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Abstract—This paper investigates the tolerance of Triplet
Networks (TNs) with a focus on faults in the training process. For
compatibility with the existing literature. So-called stuck-at faults
of a functional nature are considered for the operation of the
neurons and activation function. While TNs are shown to be
generally robust against such faults in the anchor and positive
subnetworks, the presented analysis reveals a significant
vulnerability in the negative subnetwork, in which stuck-at faults
can lead to false convergence and training failures. An in-depth
treatment is provided to show the incorrect convergence of
training in the presence of stuck-at faults, highlighting the
behavior of the network with faulty neurons. Extensive
simulations are presented to evaluate the impact of these faults and
propose two innovative fault-tolerant methods: the regularization
of the anchor outputs and the modified margin. Simulation shows
that false convergence can be very efficiently avoided by utilizing
the proposed techniques, and thus the overall accuracy loss of the
TN is negligible. These findings contribute to the understanding of
fault tolerance in emerging neural networks such as TNs and offer
practical solutions for enhancing their robustness against faults.

Index Terms— Triplet network, fault-tolerance, stuck-at faults,
training, false convergence.

1. INTRODUCTION

RIPLET networks (TNs) are feedforward artificial neural

networks (ANNs) with three identical weight-sharing
subnetworks [1]. TNs have been widely used in similarity-
measuring tasks, from initial applications in face recognition
with Triplet Loss (TL) [2] to various machine learning (ML)
tasks such as vehicle identification [3] and image retrieval [4].
Particularly, due to the unique structure, TNs provide an
excellent learning performance when there is a paucity of
training data available, in which case the traditional ANNs
using a single network (e.g., multi-layer perceptrons (MLPs) or
convolutional neural networks (CNNs)) often find difficulty in
establishment and execution. A TN generates feature
embeddings of the original input data; the outputs of different
categories are separable in the embedding space and thus, are
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available for the subsequent classification/recognition. As an
emerging ML scheme, the feature-embedding TN achieves
better performance than traditional classification/recognition
methods with a single network branch [1], [5].

In critical safety applications, the robustness of ANNs is
paramount, because faults can degrade performance or even
cause a complete system failure [6]-[9]. When analyzing the
fault tolerance of ANN training, the stuck-at fault model is
usually used; this model is not physically based but it
functionally abstracts the behavior of defective neurons [7],
[10]. Although past literature extensively covers this model and
its effects, current investigations often focus on smaller, simpler
structures, e.g., three-layer MLPs with a maximum of 20
neurons in the hidden layer [11]-[15]. However, today’s ANNs
are significantly larger and incorporate substantial
overprovisioning, allowing for sustained performance despite
some non-functional neurons [7], [16]. The fault tolerance of
large-scale networks such as TNs has not been sufficiently
explored in the technical literature.

Moreover, the distinctive structure of three weight-sharing
subnetworks presents unique challenges for attaining fault
tolerance of TNs. Its convergence condition aims to minimize
the output distances between the anchor and the positive
subnetwork, and maximize it between the anchor and the
negative subnetwork. In the fault injection experiments (such as
faults in the positive or anchor subnetworks) conducted in this
paper, extensive faults could violate the convergence condition,
resulting in a performance degradation; however, stuck-at faults
in the negative subnetwork lead to rapid but erroneous
convergence, evading detection and potentially causing a fatal
system failure. Therefore, it is essential to analyze and protect
the TNs from such a special case, that to our knowledge, has
not been addressed in the existing literature.

This paper initially addresses the general sensitivity of TNs
to stuck-at faults; furthermore. It then conducts an in-depth
investigation of the specific cases that lead to false convergence
caused by stuck-at faults in the negative subnetwork. Unlike
situations with a small fault impact, the deceptive convergence
leads to substantial degradation and causes system failures.
Alongside the analysis and evaluation of the faults affecting the
classification performance of TNs, this paper also proposes
efficient protection methods against false convergence. In
practical applications, the scheme allows TNs for failure-free
training (and re-training) even with faulty hardware, which
helps increase the lifetime of the circuit in such cases.

The contributions of this paper are as follows:

1) The impact of stuck-at faults in the positive and anchor

subnetworks of a TN is comprehensively evaluated by
considering different positions, rates, and types of faults.
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2) A focused analysis is presented for the false convergence
caused by stuck-at faults in the negative subnetwork.
Three convergence results are categorized by their
impact on the training process.

3) A further evaluation on the impact of faults in the
negative subnetwork with different influence factors is
conducted. Results confirm the analytic impact, showing
that the accuracy can be significantly degraded due to
training failures with a false convergence.

