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Abstract—Graph Neural Networks (GNNs) are pervasive
across many application domains, driven by the growing demands
to comprehend non-euclidean data. However, it remains a chal-
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update, aggregation, and vertex update. To achieve this, the
proposed architecture consists of four salient designs - a flexible
processing element (PE) architecture, a unified Network-on-Chip
(NoC), a degree-aware mapping, and a partitioning heuristic. The
proposed unified processing element can be configured to support
various fundamental GNN computations, such as vector-vector
multiplication, vector-matrix multiplication, and scalar opera-
tions. The proposed NoC design can be dynamically configured
to align with varying graph connectivity by dynamically bridg-
ing long-distance communications. The degree-aware mapping
is proposed to avoid the unbalanced communication problem
caused by high-degree vertices at the aggregation phase. Lastly,
the proposed partitioning approach could efficiently allocate
the computing resources to different GNN execution phases,
improving the inter-phase parallelism. As such, the proposed
design can increase hardware utilization with much-improved
performance and energy efficiency. Simulation results show that
our proposed Aurora accelerator achieves 85%, 66 %, 47 %, 28%,
and 38% execution time reduction, and 89%, 77%, 42%, 69 %,
and 71% energy consumption reduction on average of multiple
GNN dataset when compared to state-of-the-art accelerators
HyGCN [1], AWB-GCN [2], GCNAX [3], ReGNN [4], and
FlowGNN [5], respectively.

Index Terms—NoC, reconfigurable accelerator, Graph Neural
Networks (GNNs)

I. INTRODUCTION

Graph Neural Networks (GNNs) have been widely used
to handle a variety of intricate scientific and engineering
problems [6], [7], including but not limited to community
detection [8], vertex classification [9], [10], point-cloud pro-
cessing [11], social media recommendation systems [12], [13],
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TABLE 1
GNN COVERAGE AND FEATURES OF AURORA IN COMPARISON WITH
PRIOR WORKS

and smart traffic [14], among others. Given its ability to
comprehend graph data, a proliferation of GNN models has
recently emerged, but it comes with a variety of computation
requirements. For example, Graph Convolutional Networks
(GCNs) rely on the feature vectors of vertices to capture the
graph structure through aggregation operations, whereas the
attention coefficients of Graph Attention Networks (GATs) re-
quire edge embeddings to record interactions between vertices.
Mathematically, these vertex and edge activities are formulated
in different forms - vector-vector, matrix-vector, and scalar
operations.

Moreover, graphs do not adhere to a fixed size and pattern.
Real-world graph data is typically comprised of millions or
billions of vertices, each exhibiting a substantial variation
in degree and connectivity. The irregular graph structure
further adds complexity to efficient GNN acceleration. For
example, each vertex needs to collect the feature vectors from
its neighboring nodes. The high-degree vertices could cause
one-to-many communication patterns, which inevitably need
higher network bandwidth. On the other hand, irregular graph
connectivity introduces long-distance communications. The
combined problems could further lead to the adverse effects
of an unbalanced communication workload, exacerbating the
network performance.

While significant efforts [1]-[3], [5], [15]-[18] have been
recently proposed to facilitate GNN execution, very few of
them are efficient enough to address the mentioned challenges,
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as shown in Table I. For example, HyGNC [1], GCNAX [3],
and AWB-GCN [2] are designed to facilitate the computations
of graph convolutional neural networks (GCNs). However,
they abstract GCN computations as matrix multiplications and,
as a result, do not support complex graph operations like edge
updates. To support complex graph operations, FlowGNN [5]
introduces a generic architecture to execute both graph and
neural operations with message-passing. However, FlowGNN
adopted heterogeneous edge and vertex compute engines to
manage different GNN computation characteristics, leading to
resource under-utilization and extra data movement between
different compute engines. Similarly, ReGNN [4] presents a
dynamic redundancy-eliminated neighborhood message pass-
ing to improve graph data locality. However, its performance is
also restricted by the separate executions of graph and neural
operations.

The crux of the mentioned problems is the current GNN
accelerator architecture lacks enough flexibility to withstand
varying computing and communication requirements. The
computing units should handle various computation operations
such as vector-vector, matrix-vector, and scalar operations. In
addition, the communication fabrics should adapt to irregular
graph connectivity and conventional dataflows (e.g., weight-
stationary) [19]-[21]. To this end, we propose Aurora, a
versatile and flexible GNN accelerator that can adapt to various
GNN models with improved performance and energy effi-
ciency. Specifically, the proposed Aurora can be dynamically
partitioned into multiple sub-accelerators, adapting to a vari-
ety of communication and computation characteristics across
different GNN execution phases. The main contributions of
this paper are:

« We propose a versatile and flexible architecture that
can support various GNN models with message-passing
operations. Specifically, the proposed processing element
(PE) architecture can be configured to support vector-
vector, matrix-vector, scalar operations, etc. Furthermore,
the proposed interconnect can bridge long-distance com-
munication and support weight-stationary dataflow.

« We propose a degree-aware mapping policy, along with
the flexible interconnect, that can alleviate the unbalanced
communication load caused by high-degree vertices.

o We propose a partitioning algorithm that can efficiently
allocate computing resources among different GNN exe-
cution phases. This can effectively improve the pipeline
efficiency of GNN executions.

