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Abstract— Inference and on-chip training of Artificial Neural 
Networks (ANNs) are challenging computational processes for 
large datasets; hardware implementations are needed to 
accelerate this computation, while meeting metrics such as 
operating frequency, power dissipation and accuracy. In this 
paper, a high-performance ASIC-based design is proposed to 
implement both forward and backward propagations of multi-
layer perceptrons (MLPs) at the nanoscales. To attain a higher 
accuracy, floating-point arithmetic units for a multiply-and-
accumulate (MAC) array are employed in the proposed design; 
moreover, a hybrid implementation scheme is utilized to achieve 
flexibility (for networks of different size) and comprehensively low 
hardware overhead. The proposed design is fully pipelined, and its 
performance is independent of network size, except for the 
number of cycles and latency. The efficiency of the proposed 
nanoscale MLP-based design for inference (as taking place over 
multiple steps) and training (due to the complex processing in 
backward propagation by eliminating many redundant 
calculations) is analyzed. Moreover, the impact of different 
floating-point precision formats on the final accuracy and 
hardware metrics under the same design constraints is studied. A 
comparative evaluation of the proposed MLP design for different 
datasets and floating-point precision formats is provided. Results 
show that compared to current schemes found in the technical 
literatures, the proposed design has the best operating frequency 
and accuracy with still good latency and energy dissipation.   

 
Index Terms—Artificial neural network (ANN), multilayer 

perceptron (MLP), floating-point, ASIC design, inference, 
training. 

I. INTRODUCTION 
achine learning (ML) has been widely utilized to model 
complex problems and discover and/or predict patterns 

in applications such as speech/handwritten recognition, face 
recognition, natural language processing and tracking 
renewable energy [1]-[3]. Often ML relies on so-called 
Artificial Neural Networks (ANNs) [4] to deal with complex 
computation for Artificial Intelligence (AI), so a hardware 
implementation inspired by the human brain and the operation 
of its biological neurons [5]. For solving complex nonlinear 
problems, an ANN has been shown to yield excellent 
performance compared to conventional methods, such as 
classification and regression [1]; also, the capability to 
parallelize ANN computation in hardware makes ML 
processing fast and efficient [6].  

ANNs consist of artificial neurons that are distributed among 
multiple layers; each neuron in a layer is only connected to the 
neurons in the previous and next layers. The fundamental 
arithmetic operation of these networks is the sum of the 
weighted products of the neuron values from the previous layer. 
The large number of computations for a neuron is processed by 
a multiplication-and-accumulation (MAC) unit [7], [8]. One of 
the widely used types of ANNs is the so-called multi-layer 
perceptron (MLP), which has been extensively used in deep 
learning [9]. As all neurons in a layer of an MLP are connected 
to the neurons in the next layer through synapses, then the 
number of MAC units increases dramatically when 
implementing larger networks, which makes the accelerator 
design challenging for many applications [10]. 

Different hardware platforms have been proposed for 
implementing ANNs (as accelerators) such as GPU, CPU, 
FPGA, and ASIC [11], [12] Platforms such as GPUs have the 
capability of parallelizing complex computations to improve 
performance; however, the parallelization may incur in many 
issues such as large hardware overhead and specifically the 
dissipation of significant power, so limiting its application. To 
overcome this issue, FPGAs that are reconfigurable and 
programmable based on system parameters can be utilized; 
even though unlike GPUs, their ability to parallelize complex 
computational processes at high performance is very limited, 
they have better power characteristics. However, an FPGA-
based implementation poses the issue of low speed and cannot 
meet the demand for platforms with even lower power 
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dissipation. Therefore, the use of ASICs has become a very 
efficient solution to address these issues. Even though ASIC is 
not reconfigurable as FPGAs, the higher speed and low power 
dissipation make ASIC an excellent candidate to implement 
ANNs for advanced nanoscale devices and high-performance 
applications [12], [13].  

In this paper, an efficient ASIC-based ANN design is 
proposed (specifically for MLPs) to implement on-chip training 
and inference; this is achieved relying on fully pipelined 
floating-point (FP) MAC units, in which the nanoscale FP 
multiplication and addition blocks are designed and arranged 
by taking the requirements of the ANN into account.  The main 
contributions of this paper are as follows: 
• A fully-pipelined MAC unit design is proposed based on 

our previous work of [21]; it additionally supports single 
addition or multiplication operations, so it can save 
several clock cycles for training that usually requires 
such computation.  

