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Abstract—This paper investigates the tolerance of Triplet 
Networks (TNs) with a focus on faults in the training process. For 
compatibility with the existing literature. So-called stuck-at faults 
of a functional nature are considered for the operation of the 
neurons and activation function. While TNs are shown to be 
generally robust against such faults in the anchor and positive 
subnetworks, the presented analysis reveals a significant 
vulnerability in the negative subnetwork, in which stuck-at faults 
can lead to false convergence and training failures. An in-depth 
treatment is provided to show the incorrect convergence of 
training in the presence of stuck-at faults, highlighting the 
behavior of the network with faulty neurons. Extensive 
simulations are presented to evaluate the impact of these faults and 
propose two innovative fault-tolerant methods: the regularization 
of the anchor outputs and the modified margin. Simulation shows 
that false convergence can be very efficiently avoided by utilizing 
the proposed techniques, and thus the overall accuracy loss of the 
TN is negligible. These findings contribute to the understanding of 
fault tolerance in emerging neural networks such as TNs and offer 
practical solutions for enhancing their robustness against faults.  
 

Index Terms— Triplet network, fault-tolerance, stuck-at faults, 
training, false convergence. 
 

I. INTRODUCTION 
RIPLET networks (TNs) are feedforward artificial neural 
networks (ANNs) with three identical weight-sharing 

subnetworks [1]. TNs have been widely used in similarity-
measuring tasks, from initial applications in face recognition 
with Triplet Loss (TL) [2] to various machine learning (ML) 
tasks such as vehicle identification [3] and image retrieval [4]. 
Particularly, due to the unique structure, TNs provide an 
excellent learning performance when there is a paucity of 
training data available, in which case the traditional ANNs 
using a single network (e.g., multi-layer perceptrons (MLPs) or 
convolutional neural networks (CNNs)) often find difficulty in 
establishment and execution. A TN generates feature 
embeddings of the original input data; the outputs of different 
categories are separable in the embedding space and thus, are 

available for the subsequent classification/recognition. As an 
emerging ML scheme, the feature-embedding TN achieves 
better performance than traditional classification/recognition 
methods with a single network branch [1], [5].  

In critical safety applications, the robustness of ANNs is 
paramount, because faults can degrade performance or even 
cause a complete system failure [6]-[9]. When analyzing the 
fault tolerance of ANN training, the stuck-at fault model is 
usually used; this model is not physically based but it 
functionally abstracts the behavior of defective neurons [7], 
[10]. Although past literature extensively covers this model and 
its effects, current investigations often focus on smaller, simpler 
structures, e.g., three-layer MLPs with a maximum of 20 
neurons in the hidden layer [11]-[15]. However, today’s ANNs 
are significantly larger and incorporate substantial 
overprovisioning, allowing for sustained performance despite 
some non-functional neurons [7], [16]. The fault tolerance of 
large-scale networks such as TNs has not been sufficiently 
explored in the technical literature.  

Moreover, the distinctive structure of three weight-sharing 
subnetworks presents unique challenges for attaining fault 
tolerance of TNs. Its convergence condition aims to minimize 
the output distances between the anchor and the positive 
subnetwork, and maximize it between the anchor and the 
negative subnetwork. In the fault injection experiments (such as 
faults in the positive or anchor subnetworks) conducted in this 
paper, extensive faults could violate the convergence condition, 
resulting in a performance degradation; however, stuck-at faults 
in the negative subnetwork lead to rapid but erroneous 
convergence, evading detection and potentially causing a fatal 
system failure. Therefore, it is essential to analyze and protect 
the TNs from such a special case, that to our knowledge, has 
not been addressed in the existing literature. 

This paper initially addresses the general sensitivity of TNs 
to stuck-at faults; furthermore. It then conducts an in-depth 
investigation of the specific cases that lead to false convergence 
caused by stuck-at faults in the negative subnetwork. Unlike 
situations with a small fault impact, the deceptive convergence 
leads to substantial degradation and causes system failures. 
Alongside the analysis and evaluation of the faults affecting the 
classification performance of TNs, this paper also proposes 
efficient protection methods against false convergence. In 
practical applications, the scheme allows TNs for failure-free 
training (and re-training) even with faulty hardware, which 
helps increase the lifetime of the circuit in such cases. 

The contributions of this paper are as follows: 
1) The impact of stuck-at faults in the positive and anchor 

subnetworks of a TN is comprehensively evaluated by 
considering different positions, rates, and types of faults. 

Ziheng Wang, Student Member, IEEE, Farzad Niknia, Student Member, IEEE, Shanshan Liu, Senior Member, IEEE, 
Pedro Reviriego, Senior Member, IEEE, Ahmed Louri, Fellow, IEEE and Fabrizio Lombardi, Life Fellow, IEEE 

 

Fault Tolerance in Triplet Network Training: 
Analysis, Evaluation and Protection Methods 

T 

Manuscript received May 16, 2024 and revised August 29, 2024. The work 
was supported by the NSF under Grant 1953961 and Grant 1812467 and by the 
Spanish Agencia Estatal de Investigación under Grants PID2022-136684OB-
C22 and PDC2022-133888-I00 (Corresponding author: Shanshan Liu). 

