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Abstract— Inference and on-chip training of Artificial Neural
Networks (ANNs) are challenging computational processes for
large datasets; hardware implementations are needed to
accelerate this computation, while meeting metrics such as
operating frequency, power dissipation and accuracy. In this
paper, a high-performance ASIC-based design is proposed to
implement both forward and backward propagations of multi-
layer perceptrons (MLPs) at the nanoscales. To attain a higher
accuracy, floating-point arithmetic units for a multiply-and-
accumulate (MAC) array are employed in the proposed design;
moreover, a hybrid implementation scheme is utilized to achieve
flexibility (for networks of different size) and comprehensively low
hardware overhead. The proposed design is fully pipelined, and its
performance is independent of network size, except for the
number of cycles and latency. The efficiency of the proposed
nanoscale MLP-based design for inference (as taking place over
multiple steps) and training (due to the complex processing in
backward propagation by eliminating many redundant
calculations) is analyzed. Moreover, the impact of different
floating-point precision formats on the final accuracy and
hardware metrics under the same design constraints is studied. A
comparative evaluation of the proposed MLP design for different
datasets and floating-point precision formats is provided. Results
show that compared to current schemes found in the technical
literatures, the proposed design has the best operating frequency
and accuracy with still good latency and energy dissipation.

Index Terms—Artificial neural network (ANN), multilayer
perceptron (MLP), floating-point, ASIC design, inference,
training.
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1. INTRODUCTION

M achine learning (ML) has been widely utilized to model

complex problems and discover and/or predict patterns
in applications such as speech/handwritten recognition, face
recognition, natural language processing and tracking
renewable energy [1]-[3]. Often ML relies on so-called
Artificial Neural Networks (ANNs) [4] to deal with complex
computation for Artificial Intelligence (AI), so a hardware
implementation inspired by the human brain and the operation
of its biological neurons [5]. For solving complex nonlinear
problems, an ANN has been shown to yield excellent
performance compared to conventional methods, such as
classification and regression [1]; also, the capability to
parallelize ANN computation in hardware makes ML
processing fast and efficient [6].

ANN:Ss consist of artificial neurons that are distributed among
multiple layers; each neuron in a layer is only connected to the
neurons in the previous and next layers. The fundamental
arithmetic operation of these networks is the sum of the
weighted products of the neuron values from the previous layer.
The large number of computations for a neuron is processed by
a multiplication-and-accumulation (MAC) unit [7], [8]. One of
the widely used types of ANNs is the so-called multi-layer
perceptron (MLP), which has been extensively used in deep
learning [9]. As all neurons in a layer of an MLP are connected
to the neurons in the next layer through synapses, then the
number of MAC units increases dramatically when
implementing larger networks, which makes the accelerator
design challenging for many applications [10].

Different hardware platforms have been proposed for
implementing ANNs (as accelerators) such as GPU, CPU,
FPGA, and ASIC [11], [12] Platforms such as GPUs have the
capability of parallelizing complex computations to improve
performance; however, the parallelization may incur in many
issues such as large hardware overhead and specifically the
dissipation of significant power, so limiting its application. To
overcome this issue, FPGAs that are reconfigurable and
programmable based on system parameters can be utilized;
even though unlike GPUs, their ability to parallelize complex
computational processes at high performance is very limited,
they have better power characteristics. However, an FPGA-
based implementation poses the issue of low speed and cannot
meet the demand for platforms with even lower power



> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

dissipation. Therefore, the use of ASICs has become a very
efficient solution to address these issues. Even though ASIC is
not reconfigurable as FPGAs, the higher speed and low power
dissipation make ASIC an excellent candidate to implement
ANNSs for advanced nanoscale devices and high-performance
applications [12], [13].

