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Abstract
This paper is concerned with the billiard version of
Jacobi’s last geometric statement and its generalizations.
Given a non-focal point𝑂 inside an elliptic billiard table,
one considers the family of rays emanating from 𝑂 and
the caustic Γ𝑛 of the reflected family after 𝑛 reflections
off the ellipse, for each positive integer𝑛. It is known that
Γ𝑛 has at least four cusps and it has been conjectured that
it has exactly four (ordinary) cusps. The present paper
presents a proof of this conjecture in the special case
when the ellipse is a circle. In the case of an arbitrary
ellipse, we give an explicit description of the location of
four of the cusps ofΓ𝑛, thoughwe do not prove that these
are the only cusps.
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1 INTRODUCTION AND STATEMENT OF RESULTS

The motivation for this work goes back to Jacobi’s 1842-3 ‘Lectures on Dynamics’ [13]. Recall that
the conjugate locus of a point on a surface is the locus of the first conjugate points on the geodesics
that start at this point. Jacobi considered the conjugate locus of a non-umbilic point on the surface
of a triaxial ellipsoid in 3-space. What is known as the last geometric statement of Jacobi is the
claim that this conjugate locus has exactly four cusps; see Figure 1. We refer to [17] for a detailed
historical discussion.
The last geometric statement of Jacobi was proved only recently [10]. In contrast, it was known

for a long time that the conjugate locus of a generic point on a convex surface has at least four
cusps; see [2] where this theorem is attributed to Carathéodory and [22] for a recent proof.
The conjugate locus of a point is also called the first caustic. One considers the loci of the second,

third, etc., conjugate points on the geodesics emanating from a point; these are the second, third,
etc., caustics. These curves are also the components of the envelope of the 1-parameter family of
geodesics that start at this point. Figure 1 (right) depicts the first and second such caustics.
This article concerns the billiard versions of these problems. Birkhoff [1] suggested to consider

billiard trajectories in a convex plane domain as the geodesics on a ‘pancake’, the surface obtained
from the domain by infinitesimally ‘thickening’ it. This leads to the following set-up.
Consider an oval𝐶, a smooth strictly convex closed curve in the plane, the boundary of a billiard

table. Let 𝑂 be a point inside 𝐶 and consider the billiard trajectories that start at 𝑂. After 𝑛 reflec-
tions off 𝐶, we obtain a 1-parameter family of lines whose envelope is a closed connected curve

F IGURE 1 Left: A sketch of the conjugate locus from [13]. Right: The first (red) and second (blue) conjugate
locus of a point on a triaxial ellipsoid.
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3 of 23 BOR et al.

in the real projective plane ℝℙ2, possibly with some cusps and self-intersections, called the 𝑛th
caustic by reflection from 𝑂. The term caustic, meaning ‘capable of burning’, comes from optics,
where 𝐶 is an ideal mirror and 𝑂 is a light source.
We refer to [4, 5] and the literature cited therein for the study of the first caustics by reflection,

also known as catacaustics. In particular, Cayley studied the first caustics by reflection and refrac-
tion in a circle in his memoire [6] where he considered the cases when the source of light was
inside the circle, on the circle, and outside the circle, including at infinity.
We proved in [3] that, for every 𝑛 ⩾ 1, if𝑂 is a generic point inside an oval, then the 𝑛th caustic

by reflection from 𝑂 has at least 4 cusps. This is one of many variations on the classic 4-vertex
theorem. Here are refined versions of two conjectures made in [3].

Conjecture 1. If 𝐶 is an ellipse and 𝑂 is an interior point which is not a focus of 𝐶 then, for all
𝑛 ⩾ 1, the 𝑛th caustic by reflection from 𝑂 has exactly four cusps, and all four are ordinary ones.

See the Section 2.2 for a precise definition of ‘ordinary cusp’.

Remark 1. The 𝑛 = 1 case of Conjecture 1 (without the ‘ordinary’ part) can be thought of as a
‘limiting case’ of the Jacobi’s last geometric statement, as one of the axes of the ellipsoid tends
to 0.

Conjecture 2. If an oval 𝐶 is not an ellipse then there exists an 𝑛 ⩾ 1 and an open set 𝑈 inside
𝐶 such that for every 𝑂 ∈ 𝑈 the number of cusps of the 𝑛th caustic by reflection from 𝑂 is greater
than four.

An analogue of Conjecture 1 for the caustics of geodesics emanating from a point on a tri-axial
ellipsoid was experimentally studied in [17]. That paper contains numerous computer generated
images of first, second, third and fourth caustics, each having exactly four cusps.
This article is a step toward provingConjecture 1. To state our first result, we recall awell-known

property of billiards in an ellipse.
An ellipse 𝐶 defines two 1-parameter families of confocal conics, those conics which share their

fociwith𝐶. One family consists of ellipses, the other of hyperbolas (including themajor andminor
axes of 𝐶). They form, in the complement of the foci of 𝐶, a double foliation so that through each
point pass one confocal ellipse and one confocal hyperbola, intersecting orthogonally at the point.
A ray (directed line), incident to the interior of𝐶, is tangent to exactly one of these confocal conics
(or incident to one of the foci), and after reflection off𝐶 it is tangent to the same conic; see Figure 2
(left).