Ziheng Wang, Farzad Niknia and Fabrizio Lombardi are with Department of 
Electrical and Computer Engineering, Northeastern University, MA 02115, 
USA. 

Shanshan Liu is with School of Information and Communication 
Engineering, University of Electronic Science and Technology of China, 
Chengdu, 611731, China (email: ssliu@uestc.edu.cn). 

Pedro Reviriego is with the Departamento de Ingeniería de Sistemas 
Telemáticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain. 

Ahmed Louri is with the Department of Electrical and Computer 
Engineering, George Washington University, DC 20052, USA. 

  
 

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3481962

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. � � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: VIVA CONSORTIUM COMMUNITY COLLEGES. Downloaded on May 06,2025 at 14:22:53 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

2) A focused analysis is presented for the false convergence 
caused by stuck-at faults in the negative subnetwork. 
Three convergence results are categorized by their 
impact on the training process. 

3) A further evaluation on the impact of faults in the 
negative subnetwork with different influence factors is 
conducted. Results confirm the analytic impact, showing 
that the accuracy can be significantly degraded due to 
training failures with a false convergence. 

4) Two schemes are proposed to deal with faults in the 
negative subnetwork, avoiding deceptive convergence. 
Evaluation results show that the accuracy loss of TNs is 
negligible when applying these protection schemes. 

The rest of the paper is organized as follows. Section II 
outlines preliminaries, such as the structure of TNs and the fault 
model considered in this paper. Section III evaluates the impact 
of faults in the positive and anchor subnetworks of the TNs, 
while Section IV deals with the faults in the negative 
subnetwork. Both analysis and evaluation of the false 
convergence caused by the faults are presented in Section IV. 
To mitigate the impact of these faults and avoid false 
convergence, two fault-tolerant schemes are proposed in 
Section V. The limitations to the applicability of the analysis 
and proposed protection schemes for specific implementations 
are discussed in Section VI; finally, the paper ends with the 
conclusion in Section VII. 

II. PRELIMINARIES 

A. Triplet Networks and the Training Process 
A typical Triplet Network (TN) consists of three weight-

sharing subnetworks in training as shown in Fig. 1 (a). Each 
subnetwork can be any feedforward network; however, 
considering the nature of the three weight-sharing subnetworks 
in a TN, the subnetwork of most TNs is usually implemented 
using MLPs and CNNs due to their lower model complexity 
and hardware overhead, while larger models may not be 
applicable1. This paper focuses on the application of deep 
metric learning classification of TNs and it showed excellent 
performance with a paucity of training data [5]. 

During the training process (Fig. 1 (b)), the three 
subnetworks of a TN accept the so-called triplets, including 
anchors, positive samples within the same class, and negative 
samples within different classes, respectively. The model is 
trained by mapping the triplets to an embedding space to 
minimize the distances between the anchor and positive 
samples and maximize the distance between the anchor and 
negative samples. Such feature embeddings are learned by 
iteratively applying optimizers (such as gradient descent) to the 
loss for a high classification performance [1], [5].  

Assume that the subnetworks are !-layer MLPs (or CNNs), 
and the output of the hidden units in the " -th layer can be 
denoted as the following vectors 

#$% = '#$,)% 		#$,+% 		⋯		#$,-.
% /,			anchor subnetwork;

#0% = '#0,)% 		#0,+% 		⋯		#0,-.
% /,			positive subnetwork;

#1% = '#1,)% 		#1,+% 		⋯		#1,-.
% /,			negative subnetwork

(1)  

where 5% is the output dimension of the "-th layer. In particular, 
the outputs of the last layer are represented as #$6 , #06 , and #16 .  
The similarity is evaluated by the Euclidean distance, which is 
calculated by the positive distance 78 = 9#$6 − #069+, and the 
negative distance 7; = ‖#$6 − #16 ‖+ . Since the objective of 
training a TN is to minimize the positive distance and maximize 
the negative distance, the following conditions must be satisfied: 

															78 = =∑ ?#$,@
% − #0,@

% A
+-.

@B) < D8;																										(2)   

															7; = =∑ ?#$,@
% − #1,@

% A
+-.

@B) > D;																												(3)   

where D8  and D;  are constant margins. Moreover, the loss 
function L usually applies a relaxed constraint that optimizes 
the difference between the two distances 78 − 7;  [20]. For 
example, this paper employs the popular Triple loss (TL) [2] 
and the trained model thus satisfies:  

	LMN = 5OP(78 − 7; + R, 0) ≤ 	D (4)  
where R is the margin and D is a non-negative constant as the 
stopping criterion.  

 For the application of deep metric learning, an extra 
prediction network is required to map the embedded data to 
labels. Since the data from the same category has already been 
clustered in the embedding space by the TN, the prediction can 
be realized by simpler schemes such as Support Vector 
Machines (SVM), logistic regression, or K-Nearest Neighbors 
(KNN) [1]. This paper uses a one-hidden-layer MLP as the 
prediction network. 