• Based on the redesigned MAC units, a hybrid 
computational scheme is proposed to implement the 
forward and backward propagations of an MLP; this 
results in a flexible implementation that is independent 
of NN size. 

• To mitigate the redundant gradient computations during 
training, an efficient computational process is proposed 
to implement backward propagation by dividing the 
often-complex calculations into several steps; this 
scheme reduces the entire computational latency of 
training.  

• The implementation of MLPs with different floating-
point precisions (i.e., half, single, and double formats) is 
investigated; hardware metrics at nano-scale (32 nm) 
and accuracy are evaluated. Compared to existing MLP 
designs found in the technical literature, the proposed 
design achieves the best operating frequency and 
classification accuracy with a reasonable latency and 
energy dissipation.     

The rest of this paper is organized as follows. Section II 
briefly reviews the MLP and its principles for both forward and 
backward propagations. Moreover, this section also elaborates 
different FP precision formats for MLP computations. Section 
III presents the proposed hybrid computational scheme and 
implementation details of MLPs. Section IV fully evaluates the 
proposed MLP implementation with different FP precision 
formats; moreover, a comparison with other MLP schemes 
found in technical literatures is also provided to show the 
efficiency of the proposed hardware design. Finally, the paper 
ends with the conclusion in Section V.  

II. PRELIMINARIES 

A. Multilayer Perceptron (MLP)  
MLP and its training (using the gradient descent algorithm) 

have been widely utilized in deep learning models. MLPs are a 
variant of the original perceptron model introduced by 
Rosenblatt [14], and they can model highly nonlinear functions 

while being trained by new and unseen data. As depicted in Fig. 
1 (a), an MLP network consists of some interconnected layers, 
so modeling a non-linear transfer of an input vector to an output 
vector [15]. Generally, MLPs have an input layer, at least a 
hidden layer and an output layer. The number of neurons in the 
input layer is determined by the size of valid sample features, 
while the number of classes determines the number of neurons 
in the output layer. A layer consists of multiple neurons, each 
computing a non-linear function of the sum of the weighted 
neuron values from the previous layer (as shown in Fig. 1 (b)). 
More specifically, during inference of a fully connected 
network, the value of a neuron is calculated as Eqn. 1 , where 
!"
#$%  denotes the value of neuron k in layer i+1, &',"#$%  is the 

related weight of neuron j in layer i mapping to neuron k in layer 
i+1, and m is the number of neurons in layer i. Also, )"#$% is the 
bias value related to !"#$% and * is the activation function (e.g., 
the widely-used ReLU [16], which is also considered in this 
paper).  
                         !"

#$% = *,∑ &.,/
0+1 ∙ !'

#4
.=1 + )/

0+15                     (1) 
As shown in Fig. 1 (c), the forward propagation (referred to 

as inference hereafter) of an MLP calculates the neuron values 
for the output layer based on the current values of the input 
features and related weights, while backward propagation 
compares the values of the neurons in the output layer and the 
related label of the input feature to calculate the error vector 
(denoted by e in Fig. 1 (c)); then this error propagates through 
the input layer by adjusting the weights in each layer 
accordingly.   

Based on Fig. 1 (c), initially, the blue paths (representing the 
inference process of an MLP) calculate the value of each neuron 
by propagating data from the input layer to the output layers. 
The value of the neurons is depicted in black; then by assigning 
the error using a proper error loss, a similar process begins from 

 
Fig. 1. An overview of MLP: (a) network; (b) computation of single neuron; 
(c) forward (blue) and backward (red) propagations in MLPs. 
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the output layer and propagates through the inner layers (the red 
paths) for training. In this paper, the widely used mini-batch 
gradient descent algorithm [17] is considered for training and 
the mean squared error (MSE) is used as the loss function as 
represented in Eqn. 2. In this function, the error loss (L) 
represents the mean of the squared differences between the 
calculated output vector y and the expected/correct output 
vector 67, where N is the number of neurons in the output layer. 

                        8(6, 67) = %

;
∑ (6' − 67')

=;
'>?                           (2)      

  For updating each weight in the network during training, the 
first step calculates the gradient of the loss L related to such 
specific weight ( @8 @&',"

#$%(!)⁄ ) using the chain rule. By 
simplifying the chain rule for each weight in the network, the 
final value of the gradient is given in Eqn. 3, where B"#$%(!) is 
the calculated gradient value using the chain rule starting from 
the output layer to neuron !"#$%(!),  !'#(!) is the neuron in layer 
i, which is mapped to neuron !"#$%(!) in layer i+1 through the 
weight &',"#$%(!) [9], and n is the number of iteration (i.e., the 
number of mini-batches).  