We implemented the proposed Aurora accelerator in RTL
with the TSMC 40nm library. We also build a cycle-accurate
simulator that models the microarchitectural behavior of each
module with the degree-aware mapping strategy and partition
algorithm for each GNN application. Evaluated on five real-
world graph datasets, our simulation results show that Aurora
achieves 85%, 66%, 47%, 28%, and 38% execution time
reduction and 89%, 77%, 42%, 69%, and 71% energy con-
sumption reduction on average when compared to HyGCN [1],
AWB-GCN [2], GCNAX [3], ReGNN [4], and FlowGNN [5],
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II. BACKGROUND

Graph Neural Networks (GNNs) are a class of neural
networks that are specifically designed to operate on graph-
structured data. The basic idea is to use a message-passing
scheme, where each vertex sends messages to its neighbors,
and the messages are aggregated to compute an updated rep-
resentation of the vertex [22]. Based on the most widespread
pattern observed in GNN models [23], [24], abstract the exe-
cution model in a message-passing layer into three important
stages: Edge Update, Aggregation, and Vertex Update. The
execution stages are listed as follows and shown in Fig. 1:

o Edge Update: It updates the features for each edge by
gathering the vertex features along the edges and com-
puting the edge feature vectors based on their previous
value and vertex features of adjacent vertices by an Edge
Update function v, shown in Fig. 1 (a).

o Aggregation: This operation aggregates the neighbor in-
formation for each vertex by gathering the feature vectors
of the neighbor vertices and edges and aggregating them
to a single feature vector by an Aggregation function @,
shown in Fig. 1 (b).

o Vertex Update: It updates the feature vector for each ver-
tex based on the aggregated feature vector (intermediate
vector) and the weight matrix by a Vertex Update function
¢, shown in Fig. 1 (c).

After iterations of Edge Update, Aggregation, and Vertex
Update, a vertex is represented by its final feature vector,
which captures the graph structure and feature information
within the vertex’s neighborhood. There are many differ-
ent kinds of GNNS, their specific communication (message-
passing) scheme and specific computation functions for Edge
Update, Aggregation, and Vertex Update also vary.

GNNs generally fall into three categories based on the
details of the Vertex Update function (z/): Convolutional GNNs
(C-GNNs), Attentional GNNs (A-GNNs), and Message-
Passing GNNs (MP-GNN:s). In short, in these three categories
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pattern and NoC configuration of Vertex Update phase in sub-acceleratorB.

of GNN models, the Vertex Update function ¢ is a fixed scalar
coefficient (C-GNNSs), a learnable function that returns a scalar
coefficient (A-GNNSs), or a learnable function that returns a
vector coefficient (MP-GNNSs).

A. C-GNN

1) Graph Convolutional Network (GCN): GCNs [25] op-
erate by iteratively propagating information from neighboring
vertices to update the vertex representations shown in Equa-
tion 1.

k—1
k Loy
R e
uw€N (v)Uv Dy - Dy ()

2% = ReLU(W*mP 4 b*)

where m” represents the aggregation results for vertex v at
the k-th layer, zﬁ_l denotes the feature vector of vertex u
(neighbor of vertex v) at the k— 1-th layer, and D,, and D,, are
the degree values of vertex v and vertex u, respectively. Re LU
denotes the activation function. ¥ is the model weights, and
b* is the bias for the k-th layer.

2) Graph Isomorphism Network (GIN): GIN [26] was
introduced as a framework for learning deep graph repre-
sentations that are invariant to the graph’s vertex ordering or
isomorphisms. Equation 2 shows the overall computation for
k-th layer of a multi-layer GIN model.

mﬁ =(1+ ek)xﬁ_l + Z mﬁ_l,
u€EN (v) (2)
zF = MLP*(mk)
where € denotes a learnable parameter, and M LP* represents
the multilayer perceptron for the k-th layer.

B. A-GNN

Attention-based GNN models [27], [28] implies the at-
tention mechanism to achieve more accurate predictions by
learning a dynamic and adaptive local summary of the neigh-
borhood. Equation 3 shows the overall computation for k-th
layer of a multi-layer Attention-based GNN model.

mE= 3 (T b
wEN (v) (3)
z* = SoftMaz(Wkmk)
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where SoftMax function used as the last activation function
to normalize the output of a network to a probability distribu-
tion over predicted output classes.

C. MP-GNN

1) Gated Graph Convolutional Networks (G-GCN): G-
GCN [29] incorporates gating mechanisms to regulate the
information flow during message passing among nodes in a
graph as shown in Equation 4. By focusing on important neigh-
bors and discarding irrelevant information selectively, G-GCN
significantly enhances the expressive capacity of GCN [30].

mb= Y o(Whekt +Whal T oalt
weEN (v) (4)
¥ = ReLU(Wkmk)

where W} and W} are weights for vertex u and vertex v,
respectively. © denotes the element-wise multiplication.

2) GraphSage - Pool: GraphSage-Pool [10], [31], shown
in Equation 5, selects representative vertices from the graph
based on certain criteria. The selected nodes are then used to
construct a pooled graph, which serves as a condensed version
of the original graph. This pooling process helps to reduce the
computational complexity of subsequent operations while still
preserving the essential information of the graph.

m¥ = Concat(maz({o(Wyuzt=! +b))r}, z,)
k= ReLU(WkmkE 4 b¥) 6))

where Concat denotes the concatenation operation, mazx
represents the element-wise max operator, ¢ is the non-linear
activation function and W), is the pooling weights.

III. PROPOSED ACCELERATOR ARCHITECTURE

In this paper, the goal of our proposed Aurora accelerator
is to support a wide range of GNN models, including GAN,
GCN, and GIN, among others. The proposed design can adapt
to distinct computation and communication characteristics. As
shown in Fig. 2, Aurora can be dynamically partitioned into
multiple sub-accelerators, facilitating multiple GNN execution
phases in one unified architecture. Specifically, the proposed
PE architecture can be adaptive to distinct computations such
as matrix-vector, vector-vector, and scalar operations, and
the communication fabrics can be dynamically configured
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to reduce long-distance communication and support various
dataflows. For example, bypassing links could be configured
to facilitate the injection of high-degree vertices at the aggre-
gation phase. Multiple rings could be configured to support
weight-stationary dataflow for vertex update.