In this paper, an efficient ASIC-based ANN design is
proposed (specifically for MLPs) to implement on-chip training
and inference; this is achieved relying on fully pipelined
floating-point (FP) MAC units, in which the nanoscale FP
multiplication and addition blocks are designed and arranged
by taking the requirements of the ANN into account. The main
contributions of this paper are as follows:

e A fully-pipelined MAC unit design is proposed based on
our previous work of [21]; it additionally supports single
addition or multiplication operations, so it can save
several clock cycles for training that usually requires
such computation.

e Based on the redesigned MAC wunits, a hybrid
computational scheme is proposed to implement the
forward and backward propagations of an MLP; this
results in a flexible implementation that is independent
of NN size.

e To mitigate the redundant gradient computations during
training, an efficient computational process is proposed
to implement backward propagation by dividing the
often-complex calculations into several steps; this
scheme reduces the entire computational latency of
training.

e The implementation of MLPs with different floating-
point precisions (i.e., half, single, and double formats) is
investigated; hardware metrics at nano-scale (32 nm)
and accuracy are evaluated. Compared to existing MLP
designs found in the technical literature, the proposed
design achieves the best operating frequency and
classification accuracy with a reasonable latency and
energy dissipation.

The rest of this paper is organized as follows. Section II
briefly reviews the MLP and its principles for both forward and
backward propagations. Moreover, this section also elaborates
different FP precision formats for MLP computations. Section
IIT presents the proposed hybrid computational scheme and
implementation details of MLPs. Section IV fully evaluates the
proposed MLP implementation with different FP precision
formats; moreover, a comparison with other MLP schemes
found in technical literatures is also provided to show the
efficiency of the proposed hardware design. Finally, the paper
ends with the conclusion in Section V.

II. PRELIMINARIES

A. Multilayer Perceptron (MLP)

MLP and its training (using the gradient descent algorithm)
have been widely utilized in deep learning models. MLPs are a
variant of the original perceptron model introduced by
Rosenblatt [14], and they can model highly nonlinear functions
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Fig. 1. An overview of MLP: (a) network; (b) computation of single neuron;
(c) forward (blue) and backward (red) propagations in MLPs.

while being trained by new and unseen data. As depicted in Fig.
1 (a), an MLP network consists of some interconnected layers,
so modeling a non-linear transfer of an input vector to an output
vector [15]. Generally, MLPs have an input layer, at least a
hidden layer and an output layer. The number of neurons in the
input layer is determined by the size of valid sample features,
while the number of classes determines the number of neurons
in the output layer. A layer consists of multiple neurons, each
computing a non-linear function of the sum of the weighted
neuron values from the previous layer (as shown in Fig. 1 (b)).
More specifically, during inference of a fully connected
network, the value of a neuron is calculated as Eqn. 1 , where
nj*! denotes the value of neuron & in layer i+1, wjt' is the
related weight of neuron;/ in layer i mapping to neuron £ in layer
i+1, and m is the number of neurons in layer i. Also, b;** is the
bias value related to n™ and @ is the activation function (e.g.,
the widely-used ReLU [16], which is also considered in this
paper).

ntt = o(Xm, wit! - nf+ b (1)

As shown in Fig. 1 (c), the forward propagation (referred to
as inference hereafter) of an MLP calculates the neuron values
for the output layer based on the current values of the input
features and related weights, while backward propagation
compares the values of the neurons in the output layer and the
related label of the input feature to calculate the error vector
(denoted by e in Fig. 1 (c)); then this error propagates through
the input layer by adjusting the weights in each layer
accordingly.

Based on Fig. 1 (c), initially, the blue paths (representing the
inference process of an MLP) calculate the value of each neuron
by propagating data from the input layer to the output layers.
The value of the neurons is depicted in black; then by assigning
the error using a proper error loss, a similar process begins from
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the output layer and propagates through the inner layers (the red
paths) for training. In this paper, the widely used mini-batch
gradient descent algorithm [17] is considered for training and
the mean squared error (MSE) is used as the loss function as
represented in Eqn. 2. In this function, the error loss (L)
represents the mean of the squared differences between the
calculated output vector y and the expected/correct output
vector , where N is the number of neurons in the output layer.

Ly, 9) =~ 3N o(y; = 9))? )

For updating each weight in the network during training, the
first step calculates the gradient of the loss L related to such
specific weight (9L/dw ‘“(n) ) using the chain rule. By
simplifying the chain rule for each weight in the network, the
final value of the gradient is given in Eqn. 3, where §:"1(n) is
the calculated gradient value using the chain rule starting from
the output layer to neuron n;*(n), n} (n) is the neuron in layer
i, which is mapped to neuron nt*(n) in layer i+1 through the
weight w ‘“(n) [9], and # is the number of iteration (i.e., the

number of mini-batches).
aL

6T1(n) = 51+1(Tl) X Tl (Tl)