                        FG

FHI,J
KLM(N)

= B"
#$%(!) × !'

#(!)                          (3)      

 The calculation of B (as related to each weight) is similar for 
all layers except the output layer. Eqn. 4 formalizes these 
calculations, where q ranges from 1 to N, and 67P(!) represents 
the class related to neuron q in the output layer. For layers other 
than the output layer, the value of B'#(!) for neuron !'#(!) in 
layer i is found by multiplying !'#

Q
(!) with the sum of products 

of the calculated B for each neuron in layer i+1 (B"#$%(!)) and 
their relevant weight (&',"#$%(!)) with !'#(!), where k ranges 

from 0 to the number of neurons in layer i+1 (denoted by l).	

S
δP
UVW(!) =

=

;
(6P

UVW(!) − 67P(!)) × 6P
UVWQ(!)		

δ'
#(!) = !'

#Q(!) × ∑ δ"
#$%(!) × &',"

#$%(!)X
">% 				

       (4) 

The final adjusted value of the weight for a mini-batch 
iteration is given in Eqn. 5, where η is the learning rate. 

                  &',"#$%(! + 1) = &',"
#$%(!) − Y

FG

FHI,J
KLM(N)

             (5) 

B. IEEE 754 Standard 
Floating-point (FP) numbers have been extensively used in 

digital processing; the IEEE 754 standard is considered in this 
paper. Based on this standard, an FP number is represented by 
using three parts denoted by S, E and M that stand for the sign, 
exponent and mantissa bits, respectively [18]. The value of an 
FP number in this format is given as Eqn. 6. 

            Z[	\]^_` = (−1)a × 2(cde#fg) × (h.j),  (6) 
where Bias represents the exponent bias value (specific to each 
precision); H is the hidden bit which is the logic OR of the 
exponent bits. In this paper, the effect of half (HP), single (SP) 
and double (DP) precision formats are investigated to assess 
accuracy and hardware for training ANNs. More details about 
these different FP representations are provided in Table I [19]. 

Many MLP designs only focus on accelerators for inference 
and the models are usually pre-trained by software; in this case, 

               

(a)                                                                                                                             (b) 
Fig. 2. Proposed pipelined floating-point computational units (single-precision format): (a) an adder with 5 pipelined stages; (b) a multiplier with 4 pipelined stages. 
The orange, blue and green data paths are related to the sign, exponent and mantissa data paths respectively. 

 

 

TABLE I 
FLOATING-POINT REPRESENTATIONS AND FORMATS 

Precision # Bits   Bias 
Total Exponent Mantissa 

HP 16 5 10 15 
SP 32 8 23 127 
DP 64 11 52 1023 
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the fixed-point computation is commonly employed. However, 
the objective of this paper is to implement training using 
hardware with a reasonable overhead to achieve a high 
accuracy. Therefore, the FP format is employed in the proposed 
design to address the limited dynamic range of fixed-point 
numbers [34], [35] which make them less efficient for training 
and applications which need a very high accuracy [36], [37]; 
also, the effectiveness of the proposed design with FP 
computation is verified by comparison with existing designs 
found in the technical literature in Section IV. 

III. PROPOSED DESIGN 
In this paper, a high-performance hardware design for 

implementing both forward and backward propagations of an 
ANN is proposed by utilizing a hybrid floating-point MAC 
array; the network computation for the different data precisions 
is considered. Based on FP multiplication and addition 
algorithms [18]-[20], a fully pipelined MAC circuit design has 
been proposed in our previous work [21],[22]; it is redesigned 
in this paper to achieve high-performance requirements of the 
ANN implementation (e.g., high operational frequency). The 
design of different units as well as the ANN (in particular, an 
MLP) are described next1. 

A. Floating-point Adder and Multiplier 
The proposed FP adder design is shown in Fig. 2(a); the data 

widths given in this figure are for single-precision format as an 
example, but the circuit design and computation process are the 
same for half/double precision formats. This adder has five 
pipelined stages to complete the computation and each step 
operates as follows: 

State 1: The first stage filters and extracts the sign, exponent, 
mantissa, and hidden bits of the input numbers which are meant 
to be added.  

