems for any threshold vector. This means that we have

j(θ )u = k for any θ = 1, . . . ,d . Similar to the proof of Theorem F.3, CS(θ ) is ensured by cor-

rectly concluding feasibility decisions for all systems i ∈ S (θ )u . By Lemmas 4.2 and 4.6 from [8],
we have

Pr
(
CS(θ )

)
≥

{
(1 − sβ1)k , if systems are simulated independently,

1 − ksβ1, if systems are simulated under CRN.

When systems are simulated independently, by Remark 4.3 of [8], the lower bound of (1− sβ1)k
is never smaller than the Right-Hand Side (RHS) of Equation (6) when j(θ

∗)
u = k − 1. Therefore,

we have (1 − sβ1)k ≥ 1 − α ′.
When systems are simulated under CRN, by Remark 4.7 of [8], the lower bound of 1 − ksβ1 is

equal to the RHS of Equation (7) when j(θ
∗)

u = k − 1. Therefore, we have 1 − ksβ1 ≥ 1 − α ′.
Thus, we have Pr(CS(θ )) ≥ 1− α ′ both when the systems are simulated independently or under

CRN. It then follows that

Pr
{
CSRestart

}
≥ Pr{∩d

θ=1CS
(θ )} =

d∏
θ=1

Pr
(
CS(θ )

)
≥ (1 − α ′)d = 1 − α . �

Remark 4. Similar as in Appendix F, there are two potential improvement for RestartHAK+ in
terms of setting the implementation parameters:

(1) Due a similar reason as in Remark 1, the computation of Pr(CS(θ )) in the proof of
Theorem G.1 can be improved. When systems are simulated independently, Equation (6)
can be improved as

Pr
{
CS(θ )

}
≥ (1 − β1)j

(θ )
u + (1 − sβ1) + (1 − β2)k−j

(θ )
u −1 − 2.

When systems are simulated under CRN, Equation (7) can be improved as

Pr
{
CS(θ )

}
≥ 1 − (j(θ )u + 1)β1 − (k − j(θ )u − 1)β2.

(2) The proof of Theorem G.1 allocates error to both Phases I and II for all θ = 1, . . . ,θ ∗. One
may improve the efficiency of RestartHAK+ by not allocating error to Phase II when θ < θ ∗

(since there are no feasible systems exists with respect to q(θ ) when θ < θ ∗).

As the current setting is a natural and statistical valid way of restarting HAK+ for different

threshold vectors, we do not consider an improved version of RestartHAK+ since this is not the
main focus of the article.
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Table A.1. Threshold Configuration for the four
Constraints (s = 4) Case

Constraint Threshold values of constraint �

� = 1 0, 2ϵ1, 4ϵ1, 6ϵ1
� = 2 0, 2ϵ2
� = 3 0, 2ϵ3, 4ϵ3
� = 4 0, 2ϵ4, 4ϵ4, 6ϵ4

Fig. A.1. Average number of observations of proceduresZAKR
1 ,ZAKR

2 ,ZAK1,ZAK2, andZAK+ as
functions of e1, e2, and e for k = 100 systems and s = 2 and 4 constraints.

H EXPERIMENTAL RESULTS FOR IMPLEMENTATION PARAMETERS

In this section, we present the experimental results that we use to choose the implementation
parameters for the proposed proceduresZAKR ,ZAK , andZAK+.
We test the performance of our proposed procedures in the DM mean configuration, the L/L

variance configuration, and the ranked constraints preference order (where the constraints are
ranked from constraint 1 to constraint s) when k = 100, s = 2, 4, 6, and b = 25, 50. When s = 2,
both constraints have three thresholds {0, 2ϵ�, 4ϵ�}, for all � = 1, 2, and θ ∗ is set as θ ∗ = 5. When
s = 4, we consider the threshold values of each constraint shown in Table A.1 and θ ∗ = 50. When
s = 6, we let constraint � have two thresholds {0, 2ϵ�}, where � = 1, . . . , 6, and θ ∗ = 30. The
results of OBS when s = 2 and b = 50 and when s = 4 and b = 25 are shown in Figure A.1.
Figures A.2(a) and A.2(b) show the experimental results for the case, where s = 2 and b = 25 and
the case, where s = 4 and b = 50, respectively. The results for the six constraints case, where
b = 25 and 50 are shown in Figures A.2(c) and A.2(d), respectively. Note that we fixed the ranges
of e1, e2, e ∈ {0.25, 0.5, 1, 2, . . . , 7} and depict OBS on the scale {2, 2.5, . . . , 5}×104 in all the figures
to facilitate the comparison.
We see that for the four cases shown in Figure A.2, the values of e1, e2, and e where OBS

achieves its minimum value ranges from 2 to 7 and the OBS is flat within this range. Note that the
OBS is also similar between the two settings of the implementation parameters of ZAKR and
ZAK .
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Fig. A.2. Average number of observations of proceduresZAKR
1 ,ZAKR