€)

The calculation of § (as related to each weight) is similar for
all layers except the output layer. Eqn. 4 formalizes these
calculations, where ¢ ranges from 1 to N, and J),(n) represents
the class related to neuron ¢ in the output layer. For layers other
than the output layer, the value of 5} (n) for neuron n} (n) in

layer i is found by multiplying n}"(n) with the sum of products
of the calculated § for each neuron in layer i+1 (651 (n)) and
their relevant weight (w ‘“(n)) with nj t(n), where k ranges
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TABLE I
FLOATING-POINT REPRESENTATIONS AND FORMATS
o # Bits .
Precision Total Exponent Mantissa Bias
HP 16 5 10 15
SP 32 8 23 127
DP 64 11 52 1023

from 0 to the number of neurons in layer i+1 (denoted by /).
834 (n) = = (YU (M) — Pa(n)) X ¥’ (n)
8i(n) = n}'(n) x Tho, 851 () x wirt(n)

The final adjusted value of the weight for a mini-batch
iteration is given in Eqn. 5, where # is the learning rate.

L+1(n + 1) — L+1(n) N—

(4)

©)

ow L+1(n)

B. IEEFE 754 Standard

Floating-point (FP) numbers have been extensively used in
digital processing; the IEEE 754 standard is considered in this
paper. Based on this standard, an FP number is represented by
using three parts denoted by S, E and M that stand for the sign,
exponent and mantissa bits, respectively [18]. The value of an
FP number in this format is given as Eqn. 6.

FPValue = (—1)5 x 2E=Bias) x (H. M), (6)
where Bias represents the exponent bias value (specific to each
precision); H is the hidden bit which is the logic OR of the
exponent bits. In this paper, the effect of half (HP), single (SP)
and double (DP) precision formats are investigated to assess
accuracy and hardware for training ANNs. More details about
these different FP representations are provided in Table I [19].

Many MLP designs only focus on accelerators for inference
and the models are usually pre-trained by software; in this case,
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Fig. 2. Proposed pipelined floating-point computational units (single-precision format): (a) an adder with 5 pipelined stages; (b) a multiplier with 4 pipelined stages.
The orange, blue and green data paths are related to the sign, exponent and mantissa data paths respectively.
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Weight SRAM

Fig. 3. An overview of the proposed MLP design using a PE array (left) and the MAC unit design in each PE (right). The MAC unit is shared for both forward and
backward propagations; however, the red muxes and wires are triggered only during training.

the fixed-point computation is commonly employed. However,
the objective of this paper is to implement training using
hardware with a reasonable overhead to achieve a high
accuracy. Therefore, the FP format is employed in the proposed
design to address the limited dynamic range of fixed-point
numbers [34], [35] which make them less efficient for training
and applications which need a very high accuracy [36], [37];
also, the effectiveness of the proposed design with FP
computation is verified by comparison with existing designs
found in the technical literature in Section I'V.

II1. PROPOSED DESIGN

In this paper, a high-performance hardware design for
implementing both forward and backward propagations of an
ANN is proposed by utilizing a hybrid floating-point MAC
array; the network computation for the different data precisions
is considered. Based on FP multiplication and addition
algorithms [18]-[20], a fully pipelined MAC circuit design has
been proposed in our previous work [21],[22]; it is redesigned
in this paper to achieve high-performance requirements of the
ANN implementation (e.g., high operational frequency). The
design of different units as well as the ANN (in particular, an
MLP) are described next'.

A. Floating-point Adder and Multiplier

The proposed FP adder design is shown in Fig. 2(a); the data
widths given in this figure are for single-precision format as an
example, but the circuit design and computation process are the
same for half/double precision formats. This adder has five
pipelined stages to complete the computation and each step
operates as follows:

State 1: The first stage filters and extracts the sign, exponent,
mantissa, and hidden bits of the input numbers which are meant
to be added.

"More details including the addition and multiplication algorithms, and the
discussion on different network implementation schemes, can be found in the
supplemental material.

State 2: This stage subtracts the exponent of two input
numbers to calculate the offset between them. Then, based on
the resulting sign, the mantissa of the smaller exponent is
selected for alignment. The number of right shifts is determined
by the offset value. Finally, the unchanged mantissa (24 bits),
the to be aligned mantissa (24 bits), and the exponent of the
larger number (8 bits) are moved to the next step.