State 2: This stage subtracts the exponent of two input 
numbers to calculate the offset between them. Then, based on 
the resulting sign, the mantissa of the smaller exponent is 
selected for alignment. The number of right shifts is determined 
by the offset value. Finally, the unchanged mantissa (24 bits), 
the to be aligned mantissa (24 bits), and the exponent of the 
larger number (8 bits) are moved to the next step. 

State 3: This stage applies the alignment and then based on 
the aligned data, the SGR (Sticky, Guard and Round bits) 
generator is used to generate the bits required for rounding in 
the next steps. 

State 4: Addition is performed for the 24 most significant bits 
of the aligned and the unchanged significands based on the 
difference in the signs of the two input numbers. The resulting 
value is sent to the leading zero detector (LZD) block (if the 
result is negative, the add/sub unit inverts it back to a positive 
format, while reporting the negative sign to the next step for 
sign detection). 

Stage 5: In this step, the LZD offset obtained in the previous 
step is subtracted from the exponent of the larger number. 
Similarly, the final mantissa is obtained after the normalization 
and rounding steps. Also, In the LZD, it is assumed that the 
point is to the right after the carry bit (the point is shifted one 
bit to the left). Therefore, the final exponent needs to be 
increased by 1. Moreover, after rounding, an overflow may 
occur; in this case, the exponent must be updated again by 
incrementing it by one. Also in this stage, the sign detection 
logic chooses the final sign. 

The FP multiplier design uses a similar computation 
algorithm, and requires (as shown in Fig. 2(b)) the following 
four pipelined stages: 

Stage 1: Like the adder, filtering and extraction of the 
exponent, mantissa, and hidden bits from the primary input 
numbers take place in the first step. 

Stage 2: The second step deals with the multiplication of the 
mantissas. A Booth radix-4 multiplier [23] is used. An array of 
multipliers is utilized and then added by a carry-save adder 

 

Fig. 3. An overview of the proposed MLP design using a PE array (left) and the MAC unit design in each PE (right). The MAC unit is shared for both forward and 
backward propagations; however, the red muxes and wires are triggered only during training. 

 

 

1More details including the addition and multiplication algorithms, and the 
discussion on different network implementation schemes, can be found in the 
supplemental material. 
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(CSA) tree. The values of the exponents are also added by a 
carry-look-ahead (CLA). 

Stage 3: The result of the CSA tree is obtained using a CLA 
adder. The LZD value is calculated based on it; a subtractor 
decreases the bias value from the sum of the exponents. 

Stage 4: The final exponent value is found by decreasing the 
LZD offset from the exponent sum of Stage 3. The design 
normalizes the multiplication in Stage 3 using the LZD offset 
and then, it generates the SGR bits for rounding of the mantissa. 
The procedure/implementation for decrementing and 
incrementing is the same as in the final stage of FP adder. 

B. MAC Unit 
As introduced previously, the MAC unit is often 

implemented to perform the computation in the neurons. Fig. 3 
(right) shows the pipelined MAC unit design proposed in this 
paper and it is shared by both forward and backward 

propagations. Compared to the MAC design of [21], the 
modified version of this paper can bypass the multiplication or 
addition operations when needed. This makes the back 
propagation more efficient, because when only an addition or 
multiplication is required during training, the number of clock 
cycles of a MAC is reduced from 9 to 5 or 4. Specifically and 
shown in Fig. 3, the red multiplexers and wirings in the MAC 
unit are used: (1) to send the primary inputs to the adder while 
bypassing the multiplier for the addition process, or (2) send the 
output of the multiplier to the primary output while bypassing 
the addition for the multiplication process. Therefore, these red 
multiplexers are not triggered during inference, but they start to 
switch during training due to the need for both MAC and single 
multiplication/addition operations.  

The general MAC computation is described next. Assume 
that the inputs X and Y are valid for R cycles, the multiplier unit 
is activated and generates the product of the input pair after 4 
cycles. Then, the multiplexers transfer this product to one input 
of the adder, as activated by the control unit. Since the adder 
requires 5 cycles, the other input of the adder is kept at 0 (as 
selected by the second multiplexer). At the end of the 9th cycle, 
both the multiplier and the adder have valid outputs. Therefore, 
the second multiplexer switches to the output of the adder to 
perform the accumulation and obtain the final result. The MAC 
computation process and its related waveform are then 
described as follows (also presented in Algorithm 1 and Fig. 4): 

• All input pairs to the multiplier are received in the first 
R cycles. 

• Then till cycle R + 4, the accumulation of the output 
of the multiplier (Mult_out) and the output of the adder 
is accomplished. 