Theorem 1. Let 𝑂 be a non-focal point inside an ellipse 𝐶, and let 𝐸 and 𝐻 be the ellipse and
hyperbola (respectively), passing through 𝑂 and confocal to 𝐶. Consider the four rays emanating
from 𝑂 and tangent to 𝐸 and 𝐻 (two each). Then after 𝑛 reflections, the four rays are tangent to 𝐸

and 𝐻 at four points which are cusps of the 𝑛th caustic by reflection from 𝑂; see Figure 2 (right).

Remark 2.

(a) If 𝑂 lies on one of the axes of 𝐶, then the role of𝐻 in the above theorem is played by this axis.
The location of the corresponding cusps along this axis is then determined by the ‘mirror
equation’ of geometric optics; see Section 5.2.
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F IGURE 2 Left: A light ray reflected off an elliptical table 𝐶 stays tangent to the same confocal conic, either
an ellipse (blue) or a hyperbola (red). Right: The first (red) and the second (blue) caustics by reflection from 𝑂

each have cusps at the four tangency points with the confocal conics through 𝑂 of the four reflected rays
emanating from 𝑂 tangent to these conics.

F IGURE 3 Left: Theorem 1 for a circle. Right: The 𝑛th caustic from a focus of an ellipse is the other focus for
odd 𝑛, the same focus for even 𝑛.

(b) The limiting case when 𝐶 is a circle is not excluded: in this case, the role of the two confocal
conics through 𝑂 are played by the concentric circle through 𝑂 and the line through 𝑂 and
the center; see Figure 3 (left).

(c) If the point 𝑂 is a focus of the ellipse, then the 𝑛th caustic by reflection degenerates to one of
the two foci, depending on the parity of 𝑛; see Figure 3 (right).

(d) The stated location of the 4 cusps in Theorem 1 can be deduced from the conjectures made in
[17] about the location of the cusps of caustics of envelopes of geodesics from a point on an
ellipsoid.

(e) It is straightforward to extend Theorem 1 to an arbitrary non-degenerate conic section 𝐶

(parabola and hyperbola). The complement of the closure of 𝐶 in ℝℙ2 consists of two compo-
nents, diffeomorphic to a disc and to a Möbius band, respectively. The former can serve as a
billiard table, and our proof of Theorem 1 applies, mutatis mutandis, to it as well; see Figure 4.

(f) In Section 5.1, Theorem 1 is further extended to ‘Liouville billiards’, where the billiard table is
formed by a coordinate line on a Liouville surface.

Thus, after Theorem 1, proving Conjecture 1 amounts to showing that the four cusps described
by Theorem 1 are the only cusps of the 𝑛th caustic by reflection from 𝑂 and that all four cusps are
ordinary. We were able to show this only in the case when 𝐶 is a circle, which is our next result.
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5 of 23 BOR et al.

F IGURE 4 Theorem 1 holds for any convex billiard table in the projective plane, bounded by a conic; shown
are a parabola (left) and a hyperbola (right). Some cusps are out of sight.

Theorem 2. Conjecture 1 holds if𝐶 is a circle. Namely, if𝑂 is an interior point of a circle𝐶, different
from its center, then for every 𝑛 ⩾ 1 there are exactly four cusps on the 𝑛th caustic by reflection from
𝑂; two of these cusps lie on the line passing through 𝑂 and the center of the circle, the other two on
the circle through 𝑂 concentric with 𝐶. Furthermore, these four cusps are ordinary.

The content of this article is as follows. In Section 2 we recall relevant facts about billiards
in ellipses, envelopes of families of lines and their cusps. In Section 3 we prove Theorem 1
and in Section 4 we prove Theorem 2. Section 5 contains various additional results and
suggested problems.

2 PRELIMINARIES

2.1 Billiards in ellipses

Let us recall relevant facts concerning billiards in ellipses, in particular, their complete
integrability; see, for example, [9, 12, 20].
Consider a billiard table 𝐶 bounded by an ellipse

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1, where 0 < 𝑏 ⩽ 𝑎.

Associated with the billiard table 𝐶 is a dynamical system whose phase space  (topologically
a cylinder) is the space of rays (oriented lines) that intersect the interior of 𝐶. The billiard trans-
formation 𝑇 is the transformation of the phase space that sends an incoming ray to the outgoing
one upon reflection off 𝐶; see Figure 6 (left).
The phase cylinder  admits a 𝑇-invariant area form. If a ray is characterized by its direction 𝛼

and the signed distance from the origin 𝑝 (see Figure 5), then the area form is 𝑑𝑝 ∧ 𝑑𝛼. This fact
is not specific to ellipses: this area form is invariant under the billiard transformation in a billiard
table of any shape.
The ellipse 𝐶 is included in a confocal family of conics

𝐶𝜆 ∶
𝑥2

𝑎2 − 𝜆
+

𝑦2

𝑏2 − 𝜆
= 1, 𝜆 ∈ (−∞, 𝑏2) ∪ (𝑏2, 𝑎2).
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 6 of 23

F IGURE 5 The coordinates (𝛼, 𝑝) on the space of oriented lines.