A. Proposed Aurora Accelerator Design

The proposed Aurora design features two unique designs
- unified PE architecture and adaptive interconnect. The
proposed PE design can support a variety of computation
characteristics such as matrix-vector, vector-vector, and scalar
operations. Moreover, Aurora’s flexible interconnect can han-
dle irregular graph connectivity (e.g., aggregation) and weight-
stationary dataflow (e.g., vertex update). Overall, as shown in
Fig. 3, the proposed Aurora accelerator consists of a request
dispatcher, an instruction buffer, an instruction dispatcher,
an adaptive workflow generator, a partitioning algorithm, a
degree-aware mapping algorithm, PE and NoC configuration
units, a versatile PE array interconnected by a flexible inter-
connect.

The host (e.g., CPU) sends requests to the request dispatcher
and stores instructions in the instruction buffer. The request
dispatcher then sends the running model and graph data.
The graph data is stored using compressed sparse row (CSR)
format, and its metadata will be used as auxiliary information
to determine the workload mapping and to decide the resource
partitioning for different GNN phases. The mapping and
partitioning decisions will ultimately be sent for NoC and PE
configurations.

To increase memory bandwidth, we implement a crossbar
between the DRAM interface and processing elements (PEs).
As such, the data can be distributed to different rows of PEs.
The PE array adopts a distributed buffer design, in which an
array of PEs are interconnected by a flexible NoC. Each PE
consists of an array of flexible multiply—accumulate (MAC)
units. The detailed architecture of PE and interconnect will be
described in what follows.

B. Flexible NoC Design

Unlike communication patterns in conventional DNN ac-
celeration, complex GNN models rely on message-passing
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to perform edge and vertex operations. Even though the
message-passing has a wide applicability to generic GNN
applications, it complicates the on-chip communication pat-
terns. The communication pattern is subject to irregular graph
connectivity and large variations in vertex degree. In particular,
two problems arise - long-distance communication and an
unbalanced communication workload. Consequently, certain
NoC regions are flooded with a higher traffic load due to high-
degree vertices, as shown in Fig. 2 (b). Moreover, the vertex
update still adopts conventional dataflows, in which the weight
matrix is distributed to multiple PEs, as shown in Fig. 2 (d).
The feature vectors need to be accumulated across multiple
PEs.

To address the mentioned challenges, the network topology
needs to align with distinct graph connectivity and dataflows.
In other words, this requires NoC to increase network band-
width for high-degree vertices and provide dynamic link
connectivity. As such, we propose a novel flexible NoC which
is built upon conventional mesh topology. One bi-directional
bypassing link is placed at each row and column of the
network, and each bypassing link consists of multiple link
switches (e.g., transistor). Consequently, the bypassing link
can be segmented into multiple short links with varying
lengths, as shown in Fig. 2. Those links will be used to bridge
long-distance communications or be used as wrap-up links for
ring topology.
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C. Proposed Flexible Router

The proposed router aims to handle the high bandwidth
demanded by high-degree vertices at the aggregation phase,
and to support bypassing links to reduce communication
distances.

The proposed router is built upon conventional router archi-
tecture, including five key components: the Route Computation
unit (RC), the Virtual Channel Allocator (VA), the Switch
Allocator (SA), the virtual channel (VC) buffers, and the cross-
bar. To reduce the cost of the crossbar, the proposed router uses
a two-stage design with horizontal and vertical switches. The
horizontal and vertical switches can be decomposed to support
ring topology, which is commonly used for DNN dataflows.
Both switches can be combined as an all-to-all crossbar.

Furthermore, we add a few muxes at +x and +y, connecting
to both mesh links and bypassing links. The link controller is
used to determine if the bypassing link should be segmented
and connected to the router. Given the limited wire budget,
it is impractical to implement a bundle of bypassing links at
each row or column. Considering the power-law distribution
of real-world graphs, each graph partition could only have a
few high-degree vertices. Consequently, only a few bypassing
links are needed, but it requires a strategy to avoid the mapping
of multiple high-degree vertices on the same row or column.
This mapping strategy will be discussed in Section-IV.

D. Proposed Unified PE Architecture

The proposed PE architecture is to support the distinct
computations at various GNN phases - edge update, aggre-
gation, and vertex update. The key computation patterns of
these stages further depend on the selected GNN model,
which is summarized in Table 2. To increase resource uti-
lization, it is beneficial to design a unified PE architecture
capable of handling such diverse computation needs. This
will eliminate unnecessary data movements between CPU,
GPUs, and different dedicated compute engines. The proposed
flexible PE architecture is shown in Fig. 5, which consists
of a distributed bank buffer, a router interface, a reuse First-
in-First-Out (FIFO) buffer, a Post Processing Unit (PPU),
a buffer controller, multipliers, adders, and a reconfigurable
interconnect between multipliers and adders.
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TABLE 11
REQUIRED OPERATIONS EXISTING IN DIFFERENT EXECUTION PHASES OF
VARIOUS GNN MODELS. Scalar DENOTES SCALAR COEFFICIENT, V'
MEANS VECTOR, M DENOTES MATRIX, X MEANS MULTIPLICATION, -
DENOTES DOT PRODUCTION, ® MEANS ELEMENT-WISE PRODUCTION,
DENOTES ACCUMULATION, a@ MEANS ACTIVATION FUNCTION, AND ||
DENOTES CONCATENATION.

