
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

A Balanced Sparse Matrix Convolution Accelerator
for Efficient CNN Training

Yuechen Chen , Member, IEEE, Ahmed Louri , Fellow, IEEE, Shanshan Liu , Senior Member, IEEE,
and Fabrizio Lombardi , Life Fellow, IEEE

Abstract— Sparse Convolutional Neural Network (CNN)

training is well known to be time-consuming due to significant

off-chip memory traffic. To effectively deploy sparse training,

existing accelerators store matrices in a compressed format

to eliminate memory accesses for zeros; hence, accelerators

are designed to process compressed matrices to avoid zero

computations. We have observed that the compression rate is

greatly affected by the sparsity in the matrices with different

formats. Given the varying levels of sparsity in activations,

weights, errors, and gradients matrices throughout the sparse

training process, it becomes impractical to achieve consistently

high compression rates using a singular compression method for

the entire duration of the training. Moreover, random zeros in

the matrices result in irregular computation patterns, further

increasing execution time. To address these issues, we propose

a balanced sparse matrix convolution accelerator design for

efficient CNN training. Specifically, a dual matrix compression

technique is developed that seamlessly combines two widely used

sparse matrix compression formats with a control algorithm for

lower memory traffic during training. Based on this compression

technique, a two-level workload balancing technique is then

designed to further reduce the execution time and energy

consumption. Finally, an accelerator is implemented to support

the proposed techniques. The cycle-accurate simulation results

show that the proposed accelerator reduces the execution time by

34% and the energy consumption by 24% on average compared

to existing sparse training accelerators.

Index Terms— Convolutional neural network, training, sparse

matrix compression, memory traffic, load balancing.

I. INTRODUCTION

C
ONVOLUTIONAL Neural Networks (CNNs) have
emerged as a fundamental technique for solving complex

Machine Learning (ML) problems across a wide range

Manuscript received 20 April 2023; revised 13 November 2023 and 9 April
2024; accepted 11 July 2024. This work was supported in part by NSF under
Grant CCF-1953961, Grant CCF-1812467, Grant CCF-1812495, Grant CCF-
1953980, Grant CCF-1901165, Grant CCF-2131946, Grant CCF-2311543,
and Grant CCF-2324644. This article was recommended by Associate Editor
C. Liu. (Corresponding author: Yuechen Chen.)

Yuechen Chen is with the Department of Computer Science and Information
Technologies, Frostburg State University, Frostburg, MD 21532 USA (e-mail:
ychen@frostburg.edu).

Ahmed Louri is with the Department of Electrical and Computer
Engineering, George Washington University, Washington, DC 20052 USA
(e-mail: louri@gwu.edu).

Shanshan Liu is with the School of Information and Communication
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: ssliu@uestc.edu.cn).

Fabrizio Lombardi is with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
lombardi@ece.neu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2024.3430831.

Digital Object Identifier 10.1109/TCSI.2024.3430831

of domains, including image processing, natural language
processing, and autonomous vehicles [1], [2]. To efficiently
deploy this tool, the sparse CNN model training is a
quintessential step for solving ML problems accurately during
model inference. Compared to conventional training, the
sparse training process results in a smaller model with
no degradation in accuracy; this allows for a faster and
more efficient inference during deployment. Thus, the sparse
training scheme is widely deployed in many real-world
scenarios, such as training models for IoT and mobile
devices [3]. Existing sparsification processes used in training
can be organized into two categories, namely, model and
ephemeral sparsification [4].

• The model sparsification process sets selected weights
to zeros [5], [6], [7]. For example, the iterative model
pruning process selects weight based on the value
magnitude and gradually increases the sparsity of the
weight matrix; thus, a substantial number of zero values
is observed in weight matrices after this process.

• The ephemeral sparsification process sets selected
activations to zero during training [8], [9]. For example,
the dropout function randomly selects and sets around
30% to 70% of the activation of a fully connected layer
to zero. The dropout not only increases the sparsity of the
activation matrices but also solves the model overfitting
problem during training.

Although the sparse training process has multiple advan-
tages, this process is also known to be time-consuming due to
significant off-chip memory traffic and irregular computation
patterns [3], [10], [11], [12], [13], [14], [15]. As reported in
the technical literature, an average of 60% of the execution
time is spent on off-chip memory access [14]. Moreover,
the random location of zeros causes irregular computation
patterns, which further reduces the utilization of on-chip
computation resources [3], [12], [13], [16], [17], [18]. As the
size of CNN models continues to increase for better problem-
solving capability, new accelerator designs are needed for
more efficient sparse training with less training time and
energy consumption.

To reduce memory traffic for sparse training, existing
sparse-training accelerators are designed to process com-
pressed sparse matrices [12], [13], [16], [17], [18]. Two widely
used compressed sparse matrix formats are the compressed
sparse row (CSR) [12], [13], [16], [19], and the bitmap format
(BF) [17], [18]. Both these compression formats have two
parts, including non-zero elements and indices. The indices

1549-8328 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6671-8443
https://orcid.org/0000-0003-4262-6688
https://orcid.org/0000-0001-6226-2880
https://orcid.org/0000-0003-3152-3245

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

of CSR feature two integer arrays as column and row indices
to indicate the location of the non-zero elements; the indices of
BF are represented by a binary bitmap. The use of these matrix
formats during sparse training not only allows the accelerator
to identify and eliminate multiplication operations with a
product of zero, but it also eliminates memory access of the
zero values from off-chip DRAM. To process the compressed
matrices, the existing accelerators [12], [13], [16], [17], [18]
also include a custom data flow to distribute workloads among
multiple processing elements (PEs); within each PE, an index
computing unit (ICU) is implemented to only allow non-zero
computation for the computation units (CUs), which performs
multiplication and addition operations.

However, existing accelerator designs have two major
limitations.

1) Relying on either CSR or BF limits the potential savings
in memory traffic during sparse training. The problem
is mainly due to the relationship between the size of
the indices and matrix sparsity; with a known matrix
dimension and sparsity, BF has a fixed-size bitmap whose
dimension is the same as the original matrix. Also, the
CSR format depends on the number of non-zero elements
in the matrices, so more non-zero elements result in more
entries in the column index array. As the matrix sparsity
changes during the training process, two different index
formats have different impacts on memory traffic. When
matrix sparsity is low, the CSR format requires more
memory accesses for indices compared to BF due to a
longer column array. When matrix sparsity is high, the
CSR format achieves a smaller data size compared to BF
if the size of two integer arrays is smaller than the bitmap.

2) The ICU implemented in each PE evenly distributes
the computation to the CUs; however, the workload
distribution between PEs is not balanced during sparse
training. Existing designs [3], [12], [13], [16], [17], [18]
evenly distribute data based on the dimension of the
matrices rather than on the computation workload for the
convolution operation. Therefore, the uneven computation
workload distribution between PEs reduces the level of
parallelism during the sparse training process; this causes
a longer computation time and more energy consumption.

To address these issues, in this paper, we propose
dual matrix compression and two-level workload balancing
techniques for efficient sparse CNN training.

1) The dual matrix compression technique introduces row-
partitioned CSR (RP-CSR) and BF (RP-BF) formats to
unify the memory access for non-zero elements and
indices. This technique not only allows seamless format
switching during training, but also includes a selection
algorithm to choose a compression format with the
highest compression rate for lower off-chip memory
traffic.