1This paper focuses on the MLP implementation in the main body and put 
the similar results for the CNN version in the Appendix. However, the analysis, 
findings and proposed protection techniques presented in this paper can also be 
applied to larger/newer models when they are used as the subnetworks of a TN.  
 
 

 
(a) 

    
(b) 

Fig.1. A triplet network: (a) overall structure; (b) training process.  
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B. Fault Model and Datasets 
As introduced previously, the unique features and benefits of 

a TN come from its special structure of the subnetworks that are 
employed during training. Moreover, the weight-sharing 
configuration is likely to make the subnetworks more sensitive 
to faults, degrading the performance of the trained model. 
Therefore, this paper focuses on investigating the fault 
tolerance of the training process in TNs.  

The traditional stuck-at model describes faults and defects 
(so mostly at a physical level) by associating permanent logic 
values in devices (such as transistors) and circuits in Very Large 
Scale Integration (VLSI) designs and commonly occurring at 
manufacturing and operational time [6]. However, when 
analyzing fault tolerance in ANNs, fault models could be 
employed according to specific implementation details such as 
technology and behavioral specifications. These models are 
often mapped to high-level abstractions that are independent of 
their physical implementations [16]. For ANNs, the so-called 
stuck-at model has been widely reported in the literature [17]-
[19], allowing incorrect behaviors that affect specific 
implementations to be represented by errors in the neurons [10]. 
Errors such as unexpected values, which may be caused by 
faulty/defective phenomena in ANNs, are typically abstracted 
using such stuck-at model. This model simplifies faults to show 
as constant values affecting individual hardware components 
(in this case the output of a neuron). This abstraction is 
extensively utilized in related works and has proven to be 
effective in modeling a substantial number of physical faults 
[16]. Based on the impact found in the technical literature [14], 
this functionally abstracted stuck-at model in ANNs is 
categorized into two types (Fig. 2): stuck-at-zero (where 
neurons are missing) and stuck-at-max/min (where neurons are 
saturated).  

• Stuck-at-zero: A stuck-at-zero fault occurs when a 
neuron's output remains at zero regardless of the input. 
This means the neuron does not respond to any inputs, 
as if it were removed from the network. It can be 
caused by a variety of sources including physical 
defects, activation function saturation (such as ReLU), 
and weight loss.  

• Stuck-at-max/min: A stuck-at-max/min fault occurs 
when a neuron's output no longer responds to changes 
in the input and is constantly given by the maximum 
or minimum value of its activation function. In 
addition to hardware faults, it usually happens when 
the activation function reaches its hard saturation 
limits (e.g., “tanh” and “sigmoid” have extreme values 
of 1 or -1). 

As described above, there are multiple causes for the stuck-
at model; this abstracted fault model enables the investigation 
of fault tolerance of ANNs at a behavioral level, independent of 
the specific intricacies of the implementation reflecting 
physical faults. So the (functional) stuck-at fault model utilized 
in this paper (as consistent with the technical literature) is not 
physically based; it allows to consider the functionality of the 
entire ANN (neuron and activation function). In this paper, the 
execution of the training process in TNs with specific faulty 
neurons is represented by patterns [13]. As the exhaustive 
testing for all possible fault-injection cases is prohibitive, for 

simplification purposes, this paper assumes that all faults are 
injected into the same layer and the same subnetwork. Even 
though a mathematical analysis is difficult for more 
comprehensive cases, our experiments demonstrate that faults 
have the same behavior when they extend across various layers 
and subnetworks and the false convergence still occurs as long 
as the negative subnetwork is affected. For the sake of 
simplicity, hereafter the pattern of faults used in the evaluation 
is defined as the tuple UM = (V, ", W, X), where V is the number 
of faults and " denotes the layer to be injected (the input layer 
is not included), V < 5% ; W  is the faulty subnetwork, W ∈
{O[Wℎ]", ^]_`a`Xb, [bcOa`Xb} ; X  denotes the type of the 
corresponding faults, which means the faulty units stuck at X. 
This paper applies tanh as the activation function, therefore X ∈
{0, 1,−1}. 

The impact of stuck-at faults in different subnetworks of a 
TN will be analyzed and evaluated in the next sections. Since 
this paper targets deep metric learning of the TN, its 
performance for classification accuracy is considered to assess 
the impact of faults. Diverse scenarios, including the number 
and positions of stuck-at faults, are considered. Four popular 
image classification datasets (MNIST [21], Fashion-MNIST 
[22], Cifar-10 [23], and SVHN [24]) are used; details of the 
datasets and their configuration achieving the highest inference 
accuracy in the fault-free case are provided in Table I.  

III. FAULTS IN POSITIVE AND ANCHOR SUBNETWORKS 
In this section, the fault tolerance of TNs is evaluated when 

the stuck-at faults are in the anchor or positive subnetworks. 
The impact of different factors such as the position of faults, the 
fault rate and type, is assessed. For a fair comparison, the 
training in all simulations is set for 20 epochs and the results are 
averaged over 100 repeated trials. 