. . Vertex
Execution Phase Edge Update | Aggregation Update
GCN [25] Scalar x V MxV,«a
GraphSAGE )
C-GNN “Mean [10] Null MxV
GIN [26] Null MxV
CommNet [32] Null bN% M xV
Vanilla- Scalar x V, MxV
A-GNN | attention [27] V.V @
Attention-based | Scalar x V, MxV
GNNS [28] V.V @
M xV, |
G-GCN [29] Vo a M xV,«
MP-GNN GraphSAGE ) M xV,
~Pooling [10] MxV.a VIV, a
EdgeConv-1 [33] MxV Null
EdgeConv-5 [33] M x V.« Null
( Crossbar ]
(@) i
VXV I
or
MxV
or
A
(b)
ScalarxVv
or
VOV
iy
(© ]
v %
Ao 14

Fig. 6. Typical configuration examples of reconfigurable PE architecture to
support various GNN operations. (a) Example of PE architecture configuration
that can support V' x V, M x V, V -V operations; (b) Example of PE
architecture configuration that can support Scalar x V and V®V operations;
(c) Example of PE architecture configuration that can support »_ V' operation.
(Scalar denotes scalar coefficient, V' means vector, M denotes matrix,
X means multiplication, - denotes dot production, ® means element-wise
production, > denotes accumulation.)

The distributed bank buffer is used to increase the memory
bandwidth to accommodate the random memory access caused
by graph irregularity. The buffer controller sends the data to the
MAC array via a crossbar. The MAC array can be reconfigured
to process the vector-vector multiplication (V' x V'), matrix-
vector multiplication (M x V), and vector-vector dot produc-
tion (V- V), as shown in Fig. 6. Such flexibility is enabled by
the reconfigurability of the datapath. For example, multipliers
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are paired and then connected to one adder, and adders are
further connected sequentially for accumulation, as shown in
Fig. 6 (a). On the other hand, for the scalar operations, a
constant will be loaded to the multiplier, and the data will be
written back to buffers without any accumulation operations,
as shown in Fig. 6 (b). Lastly, for the accumulation operations,
all the multipliers and adders will be bypassed, as shown in
Fig. 6 (¢).

To increase data reuse further, we need to enable inter-PE
data exchange. To support this, we implement a reuse FIFO.
The reuse FIFO acts as a double buffer [34] to store intermedi-
ate feature vectors received from neighboring PEs at the vertex
update phase and updated edge feature vector received at the
aggregation phase. The non-linear activation function and/or
vectors concatenation are performed in the PPU, if necessary,
before writing the output feature to the distributed bank buffer.
The multipliers and adders are connected by reconfigurable
interconnect in order to support multiple operations.

E. Walk-through Example

As illustrated in Fig.3 (a), the host (e.g., CPU) sends
requests to the request dispatcher (@) and loads instructions
to the instruction buffer (®). The control unit then dispatches
GNN model information, along with graph metadata (e.g., row
and edge indices in CSR format) to the preprocessing unit. To
decide on mapping and partitioning, the auxiliary information
will be processed through multiple units, including the adap-
tive workflow generator (), partition algorithm (@), degree-
aware mapping algorithm (®), NoC, and PE configuration unit
(®).

Specifically, the Adaptive Workflow Generator (®) decides
the workflow of the running GNN model, such as execution
phases and operation types. The resultant workflow infor-
mation, coupled with graph metadata, is transmitted to the
Partition Algorithm (@) for determining resource partition-
ing across different GNN execution phases. The generated
resource partition strategy, workflow information, and graph
metadata are then forwarded to the Degree-Aware Mapping
Algorithm (©).

Furthermore, the generated workflow, resource partition
strategy, workload mapping scheme, and graph metadata are
dispatched to the NoC and PE Configuration Unit (®). This
unit determines the NoC configuration for different execu-
tion phases based on the communication requirements within
and between sub-accelerators, as illustrated in Fig.2 (b-d).
Afterward, PEs are configured depending on the specific
computation requirements of sub-accelerators. Once the con-
figuration is completed, the instruction dispatcher start issuing
instructions as conventional accelerators (@).

IV. PROPOSED DEGREE-AWARE MAPPING

Even though the proposed NoC architecture can increase
the network bandwidth for high-degree vertices, the mapping
of high-degree vertices is also crucial. This is because only
one bypassing link is available at each row or column given
the cost concern. However, the communication patterns are

Algorithm 1: Degree-aware Mapping Algorithm
Input

: Structure of graph inputs:
G = {V, E}, A input graph;
V and E are sets of vertices and edges.
n, Numbers of vertices in G |[V| = n.
N (%), Neighbors of vertex i.
D(i), The degree of a vertex i.
: Features of spatial accelerator:
K x K, Layout of the PE array;
K is number of row and column of PE array.
CpE, Buffer capacity of PE
Output: High-degree Vertex{}, S_PE{}
1 Procedure S_PE Identification
Function Queen(int k = 1)
if £ <= K then
for a € [1, K| do
/* Check N-Queen law */
if canPlace(k,a) then
S_PE{} +PE[K][a];
Queen(k + 1);
end
end
end
return S_PE{};
Procedure High-Degree Vertex Identification
Ns_pE (—Z S_PE{} N
Nun <Ns_pe X CpEg;
Function Sort(int D(i), Ngn, nhn =10 )
Sort the Ny vertices with the Maximum degree;
d <Min(Degree of the sorted vertices);
for i € [1,n] do
if D(Z)Zd, nhnSNHN then
HighdegreeV ertex{}<i;
nhn + +;
end
end
return HighdegreeVertex{};