2) Based on the dual matrix compression technique, a two-
level workload balancing technique is developed; it
includes coarse-grain and fine-grain load balancing
mechanisms. The coarse-grain load-balancing mechanism
adjusts the size of each matrix partition by estimating the
computation required for each partition with a probability

model. The fine-grain load balancing mechanism utilizes
a workload-stealing mechanism to further reduce the
difference in workload between PEs.

Moreover, to support two techniques, an accelerator is
developed. The proposed accelerator is capable of computing
sparse matrix convolution with the two proposed compression
formats. The accelerator also supports the proposed workload
balancing technique with a coarse-grain load balancing
mechanism implemented in the global controller and a fine-
grain load balancing mechanism implemented in each PE. The
main contributions of the paper are as follows.

• The proposed techniques improve the efficiency of
the sparse training process by maintaining a high
matrix compression rate and balancing the computation
workload.

• A row-partitioned data format is proposed for seamless
switching between CSR and BF during computation.

• A probability model is developed to quickly estimate the
computation requirement during training for a balanced
workload distribution.

• An accelerator is implemented to support the proposed
dual matrix compression and two-level workload balanc-
ing techniques.

• The evaluation results show that the proposed technique
reduces the execution time by 34% and the energy
consumption by 24% on average compared to existing
sparse training accelerators.

II. BACKGROUNDS

A. Sparse Convolution CNN Training
1) CNN Training: The stochastic gradient descent (SGD)

algorithm is widely used for CNN model training. All involved
matrices are weight (W), activation (A), error (E), and
gradients (G), whose superscripts indicate the layer indices
(l). The training process is divided into four phases, including
forward propagation (FP), backward propagation (BP), weight-
gradient generation (WG), and weight update (WU). The
calculation processes are as follows.

1) FP: A training sample is fed into the model, and the
activations of each layer are calculated for the next layer.
For a convolution and fully connected layer, Eq. (1)
describes the computation process, which is a convolution
operation between the activation of the previous layer
(Al→1) and the weight of the current layer (W l). At the
end of the FP, the activation of the final layer is compared
with the ground truth, and the error (E) for this FP is
computed with a loss function.

Al = Al→1 ↑ W l (1)

2) BP: The computation procedure of BP is similar to FP,
with a weight matrix rotated 180 degrees using the R(x)
function. Eq. (2) describes the process for the convolution
layer.

El→1 = El ↑ R(W l) (2)

3) WG: Weight gradients are the derivatives of the loss with
respect to weights for a training sample. Eq. (3) shows

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 3

Fig. 1. Matrix sparsity for VGG11 under iterative pruning.

the gradient computation for the convolution layer and
fully connected layer.

Gl = Al→1 ↑ El (3)

4) WU: One training epoch contains many training samples.
Once the gradients for all the training samples are
calculated, the gradients for the current training epoch
(Gl

t+1) are the sum of all gradients calculated for each
training sample. Then, the weights for the next training
epoch are calculated using Eq. (4), where ω is the learning
rate.

W l
t+1 = W l

t → ωGl
t+1 (4)

In a training epoch, the entire training dataset is divided into
mini-batches, and then the weights are adjusted after observing
each batch of training samples through this process. A typical
training process contains thousands of training epochs to reach
the desired accuracy. Since on-chip SRAM has a limited
capacity, all matrices (W, A, E, G) need to be stored in off-chip
memory (e.g., DRAM), resulting in heavy off-chip memory
traffic and a long training time.

2) Existing Sparsification Processes: As CNN models have
significant redundancy of weights and activations, sparsifica-
tion processes are widely used for efficient training [3], [4],
[5], [6], [7], [10], [18]. For model sparsification, this paper
mainly focuses on the iterative model pruning method [5],
[10], which is widely used due to its high accuracy and low
training cost. In such a scheme, the pruned weights are selected
by comparing each weight to a threshold, which is determined
based on a user-defined sparsity for this epoch. After pruning,
the values of the pruned weights are kept at zero in future
training epochs. Since pruning results in accuracy model loss,
more training epochs are needed to reach designated accuracy
with desired sparsity [5], [10]. Fig. 1 shows the distribution of
zeros in these matrices when iterative model pruning is applied
to VGG11 using ImageNet [1]. The target pruning rate of 92%
is achieved at 500 epochs, but training ends at 1000 epochs
to ensure 69.04% accuracy.

In terms of ephemeral sparsification, this paper mainly
focuses on the dropout and ReLU functions [10], [11].
The dropout function randomly nullifies activations during
the training process, whereas ReLU changes the negative
activations to zero. Considering a CNN model with multiple
hidden layers, the dropout function randomly sets the
activations for a layer to zero for each training sample. The
ReLU function sets the negative activation for a layer to zero
during FP.

Fig. 2. CSR and BF used by existing sparse-training accelerators.

The existing sparsification processes result in both random
zeros and dynamic sparsity. As shown in Fig. 1, the W/G, A,
and E matrices are at different sparsity levels during the sparse
training. Due to iterative model pruning, W/G sparsity changes
according to the iterative model pruning method [5], [10].
The weight matrices are iteratively pruned at the beginning of
the training (i.e., 1-500 epochs) to achieve the target pruning
rate. Since the values of the pruned weights are kept at zero,
the gradient matrices have the same sparsity as the weight
matrices. After the target sparsity is reached, the rest of the
training epochs (i.e., 500-1000 epochs) are used for the fine-
tuning of the model to reach the designated accuracy. Due to
the dropout and ReLU functions [10], [11] in the model, the
sparsity of A and E is constant with a random zero location.

B. Existing Sparse Training Architecture

Consider the complexity of training CNN models; conven-
tional homogeneous architectures (e.g., multicore CPU/GPU)
are constrained due to the significant computation time
and off-chip memory traffic. To efficiently process training
workloads, multiple accelerator architectures with sparse
matrix computation support have been proposed [11], [12],
[13], [15], [16], [17], [18]. CSR and BF are the two most
widely used sparse matrix compression formats for these
sparse training accelerators. As shown in Fig. 2, the CSR
format contains non-zero elements, row indices, and column
indices. The column indices represent the column location of
each non-zero element. The row indices indicate the index of
the start of each row for non-zero elements. The BF format
contains non-zero elements and a bitmap; the bitmap uses a
1 bit for each element in the matrix to indicate zero or non-
zero elements at a specific position.

The process for a convolutional operation during sparse
training on existing accelerators is described as follows.

1) The global controller initiates the convolutional operation
by loading the compressed matrices from the off-chip
memory to the global buffer.

2) The global controller distributes the matrices to the PEs
according to the data flow of the accelerator and the
mapping logic.

3) The PEs execute the convolution operation with matrix
sparsification.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

4) The computation results are sent back to the off-chip
memory after the computation.

Therefore, existing accelerators typically consist of the
following components to accomplish convolution operations
for compressed sparse matrices:

1) Computation Units (CUs). CUs are implemented for
multiplication and addition computation for each non-
zero element during convolution operations.

2) Index Computation Units (ICUs). To compute the
compressed matrixes without processing zeros, the ICUs
are designed to take the indices of two input matrices and
calculate the indices for the output matrices.

3) Sparsification Unit. The sparsification unit applies user-
defined sparsification methods after the matrix-to-matrix
convolution operation.