F IGURE 6 Left: A billiards trajectory in an ellipse and the associated confocal conic. Right: The phase space
 of the billiard transformation 𝑇 in an elliptical table (topologically a cylinder), and its 𝑇-invariant foliation,
which is regular away from the four marked points on the 𝛼 axis, corresponding to rays aligned with the major
and minor axis of the table. Reversing the orientation of a ray corresponds to the ‘glide-reflection’
(𝛼, 𝑝) ↦ (𝛼 + 𝜋, −𝑝). The ∞-shaped curve corresponds to rays incident to the foci of the ellipse, phase curves
inside it correspond to rays tangent to confocal hyperbolas (including their asymptotes), phase curves outside it to
rays tangent to confocal ellipses.

This is an ellipse for 𝜆 < 𝑏2 and a hyperbola for 𝑏2 < 𝜆 < 𝑎2. For 0 < 𝜆 < 𝑏2 the confocal ellipse
𝐶𝜆 is contained in the interior of 𝐶, for 𝜆 < 0 it is contained in the exterior of 𝐶. For 𝜆 = 0 one has
𝐶0 = 𝐶.
As 𝜆 tends to 𝑏2 on the left, the confocal ellipse 𝐶𝜆 tends to the line segment on the 𝑥-axis

connecting the two foci of 𝐶; the right limit is the closure of the complement of this segment in
the 𝑥-axis. As 𝜆 tends to 𝑎2 on the left, 𝐶𝜆 tends to the 𝑦-axis.
A ray 𝑟 ∈ , not incident to one of the foci of 𝐶, is tangent to a unique conic 𝐶𝜆 from this

confocal family, so 𝜆 can be considered as a function on . As is easy to show, it is given by

𝜆 = (𝑎 sin 𝛼)2 + (𝑏 cos 𝛼)2 − 𝑝2.

This formula shows that 𝜆 extends smoothly to all of , including rays incident to the foci.
After reflection, the ray 𝑇(𝑟) is tangent to the same conic [20, Theorem 4.4]. Thus the level

curves of 𝜆 define a (singular) 𝑇-invariant foliation of the phase space , whose leaves consist of
the rays tangent to a fixed conic; see Figure 6 (right).
Note that the resulting foliation is non-singular away from the four marked points on the

𝛼-axis (the critical points of 𝜆), corresponding to the rays aligned with the major and minor axes
of 𝐶. Note also that each level curve of a regular value 𝜆 ∈ (0, 𝑏2) ∪ (𝑏2, 𝑎2) has two connected
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7 of 23 BOR et al.

components. For 𝜆 ∈ (0, 𝑏2) (rays tangent to a fixed confocal ellipse), each of the two com-
ponents is 𝑇-invariant. For 𝜆 ∈ (𝑏2, 𝑎2) (rays tangent to a fixed confocal hyperbola, including
its asymptots), the two components are interchanged by 𝑇. The figure ∞ (the level curve
𝜆 = 𝑏2) corresponds to rays passing through the foci. Orientation reversing acts on  by
𝑅 ∶ (𝛼, 𝑝) ↦ (𝛼 + 𝜋, −𝑝), satisfying 𝑅2 = (𝑅𝑇)2 = 𝑖𝑑. The two reflections about the major and
minor axes of 𝐶 induce maps of  commuting with 𝑇.
The following proposition is a special case of the Arnold–Liouville theorem on completely inte-

grable Hamiltonian systems [21]. We will give a self-contained proof in our case, following [20,
Chapter 4].

Proposition 1. On each leaf 𝛾 of the 𝑇-invariant foliation of there is a 𝑇-invariant non-vanishing
1-form, well defined up to multiplicative constant. Consequently, there is a local coordinate 𝑡 on 𝛾 in
which 𝑇 is given by 𝑇(𝑡) = 𝑡 + 𝑐 for some constant 𝑐.

Proof. Choose a smooth function 𝑓 without critical points in a neighborhood of 𝛾, which is
constant on each leaf of the 𝑇-invariant foliation (for example, 𝑓 = 𝜆). Then 𝑓◦𝑇 = 𝑓 implies
𝑇∗𝑑𝑓 = 𝑑𝑓. Let 𝑋𝑓 be the Hamiltonian vector field associated to 𝑓, that is, 𝜔(𝑋𝑓, ⋅ ) = 𝑑𝑓, where
𝜔 = 𝑑𝑝 ∧ 𝑑𝛼 is the 𝑇-invariant area form on . Since both 𝑑𝑓 and 𝜔 are 𝑇-invariant, the same
holds for 𝑋𝑓 . Since 𝑋𝑓 is non-vanishing and tangent to 𝛾, there is a unique 1-form 𝛼 on 𝛾 such
that 𝛼(𝑋𝑓) = 1. Since 𝑋𝑓 is 𝑇-invariant, so is 𝛼. In neighborhoods of a point 𝑟 ∈ 𝛾 and its image
𝑇(𝑟), one can find coordinates 𝑡 and 𝑡1, respectively, such that 𝛼 = 𝑑𝑡 near 𝑟 and 𝛼 = 𝑑𝑡1 near
𝑇(𝑟). It follows that 0 = 𝑇∗𝛼 − 𝛼 = 𝑑(𝑡1 ◦𝑇 − 𝑡), thus 𝑡1 ◦𝑇 − 𝑡 = 𝑐 for some constant 𝑐; that is, 𝑇
is given near 𝑟 by 𝑡1 = 𝑡 + 𝑐.
If one replaces𝑓 by another function, say g = 𝜙(𝑓), then the corresponding vector field changes

to 𝑋g = (𝜙′◦𝑓)𝑋𝑓 , that is, a non-zero constant multiple of 𝑋𝑓 along 𝛾, so 𝛼 is also changed by a
constant multiple. □