Input

D= R N

=
e

[ <
BRRESEIAHREESE

ooR

subject to the graph connectivity - vertex connectivity and
degree variation. Based on hashing-based mapping, high-
degree vertices are very likely to be mapped to the same row
or column, leading to resource contention. As such, we need
to map high-degree vertices to different rows or columns.
Given this, we propose a mapping algorithm leveraging
the N-Queen algorithm [35], in which high-degree vertices
are mapped to disjoint rows or columns. Typically, real-world
graphs are large, exceeding the on-chip memory capacity. We
tile the large graph into several subgraphs based on on-chip
memory size. We preprocess the graph metadata (e.g., row
and edge indices in CSR format) to understand the edge and
degree quantities, and the processed metadata will be used
for deciding mapping. In other words, the mapping algorithm
will be performed before the execution of each subgraph.
After mapping a subgraph to the PE array, the next subgraph
starts being loaded from DRAM to overlap the latency. The
frequency of executing the mapping algorithm depends on the
number of subgraphs. To be specific, We use Algorithm 1 to
illustrate the details of the degree-aware mapping strategy. As
shown in Algorithm 1 (lines 1-12), we need to identify the
suitable PE locations (S_PE{}) in order to map the high-
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degree vertices. We use the N-Queen algorithm, in which
no two PEs that process high-degree vertices (S_PFE) can
be placed in the same row, column, or diagonal. To reduce
the algorithm complexity, we only select a fixed identification
pattern for SpF, in which each row only accommodates one
S_PE. Afterward, we also need to determine the high-degree
vertices, as shown in Algorithm 1 (lines 13-25). The vertices
are first sorted based on the degree number, in which top Ny n
vertices will be determined as high-degree vertices, Ny
is determined by the buffer capacity of PE (Cpg) and the
number of S_PFE (Ng pg). For a K x K PE array, Ngn
is (K — 1) x Cpg. Please note that the PE array for the
aggregation phase varies according to the specific workload
and model. Each row or column is only allowed to host
one S_PF to process high-degree vertices. Furthermore, the
bypassing links will be used to bridge the longest communi-
cations for each high-degree vertex. The sorted high-degree
vertices will be mapped sequentially using a hashing-based
method. The low-degree vertices will be mapped to PEs with
available resources sequentially. As such, the overall algorithm
complexity of the proposed method is N-log(N)+N. Notably,
the execution of the mapping algorithm can overlap with the
GNN computations from the previous subgraph.

V. PROPOSED PARTITION ALGORITHM

As mentioned, GNN models are typically composed of
multiple execution phases. Given distinct communication and
computation characteristics, prior works mostly adopt a het-
erogeneous design to handle various GNN execution stages,
in which multiple dedicated compute engines are designed.
However, the computation load of various phases depends on
the graph structure, feature size, and model. This could lead
to resource under-utilization, given the fixed resource capacity
at the design time. For example, for the EdgeConv model, the
vertex update is not needed. Consequently, the vertex update
engine could be underutilized in prior accelerators. On the
other hand, for GIN models, edge update is not required, and
so are the computing units. Furthermore, additional storage
(e.g., global buffers) is needed to temporarily store the inter-
mediate results between execution phases.

Given the proposed unified architecture, Aurora can improve
resource utilization while avoiding additional storage between
different execution phases. However, it requires a resource
partitioning algorithm to allocate enough computing resources.
The key idea is to balance the execution time between various
GNN phases, improving the pipeline efficiency. To address this
issue, we propose a partition algorithm 2 in support of various
GNN models. The partitioned resources will be formed as two
sub-accelerators, and each sub-accelerator will be configured
for different computations and dataflows. The partitioned sub-
accelerators are tailored to support diverse GNN computation
and communication characteristics. In particular, the message
aggregation stage involves irregular communication, while
the neural network computation stage entails regular data
movement. Consequently, two sub-accelerators are employed
to address these distinct stages. The partitioning algorithms

Algorithm 2: Aurora Partition Algorithm

Input : Structure of graph inputs:
G = {V, E}, A input subgraph;
V and E are sets of vertices and edges.
m, Number of edges in G; |E| = m.
E¢, Number of edge features.
Ouye, Number of operations in Edge Update Phase.
Oa, Number of operations in Aggregation Phase.
Ouv, Number of operations in Vertex Update Phase.
Input : Features of spatial accelerator:

P, Number of PE.
Flops, Operations per second of PE.
Output: Partition Strategy (a,b)
1 // Calculating the computation time of
sub—-accelerator A
2 Procedure Computation Time of the Sub-accelerator A
3 Ta = Max{AComp1, ACompz} + AComps;
4 ACompl = —Gue

ax Flops’

Or—Efxm
5 ACOme = “axFlops *
Erxm
— I .
6 AComp3 = axFlops’
7 return T4,

8 // Calculating the Computation time of the

sub—-accelerator B

9 Procedure Computation Time of Sub-accelerator B

W | T = e

11 return 7T'z;

12 // Generate the partition strategy with
high hardware utilization

13 Procedure Partition Strategy Generation

14 for a € [0, P] do

15 | Diff,=|Ta - Tzl

16 end

17 Find the minimal Dif f ;
18 return a

9 b=P—a;

20 return Partition Strategy (a,b)

are triggered by the arrival of a new sub-graph or a GNN
layer. These two sub-accelerators are further connected to
support the pipeline execution without the extra buffers to
store intermediate results. Please note that only one accelerator
will be formed if vertex updates are not required. If edge
updates are not necessary, GNN execution can be initiated
with aggregation, and set ACompl to 0.

Specifically, the partitioning algorithm consists of the fol-
lowing three steps: (1) time estimation for Edge Update
and Aggregation phases (Algorithm 2 Line 2-7), (2) time
estimation for Vertex Update phase (Algorithm 2 Line 9-
12), and (3) the partitioning strategy that can minimize the
stall between execution phases and maximum the resource
utilization (Algorithm 2 Line 13-20).

First, the Edge Update and Aggregation are performed
independently and sequentially. Since both stages exhibit the
same communication patterns, they are running on the same
architecture. In this paper, we use sub-accelerator A to indicate
the architecture configured for both edge update and aggrega-
tion. After that, the aggregated edge feature will be calculated
and updated. To estimate the execution time for edge update
and aggregation (74), we can use the edge information, such
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as edge count and feature size. It includes the maximum
of computation time for Edge Update (Acomp;) and the
computation time of the Aggregation phase (Acomps), and
the computation time of edge update aggregation (Acomps).
The computation time for Edge Update (Acompy) is estimated
by using the number of operations in Edge Update (O,.),
the number of PEs assigned to sub-accelerator A (a), and
operation per second of PE (Flops), shown in Algorithm 2
Line 4.