4) Two schemes are proposed to deal with faults in the
negative subnetwork, avoiding deceptive convergence.
Evaluation results show that the accuracy loss of TNs is
negligible when applying these protection schemes.

The rest of the paper is organized as follows. Section II

outlines preliminaries, such as the structure of TNs and the fault
model considered in this paper. Section III evaluates the impact
of faults in the positive and anchor subnetworks of the TNs,
while Section IV deals with the faults in the negative
subnetwork. Both analysis and evaluation of the false
convergence caused by the faults are presented in Section IV.
To mitigate the impact of these faults and avoid false
convergence, two fault-tolerant schemes are proposed in
Section V. The limitations to the applicability of the analysis
and proposed protection schemes for specific implementations
are discussed in Section VI; finally, the paper ends with the
conclusion in Section VIL

II. PRELIMINARIES

A. Triplet Networks and the Training Process

A typical Triplet Network (TN) consists of three weight-
sharing subnetworks in training as shown in Fig. 1 (a). Each
subnetwork can be any feedforward network; however,
considering the nature of the three weight-sharing subnetworks
in a TN, the subnetwork of most TNs is usually implemented
using MLPs and CNNs due to their lower model complexity
and hardware overhead, while larger models may not be
applicable!. This paper focuses on the application of deep
metric learning classification of TNs and it showed excellent
performance with a paucity of training data [5].

During the training process (Fig. 1 (b)), the three
subnetworks of a TN accept the so-called triplets, including
anchors, positive samples within the same class, and negative
samples within different classes, respectively. The model is
trained by mapping the triplets to an embedding space to
minimize the distances between the anchor and positive
samples and maximize the distance between the anchor and
negative samples. Such feature embeddings are learned by
iteratively applying optimizers (such as gradient descent) to the
loss for a high classification performance [1], [5].

Assume that the subnetworks are [-layer MLPs (or CNNs),
and the output of the hidden units in the r-th layer can be
denoted as the following vectors

'This paper focuses on the MLP implementation in the main body and put
the similar results for the CNN version in the Appendix. However, the analysis,
findings and proposed protection techniques presented in this paper can also be
applied to larger/newer models when they are used as the subnetworks of a TN.

Positive
samples

Anchors Negative
samples samples

Anchor
subnetwork

Positive
subnetwork

Positive Negative
distance distance
Calculate
loss

Negative
subnetwork

(a)
T Embeading
| [ mbedding | —
[ : network I
[ I
o | |
(Positve daa)—> | | | —| Calculate
[ | loss &
(o) — | | e
Cea)— | | o ot
[ : I
o Three identical : —
\_ _ subnetworks _ _ _/
(b)
Fig.1. A triplet network: (a) overall structure; (b) training process.
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where m,. is the output dimension of the r-th layer. In particular,
the outputs of the last layer are represented as y., yzﬁ, and y;..
The similarity is evaluated by the Euclidean distance, which is
calculated by the positive distance d, = ||y} — yz§||2, and the
negative distance d_ = ||y} — y!lll,. Since the objective of
training a TN is to minimize the positive distance and maximize
the negative distance, the following conditions must be satisfied:

2
d, = \/Z:Z(YZL - YS,L') <& ()

2
d_= \/Z:Z(YZL - y,i,i) > e (3)

where &, and &_ are constant margins. Moreover, the loss
function L usually applies a relaxed constraint that optimizes
the difference between the two distances d, — d_ [20]. For
example, this paper employs the popular Triple loss (TL) [2]
and the trained model thus satisfies:

Ly, =max(d, —d_+M,0) < ¢ (4)
where M is the margin and € is a non-negative constant as the
stopping criterion.

For the application of deep metric learning, an extra
prediction network is required to map the embedded data to
labels. Since the data from the same category has already been
clustered in the embedding space by the TN, the prediction can
be realized by simpler schemes such as Support Vector
Machines (SVM), logistic regression, or K-Nearest Neighbors
(KNN) [1]. This paper uses a one-hidden-layer MLP as the
prediction network.
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B. Fault Model and Datasets

As introduced previously, the unique features and benefits of
a TN come from its special structure of the subnetworks that are
employed during training. Moreover, the weight-sharing
configuration is likely to make the subnetworks more sensitive
to faults, degrading the performance of the trained model.
Therefore, this paper focuses on investigating the fault
tolerance of the training process in TNs.