4) On-Chip SRAM. The on-chip SRAM loads and stores
compressed matrices from and to the off-chip DRAM.
To meet the need for the computation of compressed
matrix format, the indices and non-zero elements are
stored in two different fixed-size SRAM modules.

5) Processing Element (PE). Each PE contains multiple
CUs, one ICU, one sparsification unit, and local SRAMs.
Each PE computes the data in the local SRAM under a
predetermined procedure.

6) Global Controller. The global controller manages the
memory access for the global buffer and the computation
process for all the PEs.

III. MOTIVATIONS

1) Existing compression formats limit the on-chip SRAM

utilization. Since the non-zero elements and indices
are stored in separate tensors in existing compression
formats, existing sparse-training accelerators implement
two on-chip SRAMs to store non-zero elements and
indices separately [13], [16], [17]. The ratio between
the size of two SRAMs is fixed and cannot be changed
during the training. Moreover, since the ratio of non-zero
element size to index size depends on the matrix sparsity
for a compression format, both on-chip SRAMs can be
fully utilized only under a specific matrix sparsity in the
current designs. Therefore, the fixed compression format
reduces on-chip SRAM utilization during computation
and increases off-chip memory traffic.

2) Existing accelerator designs cannot efficiently handle

irregular computation patterns. In existing accelerator
designs [3], [12], [13], [16], [17], [18], the ICUs are
implemented in each PE. The computation workload
for each PE is not analyzed when the global controller
distributes the workload. Therefore, such an unbalanced
workload reduces the level of parallelism during the
convolution operation and increases the execution time.
Some existing accelerator designs address this issue
by introducing structured pruning methods [3], [15],
[18]; even though these methods improve load balancing
between PEs, structured pruning methods always result
in the degradation of training accuracy.

IV. A BALANCED SPARSE MATRIX CONVOLUTION
ACCELERATOR FOR EFFICIENT CNN TRAINING

A. Overview
The proposed accelerator design targets execution time

and energy reduction for efficient sparse training. This is
accomplished by the following two novel features.

1) RP-CSR and RP-BF formats are developed for unified
on-chip SRAM design for non-zero elements and indices
to solve the SRAM underutilization issue in existing
accelerator designs. Also, the row-partitioned format
combines CSR and BF to achieve a better compression
rate under different matrix sparsity for lower memory
traffic.

2) A two-level load-balancing technique is developed to dis-
tribute the computation workload evenly among PEs and
solve the workload imbalance issue in existing accelerator
designs. The proposed two-level workload balancing
technique includes a coarse-grain and a fine-grain load
balancing mechanism. The coarse-grain load balancing
mechanism is implemented in the global controller for an
even distribution of the computation workload. A fine-
grain load balancing mechanism is implemented in
the PEs to dynamically balance workloads during the
execution of a convolution operation (i.e., Step 3 of a
convolution operation, as discussed in Section II-B).

B. Mathematical Models
1) Compression Format Analysis: Since the size of the

compressed matrix directly impacts memory traffic, the
analysis of the relationship between compression rate and
sparsity is critical to the efficiency of the dual matrix
compression technique. Eq. (5) illustrates the total number of
bits for a CSR format with a given sparsity s ↓ [0, 1] and
height (Y) / width (X) of a matrix. Assuming each non-zero
element is 32 bits and 8 bits for each entry in the column
index and row index arrays.

SizeC S R = Sizenon→zero + Sizecol_index

+ Sizerow_index (5)
Sizenon→zero = 32 ↔ XY ↔ (1 → s) (6)

Sizecol_index + Sizerow_index = 8XY ↔ (1 → s) + 8Y (7)

Eq. (8) illustrates the total number of bits for a BF.

SizeB F = Sizenon→zero + Sizebitmap (8)
Sizebitmap = XY (9)

From Eqs. (6), (7), and (9), the ratios of the non-zero element
size (Eq. (6)) to index size (Eqs. (7) and (9)) for both
formats are based on matrix sparsity. Therefore, a unified
on-chip SRAM design, which stores both non-zero elements
and indices, is preferred because the matrices are not limited
by either the size of the indices or the size of the non-zero
elements. With a unified on-chip SRAM, the accelerator is
able to achieve higher SRAM utilization and lower off-chip
memory access.

From Eqs. (5) and (8), the size of a compressed sparse
matrix depends on the dimension of the matrix and sparsity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 5

Fig. 3. Matrix size reductions under different sparsity for CSR and BF.

To establish which compression format achieves a smaller size
under a given sparsity, the equation (SizeC S R = SizeB F)

is solved to find the threshold sparsity. Eq. (10) shows the
solution for this equation.

Sthreshold = 0.875 + 1
X

↗ 88% (10)

As the width of a matrix (X) is very large during training,
then the threshold for sparsity is approximated to 88%. Fig. 3
shows the matrix size reduction for CSR and BF of a matrix
with 500 widths and 500 heights under different sparsity.
When the matrix sparsity is less than 88%, BF is smaller in
matrix size.

Eq. (10) also implies that the threshold is not affected by
the height (Y) of the matrix. This indicates that if the matrix is
row-partitioned, each row can determine its own compression
format by comparing the sparsity of the row with the threshold,
specifically when the sparsity of a row is lower than 88%
(Srow ↘ Sthreshold), the RP-BF format is selected, otherwise
(Srow > Sthreshold) the RP-CSR format is selected for higher
compression rate. Since the location of zeros in all the matrices
is dynamically changing during sparse training, this technique
further increases the compression rate.

2) Computation Workload Estimation: To distribute work-
loads evenly among multiple PEs before the execution of
the convolution operation, the estimate of the non-zero
multiplication workload is critical. A simple solution for
estimating the computation is to process the indices with a
convolution operation before loading the PEs. However, this
requires additional on-chip SRAM space to store all indices
for both matrices (e.g., the accelerator design in [15]). Since
on-chip SRAM size is limited, storing all indices is expensive
for workload estimate purposes.

For a quick estimate of the non-zero multiplication work-
load before computation, the proposed technique estimates the
amount of non-zero multiplication for the matrix convolution
operation by using a probability model. In a convolution
operation, the probability of a non-zero multiplication is found
from the elements from both the input matrix (i.e., Al→1 in Eq.
(1) and (3), El→1 in Eq. (2)) and the kernel matrix (i.e., W l in
Eq. (1), R(W l) in Eq. (2), El in Eq. (3) when they are non-
zero. Eq. (11) illustrates the probability of getting a non-zero
element in a kernel matrix during a convolution operation.

Pnon→zero Ele.in kernel = Number of Non → zero Elements
Number of Elements

(11)

Fig. 4. Pnon→zero in I calculation example. The white box in the input
matrix indicates the matrix value is zero.

Eq. (12) illustrates the probability of getting a non-zero
element in an input matrix during a convolution operation.

Pnon→zero in I

=
∑n

window=0 Number of Non → zero Elements∑n
window=0 Number of Elements

(12)

For each output of a convolution operation, the kernel operates
as a moving window and selects a set of elements in the
input matrix according to the stride. Since the stride may
be smaller than the size of the kernel, overlapping in inputs
during convolution operation is common; thus, the number of
elements and the number of non-zero elements in all windows
must be added to account for the additional multiplications
needed due to the overlapping in the inputs. Fig. 4 shows
a simple example to show the process of calculating
Pnon→zero Ele. in I and how the proposed model deals with
overlapping in the convolution operation; so when the stride
is 1, Pnon→zero Ele.in I = (1 + 0 + 1)

/
(2 + 2 + 2) = 0.33 and

when the stride is 2, Pnon→zeroEle.in I = (1 + 1)
/
(2 + 2) =

0.5.
Since the kernel and input matrices are independent during

the convolution operation, Eq. (13) illustrates the probability
for non-zero multiplication during the convolution operation.