A. Sensitivity to Layer and Fault Rate  
As per Table I, the dimensions of the layers after the input 

layer in each subnetwork are represented by the vector 
[5)		5+		5e		5f		5g] = [1024		512		256		128		128] ; stuck-
at-max faults are considered in this experiment and the fault rate 
a is set from 0 to 0.05. Therefore, the fault pattern used in the 
simulation is UM = (V = ⌊5%× a⌉, " ∈ {1,⋯ ,5}, W ∈
{O[Wℎ]"}, X = 1), a ∈ [0, 0.05]. 

                  
 (a)                                                              (b)    

Fig.2. Examples of faulty network (with abstracted behavioral error models of 
neurons). (a) Stuck-at-zero faults, where the faulty neurons are missing; (b) 
Stuck-at-max/min faults, where the faulty neurons are saturated. 
 

TABLE I 
DETAILS OF DATASETS AND THEIR SUBNETWORK CONFIGURATION 

Name #Features #Neurons in 
each layer 

Inference accuracy 
(fault-free) 

MNIST  28×28 784-1024-512-
256-256-128 

98.87% 
Fashion-MNIST  28×28 91.22% 

CIFAR-10  32×32 1024-1024-512-
256-256-128 

71.94% 
SVHN  32×32 92.20% 
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 Based on the simulation findings, in most cases, the faults 
lead to a very small degradation of the inference accuracy with 
the considered fault rate. For example, Table II shows the 
accuracy loss results for a = 0.05 when faults are injected in 
the anchor subnetwork; both the averaged results for all layers 
and the worst-case result for the output layer (" = 5 ) are 
provided. Moreover, a noticeable accuracy loss (> 0.1%) is only 
found when more than 60% of the neurons are faulty; given that 
such extensive faults are uncommon in practical scenarios, this 
paper does not present results for such cases. In addition, there 
is no discernible difference in cases where faults are injected 
into different layers of the subnetwork.  

From these results, the TN configuration achieves the highest 
classification accuracy in the fault-free cases (Table I). The 
output layer is more sensitive to faults; however, the network 
generally shows a very strong resilience to faults in the anchor 
subnetwork (also for the positive network as shown in the next 
subsection). This is expected because the ANNs with a modest 
size tend to be robust to faults (or noise) due to the non-linear 
nature and overprovisioning of the network [25]; instead, small 
faults sometimes even benefit the network by improving 
generalization [26]. Overall, since the fault rate in practical 
scenarios is typically low (smaller than 0.05), the presence of 
stuck-at faults in the anchor/positive subnetworks of a TN only 
results in a negligible effect that could be compensated by the 
inherent tolerance during the training process.   

B. Sensitivity to Subnetwork and Fault Type  
The sensitivity of TNs with different types of faults in the 

anchor and positive subnetworks is presented next. For better 
illustration, the results are provided on the assumption that the 
faults are in the output layer with rate a = 0.05. Fig. 3 shows 
the simulated accuracy loss with the pattern UM = (V = 5% ×
0.05, r ∈ {5}, c ∈ {anchor, positive}, X ∈ {0,1, −1}).  

The results given in Fig. 3 show that despite both with a very 
small accuracy loss, the anchor subnetwork exhibits larger 
sensitivity to faults compared to the positive subnetwork. This 
is expected because when considering the optimization 
objective in (2) and (3), the outputs of the anchor subnetwork 
affect both the positive and negative distances, while the 
outputs of the positive subnetwork only affect the positive 
distance.  

Moreover, the TN is shown to have better resilience to stuck-
at-zero faults than stuck-at-max/min faults when they occur in 
the positive or anchor subnetwork. This means that hidden units 
stuck at extreme values usually lead to worse consequences 
than missing hidden units or connection failure. Therefore, we 
have studied the distribution of neuron values (after the 
activation function tanh) during the training process. Due to the 
data normalization, the distribution is approximately Gaussian 
with more than 92% of values concentrated in the range 

[−0.1, 0.1]. Hence, a possible explanation is that being stuck at 
zero is closer to the correct values of the fault-free cases, which 
leads to a smaller degradation than being stuck at the extreme 
values (which are rather uncommon during normal operation).  

IV. FAULTS IN NEGATIVE SUBNETWORK  
Different from the case for positive and anchor subnetworks, 

stuck-at faults in the negative subnetwork of a TN can lead to a 
failure in training. This occurs due to the so-called “false 
solution” caused by stuck-at faults, which results in an incorrect 
convergence of training. In this section, the issue of training 
failure in the presence of stuck-at faults in the negative 
subnetwork is initially presented. Then, the occurrence of a 
false convergence due to faults is analyzed. Finally, the impact 
of faults with different influence factors on the network 
performance is further evaluated. 

A. Training Failure 
As per the simulations, the training of TNs can generate the 

following three possible convergence results when stuck-at 
faults are injected into the negative subnetwork. 

• Failure-free: The convergence of the TN training is 
not (or almost not) affected by faults. The network 
performs the same (or very close) behavior as the 
fault-free case. 

• Partial failure: The TN initially performs a normal 
convergence as the failure-free case, while it suddenly 
converges to the false solution after several training 
epochs. In this scenario, the final inference accuracy 
will fall between the failure-free and complete failure 
cases, depending on the training progress prior to 
converging to a false solution. 