The traditional stuck-at model describes faults and defects
(so mostly at a physical level) by associating permanent logic
values in devices (such as transistors) and circuits in Very Large
Scale Integration (VLSI) designs and commonly occurring at
manufacturing and operational time [6]. However, when
analyzing fault tolerance in ANNs, fault models could be
employed according to specific implementation details such as
technology and behavioral specifications. These models are
often mapped to high-level abstractions that are independent of
their physical implementations [16]. For ANNSs, the so-called
stuck-at model has been widely reported in the literature [17]-
[19], allowing incorrect behaviors that affect specific
implementations to be represented by errors in the neurons [10].
Errors such as unexpected values, which may be caused by
faulty/defective phenomena in ANNS, are typically abstracted
using such stuck-at model. This model simplifies faults to show
as constant values affecting individual hardware components
(in this case the output of a neuron). This abstraction is
extensively utilized in related works and has proven to be
effective in modeling a substantial number of physical faults
[16]. Based on the impact found in the technical literature [14],
this functionally abstracted stuck-at model in ANNs is
categorized into two types (Fig. 2): stuck-at-zero (where
neurons are missing) and stuck-at-max/min (where neurons are
saturated).

e Stuck-at-zero: A stuck-at-zero fault occurs when a
neuron's output remains at zero regardless of the input.
This means the neuron does not respond to any inputs,
as if it were removed from the network. It can be
caused by a variety of sources including physical
defects, activation function saturation (such as ReLU),
and weight loss.

e Stuck-at-max/min: A stuck-at-max/min fault occurs
when a neuron's output no longer responds to changes
in the input and is constantly given by the maximum
or minimum value of its activation function. In
addition to hardware faults, it usually happens when
the activation function reaches its hard saturation
limits (e.g., “tanh” and “sigmoid” have extreme values
of 1 or-1).

As described above, there are multiple causes for the stuck-
at model; this abstracted fault model enables the investigation
of fault tolerance of ANNSs at a behavioral level, independent of
the specific intricacies of the implementation reflecting
physical faults. So the (functional) stuck-at fault model utilized
in this paper (as consistent with the technical literature) is not
physically based; it allows to consider the functionality of the
entire ANN (neuron and activation function). In this paper, the
execution of the training process in TNs with specific faulty
neurons is represented by patterns [13]. As the exhaustive
testing for all possible fault-injection cases is prohibitive, for

(@

(b)

Fig.2. Examples of faulty network (with abstracted behavioral error models of
neurons). (a) Stuck-at-zero faults, where the faulty neurons are missing; (b)
Stuck-at-max/min faults, where the faulty neurons are saturated.

TABLEI
DETAILS OF DATASETS AND THEIR SUBNETWORK CONFIGURATION
#Neurons in Inference accurac;
Name #Features each layer (fault-free) '

MNIST 28%28 784-1024-512- 98.87%
Fashion-MNIST 28x28 256-256-128 91.22%
CIFAR-10 32x32 1024-1024-512- 71.94%
SVHN 32x32 256-256-128 92.20%

simplification purposes, this paper assumes that all faults are
injected into the same layer and the same subnetwork. Even
though a mathematical analysis is difficult for more
comprehensive cases, our experiments demonstrate that faults
have the same behavior when they extend across various layers
and subnetworks and the false convergence still occurs as long
as the negative subnetwork is affected. For the sake of
simplicity, hereafter the pattern of faults used in the evaluation
is defined as the tuple Q = (f, 7, ¢, v), where f is the number
of faults and r denotes the layer to be injected (the input layer
is not included), f <m,; c¢ is the faulty subnetwork, ¢ €
{anchor, positive,negative} ; v denotes the type of the
corresponding faults, which means the faulty units stuck at v.
This paper applies tanh as the activation function, therefore v €
{o,1,—-1}.

The impact of stuck-at faults in different subnetworks of a
TN will be analyzed and evaluated in the next sections. Since
this paper targets deep metric learning of the TN, its
performance for classification accuracy is considered to assess
the impact of faults. Diverse scenarios, including the number
and positions of stuck-at faults, are considered. Four popular
image classification datasets (MNIST [21], Fashion-MNIST
[22], Cifar-10 [23], and SVHN [24]) are used; details of the
datasets and their configuration achieving the highest inference
accuracy in the fault-free case are provided in Table 1.

III. FAULTS IN POSITIVE AND ANCHOR SUBNETWORKS

In this section, the fault tolerance of TNs is evaluated when
the stuck-at faults are in the anchor or positive subnetworks.
The impact of different factors such as the position of faults, the
fault rate and type, is assessed. For a fair comparison, the
training in all simulations is set for 20 epochs and the results are
averaged over 100 repeated trials.