Pnon→zero Multi. = Pnon→zero Ele.in kernel · Pnon→zero Ele.in I

(13)

Eq. (13) only needs the number of non-zero elements in
the kernel and the inputs, the stride, and the size of each
matrix to estimate the computation workloads of a convolution
operation. Thus, storing the indices is not required for the
proposed mechanism while providing an accurate estimate for
the coarse-grain load-balancing process.

C. Row-Partitioned Compression Format

According to Section IV-B.1, the dual matrix compression
technique achieves a higher compression rate across all
sparsity levels compared to SCR or BF compression formats.
To implement the proposed technique, seamlessly switching
between the two data formats is a major challenge. The ICU
needs to compute the indices from both formats efficiently
during the matrix convolution operation. By analyzing the
CSR, it can be seen that it is naturally partitioned by
row according to the row index array. During the matrix
convolution operation, the indices for the output matrix can
be easily computed with a row-partitioned workflow. The
indices of BF are not partitioned; therefore, a row-partitioned
workflow is not applicable to the conventional BF, and to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

calculate the indices for mixed format (e.g., BF ↑ CSR),
BF needs to be row partitioned to match the data format of
CSR for a row-partitioned workflow.

Fig. 5 shows the proposed row-partitioned CSR (RP-CSR)
and row-partitioned BF (RP-BF) with an example that is based
on the same sparse matrix shown in Fig. 2. Compared to the
existing BF (Fig. 2), RP-BF puts the bitmap at the beginning
of each row with non-zero elements. Compared to the existing
CSR (Fig. 2), RP-CSR places the row index at the beginning of
each row, then the column indices, followed by the non-zero
elements. The proposed row-partitioned compression format
provides the following benefits compared to conventional
compression formats (i.e., CSR or BF).

1) The row-partitioned compression formats only change the
sequence of the data, and it does not require additional
memory.

2) The row-partitioned compression formats allow a unified
on-chip SRAM design, as the indices and non-zero data
are fused together to fully utilize on-chip SRAM.

3) The row-partitioned compression formats allow mixed
RP-CSR and RP-BF for the same matrix because
every row is independent. This feature not only allows
seamless format switching, but also further increases the
compression rate with less off-chip memory access.

D. Two-Level Workload Balancing Technique
Based on the row-partitioned compression format, a two-

level workload balancing technique is developed to distribute
the computation workload between PEs evenly during sparse
training. The proposed workload balancing technique includes
two parts, namely, coarse-grain and fine-grain load balancing
mechanisms. The coarse-grain load balancing mechanism
tries to achieve an even workload distribution by changing
the mapping of the matrices according to the computation
workload estimation. The fine-grain load balancing mechanism
further reduces the workload difference between PEs with a
workload stealing mechanism.

1) Coarse-Grain Load Balancing Mechanism: The goal of
the coarse-grain load-balancing mechanism is to balance the
workload based on the workload estimation described in Eq.
(13). As an accelerator contains many PEs and the coarse-grain
load-balancing process must be completed before distributing
data to PE, a reduction in the complexity of the mechanism
is critical. Thus, the proposed design divides the PE array
into multiple partitions; the goal of the coarse-grain load
balancing mechanism is to divide the input matrix based on
the estimated workload for an even computation workload
between PE partitions. Then, each PE partition is loaded with
a subset of the input matrix and the kernel for the convolution
operation.

Procedure 1 describes the process for the coarse-grain
load balancing mechanism with the proposed row-partition
compression format. The procedure uses the basic operation of
balancing the probability of non-zero multiplications between
two partitions. Fig. 6 shows an example of the proposed
coarse-grain load balancing process, assuming the accelerator
has two PE partitions. The procedure first evenly partitions the
input matrices according to the total number of PE partitions

Fig. 5. Proposed RP-CSR and RP-BF formats with examples.

Fig. 6. Simple example for coarse-grain load balancing with two PE array
partitions. The white box in both the input and kernel matrices indicates the
matrix value is zero. The stride is 1 for the convolution operation.

in the accelerator. Each matrix partition is mapped to the
corresponding PE partition. Procedure 1 shows a total of n
+ 1 partitions for the input matrix. The example in Fig. 6
assumes that the accelerator contains two PE array partitions;
thus, the input matrix is evenly partitioned into two parts (i.e.,
the blue and green partitions).

Procedure 1 Coarse-Grain Load Balancing
1 Evenly divide the input matrix based on # of PE partitions.
2 While (1)
3 Calculate Pnon→zero Multi. for matrix partition [0, n]
4 If |Pi

non→zero Multi. → Pi+1
non→zeroMulti.| ↘ 0.1

5 Break
6 For (i = 0; i < n; i++)
7 If (Pi

non→zero Multi. > Pi+1
non→zero Multi.)

8 Move one row from partition i to i+1.
9 Else

10 Move one row from partition i+1 to i .
11 End Procedure

Then, Pnon→zero Multi. is calculated for each partition.
Step 2 in Fig. 6 shows the calculation results for both the
blue and green partitions with the assumption that the stride
is 1. Then, the procedure calculates the absolute value of
the differences between the Pnon→zero Multi of two consecutive
partitions (i.e., |Pi

non→zero Multi. → Pi+1
non→zero Multi.| in proce-

dure 1). If the value is larger than 0.1, the elements in the
two matrix partitions are adjusted based on the Pnon→zero Multi.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 7

TABLE I
COMPUTATION AND COMMUNICATION COST COMPARISON

FOR FINE-GRAIN LOAD BALANCING

If Pi
non→zero Multi. > Pi+1

non→zero Multi., one row is moved from
partition i to i+1. Otherwise, one row is moved from partition
i+1 to i . Specifically, only the row adjacent to the partition
is moved when adjusting the matrix partition. For example,
in Fig. 6, step 3, the top row of the green partition is moved
to the blue partition. Then Pnon→zero Multi. is recalculated after
adjusting the matrix partition. This process continues until the
difference between all Pnon→zero Multi. for matrix partitions i
and i + 1 is less than 0.1. Step 4 in Fig. 6 shows the difference
between the two Pnon→zero Multi. is less than 0.1. Thus, the
procedure completes, and the current mapping is selected when
loading the PEs in the accelerator. There are two reasons for
choosing 0.1 as the threshold when designing procedure 1.

1) The threshold is directly related to the number of
times that the FOR loop executes. Since this procedure
is executed with the memory store (i.e., Step 4 in
the convolution operation of the previous layer), the
matrix partition of the current layer must be decided
prior to loading the current layer (i.e., Step 2 in the
convolution operation). Relaxing the requirement on the
computation load difference reduces the time needed for
the coarse-grain load balancing and ensures the procedure
is completed prior to loading the PE.

2) The fine-grain load balancing mechanism further balances
the workload during the execution of the convolution
operation (i.e., Step 3 in the convolution operation).
Fine-grain load balancing is capable of distributing the
workload across the partition, and then the computation
workload difference of 0.1 is handled at the next level.