• Complete failure: The TN converges to the false 
solution at the beginning of the training process. In this 
scenario, the network stops updating at a very low 
inference accuracy, such as around 10%; this suggests 
that the model completely fails for the classification 

TABLE II 
ACCURACY LOSS WITH 5% OF FAULTY NEURONS IN THE ANCHOR 

SUBNETWORK 

Dataset 
Accuracy loss 

Averaged for all layers Output layer ({ = |) 
MNIST  0.0003% 0.0006% 

Fashion-MNIST  0.0002% 0.0006% 
CIFAR-10  0.0007% 0.0013% 

SVHN  0.0004% 0.0009% 
 

 
  

    
(a)                                                       (b) 

    
(c)                                                       (d) 

Fig. 3. Accuracy loss caused by different types of faults in the anchor and 
positive subnetworks for dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) 
“CIFAR-10”; (d) “SVHN”. “Zero”, “Max” and “Min” denote the stuck-at-zero, 
stuck-at-max and stuck-at-min faults, respectively. 
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task (samples are arbitrarily predicted as one of the 
pre-known classes). 

Fig. 4 shows an example to illustrate these three cases by 
injecting faults to the negative subnetwork of the TN for dataset 
“MNIST”; the change of the training loss and the inference 
accuracy with training epochs are plotted in this figure. In the 
failure-free case, the inference accuracy keeps increasing while 
the training loss decreases with the iterative propagations. For 
the case of complete failure, the training loss directly reduces 
to 0 once the training starts, and the network remains untrained 
with a very low inference accuracy. For the case of partial 
failure, the training loss is normal at the beginning but then, it 
suddenly reduces to 0; while the inference accuracy also shows 
a rapid drop and remains at a low value after the network 
reaches a false convergence.  

All these convergence cases can occur even with a fixed 
network configuration and fault injection method; this is due to 
randomization in training, such as weight initialization and 
batch arrangement. Fig. 5 shows the distribution of inference 
accuracy (associated with different convergence cases) with 
100 repeated trials using the dataset “MNIST”. In these figures, 
the first bin (for an accuracy of 10% to 15%) can be 
approximately considered for the complete failure case; the last 
bin (for an accuracy of 95% to 100%) represents the fault-free 
case, and the remaining bins represent the partial failure cases. 
These results show that both partial failure and complete failure 
cases are very likely to occur. As explained at the beginning of 
this section, these failures are generated by the false solution of 
training when the negative subnetwork is affected by faults; 
such impact is analyzed in the next subsection.  

B.  False Convergence 
1) Faults in the output layer 

The issue of deceptive convergence caused by stuck-at-zero 
faults in the output layer of the negative subnetwork (" = !, X =
0) is considered first. The incorrect convergence caused by such 
faults is rather intuitive. Let } be the set of indices of the stuck-
at-zero faults and ` denote the index of the faulty neurons (` ∈
}). When the stuck-at-zero faults are injected, we have #1,@6 =
X@; as per (3), the constraint of the negative distance in this case 
is given by  

7; = ~∑ ?#$,@
6 − #1,@

6 A
+-�

@B),
@∉Å

+ ∑ ?#$,@
6 − X@A

+
@∈Å

						≥ ∑ É#$,@
6 − X@É@∈Å > D;

. (5)  

In (5), the anchor output #$,@6  can reach an extreme value after 
the activation computation, such as 1 or -1 for tanh; this leads 
to the maximum impact of the faulty terms as X@ = 0. When 
calculating the loss in (4) during training, the false solution to 
achieve zero loss is easily achieved with the commonly used 
margin R = 1. This scenario is illustrated in Fig. 6. Therefore, 
when the negative subnetwork has stuck-at-zero faults, the false 
convergence is very likely to occur, because it only needs to 
map the anchor and positive subnetworks to similar outputs to 
meet (2), while making #$,@6  large enough to make use of the 
faulty term in the negative subnetwork. Once the faulty term 
dominates 7;, the weight update stops with LMN = 0.  

Overall, the false convergence is more likely to occur in very 
few epochs, causing partial failure. It may also occur at the 
beginning of training (when 78 ≈ 7; ), causing complete 

 
Fig. 6. Training of TNs with the false solution caused by the stuck-at faults in the negative subnetwork. The red parts in the equations denote the faulty terms. 

  
 

 
Fig. 4. Example of the change in inference accuracy and training loss with 
training epochs for dataset “MNIST”, when different convergence cases 
(failure-free, partial failure and complete failure) occur. 

  

    
(a)                                                        (b) 

Fig. 5. Distributions of inference accuracy with 100 repeated trials for dataset 
“MNIST” under stuck-at-max faults with: (a)  a = 0.02, " = 1  (average 
accuracy: 39.95%); (b) a = 0.02, " = 2 (average accuracy: 24.65%).  
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failure, because a single faulty term É#$,@6 − X@É in 7; (can be up 
to 1) in the first epoch almost satisfies the constraint of (4). 