A. Sensitivity to Layer and Fault Rate

As per Table I, the dimensions of the layers after the input
layer in each subnetwork are represented by the vector
[m; m, my m, mg] =[1024 512 256 128 128]; stuck-
at-max faults are considered in this experiment and the fault rate
t is set from 0 to 0.05. Therefore, the fault pattern used in the
simulation is Qr =(f =|m,xt|,ref1,-,5}ce
{anchor},v = 1), t € [0,0.05].
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TABLEII
ACCURACY LOSS WITH 5% OF FAULTY NEURONS IN THE ANCHOR
SUBNETWORK
Accuracy loss
Dataset Averaged for all layers | Output layer (r = 5)
MNIST 0.0003% 0.0006%
Fashion-MNIST 0.0002% 0.0006%
CIFAR-10 0.0007% 0.0013%
SVHN 0.0004% 0.0009%

Based on the simulation findings, in most cases, the faults
lead to a very small degradation of the inference accuracy with
the considered fault rate. For example, Table II shows the
accuracy loss results for ¢ = 0.05 when faults are injected in
the anchor subnetwork; both the averaged results for all layers
and the worst-case result for the output layer (r =5) are
provided. Moreover, a noticeable accuracy loss (> 0.1%) is only
found when more than 60% of the neurons are faulty; given that
such extensive faults are uncommon in practical scenarios, this
paper does not present results for such cases. In addition, there
is no discernible difference in cases where faults are injected
into different layers of the subnetwork.

From these results, the TN configuration achieves the highest
classification accuracy in the fault-free cases (Table I). The
output layer is more sensitive to faults; however, the network
generally shows a very strong resilience to faults in the anchor
subnetwork (also for the positive network as shown in the next
subsection). This is expected because the ANNs with a modest
size tend to be robust to faults (or noise) due to the non-linear
nature and overprovisioning of the network [25]; instead, small
faults sometimes even benefit the network by improving
generalization [26]. Overall, since the fault rate in practical
scenarios is typically low (smaller than 0.05), the presence of
stuck-at faults in the anchor/positive subnetworks of a TN only
results in a negligible effect that could be compensated by the
inherent tolerance during the training process.

B. Sensitivity to Subnetwork and Fault Type

The sensitivity of TNs with different types of faults in the
anchor and positive subnetworks is presented next. For better
illustration, the results are provided on the assumption that the
faults are in the output layer with rate t = 0.05. Fig. 3 shows
the simulated accuracy loss with the pattern Qp = (f = m,. X
0.05,r € {5}, c € {anchor, positive}, v € {0,1, —1}).

The results given in Fig. 3 show that despite both with a very
small accuracy loss, the anchor subnetwork exhibits larger
sensitivity to faults compared to the positive subnetwork. This
is expected because when considering the optimization
objective in (2) and (3), the outputs of the anchor subnetwork
affect both the positive and negative distances, while the
outputs of the positive subnetwork only affect the positive
distance.

Moreover, the TN is shown to have better resilience to stuck-
at-zero faults than stuck-at-max/min faults when they occur in
the positive or anchor subnetwork. This means that hidden units
stuck at extreme values usually lead to worse consequences
than missing hidden units or connection failure. Therefore, we
have studied the distribution of neuron values (after the
activation function tanh) during the training process. Due to the
data normalization, the distribution is approximately Gaussian
with more than 92% of values concentrated in the range
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Fig. 3. Accuracy loss caused by different types of faults in the anchor and
positive subnetworks for dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c)
“CIFAR-107; (d) “SVHN”. “Zero”, “Max” and “Min” denote the stuck-at-zero,
stuck-at-max and stuck-at-min faults, respectively.

[—0.1, 0.1]. Hence, a possible explanation is that being stuck at
zero is closer to the correct values of the fault-free cases, which
leads to a smaller degradation than being stuck at the extreme
values (which are rather uncommon during normal operation).

IV. FAULTS IN NEGATIVE SUBNETWORK

Different from the case for positive and anchor subnetworks,
stuck-at faults in the negative subnetwork of a TN can lead to a
failure in training. This occurs due to the so-called “false
solution” caused by stuck-at faults, which results in an incorrect
convergence of training. In this section, the issue of training
failure in the presence of stuck-at faults in the negative
subnetwork is initially presented. Then, the occurrence of a
false convergence due to faults is analyzed. Finally, the impact
of faults with different influence factors on the network
performance is further evaluated.