2) Fine-Grain Load Balancing Mechanism: The goal of
the fine-grain load balancing mechanism is to reduce the
difference in workload between PEs during the convolution
computation. It is achieved by Procedure 2 with a workload-
stealing mechanism in PE. Each PE first finishes processing
the local workload; then, the PE checks the neighbor’s
workload and selects the neighbor PE with the largest
workload. If the neighbor shares the same set of inputs and
kernel, the PE acquires more than two multiplications for the
floating-point values (float) or more than three multiplications
for integer values (int) from the neighbor PE. If the neighbor
does not share the same set of inputs and kernel, the PE
acquires more than three multiplications for floating-point
value (float) or more than four multiplications for integer value
(int) from the neighbor PE.

The number of multiplications that need to be acquired from
the neighbor is based on the computation and communication
cost during the convolution operation. Table I shows the
comparison of computation and communication costs from

a workload-balancing perspective. Based on the parameters
provided in the SMAUG simulator [14], the cycles needed for
multiplication operation for floating-point and integer values
are ten cycles and seven cycles, respectively. Since a PE
has multiple multipliers to perform multiplication operations,
a PE with waiting workloads indicates insufficient multipliers
for the operations and longer computation time. To capture
this difference in computation time, the local computation is
set to 10 cycles and seven cycles for one floating-point or
integer multiplication operation in Table I, assuming a local
PE with insufficient available multipliers. If the computation is
performed by a PE with available multipliers (i.e., a neighbor
PE in Table I), it takes ten cycles and seven cycles for one
batch of floating-point or integer multiplication operations.
The batch size depends on the number of multipliers in a PE.

To handle irregular traffic generated by the fine-grain
load balancing mechanism, the on-chip communication is
accomplished with a packet-based network-on-chip (NoC)
with a 4-stage router. For data to be sent from one PE
to another, the packet must go through two routers (i.e.,
one local router and one neighbor’s router). It takes eight
cycles for data to traverse the NoC and reach the neighbor.
Therefore, if the two PEs are in the same partition and share
the same set of inputs and kernel, only the product needs
to be sent back to the original PE after the computation.
Assuming a PE with unprocessed multiplication workloads,
each multiplication takes ten cycles for float and seven cycles
for int. When a neighbor PE tries to acquire workloads, a batch
of multiplications takes ten cycles for float and seven cycles
for int, with an additional eight cycles to send the results
back to the original PE. Thus, moving the multiplication
workload is beneficial only when a neighbor PE acquires more
than two float multiplications (i.e., 18 cycles for neighbor
PE computation < 20 cycles for the local PE computation)
or three int multiplications (i.e., 15 cycles for neighbor PE
computation < 21 cycles for local PE computation) within the
same partition. If the two PEs are not in the same partition,
both the variables and products need to traverse the NoC.
Thus, moving multiplication workload is beneficial only when
a neighbor PE acquires more than three float multiplications
(i.e., 26 cycles for neighbor PE computation < 30 cycles
for local PE computation) or four int multiplications (i.e.,
23 cycles for neighbor PE computation < 28 cycles for local
PE computation).

E. Architecture Design

1) Architecture Overview: An architecture is developed to
support the proposed dual matrix compression and the two-
level workload balancing technique. Fig. 7 shows an overview
of the proposed accelerator design; it has a global controller,
a global buffer, a data distributor/collector, and multiple PEs.
To support the proposed fine-grain load balancing mechanism,
a network-on-chip (NoC) is implemented to connect the PEs
and the data distributor/collector. To support the proposed
coarse-grain load balancing mechanism and row-partitioned
compression format, each PE in the accelerator calculates one
row of output for a convolution operation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Procedure 2 Workload-stealing Mechanism in PE
1 Finish process local workload.
2 Check all neighbor PEs’ workloads.
3 Select the neighbor PE with the largest workload.
4 If the neighbor PE shares the same set of input and kernel
5 If the values are float
6 Acquire TWO or MORE multiplication workloads.
7 If the values are int
8 Acquire THREE or MORE multiplication workloads.
9 If the neighbor PE does not share the same set of input and

kernel
10 If the values are float
11 Acquire THREE or MORE multiplication workloads.
12 If the values are int
13 Acquire FOUR or MORE multiplication workloads.
14 Repeat until all the workload is completed.

Fig. 7. Overview of the proposed accelerator design. The center
router (highlighted in red) of each PE partition is connected to the data
distributor/collector.

2) NoC Design: The NoC in the proposed accelerator
serves two purposes. When the data distributor/collector loads
the PEs or gathers results from the PEs, the NoC is responsible
for connecting the PEs and the data distributor/collector.
During the PE calculation process, the NoC is responsible
for handling the communication for the load balancing
mechanism. As shown in Fig. 7, the NoC is implemented with
the network links, which are highlighted in purple, and 4-stage
routers (i.e., R in Fig. 7). Each PE is connected to a router
through a network interface, which is shown in Fig. 8.

For the fine-grain load balancing mechanism, the proposed
NoC uses a 2D-torus topology to ensure that all PEs have
the same number of neighbors. Compared to other topologies
(e.g., bus, tree, or 2D-mesh), this design allows all PEs to
have access to the same number of neighbors when applying
the fine-grain load balancing mechanism, resulting in better
workload balancing during computation. Since the coarse-
grain load balancing mechanism allows a maximum of 10%
in workload difference when loading the PEs, the network in
each partition should be small enough to allow the fine-grain
load balancing mechanism to further reduce the difference

Fig. 8. Proposed PE design to support the dual matrix compression and
fine-grain load balancing techniques.

in workload. Thus, as shown in Fig. 7, the proposed design
divides the PE array into multiple partitions; each partition
contains six PEs. To load all PEs efficiently, the center router
of each partition is connected to the data distributor for
fast distribution and gathering of data before and after the
convolution operation during sparse training.

3) Global Controller: The global controller is responsible
for managing the whole convolution operation described
in Section II-B. The global controller monitors the traffic
between DRAM and the global buffer and controls the
data distributor/collector to load PEs or gather results from
PEs. Thus, the coarse-grain load balancing mechanism is
implemented in the global controller. After the PE array
completes its computation, the global controller monitors the
results by registering the number of non-zeros in each row.
When the global controller loads the global buffer with the
kernel for the next layer, Procedure 1 is executed to partition
and map the input matrix to PE partitions according to the
estimated workload. Then, the partitioned inputs and kernel
matrices are loaded to the SRAM in the PEs for calculation.

4) PE Design: Fig. 8 shows the proposed PE design.
In this figure, the data path for processing the sparse matrices
is in blue. The data path for the fine-grain load balancing
mechanism is highlighted in orange. Different from existing
accelerators, the PE contains two unified input SRAMs and
one unified output SRAM, which is directly connected to the
network interface of the NoC. The two input SRAMs store
the input and kernel matrices. During training, these SRAMs
store the matrices (i.e., E, R(W)) during BP and the matrices
(i.e., A, E) during WG. The mixed index calculation unit (M-
ICU) processes indices from both RP-CSR and RP-BF, as well
as loads the non-zero element buffers as per the indices of
the input matrices. The non-zero element buffer contains two
columns. Each multiplier is connected to a row of non-zero
element buffers and multiplies the elements in two columns.
After the multiplication, a crossbar sends the products to the
corresponding accumulator buffer to compute the non-zero
output of the convolution operation. The sparsification unit has
the ReLU, pruning, and random drop functions. The dynamic
sparse matrix compression unit checks the sparsity of each
row and selects the appropriate compression format for each
row in the output matrix.