The computation time for the Aggregation phase (Acomps)
is estimated by using the number of operations in the Aggrega-
tion phase (O,), the number of edge features (E), the number
of edges (m), the number of PEs assigned to sub-accelerator
A (a), and operation per second of PE (Flops),shown in Al-
gorithm 2 Line 5. The computation time for edge aggregation
(Acomps) is estimated by using the number of edge features
(E'y), number of edges (m), the number of PEs assigned to
sub-accelerator A (a), and operation per second of PE (Flops),
as shown in Algorithm 2 Line 6.

Second, The partition algorithm estimates the computation
time for sub-accelerator B (7z), which is used for edge update
only. The computation time for Vertex Update is related to the
number of operations in the Vertex Update phase (O,,), the
number of PEs assigned to sub-accelerator B (P — a), and
operation per second of PE (F'lops), as shown in Algorithm 2
Line 10. Finally, by finding the optimal a that minimizes the
difference (Dif f,), a partitioning strategy is generated that
can minimize stalls between execution phases and maximize
resource utilization. The execution of the partition algorithm
can also overlap with the GNN computations from the previous
subgraph.

VI. EVALUATION
A. Evaluation Setup

Accelerator Simulator : We built a cycle-accurate sim-
ulator to measure the performance of the proposed Aurora
accelerator. In order to obtain execution time results, the
simulator monitors the number of arithmetic operations and
the number of accesses to each memory hierarchy, taking
the degree-aware mapping algorithm, partition algorithm, and
system configuration parameters into account. The number of
arithmetic operations is used to calculate the computation time,
while the number of accesses to each memory hierarchy is
used to calculate the communication time.

The off-package communication time is obtained from the
DRAMSim2 simulator [36]. The overall execution time is
derived by adding up the computation time, the on-package
communication time, and the off-package communication
time, considering the overlap caused by the buffering of the
distributed buffer and other memory hierarchies.

The simulator counts the required amount of on/off-chip
communications and computations, which is used to estimate
the related energy consumption according to [37]. Addition-
ally, to accurately estimate the power and area consumption,
we used the Synopsys Design Compiler with the TSMC 40
nm standard library to synthesize and generate the waveform

activity file to capture the dynamic switching activity of the
logic gates. Afterward, we used Synopsys PrimeTime PX with
the waveform activity file to measure the dynamic and static
power consumption. Specifically, we analyzed most of the
accelerator components, including instruction Dispatcher, PEs,
Task Control, partitioning and mapping algorithms, distributed
buffers, and NoCs.

Accelerator Modeling : We implemented the proposed
design including 32 x 32 PEs interconnected by a flexible
NoC. Each PE consists of a distributed bank buffer, router
interface, FIFO buffer, post-processing unit(PPU), buffer con-
troller, multiplier, adder, and required logic. The on-chip fre-
quency of the proposed accelerator is 700MHz. The distributed
bank buffer capacity of each PE is 100KB. The proposed
partition and mapping algorithms are performed before each
subgraph undergoes execution. The frequency of applying
these algorithms depends on the number of subgraphs, and
the entire process can seamlessly overlap with the concurrent
execution of GNN computations.

Baselines : We compare Aurora with five GNN accelerators
(HyGCN [1], AWB-GCN [2], GCNAX [3], ReGNN [4], and
FlowGNN [5]). To evaluate the efficiency of the degree-aware
mapping, we use CGRA-ME [38], a popular open-source
Coarse-Grained Re-configurable Arrays (CGRA) compilation
framework. We select CGRA-ME because it allows flexible
modeling of different spatial accelerators. Aurora is compared
with the mapping approach from CGRA-ME: hashing-based
mapping strategy. The baseline accelerators are scaled to be
equipped with the same number of multipliers and DRAM
bandwidth as Aurora. We uniformly use double precision for
all accelerators to provide a fair comparison.

As HyGCN uses a tandem-engine architecture consisting of
SIMD cores for the aggregation phase and systolic modules
for the combination phase, the multipliers are divided into
two groups in a ratio of 1:7 for the two engines according
to its original configuration. We also resized the baseline
accelerators to be equipped with the same on-chip storage
capacity. For example, we simulated the baseline accelerators
with 100 MB on-chip storage.

Benchmark: Regarding computation variations in GNN
models, we use the following PolyBench benchmark operators
[39] and nonlinear activation functions for the execution
phases of generic GNN models:(a) Edge update phase: gram-
schmidt kernel (Gram-Schmidt Decomposition), mvt kernel
(Matrix Vector Production), gemver kernel (Vector Addition),
gesummv kernel (Vector Vector Multiplication), and nonlinear
activation function (ReLu); (b) Aggregation phase: gemver
kernel (Vector Addition); (c) Vertex update phase: mvt kernel
(Matrix Vector Production) and nonlinear activation function
(ReLu).

In the Edge Update phase, the gramschmidt kernel (Gram-
Schmidt Decomposition) is employed to ensure that the re-
sulting features are orthogonal, minimizing redundancy and
capturing distinct information. The mvt kernel (Matrix Vector
Production) is employed for the multiplication of the weight
matrix associated with neighboring vertex feature vectors.
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Fig. 7. Normalized DRAM accesses for baseline architectures and our proposed accelerator, normalized to the DRAM accesses of the proposed accelerator.