Next, let } be the set of indices of the stuck-at-max/min faults; 
the analysis of false convergence is similar to the case of stuck-
at-zero faults. Consider (5) for X@ = 1 or −1; the constraint of 
7; can also be satisfied by only considering the faulty terms 
É#$,@

6 − X@É. The analysis is like the previous subsection, and 
differently, the faulty term É#$,@6 − X@É can be up to 2 (instead of 
1) if we take #$,@6  as the opposite extreme value of X@. 

A dominant faulty term, potentially with a larger absolute 
value, can exacerbate the situation. This implies that the 
network is even more susceptible to false convergence with 
stuck-at-max/min faults. In this case, a common situation is that 
the convergence can get stuck into the zero-loss situation even 
before the training starts. For all loss functions optimizing the 
relaxed constraint on 78 − 7;, this leads to false convergence 
from the start. For example, the LMN in (4) can be represented as 

	LMN = 5OP(78 − 7; + R, 0)

= 5OPÖ78 −~∑ ?#$,@
6 − #1,@

6 A
+-�

@B),
@∉Å

+ ∑ ?#$,@
6 − X@A

+
@∈Å +R, 0Ü

  

≤ 5OP á78 − 7;,∉Å −àÉ#$,@
6 − X@É

@∈Å

+R, 0â																								(6) 

where X@ = 1	or −1, and R is commonly equal to 1. The faulty 
term leads to a false solution with zero-loss if ∑ É#$,@

6 − X@É@∈Å ≥
78 − 7;,∉Å +R . 78 − 7;,∉Å  is usually much smaller than 1 
with an appropriate random initialization of weights; in this 
case, even when considering only one faulty term with extreme 
value, LMN = 0 can be achieved. Therefore, the training process 
is very likely to be trapped with false convergence at the very 
beginning, causing complete failure. Note that all types of faults 
can lead to partial failure or complete failure; however, the 
stuck-at-zero (max/min) faults faults are more likely to result in 
partial (complete) failure. 

2) Faults in hidden layers 
The previous analysis on false convergence due to faults in 

the output layer can be similarly extended to cases when the 
faults are in the hidden layers (i.e., " < ! ); however, when 
considering the complexity of the forward propagation, a strict 
representation of constraints in each layer cannot be established. 
Next, we provide a heuristic discussion. The propagation 
between fully-connected layers is given by 

																							#ä
%8) = ã?∑ åä,@

% ∙ #@
%

@ + éä
%A																								(7)   

where åä,@%  and éä%  are the weight and bias; ã is the activation 
function (“tanh” used in this paper).  

Similar to the constraints at the output layer, the faulty terms 
∑ ?#$,@

% − X@A@∈Å  can still dominate at the " -th layer. Such 
distances in the negative subnetwork can spread to the 
following layers (so, no longer concentrated on those faulty 
indices, but separate to all subsequent units). However, 
aO[ℎ(P)  bounds layer outputs to the range [−1, 1] , and 
weakens the dominance of the large distances in the faulty layer. 
This behavior accumulates across multiple layers; consequently, 
when faults manifest in the early layers, their final impact on 
the negative distance 7;  at the output layer tends to be less 

pronounced. In such cases, the TN typically requires a longer 
time to converge to a false solution, increasing the likelihood of 
reaching a partial failure.  

Furthermore, it is evident that an increasing number of faulty 
neurons will amplify their effects and the TN is more prone to 
get stuck at the false solution, leading to a complete failure. This 
can be indicated in (5) or (6) by more faulty terms. As important 
influence factors, the position of the faulty layers and the rate 
of faulty neurons will be further evaluated by fault injection 
experiments in the following subsection. 

It is worth mentioning that even though this paper takes the 
most popular TL (4) as an example, the above analysis is 
equally applied to other types of loss functions in TNs. This is 
applicable because most of the loss functions aim to decrease 
the “difference” term [27], i.e., 78 − 7;. For example, the loss 
functions introduced in [1], [28], [29] can be represented as L =
c(78 − 7;), where c(∙) is the function specified in different 
literature. Even though for some unconventional loss functions 
that are independent of the “difference” term [27], they cannot 
remove the constraints in (2) and (3), because they are the 
fundamental objectives of the TNs. Therefore, the analysis 
presented in Section IV.B can be extended to TNs with all types 
of loss functions. 

C. Sensitivity to Layer, Fault Rate and Fault Type 
This subsection evaluates the impact of false convergence on 

the TN performance, when different numbers and types of 
faults are injected into different layers of the negative network. 
Like the evaluation for faults in the positive/anchor subnetwork 
presented in Section III, the rate of faulty neurons a and the 
position of faulty layers ", are considered first.  

Fig. 7 shows the simulation results with the fault pattern 
UM = (V = 5% × a, " ∈ {1,⋯ ,5}, W ∈ {[bcOa`Xb}, X ∈ {1}) , 
a ∈ [0, 0.05]. As shown in Fig. 7, a significant accuracy loss is 
caused by only a very low rate of faulty neurons in the negative 
subnetwork. This is different from the high resilience of the 
anchor and positive subnetworks evaluated in Section III-A. 