2 ,ZAK1,ZAK2, andZAK+ as
functions of e1, e2, and e for k = 100 systems and s = 2, 4, 6 constraints.

I ADDITIONAL EXPERIMENTAL RESULTS FOR EFFICIENCY

In this section, we provide additional experimental results aimed at comparing the efficiency
among all proposed procedures. Note that all the experimental results in this section are based
on the L/L variance configuration.
Figure A.3 shows the OBS for a single constraint with ten thresholds under the MDM config-

uration (same experimental setting as in Figure 5 except for the mean configuration) for all four

proceduresZAK , RestartAK ,ZAK+, and RestartAK+. The pattern is similar when 1 ≤ θ ∗ ≤ 10
as in Figure 5(b) except that the benefit ofZAK+ overZAK is more substantial. When θ ∗ = 11,

ZAK+ and RestartZAK+ require more OBS than when θ ∗ = 10. Since the problem is easier un-

der the MDM configuration than with the MIM configuration for bothZAK+ and RestartZAK+

when 1 ≤ θ ∗ ≤ 10 and becomes the same when θ ∗ = 11, this is expected. BothZAK andZAK+
perform significantly better than the alternative procedures RestartAK and RestartAK+.

Figures A.4, A.5, and A.6 show the OBS for two constraints with three thresholds on
each constraint (same experimental setting as in Figures 6 and 7) for all four procedures
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Fig. A.3. Average number of observations of ZAK , RestartAK , ZAK+, and RestartAK+ as functions of
θ∗ for k = 100 systems and s = 1 constraint with ten thresholds under the MDM configuration.

ZAK,RestartAK ,ZAK+, and RestartAK+ under the ranked constraints, equally important con-
straints, and total violation with ranked constraints formulations, respectively. Each figure also
contains the DM, MIM, and MDM configurations. As in the single constraint case, bothZAK and

ZAK+ show significant improvement compared with their competing procedures RestartHAK

and RestartHAK+ under all threshold formulations and all mean configurations. Note that the re-
sults ofZAK andZAK+ under the MIM and MDM configurations with the ranked constraints
and equally important constraints formulations (Figures A.4(b), A.4(c), A.5(b), and A.5(c)) are the

same as in Figures 6 and 7, but are shown on different scales because RestartHAK and RestartHAK+

require much more observations thanZAK andZAK+.
Finally, Figure A.7 shows the experimental results for two constraints with three thresholds

on each constraint for procedures ZAK and ZAK+ under the total violation with ranked con-
straints formulation and the MIM and MDM configurations (same setting as in Figures 6 and 7
except for the preference order). As discussed and explained in Section 6.4, the result shows a sim-
ilar pattern as in Figure 6. We see that ZAK+ performs slightly better or very similar to ZAK
under the MIM configuration and performs significantly better than ZAK under the MDM con-
figuration. Note that although the results for ZAK and ZAK+ in Figures A.7(a) and A.7(b) are
the same as in Figures A.6(b) and A.6(c), the scales of the plots are different due to the fact that

RestartHAK and RestartHAK+ require much more observations.

J EXPERIMENTAL RESULTS FOR THE IMPACT OF USING CRN

In this section, we discuss the impact of using CRN when applying the proposed procedures. To
account for the dependency across systems induced by the use of CRN, the implementation pa-
rameters of both procedures take more conservative values than those with independent sampling.
However, CRN often reduces the variance of the difference in the primary performance measures
among systems. Thus, the feasibility check tends to require more observations while the compari-
son tends to require fewer observations. Whether CRN helps the overall performance of proposed
procedures depends on how much savings we get in the comparison compared to the increment
in observations in the feasibility check.
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Fig. A.4. Average number of observations of ZAK,RestartHAK ,ZAK+, and RestartHAK+ as functions
of θ∗ for k = 100 systems and s = 2 constraints under the DM,MIM, andMDM configurations for the ranked
constraints formulation.