1E+6 1E+4 1E+3

o
m
T
o

1E+3 1E+2

[
m
T
IS

1E+3

1E+2 1E+1

[
m
T

~

(c)Pubmed

(b)Citeseer

IllUUD

(a)Cora

1E+1 1E+1 1E+0

HyGCN
GCNAX
Aurora
HyGCN
GCNAX
ReGNN
Aurora
HyGCN
GCNAX
REGNN

On-chip Communication Latency(Cycles)
ReGNN

On-chip Communication Latency(Cycles)
On-chip Communication Latency(Cycles)

AWB-GCN
FlowGNN
AWB-GCN
FlowGNN
AWB-GCN
FlowGNN

Aurora

On-chip Communication Latency(Cycles)

1E+7 1E+7 1E+7

1E+6 1E+6

68% 64%

87%
75%
I | IIl

(flAverage

1E+6

1E+5 1E+5

(d)Nell

1E+5 1E+4 1E+4

HyGCN
GCNAX
Aurora
HyGCN
GCNAX
ReGNN
Aurora
HyGCN
GCNAX
REGNN
Aurora

ReGNN
On-chip Communication Latency(Cycles)

On-chip Communication Latency(Cycles)

AWB-GCN
FlowGNN
AWB-GCN
FlowGNN
AWB-GCN
FlowGNN

(e)Reddit

Fig. 8. On-chip communication latency for baseline architectures and our proposed accelerator.

Additionally, the gemver kernel (Vector Addition) is applied to
aggregate the weighted vertex feature vectors calculated in the
mvt kernel (Matrix Vector Production). The gesummv kernel
(Vector Vector Multiplication) is employed to update edge
features in which vectors are obtained from the gemver kernel
and the feature vectors from neighboring vertices. Finally, a
ReLU function is used as the activation function.

In the Aggregation phase, the gemver kernel (Vector Ad-
dition) is used to accumulate all neighboring feature vectors.
In the Vertex Update phase, the mvt kernel (Matrix Vector
Production) is utilized for the multiplication of the weight
matrix associated with the accumulated feature vector obtained
by the gemver kernel (Vector Addition) in the Aggregation
phase. The Vertex Update phase is also finalized by a ReLU
function, which is used as the last activation function.

Datasets: We use Cora, Citeseer, Pubmed, Nell, and Reddit
as the datasets [10], [40], [41]

B. Off-chip DRAM Access Analysis

Fig. 7 illustrates the normalized DRAM access volume
of both the baseline and the proposed accelerator for each
dataset. It is evident that the proposed accelerator consistently
outperforms the baselines. The baselines, unfortunately, fail to
make full use of the on-chip buffer capacity. This limitation
hampers their ability to minimize DRAM accesses.

The DRAM access reduction varies across the datasets.
The proposed design achieves 86%, 60%, 15%, 57%, and
65% DRAM access reduction on average for each dataset
when compared to baselines, respectively. To fully utilize the
on-chip buffer capacity, the proposed accelerator selectively
preloads the weight matrix and edge embedding data (if
needed) into specific parts of the accelerator (referred to as

898

related sub-accelerators). This approach differs from AWB-
GCN, GCNAX, and FlowGNN, in which the weight matrix
needs to be duplicated in all processing elements. Moreover,
the proposed design can directly transfer the output feature
vectors from sub-accelerator A to sub-accelerator B without
the need for any storage. In contrast, AWB-GCN, GCNAX,
and FlowGNN do not take advantage of this opportunity.
HyGCN and ReGNN can also store weight matrices in
specific heterogeneous sub-accelerators. However, their fixed
heterogeneous sub-accelerators (or engines) often suffer from
under-utilized memory and computing resources when dealing
with various GNN models. HyGCN and ReGNN fail to fully
harness on-chip data reuse opportunities due to the underuti-
lization of memory resources, leading to increased DRAM
accesses.

C. On-chip Communication Analysis

Due to the inherent complexity of graph structures, GNN
models often encounter irregular and intricate communication
patterns. Various GNN models demand the integration of
degree-aware mapping algorithms, dynamic partition algo-
rithms, and efficient hardware support to address these issues
effectively.

Fig. 8 presents the on-chip communication latency for both
the baseline and the proposed accelerator across different
datasets. The measurement is based on the total number of
on-chip communication cycles, with the proposed accelera-
tor implementing degree-aware mapping algorithms, dynamic
partition algorithms, and efficient hardware support.

Overall, the proposed design achieves 75%, 87%, 50%,
68%, and 64% on-chip communication latency reduction on
average for each dataset when compared to baselines re-
spectively. The on-chip communication latency is affected
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Fig. 9. Normalized execution time for each layer in multiple GNN datasets for baseline architectures and our proposed accelerator, normalized to the execution

time of the proposed accelerator.
by communication amount, hop count, and efficient on-chip
bandwidth.

The reasons behind the reduction in on-chip communi-
cation latency in the proposed design can be categorized
into mutltiple key aspects. First, the inclusion of the degree-
aware mapping algorithm effectively mitigates communication
contention, leading to a reduction in on-chip communication
latency. Second, the use of a reconfigurable architecture in
the proposed accelerator provides robust support for diverse
communication requirements while simultaneously decreasing
the average hop count.

D. Performance Analysis

Fig. 9 shows the performance of the proposed design and
the baselines (Baselines use hashing-based mapping strategies
while the proposed accelerator provides degree-aware mapping
algorithm, dynamic partition algorithm, and efficient hardware
support).

The proposed accelerator achieves 85%, 66%, 47%, 28%,
and 38% execution reduction on average for each layer of
multiple GNN datasets when compared to baselines, respec-
tively. The mapping and partitioning decisions are estimated
by considering both the input graph and the hardware char-
acteristics of the accelerator. All necessary information for
this process is either pre-determined or becomes available
upon loading the metadata. The execution of the mapping and
partitioning algorithms typically requires approximately 100
cycles to reach completion. The latency consumption of each
reconfiguration progress for our proposed accelerator (32x
32 PE array) is 63 cycles (2x32—1). We should note that
the reconfiguration, mapping, and partition progress can be
overlapped by the GNN computation in our proposed design.
The computation time of all the designs is very close because
the amount of multiplication and accumulation computations
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(MAC:sS) of each layer is the same despite being performed in
different architectures.