Once a choice of coordinate 𝑡 is made on each level curve of 𝜆, one can use (𝑡, 𝜆) as coordinates
on  (away from singular leaves); the ray 𝑟(𝑡, 𝜆) is tangent to the confocal conic corresponding to
the parameter 𝜆, such that 𝑇(𝑟(𝑡, 𝜆)) = 𝑟(𝑡 + 𝑐(𝜆), 𝜆).

Remark 3. It is important to note that the choice of the 𝑡 coordinate in the last proposition depends
only on the𝑇-invariant foliation of, which in turn depends on the family of conics confocal to the
billiard table 𝐶, and not on a particular choice of conic within this family as a billiard table. That
is, if one chooses, as a billiard table, any conic confocal to 𝐶, say 𝐶1, then the associated billiard
map 𝑇1 with respect to 𝐶1 admits the same invariant foliation of  as 𝑇, and is thus given in the 𝑡

coordinate on an invariant leaf by the same kind of formula as the formula for 𝑇 in Proposition 1,
𝑇1(𝑡) = 𝑡 + 𝑐1 (though the constant shift 𝑐1 may differ from 𝑐).
For example, consider an ellipse 𝐸 from a confocal family. One may think of 𝑡 as a coordinate

on 𝐸. Then the locus of the intersection points of the tangent to 𝐸, whose 𝑡-coordinates differ by
a constant, is a confocal ellipse, and if the half-sum of the two 𝑡-coordinates is constant, then this
locus is a confocal hyperbola. We refer to [9, 12] and to detailed discussions in [18, 19].

Remark 4. Note that the 𝑇-invariant leaf 𝛾 in Proposition 1 need not be connected for the propo-
sition to hold. Indeed, each level curve of 𝜆 has two components (each topologically a circle); in
the elliptic case (level curves above and below the ∞ shape in Figure 6 (right)), each of these
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 8 of 23

F IGURE 7 The three types of inflection points of pencils. In each figure, the pencil is the dotted curve, with
four points and their type marked on it. Left: 𝑂 does not lie on an axis of 𝐶 (the generic case). Middle: 𝑂 lies on
the major axis, between a vertex and the nearby focus. Right: 𝑂 lies on the minor axis.

components is 𝑇-invariant, while in the hyperbolic case (level curves inside the ∞ shape in
Figure 6 (right)), the two components are interchanged by 𝑇. By Proposition 1, even in this hyper-
bolic case, one can put a coordinate on each of the two components, say 𝑡 on one component and
𝑡1 on the other, such that 𝑇 is given by 𝑇(𝑡, 𝜆) = (𝑡1 + 𝑐, 𝜆), 𝑇(𝑡1, 𝜆) = (𝑡 + 𝑐, 𝜆), for some constant
𝑐 (depending on 𝜆).

2.2 Families of rays, envelopes, cusps

The conjectures and theorems of the Introduction concern families of rays, their envelopes (or
caustics) and cusps. We briefly review here the pertinent definitions; see, for example, Section 8.4
of [8].
Define the ‘line’ dual to a point inℝ2 as the curve in  corresponding to the set of rays incident

to the point (a ‘pencil’ of rays); see the dotted curves in Figure 7. We also include ‘lines’ dual to
‘points at infinity’, corresponding to pencils of parallel rays sharing a common direction (vertical
lines in the (𝛼, 𝑝) coordinates on ). This defines a 2-parameter family of curves in , a unique
curve through each given point in a given tangent direction at this point.

Definition 1. Given a 1-parameter family of rays, that is, a smooth curve 𝛾 ⊂ , an inflection
point of 𝛾 of order 𝑚 ⩾ 2 is a point where the tangent ‘line’ to 𝛾 at this point has contact of order
𝑚 with 𝛾 (the tangent ‘line’ to a curve has typically contact of order 1).

Definition 2. The envelope (or caustic) of 𝛾 is an oriented plane curve Γwhose set of tangent lines
is 𝛾.

Note that Γ is a curve in the projective plane ℝℙ2, possibly singular, or even reduced to a single
point, if 𝛾 consists of all lines though this point (the ‘line’ in  dual to the point).

Definition 3. An 𝑚-cusp of a plane curve Γ, 𝑚 ⩾ 2, is a point for which there is a 𝐶1-
diffeomorphism taking a neighborhood of the point to a neighborhood of the origin in the
(𝑥, 𝑦)-plane, taking the point to (0,0) and Γ to the curve 𝑦𝑚 = 𝑥𝑚+1. An ordinary cusp is a 2-cusp
(or a semi-cubical cusp).