State 3: This stage applies the alignment and then based on
the aligned data, the SGR (Sticky, Guard and Round bits)
generator is used to generate the bits required for rounding in
the next steps.

State 4: Addition is performed for the 24 most significant bits
of the aligned and the unchanged significands based on the
difference in the signs of the two input numbers. The resulting
value is sent to the leading zero detector (LZD) block (if the
result is negative, the add/sub unit inverts it back to a positive
format, while reporting the negative sign to the next step for
sign detection).

Stage 5: In this step, the LZD offset obtained in the previous
step is subtracted from the exponent of the larger number.
Similarly, the final mantissa is obtained after the normalization
and rounding steps. Also, In the LZD, it is assumed that the
point is to the right after the carry bit (the point is shifted one
bit to the left). Therefore, the final exponent needs to be
increased by 1. Moreover, after rounding, an overflow may
occur; in this case, the exponent must be updated again by
incrementing it by one. Also in this stage, the sign detection
logic chooses the final sign.

The FP multiplier design uses a similar computation
algorithm, and requires (as shown in Fig. 2(b)) the following
four pipelined stages:

Stage 1: Like the adder, filtering and extraction of the
exponent, mantissa, and hidden bits from the primary input
numbers take place in the first step.

Stage 2: The second step deals with the multiplication of the
mantissas. A Booth radix-4 multiplier [23] is used. An array of
multipliers is utilized and then added by a carry-save adder
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Fig. 4. Cycled execution of the proposed MAC unit.

Algorithm 1. MAC Computation Process

X and Y are floating-point input sequences valid till cycle R.

M1, M2 are the inputs of multiplier.

Al, A2 are the inputs of adder.

Mult_out, Add_out, DFF out, and dout are the outputs of
multiplier, adder, flipflop, and the final value of MAC unit.

Step 1: (Multiplication)
while (cycle < 4)
Activate multiplication and deactivate addition.
M1=X M2=Y; A1=0,A2=0;

Step 2: (Multiplication & Accumulation)
while (5 < cycle < R+4)
Activate multiplication and activate addition.
Ml=X M2=Y;
Al =Mult_out, A2 = 0till cycle 9 then switches to Add_out;

Step 3: (Flushing)
while (R+6 < cycle < R+23)
Deactivate multiplication and activate addition.
Al =DFF_out
if (R+10 < cycle £ R+11) A2=0;
else A2=Add_out;

if (R+5 < cycle £ R+12 & cycle = R+16)
DFF_out = fetch(add_out);
else DFF_out = unchanged;

(CSA) tree. The values of the exponents are also added by a
carry-look-ahead (CLA).

Stage 3: The result of the CSA tree is obtained using a CLA
adder. The LZD value is calculated based on it; a subtractor
decreases the bias value from the sum of the exponents.

Stage 4: The final exponent value is found by decreasing the
LZD offset from the exponent sum of Stage 3. The design
normalizes the multiplication in Stage 3 using the LZD offset
and then, it generates the SGR bits for rounding of the mantissa.

The procedure/implementation for decrementing and
incrementing is the same as in the final stage of FP adder.

B. MAC Unit

As introduced previously, the MAC unit is often

implemented to perform the computation in the neurons. Fig. 3
(right) shows the pipelined MAC unit design proposed in this
paper and it is shared by both forward and backward

propagations. Compared to the MAC design of [21], the
modified version of this paper can bypass the multiplication or
addition operations when needed. This makes the back
propagation more efficient, because when only an addition or
multiplication is required during training, the number of clock
cycles of a MAC is reduced from 9 to 5 or 4. Specifically and
shown in Fig. 3, the red multiplexers and wirings in the MAC
unit are used: (1) to send the primary inputs to the adder while
bypassing the multiplier for the addition process, or (2) send the
output of the multiplier to the primary output while bypassing
the addition for the multiplication process. Therefore, these red
multiplexers are not triggered during inference, but they start to
switch during training due to the need for both MAC and single
multiplication/addition operations.