The proposed design uses routers to ensure the commu-
nication between PEs but HyGCN, AWB-GCN, GCNAX,
ReGNN, and FLowGNN only use simple interconnects (cross-
bar, switches, and mesh links) to enable the communication
between PEs. The proposed design has reduced the average
hop count by using reconfigurable links and routers. The pro-
posed accelerator further alleviates communication contention
by implementing a degree-aware mapping algorithm. Notably,
the proposed accelerator places lower demands on off-package
memory bandwidth when compared to other baseline models
as discussed. GCNAX can reduce DRAM access by supporting
multiple tiling strategies. FlowGNN and ReGNN can increase
performance by supporting multiple levels of parallelism.
However, they still suffer from bandwidth limitations, on-
chip communication contention, and high communication hop
counts, which can negatively impact performance. HyGCN'’s
performance significantly deviates from other baselines due to
its deployment of heterogeneous compute engines. The disjoint
compute engines result in communication overheads between
the aggregation and update phases. Moreover, the inflexible
PE architecture suffers from resource under-utilization in the
presence of varying vertex and edge quantities. Additionally,
data reuse opportunities are not fully exploited in HyGCN.

The main reason our design outperforms other accelerators
is that our design has reduced memory bandwidth requirement,
reduced DRAM accesses, reduced communication contention,
reduced communication hop count, and fully utilized hardware
resources which dominate the overall execution time. The
hashing-based mapping strategy and sequential execution flow
of the compared designs limit their ability to exploit intra-
layer data reuse and hardware resources to minimize DRAM
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Fig. 10. Normalized energy consumption for each dataset for baselines and our proposed accelerator, normalized to the energy consumption of the proposed

accelerator.
accesses. The number of DRAM accesses has a strong impact
on performance since it might be the system bottleneck. Our
proposed reconfigurable architecture also plays an important
role in providing adequate communication patterns and oper-
ation options to support various GNN models. ReGNN and
FlowGNN suffer from the fixed PE with limited operations or
fixed interconnect fabrics because of irregular communication
and computation.

As for the speedup for specific datasets, the proposed design
performs 5.0-37.0x better over HyGCN, 1.6-3.0x better
over AWB-GCN, 1.3-1.9x better over GCNAX, 1.1-2.4x
better over ReGNN and 1.1-1.7x better over FlowGNN. The
performance gain on the Reddit dataset is not so significant
because the density of feature vectors in Reddit (larger than
50%) is higher than that of other datasets, which hinders
the performance gains of the proposed design because it
will generate more complicated on-chip communication even
though the input matrix is not that sparse. Besides, the size of
the Reddit dataset is large, which makes it more difficult to
exploit the benefits of the degree-aware mapping algorithm.

E. Energy Consumption Analysis

For the energy analysis, it is important to emphasize that
the evaluation encompasses the energy consumption of the
entire system, encompassing control units, computation units,
DRAM, distributed buffers, local buffers, and interconnects.
Fig. 10 provides an overview of the normalized overall energy
consumption analysis of the proposed accelerator. As can be
seen, the proposed accelerator achieves 89%, 77%, 42%, 69%,
and 71% energy consumption reduction on average for each
dataset by baselines and our proposed accelerator, normalized
to the energy consumption of the proposed accelerator. The
primary drivers behind these energy savings can be attributed
to several factors, including reduced DRAM accesses and
diminished on-chip communication latency. These improve-
ments are achieved through a combination of strategies, such
as reduced long-distance communication facilitated by the pro-
posed partition algorithm, reduced average hop count thanks
to the reconfigurable NoC, and alleviated communication
contention through the degree-aware mapping algorithm. The
energy consumption of reconfiguration is less than 3% of
the overall energy consumption. The energy consumption of
reconfiguration is negligible when compared to the overall
energy consumption.
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F. Area Analysis

We evaluate the area consumption of the various archi-
tectures under TSMC 40 nm technology, the MAC array
consumes only 7.1% of the total PE area, while the memory
hierarchy, SMB, and IDMB/ODMB, consume a majority of the
total area, 82.9%. The additional PE control unit and reconfig-
urable switches consume 3.7% of the total PE area. The total
area consumption takes PE, SRAM, flexible interconnects,
flexible routers, and control logic into account. For the entire
proposed accelerator, the PE array, which consists of 1024
PEs consumes 62.74% of the overall chip area. The controller
consumes 0.9% of the total chip area, which is negligible.

The additional components for the flexible interconnect,
including flexible routers, horizontal reconfigurable links, re-
configurable links, switches, and muxes consume 5.2% of the
total chip area. This shows that the additional modules incur
a negligible area overhead for higher performance and energy
efficiency.

VII. CONCLUSION

In this paper, we propose a versatile GNN accelerator that
can efficiently facilitate the execution of various GNN models.
The proposed architecture can be dynamically configured to
multiple sub-accelerators optimized for different GNN execu-
tion phases. To achieve this, the proposed accelerator consists
of four salient designs - a unified PE architecture, a flexible
NoC, a degree-aware mapping, and a partitioning heuristic.
The proposed flexible processing unit can be configured to
support various computations, including vector-vector multi-
plication, vector-matrix multiplication, and scalar operations.
The proposed NoC design can be dynamically configured
to align with varying graph degrees and connectivity by
providing additional injection/ejection bandwidth and bridging
long-distance communications. The degree-aware mapping is
proposed to avoid the unbalanced communication problem
caused by high-degree vertices at the aggregation phase. The
partitioning approach could efficiently allocate the computing
resources to different GNN execution phrases. Consequently,
the proposed design can increase hardware utilization with
much-improved performance and energy efficiency. Our exper-
imental evaluation clearly demonstrates the substantial benefits
of our approach compared to state-of-the-art solutions.
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