• After receiving the last product result in cycle R + 4, 
the pipeline stages can be flushed. 

• For flushing, the flip-flop (DFF) unit stores the output 
of the adder (starting with cycle R + 6); it (as 
DFF_out) accumulates with the output of the adder at 
cycles R + 6, R + 8 and R + 10, respectively.  

• At cycle R + 12, DFF saves the output of the adder 
generated from the data fetched at cycle R + 6.  

• After the results of the data fetched from cycle R + 8 
are ready at cycle R + 13, then they are fetched (]k$= 
and ]k$l) at cycle R + 14 by the adder. The result is 
generated by cycle R + 18.  

Algorithm 1. MAC Computation Process 
X and Y are floating-point input sequences valid till cycle R.  
M1, M2 are the inputs of multiplier. 
A1, A2 are the inputs of adder. 
Mult_out, Add_out, DFF_out, and dout are the outputs of 
multiplier, adder, flipflop, and the final value of MAC unit. 
 
Step 1: (Multiplication) 
    while (cycle ≤ 4) 
        Activate multiplication and deactivate addition. 
        M1 = X, M2 = Y; A1 = 0, A2 = 0;   
       
Step 2: (Multiplication & Accumulation) 
    while (5 ≤ cycle ≤ R+4) 
        Activate multiplication and activate addition. 
        M1 = X, M2 = Y;  
        A1 = Mult_out, A2 = 0 till cycle 9 then switches to Add_out; 
 
Step 3: (Flushing) 
    while (R+6 ≤ cycle ≤ R+23) 
        Deactivate multiplication and activate addition. 
        A1 = DFF_out 
        if (R+10 ≤ cycle ≤ R+11)    A2 = 0;    
        else    A2 = Add_out; 
 
        if (R+5 ≤ cycle ≤ R+12 & cycle = R+16)     
            DFF_out = fetch(add_out);     
        else DFF_out = unchanged; 

 

 
Fig. 4. Cycled execution of the proposed MAC unit. 
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• Similarly, the result of the fetched inputs at cycle R + 
11 is ready at cycle R + 15. The DFF saves it starting 
with cycle R + 16 and then the adder fetches it as well 
as ]k$m at cycle R + 19; hence, the valid output is 
generated at cycle R + 23. 

 A processing element (PE) array that is similar to the systolic 
array of [24], [25], is designed by employing the proposed 
MAC units to implement the forward and backward 
propagations of an MLP. However, different from [24], [25], 
the proposed design is intended for FP computation because this 
core is used for on-chip training too; moreover, the proposed 
PE array is fully pipelined for achieving a high operational 
frequency. This will be explained in detail in the following 
subsections. 

C. Forward Propagation of MLPs 
The proposed MLP design uses a hybrid configuration to 

allow the use of the same PE array (Fig. 3) for both inference 
and training without imposing additional hardware overhead 
(and regardless of memory size). In the proposed hybrid 
implementation scheme, each PE consists of a MAC unit and 
an activation function (AF). The number of PEs is critical in 
parallelizing the process and making the MLP computation 
efficient. However, due to the limitations in hardware metrics 
for some applications (such as mobile and low power systems), 
a balance between latency/operational frequency and 
power/area characteristics must be pursued. As a trade-off, the 
proposed scheme utilizes 64 PEs in total for the MLPs 
considered in this paper, but the number can be adjusted for 
different models. Therefore, in our case, if a layer has A 
neurons, then ⌈o/64⌉ iterations are needed to allocate the PE 
units for each neuron in this layer during forward/backward 
propagation (where each PE represents a single neuron).  

For implementing forward propagation, if the network has A 
neurons in layer i and B neurons in layer i+1, the hybrid PE 
array needs ⌈t/64⌉ iterations to obtain the neuron values for 
layer i+1; each iteration takes A+1 cycles, because each PE 
consists of a single MAC unit and receives all input pairs 
(neuron values and their related weight) plus a bias value 
serially from layer i (consisting of A neurons). Then it takes 
(⌈t/64⌉ × (A+1)) cycles to complete with layer i+1. The same 
procedure is applied to other layers in the network. The final 
value of each PE (PE result) is then saved; finally, the results 
are used for calculations in the next layers during forward 
propagation.  