A useful basic characterization of𝑚-cusps is the following. Let 𝛾 be a smooth 1-parameter fam-
ily of rays with envelope Γ. Then an 𝑚-cusp of Γ corresponds to an inflection point of 𝛾 of order
𝑚; see [8, Example 8.2].
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9 of 23 BOR et al.

3 PROOF OF THEOREM 1

We restate here Theorem 1 from the Introduction.

Theorem1. Let𝑂 be anon-focal point inside an ellipse𝐶, and let𝐸 and𝐻 be the confocal ellipse and
hyperbola (respectively) passing through𝑂. Consider the four rays emanating from𝑂 and tangent to
𝐸 and𝐻 (two each). Then after 𝑛 reflections, the 4 rays are tangent to 𝐸 and𝐻 at 4 points which are
cusps of the 𝑛th caustic by reflection from 𝑂.

To prove Theorem 1, we first reformulate it as a statement about the inflection points of a curve
in the phase cylinder , as explained in Section 2.2.
Consider the pencil of rays incident to 𝑂 and let 𝛾 be the corresponding curve in  (a ‘line’).

There are four points on 𝛾, corresponding to the four rays tangent to the confocal conics 𝐸 and 𝐻

at 𝑂. The dual statement to Theorem 1 is then that 𝑇𝑛 maps these four points to inflection points of
𝑇𝑛(𝛾).
We proceed as follows. Let 𝑟0 ∈ 𝛾 be one of these four rays. We separate the proof into three

cases (see Figure 7).

1. The ray 𝑟0 is one of the two rays tangent to the confocal ellipse 𝐸 through 𝑂. In this case, 𝑂

may not lie on the line segment connecting to two foci.
2. The ray 𝑟0 is one of the two rays tangent to the confocal hyperbola 𝐻 through 𝑂. In this case,

𝑂 may not lie on the minor axis of 𝐶, nor on the major axis, on the complement of the line
segment connecting the two foci.

3. The point 𝑂 lies on one of the axes of 𝐶 and 𝑟0 is one of the two rays aligned with this axis. In
this case 𝑂 may be the center of 𝐶.

3.1 Case 1

Let 𝐸 = 𝐶𝜆0
, 𝑏2 < 𝜆0 < 𝑎2, be the confocal ellipse passing through 𝑂 and 𝑟0 ∈ 𝛾 one of the 2 rays

tangent to 𝐶𝜆0
at 𝑂. The 𝑇-invariant curve in  passing through 𝑟0 is given by 𝜆 = 𝜆0 in the

(𝑡, 𝜆) coordinates.
Note.We use 𝑟0 to denote both a point in  and the corresponding ray in ℝ2.

Lemma 1. 𝑟0 is a tangency point of 𝛾 with the 𝑇-invariant phase curve 𝜆 = 𝜆0.

Proof. The rays of the pencil close to 𝑟0 are tangent to confocal ellipses with a greater value of the
parameter 𝜆; see Figure 8 (left). It follows that 𝛾, near 𝑟0, drawn in the (𝑡, 𝜆) plane, lies above the
horizontal line 𝜆 = 𝜆0 and is therefore tangent to it at 𝑟0; see Figure 8 (right). □

Lemma 2. 𝑇(𝑟0) is an inflection point of 𝑇(𝛾).

Proof. Let 𝑟0 = (𝑡0, 𝜆0), 𝑟1 = (𝑡1, 𝜆0) = 𝑇(𝑟0), the reflection of 𝑟0 by 𝐶, where 𝑡1 = 𝑡0 + 𝑐(𝜆0). Then
𝑟1 is tangent to 𝐶𝜆0

at some point, 𝑂1. Let 𝛾1 be the ‘line’ dual to 𝑂1, corresponding to the pencil
of rays through 𝑂1. To show that 𝑟1 is an inflection point of 𝑇(𝛾) it is then enough to show that
the 2-jets at 𝑟1 of 𝑇(𝛾) and 𝛾1 coincide; see Figure 9.
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 10 of 23

F IGURE 8 Lemma 1.

F IGURE 9 Proof of Lemma 2.

First, 𝑟1 ∈ 𝛾1, so 𝛾1 and 𝑇(𝛾) intersect at 𝑟1 (their 0-jets coincide). Second, 𝛾 is tangent to the
𝑇-invariant horizontal line 𝜆 = 𝜆0 at 𝑟0 (Lemma 1) hence 𝑇(𝛾) is tangent to 𝜆 = 𝜆0 at 𝑟1 = 𝑇(𝑟0).
The same holds for 𝛾1, by Lemma 1, hence 𝛾1 and 𝑇(𝛾) are tangent at 𝑟1 (their 1-jets coincide).
Next, the curve 𝛾 intersects the horizontal line at a level 𝜆 > 𝜆0 at two points, corresponding

to the rays shown in Figure 8 (left). The billiard reflection in the ellipse with parameter 𝜆0 (the
outer ellipse in Figure 8 (left)) takes one of these rays to the other one. The difference of the 𝑡-
coordinates of these two intersection points depends only on 𝜆 and 𝜆0, but not on 𝑡0 (see Remark 3
of Section 2.1). It follows that the 2-jets of 𝛾 and 𝛾1, at 𝑟0 and 𝑟1 (respectively), are parametrized
by