A. Training Failure

As per the simulations, the training of TNs can generate the
following three possible convergence results when stuck-at
faults are injected into the negative subnetwork.

e  Failure-free: The convergence of the TN training is
not (or almost not) affected by faults. The network
performs the same (or very close) behavior as the
fault-free case.

e Partial failure: The TN initially performs a normal
convergence as the failure-free case, while it suddenly
converges to the false solution after several training
epochs. In this scenario, the final inference accuracy
will fall between the failure-free and complete failure
cases, depending on the training progress prior to
converging to a false solution.

o  Complete failure: The TN converges to the false
solution at the beginning of the training process. In this
scenario, the network stops updating at a very low
inference accuracy, such as around 10%; this suggests
that the model completely fails for the classification
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Fig. 5. Distributions of inference accuracy with 100 repeated trials for dataset

“MNIST” under stuck-at-max faults with: (a) t=0.02,r =1 (average
accuracy: 39.95%); (b) t = 0.02,r = 2 (average accuracy: 24.65%).

task (samples are arbitrarily predicted as one of the
pre-known classes).

Fig. 4 shows an example to illustrate these three cases by
injecting faults to the negative subnetwork of the TN for dataset
“MNIST”; the change of the training loss and the inference
accuracy with training epochs are plotted in this figure. In the
failure-free case, the inference accuracy keeps increasing while
the training loss decreases with the iterative propagations. For
the case of complete failure, the training loss directly reduces
to 0 once the training starts, and the network remains untrained
with a very low inference accuracy. For the case of partial
failure, the training loss is normal at the beginning but then, it
suddenly reduces to 0; while the inference accuracy also shows
a rapid drop and remains at a low value after the network
reaches a false convergence.

Output neurons
in the faulty layer

All these convergence cases can occur even with a fixed
network configuration and fault injection method; this is due to
randomization in training, such as weight initialization and
batch arrangement. Fig. 5 shows the distribution of inference
accuracy (associated with different convergence cases) with
100 repeated trials using the dataset “MNIST”. In these figures,
the first bin (for an accuracy of 10% to 15%) can be
approximately considered for the complete failure case; the last
bin (for an accuracy of 95% to 100%) represents the fault-free
case, and the remaining bins represent the partial failure cases.
These results show that both partial failure and complete failure
cases are very likely to occur. As explained at the beginning of
this section, these failures are generated by the false solution of
training when the negative subnetwork is affected by faults;
such impact is analyzed in the next subsection.

B.  False Convergence

1) Faults in the output layer

The issue of deceptive convergence caused by stuck-at-zero
faults in the output layer of the negative subnetwork (r = [, v =
0) is considered first. The incorrect convergence caused by such
faults is rather intuitive. Let I be the set of indices of the stuck-
at-zero faults and i denote the index of the faulty neurons (i €
I). When the stuck-at-zero faults are injected, we have y,l“- =
v;; as per (3), the constraint of the negative distance in this case
is given by

d_= 27;11,(37«[1,1' - yrll,i)z + ZieI(yclz,i - ”i)z
iel . (5)

= Zier/tlz,i
In (5), the anchor output yfu- can reach an extreme value after
the activation computation, such as 1 or -1 for tanh; this leads
to the maximum impact of the faulty terms as v; = 0. When
calculating the loss in (4) during training, the false solution to
achieve zero loss is easily achieved with the commonly used
margin M = 1. This scenario is illustrated in Fig. 6. Therefore,
when the negative subnetwork has stuck-at-zero faults, the false
convergence is very likely to occur, because it only needs to
map the anchor and positive subnetworks to similar outputs to
meet (2), while making yfu- large enough to make use of the
faulty term in the negative subnetwork. Once the faulty term
dominates d_, the weight update stops with Ly, = 0.
Overall, the false convergence is more likely to occur in very
few epochs, causing partial failure. It may also occur at the
beginning of training (when d, = d_), causing complete
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Fig. 6. Training of TNs with the false solution caused by the stuck-at faults in the negative subnetwork. The red parts in the equations denote the faulty terms.
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failure, because a single faulty term | yfu- - vi| in d_ (can be up
to 1) in the first epoch almost satisfies the constraint of (4).

Next, let I be the set of indices of the stuck-at-max/min faults;
the analysis of false convergence is similar to the case of stuck-
at-zero faults. Consider (5) for v; = 1 or —1; the constraint of
d_ can also be satisfied by only considering the faulty terms
|yfu- - vi|. The analysis is like the previous subsection, and
differently, the faulty term |yfu- - vi| can be up to 2 (instead of
1) if we take yfu- as the opposite extreme value of v;.