Therefore, the hybrid design is independent of network size, 
because it performs calculations iteratively in multiple steps. As 
shown in Fig. 3, a control unit is required in each PE in addition 
to the MAC and AF units. The control unit operates when the 
start signal is active (the inputs X and Y are valid) and the I/T 
signal determines the inference or training. When I/T is 1, the 
PE operates for inference and includes the AF by considering 
the sign bit of the MAC output (dout). Therefore, the PE result 
is 0 if the most significant bit of dout is one, otherwise it is equal 
to dout. When I/T is 0, the PE operates the training calculation 
so bypassing AF; in this case, the PE result is always equal to 
dout. 

D. Backward Propagation of MLPs 
For backward propagation, we use the mini-batch training 

technique based on the gradient descent algorithm (reviewed in 
Section II-A). To balance hardware with delay, the same PE 
array as for inference is utilized for backward propagation. In 
this case, the total area and power dissipation per cycle remain 
approximately constant.  

Assume that the mini-batch size is given by M, then Eqn. 2 
is calculated for each of the M samples in the batch and then 
averaged before adjusting the weight, i.e., Eqn. 4 is converted 
to: 
                  &',"#$%(!) = &',"

#$%(!) −
u

v
∑

FGw

FHI,J
KLM(N)

v
x>% .                (7) 

Therefore, instead of decreasing the gradient of the loss 
function for each element in the dataset, the average gradient 
for M samples is decreased to perform training. To perform the 
computations by using the proposed hybrid implementation 
scheme, the following two potential strategies can be utilized. 
The first solution is to calculate the gradient of the loss function 
for each neuron and for each of the M samples separately and 
then apply Eqn. 7. However, this method is not efficient 
because there are many redundant gradient calculations. For 
instance, for updating two arbitrary weights in layers i and i+1, 
redundant calculations can be observed from Eqn. 8 and Eqn. 
9, respectively. Based on Eqn. 3, the term (∑ 	δy

#$=(!) ×z
y>%

&",y
#$=(!)) × !"

#$%Q(!)  of Eqn. 8 represents the calculated 
gradient value B"#$%(!) related to an arbitrary neuron k in layer 
i+1; this value is required to calculate the gradient of the loss 
function (L) to &',"#$%	(!). Similarly, for another arbitrary weight 
in the previous layer (&{,'#	 (!)), the value of B for each neuron 
in layer i+1 (including the previously mentioned neuron k) is 

TABLE II 
STAGE METRICS OF PIPELINED FLOATING-POINT MULTIPLIER/ADDER AFTER SYNTHESIS FOR DIFFERENT PRECISION FORMATS  

Floating-point 
Unit* 

HP SP DP 
Area (|}~) Power (}�) Delay (ÄÅ) Area (|}~) Power (}�) Delay (ÄÅ) Area (|}~) Power (}�) Delay (ÄÅ) 

Multiplier #2 1629.32 1.25 0.80 5935.53 3.90 1.06 24166.81 12.28 1.29 
Multiplier #3 1190.67 0.90 1.07 3234.99 1.88 1.25 5786.09 2.98 1.36 
Multiplier #4 1063.59 0.73 1.05 2065.43 1.31 1.24 4869.91 2.54 1.50 

Adder #2 933.98 0.83 0.89 1883.97 1.47 1.05 3947.87 2.73 1.30 
Adder #3 971.59 0.80 1.07 2314.23 1.53 1.25 4826.70 2.64 1.50 
Adder #4 791.40 0.64 0.88 1671.25 1.08 1.06 3704.66 1.94 1.19 
Adder #5 359.87 0.35 0.41 656.45 0.55 0.51 1236.16 0.89 0.61 

* The number that follows # refers to the pipeline stage of each unit. 
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required to calculate the value of B'#(!) for neuron j in layer i; 
this computation is represented by the term ((∑ 	δy

#$=(!) ×z
y>%

&Ç,y
#$=(!)) × !Ç

#$%Q(!)) in Eqn. 9, which is the same as in Eqn. 
8. Therefore, during the gradient calculations by propagating 
through each inner layer starting from the output layer, this term 
is calculated redundantly.  

FG

FHI,J
KLM	(N)

= (∑ 	δy
#$=(!) × &",y

#$=(!)) × !"
#$%Q(!) × !'

#(!)z
y>% (8)  

FG

FHÉ,I
K	 (N)

= (∑ 	δÇ
#$%(!) × &',Ç

#$%(!)) × !'
#Q(!) × !{

#d%(!)Ñ
Ç>% 	   

														= (∑ 	((∑ 	δy
#$=(!) × &Ç,y

#$=(!)) × !Ç
#$%Q(!))z

y>% ×Ñ
Ç>%

																			&',Ç
#$%(!)) × !'