The general MAC computation is described next. Assume
that the inputs X and Y are valid for R cycles, the multiplier unit
is activated and generates the product of the input pair after 4
cycles. Then, the multiplexers transfer this product to one input
of the adder, as activated by the control unit. Since the adder
requires 5 cycles, the other input of the adder is kept at 0 (as
selected by the second multiplexer). At the end of the 9 cycle,
both the multiplier and the adder have valid outputs. Therefore,
the second multiplexer switches to the output of the adder to
perform the accumulation and obtain the final result. The MAC
computation process and its related waveform are then
described as follows (also presented in Algorithm 1 and Fig. 4):

e  All input pairs to the multiplier are received in the first
R cycles.

e Then till cycle R + 4, the accumulation of the output
of the multiplier (Mult_out) and the output of the adder
is accomplished.

e  After receiving the last product result in cycle R + 4,
the pipeline stages can be flushed.

e  For flushing, the flip-flop (DFF) unit stores the output
of the adder (starting with cycle R + 6); it (as
DFF out) accumulates with the output of the adder at
cyclesR + 6, R + 8 and R + 10, respectively.

e Atcycle R + 12, DFF saves the output of the adder
generated from the data fetched at cycle R + 6.

e  After the results of the data fetched from cycle R + 8
are ready at cycle R + 13, then they are fetched (ag.
and az,,) at cycle R + 14 by the adder. The result is
generated by cycle R + 18.
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TABLE II
STAGE METRICS OF PIPELINED FLOATING-POINT MULTIPLIER/ADDER AFTER SYNTHESIS FOR DIFFERENT PRECISION FORMATS
Floating-point HP SP DP
Unit* Area (um?) | Power (mw) | Delay (ns) | Area (um?) | Power (mw) | Delay (ns) | Area (um?) | Power (mw) | Delay (ns)

Multiplier #2 1629.32 1.25 0.80 5935.53 3.90 1.06 24166.81 12.28 1.29
Multiplier #3 1190.67 0.90 1.07 3234.99 1.88 1.25 5786.09 2.98 1.36
Multiplier #4 1063.59 0.73 1.05 2065.43 1.31 1.24 4869.91 2.54 1.50

Adder #2 933.98 0.83 0.89 1883.97 147 1.05 3947.87 2.73 1.30

Adder #3 971.59 0.80 1.07 2314.23 1.53 1.25 4826.70 2.64 1.50

Adder #4 791.40 0.64 0.88 1671.25 1.08 1.06 3704.66 1.94 1.19

Adder #5 359.87 0.35 0.41 656.45 0.55 0.51 1236.16 0.89 0.61

* The number that follows # refers to the pipeline stage of each unit.

e Similarly, the result of the fetched inputs at cycle R +
11 is ready at cycle R + 15. The DFF saves it starting
with cycle R + 16 and then the adder fetches it as well
as dp.o at cycle R + 19; hence, the valid output is
generated at cycle R + 23.

A processing element (PE) array that is similar to the systolic
array of [24], [25], is designed by employing the proposed
MAC units to implement the forward and backward
propagations of an MLP. However, different from [24], [25],
the proposed design is intended for FP computation because this
core is used for on-chip training too; moreover, the proposed
PE array is fully pipelined for achieving a high operational
frequency. This will be explained in detail in the following
subsections.

C. Forward Propagation of MLPs

The proposed MLP design uses a hybrid configuration to
allow the use of the same PE array (Fig. 3) for both inference
and training without imposing additional hardware overhead
(and regardless of memory size). In the proposed hybrid
implementation scheme, each PE consists of a MAC unit and
an activation function (AF). The number of PEs is critical in
parallelizing the process and making the MLP computation
efficient. However, due to the limitations in hardware metrics
for some applications (such as mobile and low power systems),
a balance between latency/operational frequency and
power/area characteristics must be pursued. As a trade-off, the
proposed scheme utilizes 64 PEs in total for the MLPs
considered in this paper, but the number can be adjusted for
different models. Therefore, in our case, if a layer has A4
neurons, then [A/64] iterations are needed to allocate the PE
units for each neuron in this layer during forward/backward
propagation (where each PE represents a single neuron).