A dominant faulty term, potentially with a larger absolute
value, can exacerbate the situation. This implies that the
network is even more susceptible to false convergence with
stuck-at-max/min faults. In this case, a common situation is that
the convergence can get stuck into the zero-loss situation even
before the training starts. For all loss functions optimizing the
relaxed constraint on d, — d_, this leads to false convergence
from the start. For example, the Ly, in (4) can be represented as

Ly, =max(d, —d_+ M,0)

2 2
=max| d, — 22111,(3/«[1,1' - YL,L') + Ziel(Yclz,i - Vi) +M,0
igl

< max <d+ —d_g — Z'J/tlz,i —vi| + M, 0) (6)
i€l

where v; = 1 or —1, and M is commonly equal to 1. The faulty
term leads to a false solution with zero-loss if ) ;¢; | yfu- - vi| =
dy —d_g +M.d, —d_g is usually much smaller than 1
with an appropriate random initialization of weights; in this
case, even when considering only one faulty term with extreme
value, L; = 0 can be achieved. Therefore, the training process
is very likely to be trapped with false convergence at the very
beginning, causing complete failure. Note that all types of faults
can lead to partial failure or complete failure; however, the
stuck-at-zero (max/min) faults faults are more likely to result in
partial (complete) failure.

2) Faults in hidden layers

The previous analysis on false convergence due to faults in
the output layer can be similarly extended to cases when the
faults are in the hidden layers (i.e., r < l); however, when
considering the complexity of the forward propagation, a strict
representation of constraints in each layer cannot be established.
Next, we provide a heuristic discussion. The propagation
between fully-connected layers is given by

y]r+1 = ¢(Zl W]?:i ' ylr + b]T) (7)
where wj; and b/ are the weight and bias; ¢ is the activation
function (“tanh” used in this paper).

Similar to the constraints at the output layer, the faulty terms
Zia(ygi - vl-) can still dominate at the r-th layer. Such
distances in the negative subnetwork can spread to the
following layers (so, no longer concentrated on those faulty
indices, but separate to all subsequent units). However,
tanh(x) bounds layer outputs to the range [—1,1], and
weakens the dominance of the large distances in the faulty layer.
This behavior accumulates across multiple layers; consequently,
when faults manifest in the early layers, their final impact on
the negative distance d_ at the output layer tends to be less
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Fig. 7. Accuracy loss caused by stuck-at-max faults in the negative subnetwork
with different positions and rates for dataset: (a) “MNIST”; (b) “Fashion-
MNIST”; (c) “CIFAR-10"; (d) “SVHN”.

pronounced. In such cases, the TN typically requires a longer
time to converge to a false solution, increasing the likelihood of
reaching a partial failure.

Furthermore, it is evident that an increasing number of faulty
neurons will amplify their effects and the TN is more prone to
get stuck at the false solution, leading to a complete failure. This
can be indicated in (5) or (6) by more faulty terms. As important
influence factors, the position of the faulty layers and the rate
of faulty neurons will be further evaluated by fault injection
experiments in the following subsection.

It is worth mentioning that even though this paper takes the
most popular TL (4) as an example, the above analysis is
equally applied to other types of loss functions in TNs. This is
applicable because most of the loss functions aim to decrease
the “difference” term [27], i.e., d, — d_. For example, the loss
functions introduced in [1], [28], [29] can be represented as L =
g(d, —d_), where g(-) is the function specified in different
literature. Even though for some unconventional loss functions
that are independent of the “difference” term [27], they cannot
remove the constraints in (2) and (3), because they are the
fundamental objectives of the TNs. Therefore, the analysis
presented in Section [V.B can be extended to TNs with all types
of loss functions.

C. Sensitivity to Layer, Fault Rate and Fault Type

This subsection evaluates the impact of false convergence on
the TN performance, when different numbers and types of
faults are injected into different layers of the negative network.
Like the evaluation for faults in the positive/anchor subnetwork
presented in Section III, the rate of faulty neurons t and the
position of faulty layers r, are considered first.

Fig. 7 shows the simulation results with the fault pattern
Qr =(f =m, xt,r €{1,---,5},c € {negative},v € {1}) ,
t € [0,0.05]. As shown in Fig. 7, a significant accuracy loss is
caused by only a very low rate of faulty neurons in the negative
subnetwork. This is different from the high resilience of the
anchor and positive subnetworks evaluated in Section III-A.
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Fig. 8. Accuracy loss caused by faults in the negative subnetwork with different
rates and types for dataset: (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-
10”; (d) “SVHN”. “Zero”, “Max” and “Min” denote the stuck-at-zero, stuck-at-
max and stuck-at-min faults, respectively.

Moreover, for all datasets, the accuracy loss reaches its peak
level showing that all repeated trials reach the false solution.
These results verify the analysis presented in the previous
subsection, which indicates that faults in the negative
subnetwork can simply lead to false convergence. Also, the
accuracy loss tends to be larger when faults affect the latter
layers; this is also in line with the previous analysis: these layers
are more likely to result in complete failure, consequently
leading to a substantial loss in accuracy.