#Q(!) × !{
#d%(!)	                             (9)                                                                                                

Although these redundant gradient computations do not 
affect the hardware of the proposed design (it is a hybrid 
scheme and independent of the size of network), they 
significantly increase latency. To address this issue, we use an 
alternative scheme to decrease the latency. 

So instead of computing the gradient of the loss function to 
each weight separately, we first calculate the value of B for each 
neuron; then the term @8 @&⁄  for each weight is calculated 
based on the previously saved B values. This method is very 
similar to inference and the goal is to calculate @8 @&⁄  for all 
weights, starting from the output layer through the inner layers. 
Specifically, for an arbitrary neuron k in layer i+1, the value of 
B'
#$% is calculated by initially accumulating the product of B#$= 

for each neuron in layer i+2 and its related weight with neuron 
j in layer i. Then, based on Eqn. 4, the accumulated value is 
multiplied by the derivative of the value of the current neuron 
( !'#)  from inference. Since ReLU is utilized as activation 
function2, the final values of the PEs during inference are either 
0 or positive; then, the accumulation result is assigned to 0 if 
the neuron value is 0 (because the derivative is 0), otherwise it 
is saved as B"#$%(!)  (because the derivative of ReLU for 
positive values is 1). For simplicity in design, during training 
the PE receives the value of !'# and then based on this value, the 
control unit decides to keep the PE in the reset or active mode. 
If it stays in the reset mode, the PE result is 0, otherwise it is 
equal to the accumulated value. Like inference, as the model is 
hybrid, then this process is performed over multiple steps for 
each layer. 

 After computing all B values for each neuron, the value of 
the gradient for each weight is processed as in Eqn. 3. For mini-
batch training, the current gradient value is accumulated with 
the previous gradient values for all samples in the mini-batch, 
and the average value is used to adjust the weights as per Eqn. 
7. To do so, for the arbitrary weight &',"#$%, the PE array receives 
the ( B"#$%  , !'#(!) ) and (accumulated gradient,1) pairs to 
accumulate the value of the current gradient with the 
accumulation of previous gradients (referred to as the 
accumulated gradient) for each weight in the NN. This process 
also takes multiple steps; overall, the PE array receives the pairs 
(du
v
, ∑

FG

FHI,J
KLM(N)

v
x>% ) and (&',"#$%(!), 1) for accumulation (where 

Y is the learning rate). Since the coefficient of du
v

 is previously 
saved in memory, then no additional computational hardware is 
required in the hybrid PE array.  

IV. EVALUATION 
The proposed design of the MAC unit and the hybrid MLP 

network using the MAC array are implemented using Verilog-
HDL and then synthesized using the Cadence Genus Synthesis 
Solution. The used library is 32nm with a corner of TT and 
temperature of 25°C. Two widely used ML datasets (MNIST 
[26] and SVHN [27]) are used for assessing the proposed MLP 
design. The network for all datasets has four layers, and the 
number of neurons per layer is 784, 100, 200, 10 for MNIST, 
and 1024, 100, 200, 10 for SVHN.  

The hardware of the MAC unit is evaluated first. As 
discussed previously, the MAC unit computes by utilizing a FP 
adder and multiplier iteratively; hence, the critical path delay is 
determined by the worst delay among the stages for the addition 
and multiplication. Therefore, the hardware metrics of different 
pipeline stages for FP multiplier/adder (Fig. 2) are evaluated in 
detail. The first stage for the multiplier/adder only filters the 
input data with no combinational hardware, therefore such 
configuration is not considered and evaluated. Table II reports 
the synthesis results for different stages of the MAC unit with 
different FP precision formats; as expected, the circuit for HP 
computation incurs in the lowest hardware for all evaluated 
metrics, while DP requires the largest. To evaluate the 
combinational elements in each stage, some flip-flops must be 
inserted in the input and output to allow the set of timing 
constraint on the circuits of each stage during synthesis. 
Therefore, the reported results include the flip-flops too. As per 
the worst path delay of the MAC unit given in Table II (i.e., 
1.07 ns for HP, 1.25 ns for SP, and 1.50 ns for DP), the timing 

TABLE III 
SYNTHESIS RESULTS FOR MLP IMPLEMENTATION WITH DIFFERENT FLOATING-POINT PRECISIONS 

Dataset Precision Area 
(}}~) 

Power 
(}�) 

Freq. 
(ÖÜá) 

Inference 
Delay (|Å) 