5) Fine-Grain Load Balancing Unit: The fine-grain load-
balancing unit is implemented based on Procedure 2, described

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 9

Fig. 9. Index convolution on the two compression formats.

in Section IV-D.2. Dedicated wires are connected to the fine-
grain load-balancing unit in the neighbor PEs to monitor and
acquire the workload. For clarity, these wires are not shown
in Fig. 8. If the local and neighbor PE share the same set of
input and kernel, the load balancing unit controls the M-ICU
to acquire the required data from the local SRAM and perform
the multiplication operation; then, the products are sent back to
the neighbor PE via NoC. If the local and neighbor PEs do not
share the same set of input and kernel, the neighbor sends the
required data through the NoC. The load balancing unit loads
the non-zero element buffer with the data and performs the
multiplication operations. After the multiplication operations,
the products are sent back to the neighbor PE via NoC.

6) Mixed Index Calculation Unit (M-ICU): Since both input
matrices are partitioned in rows, the M-ICU processes the
indices one row at a time. For two input rows, the M-ICU
first performs the convolution on the indices to estimate the
number of multiplications needed for each partial sum; then,
the non-zero buffers are loaded with the pairs of values for
multiplication.

There are three combinations of index format for the
two input matrices. Fig. 9 shows an example of the three
combinations; this example shows a convolution operation
between a sparse weight matrix and a sparse activation matrix
with a stride of 1.

1) RP-CSR ↑ RP-CSR: The index convolution for two RP-
CSR matrices is accomplished by checking the indices
for two non-zero elements. If the non-zero column index
from the weight (e.g., W00, column index = 0) equals
the non-zero column index from the activation (e.g., A00,
index = 0) plus the column number of the output (e.g.,
O00, index = 0), then the product of this multiplication
is non-zero. The same condition also applies to the row
indices. The product of this multiplication is non-zero
only if both the column and row indices match.

2) RP-BF ↑ RP-BF: The index convolution for two RP-
BF matrices is accomplished by the AND operation
of two bitmaps. If the result is 1, the product of this
multiplication is non-zero; otherwise, the product is zero.

3) RP-CSR ↑ RP-BF: The index convolution for RP-CSR
and RP-BF matrices is accomplished by first checking
the row and column indices in CSR. Since the indices

Fig. 10. Non-zero element buffer design.

in CSR only contain the location for non-zero elements,
to find the non-zero multiplications, the unit only needs
to check the corresponding bit in the BF bitmap. If the
bit is 1, the product of this multiplication is non-zero;
otherwise, the product is zero.

7) Load Non-Zero Element Buffer: Fig. 10 shows the
detailed connection between non-zero buffers and the multipli-
ers with an example. After the M-ICU determines the non-zero
multiplication for a row, the buffer is loaded with non-zero
elements for multiplication. The M-ICU loads all non-zero
element buffers in the PE; if the buffer is not filled, the non-
zero multiplication for the next row is loaded into the buffer.
For example, the multiplication of W11 and A31 is the non-zero
multiplication for the second row. As the example has four
multipliers, the last buffer is loaded with these two elements
to fully utilize all multipliers in a PE.

8) Dynamic Sparse Matrix Compression: After the matrix
sparsification unit, the compression unit monitors the sparsity
of each row. If the sparsity of a row is less than Sthreshold (i.e.,
88% according to Eq. (10)) the row is compressed in RP-BF.
Otherwise, the row is compressed in RP-CSR.

V. EVALUATION

A. Simulation Setup

In this section, the performance of the dual matrix
compression and two-level load-balancing techniques are
evaluated by using the SMAUG [14] simulator. The cycle-
accurate SMAUG simulation model is modified to implement
the proposed accelerator design, SCNN [13], [16], SIGMA
[17] and SparseTrain [12]. Table II shows the settings for
the SMAUG simulator. PyTorch is used with the SMAUG
simulator to control the entire sparse training process. The
proposed accelerator is compared against SCNN (CSR with
partitioned SRAM), SIGMA (BF with partitioned SRAM), and
SparseTrain (CSR with unified SRAM) on off-chip memory
traffic, load balancing, execution time, energy consumption,
and area. All accelerators are implemented with the same
number of CUs as well as the same size of SRAM,
DRAM, and DRAM bandwidth. The SCNN and SIGMA
reserve 20% of each on-chip SRAM for the indices. Memory
traffic, execution time, and dynamic power consumption are
captured during the execution of the sparse training workloads
on SMAUG. The accelerators are also synthesized using

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 11. Off-chip memory traffic during sparse training. Results are normalized to the proposed design.

Fig. 12. Average proportion of RP-CSR and RP-BF for W/A/G/E matrices during training for the proposed design.

TABLE II
SIMULATION SETUP

TABLE III
CNN TRAINING WORKLOADS

Synopsys Design Compiler with TSMC 16nm and clock speed
of 1GHz to obtain area and static power consumptions.

Table III shows the executed sparse training workloads with
their classification accuracy after training. A 95% pruning rate
is achieved during the sparse training process for all models.
ImageNet [1] is used for training and accuracy testing. The
batch size for the sparse training of all the models is 128, and

all the models are trained with 1000 epochs, which includes
500 epochs for pruning and 500 epochs for fine-tuning to
reach a similar accuracy as conventional training. Since the
same sparse training workloads are executed on the proposed
design, SCNN, SIGMA, and SparseTrain, exactly the same
sparse training accuracy is achieved at the end of training.
To illustrate the potential accuracy loss of sparse training,
the accuracy of the models with conventional training is also
shown in Table III.

B. Off-Chip Memory Traffic

Fig. 11 shows the off-chip memory traffic normalized to
the proposed design. The proposed dual matrix compression
technique reduces memory traffic by 32% on average
compared to the existing accelerators. Compared to SCNN and
SparseTrain, the proposed technique reduces memory traffic
by 34 % and 27%, respectively. Compared to SIGMA, the
proposed design achieves a 34% reduction in memory traffic.
This achievement is mainly due to the dynamic utilization of
both the RP-CSR and RP-BF during the training. Fig 12 shows
the average proportion of RP-CSR and PR-BF for W/A/G/E
matrices during the training of the models shown in Table II.
The proposed accelerator seamlessly switches between RP-
CSR and RP-BF to take advantage of both data formats with
lower memory traffic under different matrix sparsity when
executing sparse training workloads.

Fig. 13 shows the contribution of memory traffic savings
of compressing W, A, E, and G with the dual matrix
compression technique compared to SparseTrain. SparseTrain
is implemented with a unified SRAM and CSR; thus, the
memory traffic saving is directly related to the sparsity of
the matrix, as shown in Fig. 14. The lower sparsity results
in higher savings compared to the proposed design due to
the utilization of RP-BF under low sparsity. Compared to
SparseTrain, the dual matrix compression technique achieves
an average of 5% reduction in memory traffic for both W
and G. As matrices A and E are less sparse compared to
W and G, A and E contribute to a 6% and 11% memory

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 11

Fig. 13. Memory traffic savings breakdown compared to SparseTrain.

Fig. 14. Average matrix sparsity during training.