    
(a)                                                        (b) 

    
(c)                                                        (d) 

Fig. 7. Accuracy loss caused by stuck-at-max faults in the negative subnetwork 
with different positions and rates for dataset: (a) “MNIST”; (b) “Fashion-
MNIST”; (c) “CIFAR-10”; (d) “SVHN”. 
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Moreover, for all datasets, the accuracy loss reaches its peak 
level showing that all repeated trials reach the false solution. 
These results verify the analysis presented in the previous 
subsection, which indicates that faults in the negative 
subnetwork can simply lead to false convergence. Also, the 
accuracy loss tends to be larger when faults affect the latter 
layers; this is also in line with the previous analysis: these layers 
are more likely to result in complete failure, consequently 
leading to a substantial loss in accuracy. 

The second experiment is conducted to evaluate the impact 
of different fault types on the network performance. Different 
types of stuck-at faults with different rates are injected into 
layer " = 1. Fig. 8 shows the simulation results with the pattern 
UM = (V = 5% × a, " ∈ {1}, W ∈ {[bcOa`Xb},X ∈ {0,1, −1}) , 
a ∈ [0, 0.05]. The results indicate that stuck-at-max/min faults 
generally result in a greater loss of accuracy compared to stuck-
at-zero faults faults. This observation aligns with the previous 
analysis; the neurons stuck at extreme values exhibit larger 
faulty terms, leading to more significant degradation. This 
behavior is also shown to be independent of the fault rate as per 
Fig. 8.  

V. PROPOSED FAULT-TOLERANT SCHEMES 
The analysis and simulations presented in this paper indicate 

the necessity of fault-tolerant strategies to address stuck-at 
faults within the TNs' negative subnetworks. Consequently, we 
present a scheme containing two parts that handle stuck-at-zero 
and stuck-at-max/min faults respectively; the combined use of 
these two parts is essentical to prevents TNs from all types of 
stuck-at faults. Simulations have been run to confirm the 
effectiveness of the proposed approach. 

A.  Regularization to Anchor Outputs 
From the analysis in Section IV.B, the false convergence 

caused by stuck-at-zero faults occurs when the outputs of the 
anchor and positive subnetworks (#$,@6  and #0,@6 ) have large 

absolute values. In this case, the constraint of (5) can be simply 
satisfied by the faulty term. Therefore, the first proposed fault-
tolerant scheme aims to prevent an incorrect convergence 
towards large outputs in the anchor or positive terms. 

To achieve this goal, an extra penalty term (i.e., the 
regularization term) on the anchor outputs from different layers 
is proposed to be added to the loss function; so, (4) is updated 
as 

L0%ê0êëíì = 5OP(78 − 7; + R, 0) + î∑ ∑ #$,@
ä +-ï

@B)
6
äB) ≤ D(7)  

where 5ä  is the dimension of the layer ñ and î is the parameter 
determining the influence of the regularization term. This 
regularization term can be involved in either the anchor 
subnetwork or the positive subnetwork, because their outputs 
tend to be the same due to the objective function. In our case 
using the traditional loss function, the regularized anchor 
outputs affect the calculation of both positive and negative 
distances, so it is performed to better accelerate convergence.  

In general, regularization is added to all layers of the 
subnetwork, but when the faulty layers can be specified, it is 
only required for those outputs. However, incorporating a 
regularization term for all potential faulty layers can still be 
expensive in propagations, particularly in the case of large-scale 
ANNs. A practical approach is to apply a filter to the outputs 
(prior to activation functions) for detection purposes; its 
principle and implementation are like the weight filter 
introduced in [30]. This is based on the observation that the 
outputs (before the non-linear mapping by the activation 
functions) of fault-free layers are small (usually smaller than 1); 
however, when the faulty term dominates, the absolute values 
of the corresponding outputs can become more than 100 times 
larger. Therefore, once the filter detects outliners, the penalty 
term in (7) can be set to only regularize the specified layers. The 
threshold of the filter can be set as an empirical 
maximum/minimum of the layer outputs as in [30]. By using 
this approach, computational costs can be reduced without the 
need to regularize all potential faulty layers. 

In the proposed scheme, the regularization term on the 
anchor outputs can restrict the faulty units from taking a large 
value; by choosing a proper parameter î , the regularization 
term can prevent the false convergence that causes partial 
failures. However, it does not eliminate complete failures 
caused by stuck-at-max/min faults. Therefore, another 
protective method is required as presented in the following 
subsection. 

B. Modified Margin 
The complete failure is likely to happen when the fault rate 

is large, especially for stuck-at-max/min faults that potentially 
lead to larger faulty terms in (6). In this scenario, the TN can be 
trapped at the false convergence at the beginning of the training 
process, even before conducting the regularization term 
functions. Therefore, an intuitive way to address this issue is to 
increase the original margin R to avoid the loss getting stuck at 
the false convergence very soon.  