Mini-batch training delay and the accuracy after training  
Size = 32 Size = 64 Size = 128 

Delay (mÅ) Accuracy Delay (mÅ) Accuracy Delay (mÅ) Accuracy 

MNIST 
HP 0.37 258.33 934 2.51 1.60 98.28 % 3.14 98.40 % 6.25 98.48 % 
SP 0.96 550.49 800 2.94 1.87 98.32 % 3.67 98.45 % 7.29 98.51 % 
DP 2.84 1278.54 666 3.53 2.24 98.33 % 4.41 98.47 % 8.75 98.51 % 

SVHN 
HP 0.37 258.33 934 6.60 5.14 89.72 % 10.12 90.05 %  20.10 90.22 % 
SP 0.96 550.49 800 7.72 6.01 89.90 % 11.83 90.15 % 23.48 90.29 % 
DP 2.84 1278.54 666 9.26 7.21 89.94 % 14.19 90.16 % 28.17 90.31 % 

 

2As application specific, the ReLU function has been considered in this 
paper. However, the proposed design methodology is also applicable to other 
types of activation functions. In this case, the backpropagation flow may be 
changed by adding some logic circuitry to calculate the derivative of the 
activation function; this is not further investigated in this paper. 
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constraint of the PE array is accordingly set during synthesis to 
ensure proper operation. 

The synthesis results of the proposed MLP design (i.e., the 
PE array) for both inference and training (using mini-batch 
sizes of 32, 64, and 128 as examples) are given in Table III; the 
hardware metrics for different datasets and FP precision 
formats are evaluated without considering the SRAM 
requirements. Since a hybrid design is proposed for NN 
computation, area and power dissipation per cycle remain 
constant for different datasets when using the same precision 
format; however, the delays of inference (forward propagation) 
and training (forward and backward propagation) depend on the 
NN size (shown in Table III). As per this table, HP and SP tend 
to be a better solution for MLP computation compared to DP; 
while achieving the same or slightly lower ML accuracy than 
DP, HP and SP permit a significantly higher operating 
frequency and lower hardware overhead for the ASIC 
hardware.  

As shown in Fig. 3, the proposed MLP designs require 
SRAMs external to the PEs to store the network parameters and 
temporary computation results; the size of the memories is 
dependent on the dataset as well as directly proportional to the 
FP data format (in the case of SP, the memory is twice as large 
as HP and only half of DP). Our evaluation has found that for 
SP, the proposed designs require 786.79 MB for MNIST and 
974.29 KB for SVHN (the memory size should be adjusted for 
other FP data formats as previously discussed). 

For comparison purposes, Table IV shows the results for 
different MLP designs found in the technical literature for the 
MNIST dataset; the proposed designs with HP and SP 
computation formats are considered for comparison. As per 
Table IV, the proposed design offers the best operating 
frequency despite the added complexity of using a FP 
implementation compared to some of the others. When 
considering accuracy, the proposed design also shows a very 
good result due to the mini-batch training and FP computation. 
Although the design of [32] achieves the highest accuracy, it is 
due to a more complex model, so accounting for a large energy 
dissipation. 

Due to the different employed technology conditions (such 
as high node feature size and FPGAs as platform for design), a 
quantitative comparison in terms of hardware for the MLP 
designs is not always possible; however, the proposed design 
has reasonable energy dissipation and latency (as reported in 
Table IV). Moreover, the proposed MLP design is independent 

of network size, which makes it a general-purpose core for 
implementing ANNs. It should also be noted that only the 
proposed scheme and the design of [31] have an on-chip 
training capability and the proposed scheme has the better 
performance.  

V. CONCLUSION 
In this paper a high-performance ASIC-based design for 

implementing the computational core for both inference and 
training (on-chip) of ANNs has been proposed; this design 
relies on a hybrid processing element (PE) array that employs 
pipelined floating-point MAC units. The proposed design is 
highly flexible because its hardware is independent of network 
size and allows the use of the same PE array for both forward 
and backward propagations without imposing any additional 
hardware overhead (however, this independence in metric is not 
applicable to latency). An MLP has been designed for both 
these propagations and by utilizing three different floating-
point formats (half, single and double precision), the evaluation 
results have shown that the design with either half or single 
precision format is more attractive for MLP implementation 
due to the significantly lower hardware (while achieving the 
same or slightly lower classification accuracy compared to 
double precision). Moreover, in general, the proposed design 
has been shown to be superior in terms of operating frequency 
and energy compared to other schemes found in the technical 
literature. 
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