Fig. 15. Memory traffic savings breakdown compared to SCNN.

traffic reduction on average, respectively. Figs. 15 and 16
illustrate the memory traffic savings with the dual matrix
compression technique compared to SCNN and SIGMA. Since
both SCNN and SIGMA have partitioned SRAM, the memory
traffic saving with SCNN is larger compared to the savings
with SparseTrain. This is mainly due to the underutilization
of the SRAM as the sparsity level changes during training.
Compared to SCNN, the dual matrix compression technique
achieves an average of 7% reduction in memory traffic for
both W and G. A and E contribute to 7% and 14% memory
traffic reduction on average, respectively.

Compared to SIGMA, the dual matrix compression
technique achieves a better reduction for the matrices with
higher sparsity due to the utilization of RP-CSR under
high sparsity. Moreover, since SIGMA only supports matrix
multiplication, an Im2Col operation is required to extend the
input and kernel matrices. The extension of the matrices
further increases memory traffic for SIGMA. As shown in
Fig. 16, the dual matrix compression technique achieves an
average of 14% reduction in memory traffic for both W and
G; A and E contribute to 5% and 2% memory traffic reduction
on average, respectively.

Fig. 17 shows the breakdown of the off-chip memory
traffic reduction for Densnet169. The average memory
traffic reduction is 33% compared to SCNN, SIGMA, and
SparseTrain. Compared to SCNN and SIGMA, an average of
7% reduction is achieved due to the unification of indices

Fig. 16. Memory traffic savings breakdown compared to SIGMA.

Fig. 17. Off-chip memory traffic reduction breakdown in existing accelerators
normalized to the proposed design for Densnet169.

Fig. 18. Standard deviation of normalized multiplication workloads for all
the PEs.

and non-zero data that fully utilize the on-chip SRAM.
The combined effects of both the row-partitioned matrix
compression format and unified SRAM result in a significant
reduction of off-chip memory access. SparseTrain, which has
unified SRAM, can fully utilize the on-chip SRAM; therefore,
the memory traffic reduction for SparseTrain (i.e., a 24%
reduction) is due to the higher compression rate achieved by
the proposed dual matrix compression technique.

C. Load Balancing
Fig. 18 shows the standard deviation of normalized

multiplication workloads for all the PEs during sparse
training. Three workload balancing techniques, including
dimension-based matrix partition, the proposed coarse-grain
load-balancing, and the proposed two-level load-balancing, are
evaluated. SCNN, SIGMA, and SparseTrain use dimension-
based matrix partition, which evenly divides the matrix based
on the number of PEs in the accelerator. The results in
Fig. 18 are generated based on the following steps. First,
the multiplication workloads for each PE are observed and
normalized to the average number of multiplications. Then,
the standard deviation of normalized multiplication workloads
is calculated.

Since only the multiplication with a non-zero product
is calculated during execution, the workload is not evenly
distributed for all the PEs. In Fig. 18, the results closer to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 19. Execution time of sparse training. Results are normalized to the proposed design.

0 indicate a more even workload distribution. Compared to
coarse-grain and two-level workload balancing techniques,
simply dividing the matrices evenly based on the number of
PEs shows a significant deviation in multiplication workloads.
The largest deviation is for ResNet152, which is 0.19. This
indicates the variation of multiplication workloads for all
the PEs is significant. After applying the coarse-grain load
balancing mechanism, the difference in workload for any
two neighbor partitions is less than 10%, as accomplished
by the proposed procedure. Thus, it is observed that the
average standard deviation for coarse-grain load balancing
is 0.045. After applying both the coarse-grain and fine-
grain load balancing mechanisms, the difference in workload
for any two PEs is further reduced. Therefore, the average
deviation for the two-level workload balancing technique is
0.013. For ResNet152, the standard deviation of normalized
multiplication workloads is reduced to 0.012. This indicates
that the proposed technique achieves a more balanced
computation compared to existing accelerators. This increases
the utilization of computing resources and further reduces the
execution time.

D. Execution Time
Off-chip memory access and irregular computation patterns

are the two main causes of a long execution time during
sparse training. Since the proposed technique significantly
reduces memory traffic, a reduction in execution time
is expected for the sparse training workloads. Moreover,
the proposed load-balancing technique further reduces the
execution time by evenly distributing the workloads among all
the PEs in the accelerator. Fig 19 shows the execution time
reduction normalized to the proposed design. The proposed
accelerator reduces execution time by 34% on average
compared to the existing accelerators. Specifically, compared
to SCNN, SIGMA, and SparseTrain, the proposed technique
reduces execution time by 37%, 36%, and 32% on average,
respectively. Compared to the reduction in memory traffic, the
proposed accelerator achieves significantly more reduction in
execution time. This is mainly due to the implementation of
the proposed workload balancing technique, which increases
parallelism for multiplication operations during training. The
combined effect of both memory traffic reduction and balanced
workload results in significant savings in execution time.
For example, the highest reduction in training time is
achieved by ResNet152. The proposed accelerator design
reduces execution time by 44%, 42%, and 40% compared to
SCNN, SIGMA, and SparseTrain, respectively. This significant
achievement is achieved by an average of 32% reduction in

TABLE IV
AREA AND STATIC POWER EVALUATION

TABLE V
AREA BREAKDOWN FOR PROPOSED ACCELERATOR

memory traffic and 0.18 reduction in the standard deviation of
multiplication workloads for all the PEs compared to existing
accelerators.

E. Energy Consumption

Fig. 20 shows the evaluation results for the energy
consumption of the proposed accelerator, SCNN, and SIGMA.
All results are normalized to the proposed design. The energy
is the product of execution time and power dissipation. Power
dissipation includes two parts: static power and dynamic
power. The execution time and dynamic power are obtained
from the SMAUG simulator, and static power is obtained from
the Synopsys Design Compiler.

The proposed accelerator reduces energy consumption
by 24% on average compared to the existing accelerators.
Specifically, compared to SCNN, SIGMA, and SparseTrain,
the proposed technique reduces energy consumption by 25%,
27%, and 18% on average, respectively. Compared to the
reduction in execution time, the energy reduction is less; this is
mostly due to the extra power consumed by packet switching
NoC in the proposed accelerator for workload balancing and
communication purposes. The SCNN and SparseTrain have
simplified on-chip networks with the predetermined data flow;
however, fixed data flow in existing designs results in an
unbalanced workload distribution during the sparse training
process, which incurs additional energy consumption.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BALANCED SPARSE MATRIX CONVOLUTION ACCELERATOR FOR EFFICIENT CNN TRAINING 13

Fig. 20. Energy consumption of sparse training. Results are normalized to the proposed design.

F. Area and Static Power Analysis

Table IV summarizes the area and static power consumption
for different implementations with the configuration given in
Table II. Since all the accelerators are configured with the same
amount of SRAM during the evaluation, the results shown in
Table IV exclude the area and static power consumed by the
SRAM.

The proposed design occupies less area compared to
SIGMA despite adding support for dual matrix compression.
This is mainly due to the implementation of flexible
interconnects that consume a large amount of on-chip area for
zero-product multiplication avoidance in SIGMA. Compared
to SIGMA, the proposed accelerator reduces area by 10%.
Compared to SCNN and SparseTrain, the proposed accelerator
increases the area by 3% and 2%, respectively. This is mainly
due to the extra hardware needed for two-level load-balancing
and dual matrix compression techniques. The added hardware
also increases static power consumption. According to the
report generated by Synopsys Design Compiler, the proposed
global controller with coarse grain load balancing method
consumes 0.02 W static power. Each PE consumes 2.76 mW
static power in the proposed accelerator, of which 2% is
consumed by M-ICU and dynamic sparse matrix compression,
and 0.52% is consumed by the fine-gran load balancing unit.