𝛾 ∶ 𝜀 ↦ (𝑡0 + 𝜀, 𝜆0 + 𝑎𝜀2), 𝛾1 ∶ 𝛿 ↦ (𝑡1 + 𝛿, 𝜆0 + 𝑎𝛿2), (1)

where 𝑎 = 𝑎(𝜆0), 𝑡1 = 𝑡0 + 𝑐(𝜆0).
Note. All calculations for the rest of the proof of this lemma are mod 𝜀3 and 𝛿3.
Now 𝑇(𝑡, 𝜆) = (𝑡 + 𝑐(𝜆), 𝜆), hence the 2-jet of 𝑇(𝛾) at 𝑟1 is parametrized by

𝑇(𝛾) ∶ 𝜀 ↦(𝑡0 + 𝜀 + 𝑐(𝜆0 + 𝑎𝜀2), 𝜆0 + 𝑎𝜀2)

= (𝑡0 + 𝜀 + 𝑐(𝜆0) + 𝑎𝑐′(𝜆0)𝜀2, 𝜆0 + 𝑎𝜀2)

= (𝑡1 + 𝜀 + 𝑎𝑐′(𝜆0)𝜀2, 𝜆0 + 𝑎𝜀2).

Next we reparametrize this 2-jet by setting

𝛿 = 𝜀 + 𝑎𝑐′(𝜆0)𝜀2,

with inverse (mod 𝛿3),

𝜀 = 𝛿 − 𝑎𝑐′(𝜆0)𝛿2.
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11 of 23 BOR et al.

F IGURE 10 Case 2 of Lemma 2. Compare to Figure 8.

It follows that the 2-jet of 𝑇(𝛾) at 𝑟1 can be reparametrized as

𝑇(𝛾) ∶ 𝛿 ↦ (𝑡1 + 𝛿, 𝜆0 + 𝑎𝛿2),

coinciding with the expression (1) for the 2-jet of 𝛾1 at 𝑟1, as needed. □

Note that the last two lemmas are statements about the 2-jet of 𝛾 at 𝑟0. That is, they remain valid
if one replaces 𝛾 with a curve whose 2-jet at 𝑟0 coincides with that of 𝛾. We thus conclude: if 𝑟0 is
an inflection point of a curve 𝛾 ⊂ , which is also a point of tangency of 𝛾 with the leaf of the 𝑇-
invariant foliation of  dual to an ellipse 𝐸 confocal to 𝐶, then the same holds for 𝑇(𝑟0) ∈ 𝑇(𝛾). It
follows by induction on 𝑛 that the same holds for𝑇𝑛(𝑟0) ∈ 𝑇𝑛(𝛾). This proves Case 1 of Theorem 1.

3.2 Case 2

This case is very similar to the previous one, so we omit the details. We only note that in this case,
like in Case 1, the 𝑇-invariant leaf 𝜆 = 𝜆0 consists of two components, but unlike Case 1, 𝑇𝑛, for
𝑛 odd, interchanges the two components; the argument however is unaffected; see Remark 4 and
Figure 10.

3.3 Case 3

This case is simpler than the previous two. First, a lemma.

Lemma 3. Let 𝜌 denote the involution of  induced by the reflection about one of the axes of 𝐶,
major or minor. Let 𝑟0 be one of the two fixed points of 𝜌 (a ray aligned with the axis of reflection)
and 𝛾 ⊂  a 𝜌-invariant curve containing 𝑟0. Then 𝑟0 is an inflection point of 𝛾.

Proof. Assume that 𝜌 is given by reflection about the major axis of 𝐶 (the 𝑥-axis) and 𝑟0 is the
ray along this axis, oriented eastwards. We use the coordinates (𝛼, 𝑝) on , see Figure 5. Then
𝜌(𝛼, 𝑝) = (−𝛼, −𝑝) and 𝑟0 = (0, 0). Assume the tangent to 𝛾 at 𝑟0 is not vertical. Then the 2-jet of
𝛾 at 𝑟0 can be parametrized by

𝜀 ↦ (𝜀, 𝑎𝜀 + 𝑏𝜀2), (2)
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 12 of 23

for some 𝑎, 𝑏 ∈ ℝ. This is mapped by 𝜌 to

𝜀 ↦ (−𝜀, −𝑎𝜀 − 𝑏𝜀2).