For implementing forward propagation, if the network has 4
neurons in layer i and B neurons in layer i+1, the hybrid PE
array needs [B/64] iterations to obtain the neuron values for
layer i+1; each iteration takes A+1 cycles, because each PE
consists of a single MAC unit and receives all input pairs
(neuron values and their related weight) plus a bias value
serially from layer i (consisting of 4 neurons). Then it takes
([B/64] x (4+1)) cycles to complete with layer i+1. The same
procedure is applied to other layers in the network. The final
value of each PE (PE resulf) is then saved; finally, the results
are used for calculations in the next layers during forward
propagation.

Therefore, the hybrid design is independent of network size,
because it performs calculations iteratively in multiple steps. As
shown in Fig. 3, a control unit is required in each PE in addition
to the MAC and AF units. The control unit operates when the
start signal is active (the inputs X and Y are valid) and the I/T
signal determines the inference or training. When /T is 1, the
PE operates for inference and includes the AF by considering
the sign bit of the MAC output (dout). Therefore, the PE result
is 0 if the most significant bit of dout is one, otherwise it is equal
to dout. When I/T is 0, the PE operates the training calculation
so bypassing AF; in this case, the PE result is always equal to
dout.

D. Backward Propagation of MLPs

For backward propagation, we use the mini-batch training
technique based on the gradient descent algorithm (reviewed in
Section II-A). To balance hardware with delay, the same PE
array as for inference is utilized for backward propagation. In
this case, the total area and power dissipation per cycle remain
approximately constant.

Assume that the mini-batch size is given by M, then Eqn. 2
is calculated for each of the M samples in the batch and then
averaged before adjusting the weight, i.e., Eqn. 4 is converted
to:

Moo (7

Wi () = wjit () - X5 ow i)’

Therefore, instead of decreasing the gradient of the loss
function for each element in the dataset, the average gradient
for M samples is decreased to perform training. To perform the
computations by using the proposed hybrid implementation
scheme, the following two potential strategies can be utilized.
The first solution is to calculate the gradient of the loss function
for each neuron and for each of the M samples separately and
then apply Eqn. 7. However, this method is not efficient
because there are many redundant gradient calculations. For
instance, for updating two arbitrary weights in layers i and i+1,
redundant calculations can be observed from Eqn. 8 and Eqn.
9, respectively. Based on Eqn. 3, the term (X}, 85%(n) x
witZ(n)) x ni*1'(n) of Eqn. 8 represents the calculated
gradient value 6.1 (n) related to an arbitrary neuron & in layer
i+1; this value is required to calculate the gradient of the loss
function (L) to Wj‘;1 (n). Similarly, for another arbitrary weight
in the previous layer (W;'l, ] (n)), the value of § for each neuron

in layer i+1 (including the previously mentioned neuron k) is
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TABLE III
SYNTHESIS RESULTS FOR MLP IMPLEMENTATION WITH DIFFERENT FLOATING-POINT PRECISIONS
» Area Power Freq. Inference l\’[illi-batch training delay. anﬂ the accuracy after tl:aining
Dataset | Precision 2 Size = 32 Size = 64 Size = 128
(mm”) (mw) (MHz) Delay (us) Delay (ms) | Accuracy | Delay (ms)| Accuracy | Delay (ms) | Accuracy

HP 0.37 258.33 934 2.51 1.60 98.28 % 3.14 98.40 % 6.25 98.48 %
MNIST SP 0.96 550.49 800 2.94 1.87 98.32 % 3.67 98.45 % 7.29 98.51 %

DP 2.84 1278.54 666 3.53 2.24 98.33 % 4.41 98.47 % 8.75 98.51 %

HP 0.37 258.33 934 6.60 5.14 89.72 % 10.12 90.05 % 20.10 90.22 %
SVHN SP 0.96 550.49 800 7.72 6.01 89.90 % 11.83 90.15 % 23.48 90.29 %

DP 2.84 1278.54 666 9.26 7.21 89.94 % 14.19 90.16 % 28.17 90.31 %

required to calculate the value of 6]-" (n) for neuron j in layer i;

this computation is represented by the term (X}~ 857%(n) x

witE(n)) x ni*1'(n)) in Eqn. 9, which is the same as in Eqn.

8. Therefore, during the gradient calculations by propagating
through each inner layer starting from the output layer, this term
is calculated redundantly.