However, considering the significant reduction in execution
time and memory traffic, the increase in area is minimal when
implementing the proposed accelerator compared to SCNN
and SparseTrain.

VI. CONCLUSION

In this paper, we have proposed dual matrix compression
and two-level workload balancing techniques for efficient
sparse CNN training. The dual matrix compression technique
introduces a row-partitioned data format (i.e., RP-CSR
and RP-BF) for unified on-chip SRAM of both non-zero
elements and indices with lower off-chip memory traffic.
Based on the proposed dual matrix compression technique,
the two-level workload balancing technique, which includes
coarse-grain and fine-grain load balancing mechanisms, has
been developed. The coarse-grain load balancing mechanism
adjusts each matrix partition by estimating the computation
required for the partition with a probability model. The fine-
grain load balancing mechanism utilizes a workload-stealing
mechanism to further reduce the difference in workload
between PEs. To support both dual matrix compression
and workload balancing techniques, an accelerator has been
developed and implemented. Our detailed evaluation shows

that the proposed accelerator reduces the execution time by
34% and the energy consumption by 24% compared to existing
sparse training accelerators.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their invaluable feedback.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, May 2015, Art. no. 7553.

[3] M. Asadikouhanjani, H. Zhang, L. Gopalakrishnan, H.-J. Lee,
and S.-B. Ko, “A real-time architecture for pruning the effectual
computations in deep neural networks,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 68, no. 5, pp. 2030–2041, May 2021.

[4] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” J. Mach. Learn. Res., vol. 22, no. 1, pp. 1–124,
Jan. 2021.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[6] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., vol. 1, Cambridge, MA, USA, Dec. 2015,
pp. 1135–1143.

[7] B. N. G. Koneru, N. Chandrachoodan, and V. Vasudevan, “A smoothed
LASSO-based DNN sparsification technique,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 68, no. 10, pp. 4287–4298, Oct. 2021.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[9] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using DropConnect,” in Proc. 30th Int. Conf.
Mach. Learn., May 2013, pp. 1058–1066.

[10] M. A. Raihan and T. Aamodt, “Sparse weight activation training,”
in Proc. Adv. Neural Inf. Process. Syst. Curran Associates, 2020,
pp. 15625–15638. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2020/hash/b44182379bf9fae976e6ae5996e13cd8-
Abstract.html

[11] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and
B. Li, “Hardware acceleration of sparse and irregular tensor compu-
tations of ML models: A survey and insights,” Proc. IEEE, vol. 109,
no. 10, pp. 1706–1752, Oct. 2021, doi: 10.1109/JPROC.2021.3098483.

[12] P. Dai et al., “SparseTrain: Exploiting dataflow sparsity for efficient
convolutional neural networks training,” in Proc. 57th ACM/IEEE
Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[13] J. S. Lew, Y. Liu, W. Gong, N. Goli, R. D. Evans, and T. M. Aamodt,
“Anticipating and eliminating redundant computations in accelerated
sparse training,” in Proc. 49th Annu. Int. Symp. Comput. Architecture.
New York, NY, USA: Association for Comput. Machinery, Jun. 2022,
pp. 536–551.

[14] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and
D. Brooks, “SMAUG: End-to-end full-stack simulation infrastructure for
deep learning workloads,” ACM Trans. Archit. Code Optim., vol. 17,
no. 4, pp. 1–26, Nov. 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JPROC.2021.3098483

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[15] S. Kim, J. Lee, S. Kang, D. Han, W. Jo, and H.-J. Yoo, “TSUNAMI:
Triple sparsity-aware ultra energy-efficient neural network training
accelerator with multi-modal iterative pruning,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 69, no. 4, pp. 1494–1506, Apr. 2022.

[16] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Architecture (ISCA). New York, NY, USA: Association
for Comput. Machinery, Jun. 2017, pp. 27–40.

[17] E. Qin et al., “SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,” in Proc. IEEE Int. Symp. High
Perform. Comput. Architecture (HPCA), Feb. 2020, pp. 58–70.

[18] Y. Wang, Y. Qin, L. Liu, S. Wei, and S. Yin, “SWPU: A 126.04
TFLOPS/W edge-device sparse DNN training processor with dynamic
sub-structured weight pruning,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 69, no. 10, pp. 4014–4027, Oct. 2022.

[19] E. Trommer, B. Waschneck, and A. Kumar, “DCSR: A memory-efficient
sparse matrix representation for parallel neural network inference,” in
Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), Nov. 2021,
pp. 1–9.

Yuechen Chen (Member, IEEE), received the
Ph.D. degree in computer engineering from George
Washington University, Washington, DC, USA,
in 2024. He is currently an Assistant Professor with
the Department of Computer Science and Informa-
tion Technologies, Frostburg State University. His
research interests include approximate computing
and NoCs.

Ahmed Louri (Fellow, IEEE) received the Ph.D.
degree in computer engineering from the University
of Southern California, Los Angeles, CA, USA,
in 1988. From 1988 to 2015, he was a Professor
of electrical and computer engineering with The
University of Arizona. From 2010 to 2013, he was
the Program Director with the National Science
Foundation’s (NSF) Directorate for Computer and
Information Science and Engineering. In August
2015, he joined as the David and Marilyn Karlgaard
Endowed Chair Professor of electrical and computer

engineering with George Washington University, Washington, DC, USA.
His research interests include interconnection networks and network-on-chips
for multicores and the use of machine learning techniques for energy-
efficient, reliable, high-performance, and secure many-core architectures and
accelerators. In 2024, he is serving on the Computer Society Publication
Board Executive Committee. He is also the Chair of the Transactions
Operations Committee. He was the Editor-in-Chief of IEEE TRANSACTIONS
ON COMPUTERS from 2019 to 2023.

Shanshan Liu (Senior Member, IEEE) received
the Ph.D. degree in microelectronics and solid-state
electronics from Harbin Institute of Technology,
Harbin, China, in 2018. She was a Post-Doctoral
Researcher with Northeastern University, Boston,
MA, USA, from 2018 to 2021, and an Assistant
Professor with New Mexico State University, Las
Cruces, NM, USA, from 2021 to 2023. She is cur-
rently a Professor with the University of Electronic
Science and Technology of China, Chengdu, China.
Her research interests include fault tolerance design

in high-performance computer systems, VLSI design, dependable machine
learning, stochastic computing, and error correction codes.

Fabrizio Lombardi (Life Fellow, IEEE) received
the B.Sc. degree (Hons.) in electronic engineering
from the University of Essex, U.K., in 1977, the
master’s degree in microwaves and modern optics
and the Diploma degree in microwave engineering
from the Microwave Research Unit, University
College London, in 1978, and the Ph.D. degree from
the University of London in 1982. He is currently
the International Test Conference (ITC) Endowed
Chair Professorship with Northeastern University,
Boston, MA, USA. His research interests include

bio-inspired and nano manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He was the President of the IEEE
Nanotechnology Council from 2022 to 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: The George Washington University. Downloaded on August 04,2024 at 16:16:51 UTC from IEEE Xplore. Restrictions apply.