Renaming −𝜀 by 𝜀, this 2-jet of 𝜌(𝛾) at 𝑟0 can be reparametrized as

𝜀 ↦ (𝜀, 𝑎𝜀 − 𝑏𝜀2). (3)

Since 𝜌(𝛾) = 𝛾 and 𝑟0 is a fixed point of 𝜌, the 2-jets (2) and (3)must coincide. It follows that 𝑏 = 0,
hence the 2-jet of 𝛾 at 𝑟0 is parametrized by

𝜀 ↦ (𝜀, 𝑎𝜀). (4)

On the other hand, the tangent ‘line’ to 𝛾 at 𝑟0 is the graph of 𝑝 = 𝑎 sin 𝛼 (see Lemma 4 below).
Its 2-jet at 𝑟0 is given by formula (4). This shows that 𝑟0 is an inflection point of 𝛾.
If the tangent to 𝛾 at 𝑟0 is vertical then the tangent ‘line’ at 𝑟0 is 𝛼 = 0 and we can parametrize

the 2-jet of 𝛾 at 𝑟0 by 𝜀 ↦ (𝑎𝜀2, 𝜀). As before, 𝜌-invariance of 𝛾 implies that 𝑎 = 0, hence the 2-jets
of 𝛾 and the 𝛼 = 0 at 𝑟0 coincide. Thus in this case 𝑟0 is an inflection point of 𝛾 as well.
The other three cases, where 𝑟0 = (𝜋, 0) and 𝜌 is the reflection about the 𝑥-axis, or 𝜌 is the

reflection about the 𝑦-axis and 𝑟0 = (±𝜋∕2, 0), are treated similarly and their proof is omitted. □

We can now complete the proof of Case 3 of Theorem 1. Let 𝑂 be a point on one of the axes of
𝐶 (major or minor, or both, when 𝑂 is the center of 𝐶, if 𝐶 is not a circle). Let 𝛾 ⊂  be the dual
‘line’ (the curve corresponding to the pencil of rays through 𝑂). Let 𝑟0 ∈ 𝛾 be one of the two rays
aligned with the axis through 𝑂. Then 𝛾 is 𝜌-invariant and 𝑟0 is a fixed point of 𝜌. Clearly, 𝜌 and
𝑇 commute, hence 𝑇𝑛(𝛾) is 𝜌-invariant and 𝑇𝑛(𝑟0) ∈ 𝑇𝑛(𝛾) is a fixed point of 𝜌. Lemma 3 implies
that 𝑇𝑛(𝑟0) is an inflection point of 𝑇𝑛(𝛾), as needed.

4 PROOF OF THEOREM 2

4.1 Two lemmas

The billiard table 𝐶 here is the unit circle 𝑥2 + 𝑦2 = 1. We use the same coordinates (𝛼, 𝑝) in the
space of oriented lines in ℝ2 that were introduced in Section 2.1, Figure 5.

Lemma 4. The pencil of rays through a point (𝑎, 𝑏) ∈ ℝ2, the ‘line’ dual to (𝑎, 𝑏), is given by the
equation

𝑝(𝛼) = 𝑎 sin 𝛼 − 𝑏 cos 𝛼. (5)

See Figure 11.

Proof. Let (𝑎, 𝑏) = 𝑟(cos 𝜃, sin 𝜃) and 𝛼′ = 𝜋∕2 − 𝛼. Then

𝑝 = 𝑟 cos(𝜃 + 𝛼′) = 𝑟(cos 𝜃 cos 𝛼′ − sin 𝜃 sin 𝛼′)

= 𝑟(cos 𝜃 sin 𝛼 − sin 𝜃 cos 𝛼) = 𝑎 sin 𝛼 − 𝑏 cos 𝛼. □
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13 of 23 BOR et al.

F IGURE 11 Left: The solid curve represents the pencil of rays through a point inside a circular table 𝐶. The
dotted curve is its image under the billiard map 𝑇. The 4 marked points on it are its inflection points. The
horizontal lines are the leaves of the 𝑇-invariant foliation of the phase cylinder . Right: The proof of Lemma 4.

Let 𝛾 be a curve in the phase space . Using the same terminology as in Section 3, an inflection
point of 𝛾 is a second-order tangency with the ‘line’ tangent to 𝛾 at the point. If 𝛾 is the graph of a
function 𝑝(𝛼), the tangent ‘line’ is a graph of a function given by (5), that is, a solution to the ODE
𝑓′′ + 𝑓 = 0, hence the inflection points of 𝛾 are given by the zeros of the function 𝑝′′(𝛼) + 𝑝(𝛼).
If a line tangent to 𝛾 is vertical, that is, 𝛾 is tangent at 𝑟0 = (𝛼0, 𝑝0) to the vertical line 𝛼 = 𝛼0,

then 𝛾 is the graph of a function 𝛼(𝑝) near 𝑟0, and 𝑟0 is an inflection point if and only if 𝛼(𝑝) =

𝛼0 + 𝑂(|𝑝 − 𝑝0|3), degenerate if 𝛼(𝑝) = 𝛼0 + 𝑂(|𝑝 − 𝑝0|4).
Next consider a map 𝑇 ∶  →  given by

𝑇(𝛼, 𝑝) = (𝛼̃, 𝑝), 𝛼̃ = 𝛼 + 𝜙(𝑝) (mod 2𝜋),

where 𝜙(𝑝) is some function. Let (𝛼0, 𝑝0) be the coordinates of a point 𝑟0 on a curve 𝛾 ⊂ , the
graph of a function 𝑝(𝛼). We ask: What is the condition on the second-order jets of 𝑝(𝛼) and 𝜙(𝑝)

at 𝛼0 and 𝑝0 (respectively) so that 𝑇(𝛾) has an inflection point at 𝑇(𝑟0)? The answer is given by
the following lemma.