We consider the case of a single constraint with two thresholds (d = 2) under the DM config-
uration and three different variance configurations (H/L, L/L, and L/H). Let ρ be the correlation
between each pair of systems for the primary performance measure. Then the variance of the dif-
ference in the primary performance measure between two systems equals 2σ 2

xi
(1 − ρ), while the

variance of the secondary performance measure of each system is σ 2
yi�

. When systems are simu-

lated independently (i.e., ρ = 0), the first two variance configurations (H/L and L/L) have more
difficult comparison than feasibility check due to the larger value of 2σ 2

xi
than σ 2

yi�
. On the other

hand, the L/H configuration has easier comparison than feasibility check. Thus, we expect the H/L
and L/L variance configurations to show the benefit of CRN but not the L/H configuration. In our
experiments, we consider ρ ∈ {0.25, 0.5, 0.75} and all possible values of θ ∗ (i.e., θ ∗ ∈ {1, 2, 3}), and
fix b = 25. The results for the H/L, L/L, and L/H variance configurations are shown in Tables A.2,
A.3, and A.4, respectively.

From Tables A.2 and A.3, we see that under the H/L and L/L variance configurations, ZAK
and ZAK+ both require fewer observations when CRN is applied with θ ∗ ∈ {1, 2} and ρ ∈
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Fig. A.5. Average number of observations of ZAK,RestartHAK ,ZAK+, and RestartHAK+ as functions
of θ∗ for k = 100 systems and s = 2 constraints under the DM, MIM, and MDM configurations for the
equally important constraints formulation.

{0.25, 0.5, 0.75}. As the variance of the pairwise comparison is reduced due to the CRN, the
continuation region for comparison gets shorter and narrower and thus it takes fewer observa-
tions to complete the comparison among systems deemed feasible. Note that when θ ∗ = 3, all
systems are infeasible with respect to all threshold vectors considered, which means that the
procedures are likely to be terminated by all systems deemed infeasible and there is no need
to wait for the comparison decisions to be completed. Thus applying CRN does not help in
this case. One may notice that the benefit of applying CRN is more obvious in Table A.2 than
that in Table A.3. This is expected because the variance of the primary performance measure
in the H/L configuration (Table A.2) is much larger than that in the L/L configuration (Ta-
ble A.3). Therefore, reducing the variance of the pairwise comparison benefits the overall perfor-
mance a lot more under the H/L configuration. We also see that for a fixed ρ, the performance
of ZAK (ZAK+) is similar under θ ∗ = 1 or 2. This is expected as procedures ZAK and
ZAK+ are robust with respect to the values of θ ∗. The OBS decreases when ρ increases for
both ZAK and ZAK+ when θ∗ ∈ {1, 2}. This is because higher correlation across systems
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Fig. A.6. Average number of observations of ZAK,RestartHAK ,ZAK+, and RestartHAK+ as functions
of θ∗ for k = 100 systems and s = 2 constraints under the DM, MIM, and MDM configurations for the total
violation with ranked constraints formulation.

reduces the variance of the difference in the primary performance measures among systems, and
thus both procedures become more efficient with larger ρ. When θ ∗ = 3, however, as there
are no feasible systems, reducing the variance of the difference in the primary performance
measures among systems does not improve performance because no comparison is required to
achieve CS.
Table A.4 shows the experimental results when the variance configuration is set to L/H. As the

feasibility check is considered to bemore difficult than the pairwise comparison, the benefit of CRN
is expected to be smaller. Indeed, we do not see much savings in observations for both procedures.
[8] discuss the required correlation to overcome the conservative Bonferroni bound required for
the proof of the statistical validity of the proposed procedures under CRN. They show that the
cross-correlation ρ needs to be sufficiently large to achieve a smaller number of observations under
CRN than under independent sampling. When θ ∗ = 1, our problem configuration becomes similar
to that of [8] and we do see savings in observations for ZAK+ (but not for ZAK) when ρ is
sufficiently large, which is consistent with the findings from [8]. When θ ∗ = 2, 3, the benefit of
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Fig. A.7. Average number of observations ofZAK andZAK+ as functions of θ∗ for k = 100 systems and
s = 2 constraints under the MIM, and MDM configurations for the total violation with ranked constraints
formulation.