For each faulty term É#$,@6 − X@É, the maximum error is 2 
when X@ = 1 or X@ = −1, −1 ≤ #$,@

6 ≤ 1. By (6), if the number 
of faulty neurons is V, increasing the margin by 2V can ensure 
that the convergence does not achieve a false solution over the 

    
(a)                                                  (b) 

    
(c)                                                  (d) 

Fig. 8. Accuracy loss caused by faults in the negative subnetwork with different 
rates and types for dataset: (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-
10”; (d) “SVHN”. “Zero”, “Max” and “Min” denote the stuck-at-zero, stuck-at-
max and stuck-at-min faults, respectively. 
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entire training process (as the initial outputs #$,@6  are usually 
close to 0). However, the number of faulty neurons is usually 
unknown in many practical applications. An appropriate margin 
is critical to address the importance of the contributive triplets 
[27]; setting the margin to an arbitrarily large value slows down 
the convergence in the fault-free case. Therefore, increasing the 
margin must be thought carefully.  

We propose to modify the margin at the beginning of the 
training by: 

Ró = R+ 2⌊7;⌋ (8)  
where ⌊7;⌋  denotes the round-down to the largest integer 
smaller than 7;. Note that the margin only changes based on 
the output at the first iteration, and it is fixed in the following 
training process. This value assumes that the initial negative 
distance is smaller than 1 in the fault-free case (valid for all 
applied datasets); thus, it can be an estimate of the number of 
stuck-at-max/min faults. Consider the widely used process of 
weight initialization; this estimate works for most cases, and it 
can also be modified by the empirical knowledge of different 
applications. In summary, the modified margin Ró is required 
to correctly start the training process and prevent complete 
failures when stuck-at faults are present in the negative 
subnetwork. 

C. Evaluation  
 This subsection provides the simulation results for the 

proposed fault-tolerant methods. Both the regularization to the 
anchor outputs and the modified margin are required, as the 
false convergences lead to both partial and complete failures as 
illustrated in Fig. 5. In practice, the modified margin converts 
the cases of complete failures to partial failures, and then the 
regularization eliminates the false convergence during the 
training process. Since each of them could only conditionally 
solve the failures and the component of failure types is not 
predictable a-priori, the two steps should be applied 
simultaneously in the proposed scheme. 

 The fault injection process and the network configurations 
are the same as those applied in the previous sections. 
Simulation has been performed for faults injected into the 
output layer, so also shows the worst case. The pattern of the 
fault injection simulation is given by UM = (V = 5% × a	, " ∈
{5}, W ∈ {[bcOa`Xb},X ∈ {0,1,−1}), a = 0.05.  

Table III reports the accuracy loss of the TN protected by the 
proposed schemes with the given fault pattern; results are 
averaged among 100 trails. Compared with the unprotected 
results provided in Figs. 7 and 8, the accuracy loss significantly 
decreases, and it is smaller than 0.00108%; moreover, it is low 
also when the faults are in the positive/anchor subnetworks (Fig. 
3). These results indicate that a TN can almost fully tolerate the 
stuck-at faults by using the proposed schemes. Therefore, in 
practical applications, the proposed fault-tolerant methods can 

be utilized in TNs to avoid training failures caused by stuck-at 
faults.  

VI. LIMITATIONS 
The validity and applicability of the findings and the 

proposed protection techniques depend on the assumed model 
for faults as well as errors; in this paper, this aspect was  
discussed in Section II. The analysis presented in this 
manuscript is defined at a functional level, so independent of 
the implementation. Therefore, for a given implementation, the 
fault model can be different and thus, the validity of the results 
and protection techniques here presented may not be fully 
applicable. As the proposed schemes and analysis are generic, 
they can provide a starting point to study the dependability of 
TNs (as well as other NNs) in specific schemes and applications. 
The generality of the results of this manuscript capture the basic 
phenomena and provide protection schemes that can be also 
useful to guide the design under specific conditions, such as 
physical based fault models. 
   

VII. CONCLUSION 
This paper has comprehensively studied the fault-tolerance 

of Triplet Networks (TNs) when stuck-at faults are present 
during the training process. Based on the analysis and 
simulation results, the anchor and positive subnetworks of the 
TN are shown to be insensitive to stuck-at faults; however, 
faults in the negative subnetwork can cause false convergence, 
leading to partial failure and complete failure. In addition to the 
analysis on the occurrence of false convergence, the impact of 
faults with different positions, rates, and types on the network 
performance have also been evaluated. It has been shown that a 
larger fault rate leads to greater accuracy loss, until all trials fall 
into the complete failure case; moreover, the TN is more 
sensitive to faults in the layers closer to the output layer as well 
as the stuck-at-max/min faults.  

Furthermore, two fault-tolerant methods have been proposed 
to handle the faults in the negative subnetworks. Specifically, 
the loss function with regularization on the anchor outputs has 
been proposed to avoid partial failures; the so-called modified 
margin with improper initializations has been proposed to avoid 
complete failures. Simulation results have shown that by 
applying both approaches simultaneously, the accuracy loss of 
the TN significantly decreases compared to the unprotected 
scheme and it is nearly zero (up to 0.00108%); therefore, the 
proposed methods can be used for TNs to avoid the false 
convergence and training failures caused by stuck-at faults. 
Since this paper focuses on the impact of high-level functional 
characterization of the stuck-at fault model on TNs, a more 
detailed validation of the low-level fault model that is related to 
specified implementations, will be further investigated in future 
works. 
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