6—(n) (TW, 85+2(n) X w2 (n)) x n' (n) x nf(n)(8)

= (Xbo; S () xw ')

= (X, (Xh=, 85 (n) X wit?(n)) x ni*tt'(n)) x
witl(n) x nf' (n) X n7 (n) ©)

Although these redundant gradient computations do not
affect the hardware of the proposed design (it is a hybrid
scheme and independent of the size of network), they
significantly increase latency. To address this issue, we use an
alternative scheme to decrease the latency.

So instead of computing the gradient of the loss function to
each weight separately, we first calculate the value of § for each
neuron; then the term dL/dw for each weight is calculated
based on the previously saved § values. This method is very
similar to inference and the goal is to calculate dL/dw for all
weights, starting from the output layer through the inner layers.
Specifically, for an arbitrary neuron & in layer i+1, the value of
6]-”1 is calculated by initially accumulating the product of §+2

l.+1 i’ i-
6wh (n) () xn; (n) X ny,

for each neuron in layer i+2 and its related weight with neuron
j in layer i. Then, based on Eqn. 4, the accumulated value is
multiplied by the derivative of the value of the current neuron
(n]‘) from inference. Since ReLU is utilized as activation
function?, the final values of the PEs during inference are either
0 or positive; then, the accumulation result is assigned to 0 if
the neuron value is 0 (because the derivative is 0), otherwise it
is saved as 8i**(n) (because the derivative of ReLU for
positive values is 1). For simplicity in design, during training
the PE receives the value of n]l and then based on this value, the
control unit decides to keep the PE in the reset or active mode.
If it stays in the reset mode, the PE result is 0, otherwise it is
equal to the accumulated value. Like inference, as the model is
hybrid, then this process is performed over multiple steps for
each layer.

2As application specific, the ReLU function has been considered in this
paper. However, the proposed design methodology is also applicable to other
types of activation functions. In this case, the backpropagation flow may be

changed by adding some logic circuitry to calculate the derivative of the
activation function; this is not further investigated in this paper.

After computing all § values for each neuron, the value of
the gradient for each weight is processed as in Eqn. 3. For mini-
batch training, the current gradient value is accumulated with
the previous gradient values for all samples in the mini-batch,
and the average value is used to adjust the weights as per Eqn.
7. To do so, for the arbitrary weight w; w!t? the PE array receives
the (&4t , n {(n)) and (accumulated gradient,1) pairs to
accumulate the value of the current gradient with the
accumulation of previous gradients (referred to as the
accumulated gradient) for each weight in the NN. This process
also takes multiple steps; overall, the PE array receives the pairs
GrX

1 2b=175 l+1( )) and (w/£'(n), 1) for accumulation (where

7 is the learning rate). Since the coefficient of :W—n is previously

saved in memory, then no additional computational hardware is
required in the hybrid PE array.

1V. EVALUATION

The proposed design of the MAC unit and the hybrid MLP
network using the MAC array are implemented using Verilog-
HDL and then synthesized using the Cadence Genus Synthesis
Solution. The used library is 32nm with a corner of TT and
temperature of 25°C. Two widely used ML datasets (MNIST
[26] and SVHN [27]) are used for assessing the proposed MLP
design. The network for all datasets has four layers, and the
number of neurons per layer is 784, 100, 200, 10 for MNIST,
and 1024, 100, 200, 10 for SVHN.

The hardware of the MAC unit is evaluated first. As
discussed previously, the MAC unit computes by utilizing a FP
adder and multiplier iteratively; hence, the critical path delay is
determined by the worst delay among the stages for the addition
and multiplication. Therefore, the hardware metrics of different
pipeline stages for FP multiplier/adder (Fig. 2) are evaluated in
detail. The first stage for the multiplier/adder only filters the
input data with no combinational hardware, therefore such
configuration is not considered and evaluated. Table II reports
the synthesis results for different stages of the MAC unit with
different FP precision formats; as expected, the circuit for HP
computation incurs in the lowest hardware for all evaluated
metrics, while DP requires the largest. To evaluate the
combinational elements in each stage, some flip-flops must be
inserted in the input and output to allow the set of timing
constraint on the circuits of each stage during synthesis.
Therefore, the reported results include the flip-flops too. As per
the worst path delay of the MAC unit given in Table II (i.e.,
1.07 ns for HP, 1.25 ns for SP, and 1.50 ns for DP), the timing
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TABLE IV
COMPARISON OF DIFFERENT MLP INFERENCE DESIGNS FOR MNIST DATASET