Table A.2. Average Number of Observations and Estimated PCS
(Reported in Parentheses) of ZAK and ZAK+ for k = 100 System

and s = 1 Constraint with Two Thresholds Under the DM and
H/L Configurations and ρ ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
ρ ZAK ZAK+ ZAK ZAK+

θ ∗ = 1

0.25
37,610 47,509
(0.969) (0.974)

0.5
32,316 40,273 39,429 49,674
(0.965) (0.973) (0.964) (0.974)

0.75
23,429 28,165
(0.953) (0.972)

θ ∗ = 2

0.25
37,409 47,265
(0.960) (0.968)

0.5
32,084 40,059 39,357 49,381
(0.955) (0.967) (0.960) (0.965)

0.75
23,351 28,041
(0.949) (0.967)

θ ∗ = 3

0.25
15,015 14,896
(0.972) (0.971)

0.5
15,020 14,888 14,986 14,814
(0.970) (0.973) (0.969) (0.968)

0.75
15,014 14,884
(0.972) (0.973)

CRN does not exist in this setting. When the feasibility check is more difficult than the pairwise
comparison in the sense that it takes more observations to complete, it is possible that the use of
CRNmakes the overall performance worse than independent sampling. However, Table A.4 shows
that the increment in observations does not seem significant.
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Table A.3. Average Number of Observations and Estimated
PCS (Reported in Parentheses) of ZAK and ZAK+ for
k = 100 System and s = 1 Constraint with Two Thresholds

Under the DM and L/L Configurations and ρ ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
ρ ZAK ZAK+ ZAK ZAK+

θ ∗ = 1

0.25
17,033 18,647
(0.966) (0.975)

0.5
16,202 17,305 17,334 19,021
(0.968) (0.972) (0.967) (0.974)

0.75
15,221 15,306
(0.956) (0.977)

θ ∗ = 2

0.25
17,212 18,675
(0.960) (0.967)

0.5
16,492 17,475 17,462 19,043
(0.958) (0.967) (0.961) (0.968)

0.75
15,729 15,873
(0.956) (0.968)

θ ∗ = 3

0.25
15,022 14,880
(0.973) (0.971)

0.5
15,023 14,885 14,985 14,807
(0.969) (0.970) (0.970) (0.971)

0.75
15,014 14,875
(0.973) (0.971)

In summary, there is a trade-off between the required number of observations in the feasibil-
ity check and pairwise comparison when CRN is applied. CRN is unlikely to help when (i) the
comparison is easier than the feasibility check or (ii) the induced correlation across systems for
the primary performance measure is small. If the decision maker knows that the comparison is
easier than the feasibility check or that the correlation is small, then it is better to use independent
sampling. However, the decision maker may not have this information in practice. In that case, we
recommend that the decision maker uses CRN because there is a possibility that CRN will reduce
the number of observations significantly and, even when it does not, the number of observations
with CRN appears to be similar to or only slightly larger than that with independent sampling.

Based on the results in Tables A.2, A.3, and A.4, we also observe that ZAK performs better
than ZAK+ when θ ∗ ∈ {1, 2} under the H/L and L/L configurations while ZAK+ dominates
ZAK when θ ∗ ∈ {1, 2} under the L/H configuration. Both ZAK and ZAK+ perform similar
when θ ∗ = 3. This agrees with the finding from the single constraint with four thresholds case
discussed in Section 6.4 (Table 2).
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Table A.4. Average Number of Observations and Estimated
PCS (Reported in Parentheses) of ZAK and ZAK+ for
k = 100 System and s = 1 Constraint with Two Thresholds

Under the DM and L/H Configuration and ρ ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
ρ ZAK ZAK+ ZAK ZAK+

θ ∗ = 1

0.25
74,008 69,321
(0.978) (0.976)

0.5
73,930 68,283 73,842 69,288
(0.975) (0.974) (0.977) (0.972)

0.75
73,912 66,547
(0.979) (0.975)

θ ∗ = 2

0.25
77,149 75,501
(0.969) (0.967)

0.5
77,159 75,241 76,959 75,239
(0.969) (0.967) (0.967) (0.966)

0.75
77,176 74,959
(0.971) (0.969)

θ ∗ = 3

0.25
74,484 73,521
(0.970) (0.967)

0.5
74,506 73,528 74,339 73,266
(0.969) (0.971) (0.969) (0.966)

0.75
74,493 73,492
(0.970) (0.968)
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