The second experiment is conducted to evaluate the impact
of different fault types on the network performance. Different
types of stuck-at faults with different rates are injected into
layer r = 1. Fig. 8 shows the simulation results with the pattern
Qr = (f =m, xt,r € {1},c € {negative},v € {0,1,-1}) ,
t € [0,0.05]. The results indicate that stuck-at-max/min faults
generally result in a greater loss of accuracy compared to stuck-
at-zero faults faults. This observation aligns with the previous
analysis; the neurons stuck at extreme values exhibit larger
faulty terms, leading to more significant degradation. This
behavior is also shown to be independent of the fault rate as per
Fig. 8.

V. PROPOSED FAULT-TOLERANT SCHEMES

The analysis and simulations presented in this paper indicate
the necessity of fault-tolerant strategies to address stuck-at
faults within the TNs' negative subnetworks. Consequently, we
present a scheme containing two parts that handle stuck-at-zero
and stuck-at-max/min faults respectively; the combined use of
these two parts is essentical to prevents TNs from all types of
stuck-at faults. Simulations have been run to confirm the
effectiveness of the proposed approach.

A.  Regularization to Anchor Outputs

From the analysis in Section IV.B, the false convergence
caused by stuck-at-zero faults occurs when the outputs of the
anchor and positive subnetworks ( yfu- and y;,,i) have large

absolute values. In this case, the constraint of (5) can be simply
satisfied by the faulty term. Therefore, the first proposed fault-
tolerant scheme aims to prevent an incorrect convergence
towards large outputs in the anchor or positive terms.

To achieve this goal, an extra penalty term (i.e., the
regularization term) on the anchor outputs from different layers
is proposed to be added to the loss function; so, (4) is updated
as

m; j2
Lyroposea = max(dy, —d_+M,0) + A%, ¥.” vy, <e(7)

where m; is the dimension of the layer j and 4 is the parameter
determining the influence of the regularization term. This
regularization term can be involved in either the anchor
subnetwork or the positive subnetwork, because their outputs
tend to be the same due to the objective function. In our case
using the traditional loss function, the regularized anchor
outputs affect the calculation of both positive and negative
distances, so it is performed to better accelerate convergence.

In general, regularization is added to all layers of the
subnetwork, but when the faulty layers can be specified, it is
only required for those outputs. However, incorporating a
regularization term for all potential faulty layers can still be
expensive in propagations, particularly in the case of large-scale
ANNSs. A practical approach is to apply a filter to the outputs
(prior to activation functions) for detection purposes; its
principle and implementation are like the weight filter
introduced in [30]. This is based on the observation that the
outputs (before the non-linear mapping by the activation
functions) of fault-free layers are small (usually smaller than 1);
however, when the faulty term dominates, the absolute values
of the corresponding outputs can become more than 100 times
larger. Therefore, once the filter detects outliners, the penalty
term in (7) can be set to only regularize the specified layers. The
threshold of the filter can be set as an empirical
maximum/minimum of the layer outputs as in [30]. By using
this approach, computational costs can be reduced without the
need to regularize all potential faulty layers.

In the proposed scheme, the regularization term on the
anchor outputs can restrict the faulty units from taking a large
value; by choosing a proper parameter A, the regularization
term can prevent the false convergence that causes partial
failures. However, it does not eliminate complete failures
caused by stuck-at-max/min faults. Therefore, another
protective method is required as presented in the following
subsection.

B. Modified Margin

The complete failure is likely to happen when the fault rate
is large, especially for stuck-at-max/min faults that potentially
lead to larger faulty terms in (6). In this scenario, the TN can be
trapped at the false convergence at the beginning of the training
process, even before conducting the regularization term
functions. Therefore, an intuitive way to address this issue is to
increase the original margin M to avoid the loss getting stuck at
the false convergence very soon.

For each faulty term |yfu- - vi|, the maximum error is 2
whenv;, =1orv; =-1,-1< yfu- < 1. By (6), if the number
of faulty neurons is f, increasing the margin by 2f can ensure
that the convergence does not achieve a false solution over the
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TABLE III
ACCURACY LOSS WITH 5% OF FAULTY NEURONS IN THE NEGATIVE
SUBNETWORK USING THE PROPOSED SCHEMES

Averaged accuracy loss
Dataset -
stuck-at-zero stuck-at-max stuck-at-min
MNIST 0.00027% 0.00047% 0.00053%
Fashion-MNIST 0.00021% 0.00042% 0.00048%
CIFAR-10 0.00060% 0.00108% 0.00093%
SVHN 0.00042% 0.00075% 0.00067%

entire training process (as the initial outputs yfu- are usually
close to 0). However, the number of faulty neurons is usually
unknown in many practical applications. An appropriate margin
is critical to address the importance of the contributive triplets
[27]; setting the margin to an arbitrarily large value slows down
the convergence in the fault-free case. Therefore, increasing the
margin must be thought carefully.