Design* Technology "I(?r 1;1:11:111[; Network Size Data Type Fr(ej:}l;;;cy (r?trrf;) EI(]:;)gy L;I::lrc;n(?;c) Accuracy
[28] FPGA-28nm x 784-8000-10 Fixed-point 266 - - 120.00 96.55%
[29] FPGA-16nm x 784-12-10 SP floating-point 100 - 0.88 1.55 93.25%
[30] FPGA-20nm x 784-1200-1200-10 Fixed-point 250 - 373.41 845.00 98.44%
[31] ASIC-130nm v 784-144-10 Fixed-point 200 6.76 6.41 2.98 94.00%
[32] ASIC-45nm x 784-1200-600-10 Fixed-point - - 1820.00 - 98.88%
[33] ASIC-65nm x 784-256-10 Fixed-point 500 0.55 3.38 25.63 96.40%
HP floating-point 934 0.37 0.65 2.51 98.40%
Proposed |~ ASIC-32nm Y 784-100-200-10 1755 ﬂoating-goint 800 0.96 1.61 2.94 98.45%

* For [28] and [32], only the performance metrics reported in the references are given, so few entries are missing in this table.

constraint of the PE array is accordingly set during synthesis to
ensure proper operation.

The synthesis results of the proposed MLP design (i.e., the
PE array) for both inference and training (using mini-batch
sizes of 32, 64, and 128 as examples) are given in Table III; the
hardware metrics for different datasets and FP precision
formats are evaluated without considering the SRAM
requirements. Since a hybrid design is proposed for NN
computation, area and power dissipation per cycle remain
constant for different datasets when using the same precision
format; however, the delays of inference (forward propagation)
and training (forward and backward propagation) depend on the
NN size (shown in Table III). As per this table, HP and SP tend
to be a better solution for MLP computation compared to DP;
while achieving the same or slightly lower ML accuracy than
DP, HP and SP permit a significantly higher operating
frequency and lower hardware overhead for the ASIC
hardware.

As shown in Fig. 3, the proposed MLP designs require
SRAMs external to the PEs to store the network parameters and
temporary computation results; the size of the memories is
dependent on the dataset as well as directly proportional to the
FP data format (in the case of SP, the memory is twice as large
as HP and only half of DP). Our evaluation has found that for
SP, the proposed designs require 786.79 MB for MNIST and
974.29 KB for SVHN (the memory size should be adjusted for
other FP data formats as previously discussed).

For comparison purposes, Table IV shows the results for
different MLP designs found in the technical literature for the
MNIST dataset; the proposed designs with HP and SP
computation formats are considered for comparison. As per
Table IV, the proposed design offers the best operating
frequency despite the added complexity of using a FP
implementation compared to some of the others. When
considering accuracy, the proposed design also shows a very
good result due to the mini-batch training and FP computation.
Although the design of [32] achieves the highest accuracy, it is
due to a more complex model, so accounting for a large energy
dissipation.

Due to the different employed technology conditions (such
as high node feature size and FPGAs as platform for design), a
quantitative comparison in terms of hardware for the MLP
designs is not always possible; however, the proposed design
has reasonable energy dissipation and latency (as reported in
Table IV). Moreover, the proposed MLP design is independent

of network size, which makes it a general-purpose core for
implementing ANNSs. It should also be noted that only the
proposed scheme and the design of [31] have an on-chip
training capability and the proposed scheme has the better
performance.

V. CONCLUSION

In this paper a high-performance ASIC-based design for
implementing the computational core for both inference and
training (on-chip) of ANNs has been proposed; this design
relies on a hybrid processing element (PE) array that employs
pipelined floating-point MAC units. The proposed design is
highly flexible because its hardware is independent of network
size and allows the use of the same PE array for both forward
and backward propagations without imposing any additional
hardware overhead (however, this independence in metric is not
applicable to latency). An MLP has been designed for both
these propagations and by utilizing three different floating-
point formats (half, single and double precision), the evaluation
results have shown that the design with either half or single
precision format is more attractive for MLP implementation
due to the significantly lower hardware (while achieving the
same or slightly lower classification accuracy compared to
double precision). Moreover, in general, the proposed design
has been shown to be superior in terms of operating frequency
and energy compared to other schemes found in the technical
literature.
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