We propose to modify the margin at the beginning of the
training by:

M =M+2|d_] (8)
where |d_] denotes the round-down to the largest integer
smaller than d_. Note that the margin only changes based on
the output at the first iteration, and it is fixed in the following
training process. This value assumes that the initial negative
distance is smaller than 1 in the fault-free case (valid for all
applied datasets); thus, it can be an estimate of the number of
stuck-at-max/min faults. Consider the widely used process of
weight initialization; this estimate works for most cases, and it
can also be modified by the empirical knowledge of different
applications. In summary, the modified margin M’ is required
to correctly start the training process and prevent complete
failures when stuck-at faults are present in the negative
subnetwork.

C. Evaluation

This subsection provides the simulation results for the
proposed fault-tolerant methods. Both the regularization to the
anchor outputs and the modified margin are required, as the
false convergences lead to both partial and complete failures as
illustrated in Fig. 5. In practice, the modified margin converts
the cases of complete failures to partial failures, and then the
regularization eliminates the false convergence during the
training process. Since each of them could only conditionally
solve the failures and the component of failure types is not
predictable a-priori, the two steps should be applied
simultaneously in the proposed scheme.

The fault injection process and the network configurations
are the same as those applied in the previous sections.
Simulation has been performed for faults injected into the
output layer, so also shows the worst case. The pattern of the
fault injection simulation is given by Qr = (f =m, X t,r €
{5}, c € {negative},v € {0,1,—1}), t = 0.05.

Table III reports the accuracy loss of the TN protected by the
proposed schemes with the given fault pattern; results are
averaged among 100 trails. Compared with the unprotected
results provided in Figs. 7 and 8, the accuracy loss significantly
decreases, and it is smaller than 0.00108%; moreover, it is low

also when the faults are in the positive/anchor subnetworks (Fig.

3). These results indicate that a TN can almost fully tolerate the
stuck-at faults by using the proposed schemes. Therefore, in
practical applications, the proposed fault-tolerant methods can

be utilized in TNs to avoid training failures caused by stuck-at
faults.

VI. LIMITATIONS

The validity and applicability of the findings and the
proposed protection techniques depend on the assumed model
for faults as well as errors; in this paper, this aspect was
discussed in Section II. The analysis presented in this
manuscript is defined at a functional level, so independent of
the implementation. Therefore, for a given implementation, the
fault model can be different and thus, the validity of the results
and protection techniques here presented may not be fully
applicable. As the proposed schemes and analysis are generic,
they can provide a starting point to study the dependability of
TNs (as well as other NNs) in specific schemes and applications.
The generality of the results of this manuscript capture the basic
phenomena and provide protection schemes that can be also
useful to guide the design under specific conditions, such as
physical based fault models.

VII. CONCLUSION

This paper has comprehensively studied the fault-tolerance
of Triplet Networks (TNs) when stuck-at faults are present
during the training process. Based on the analysis and
simulation results, the anchor and positive subnetworks of the
TN are shown to be insensitive to stuck-at faults; however,
faults in the negative subnetwork can cause false convergence,
leading to partial failure and complete failure. In addition to the
analysis on the occurrence of false convergence, the impact of
faults with different positions, rates, and types on the network
performance have also been evaluated. It has been shown that a
larger fault rate leads to greater accuracy loss, until all trials fall
into the complete failure case; moreover, the TN is more
sensitive to faults in the layers closer to the output layer as well
as the stuck-at-max/min faults.

Furthermore, two fault-tolerant methods have been proposed
to handle the faults in the negative subnetworks. Specifically,
the loss function with regularization on the anchor outputs has
been proposed to avoid partial failures; the so-called modified
margin with improper initializations has been proposed to avoid
complete failures. Simulation results have shown that by
applying both approaches simultaneously, the accuracy loss of
the TN significantly decreases compared to the unprotected
scheme and it is nearly zero (up to 0.00108%); therefore, the
proposed methods can be used for TNs to avoid the false
convergence and training failures caused by stuck-at faults.
Since this paper focuses on the impact of high-level functional
characterization of the stuck-at fault model on TNs, a more
detailed validation of the low-level fault model that is related to
specified implementations, will be further investigated in future
works.
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