Lemma 5. Let 𝛾 be the graph of 𝑝(𝛼), 𝑟0 = (𝛼0, 𝑝0) ∈ 𝛾, with

𝑝(𝛼0 + 𝜀) = 𝑝0 + 𝑝1𝜀 +
𝑝2

2
𝜀2 + 𝑂(𝜀3),

𝜙(𝑝0 + 𝛿) = 𝜙0 + 𝜙1𝛿 +
𝜙2

2
𝛿2 + 𝑂(𝛿3).

Then 𝑇(𝑟0) is an inflection point of 𝑇(𝛾) if and only if

𝑝2 + 𝑝0(1 + 𝑝1𝜙1)3 = 𝑝3
1
𝜙2. (6)

Proof. Calculating mod 𝜀3, 𝛿3 throughout, set

𝛿 = 𝑝1𝜀 +
𝑝2

2
𝜀2,

then

𝜙(𝑝(𝛼0 + 𝜀)) = 𝜙(𝑝0 + 𝛿) = 𝜙0 + 𝜙1𝛿 +
𝜙2

2
𝛿2

= 𝜙0 + 𝜙1𝑝1𝜀 +
𝑝2

1
𝜙2 + 𝑝2𝜙1

2
𝜀2.
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 14 of 23

The 2-jet of 𝛾 at 𝑟0 = (𝛼0, 𝑝0) is parametrized by

𝜀 ↦
(

𝛼0 + 𝜀, 𝑝0 + 𝑝1𝜀 +
𝑝2

2
𝜀2
)

,

hence the 2-jet of 𝑇(𝛾) at 𝑇(𝑟0) = (𝛼0 + 𝜙0, 𝑝0) is parametrized by

𝜀 ↦

(
𝛼0 + 𝜙0 + (1 + 𝑝1𝜙1)𝜀 +

𝑝2
1
𝜙2 + 𝑝2𝜙1

2
𝜀2, 𝑝0 + 𝑝1𝜀 +

𝑝2

2
𝜀2

)
.

Let

𝜀 ∶= (1 + 𝑝1𝜙1)𝜀 +
𝑝2

1
𝜙2 + 𝑝2𝜙1

2
𝜀2,

then, assuming 1 + 𝑝1𝜙1 ≠ 0, one can invert this (mod 𝜀3),

𝜀 =
𝜀

1 + 𝑝1𝜙1

−
𝑝2

1
𝜙2 + 𝑝2𝜙1

2(1 + 𝑝1𝜙1)3
𝜀2.

Thus the 2-jet of 𝑇(𝛾) at 𝑇(𝑟0) is parametrized by

𝜀 ↦

(
𝛼0 + 𝜙0 + 𝜀, 𝑝0 + 𝑝̃1𝜀 +

𝑝̃2

2
𝜀2

)
,

where

𝑝̃1 =
𝑝1

1 + 𝑝1𝜙1

, 𝑝̃2 =
𝑝2 − 𝑝3

1
𝜙2

(1 + 𝑝1𝜙1)3
.

The inflection condition at 𝑟1 is then 𝑝̃2 + 𝑝0 = 0, which reduces to the stated formula (6).
If 1 + 𝑝1𝜙1 = 0 then 𝑝1 = 𝑝′(𝛼0) ≠ 0 so one can invert 𝑝(𝛼) near 𝛼0,

𝛼(𝑝0 + 𝛿) = 𝛼0 + 𝛼1𝛿 +
𝛼2

2
𝛿2,

where

𝛼1 =
1

𝑝1

, 𝛼2 = −
𝑝2

𝑝3
1

(7)

and

𝑝1 =
1

𝛼1

, 𝑝2 = −
𝛼2

𝛼3
1

. (8)

The inflection condition for 𝑝(𝛼) at 𝛼0 is 𝑝2 + 𝑝0 = 0. Substituting for 𝑝2 from Equation (8), this
is

𝛼2 = 𝑝0(𝛼1)3. (9)
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15 of 23 BOR et al.

Now 𝑇(𝛾) is the graph of 𝛼(𝑝) + 𝜙(𝑝), hence the inflection condition at 𝑇(𝑟0) is

𝛼2 + 𝜙2 = 𝑝0(𝛼1 + 𝜙1)3.

Substituting for 𝛼1, 𝛼2 from Equation (7), one obtains Equation (6). □

4.2 Cusps by reflection in a circle

The billiard ball map inside the unit circle 𝐶 is given by 𝑇(𝛼, 𝑝) = (𝛼 + 2 arccos 𝑝, 𝑝). Fix a point
𝑂 = (𝑎, 𝑏) inside 𝐶 and let 𝛾 be the dual ‘line’ (5). This takes us to the setting of Lemma 2 with

𝑝(𝛼) = 𝑎 sin 𝛼 − 𝑏 cos 𝛼, 𝜙(𝑝) = 2𝑛 arccos(𝑝), −1 < 𝑝 < 1.

We are looking for points 𝑟0 = (𝛼0, 𝑝0) ∈ 𝛾 such that 𝑇𝑛(𝑟0) is an inflection point of 𝑇(𝛾). Using
circular symmetry, we may assume, without loss of generality, that 𝛼0 = 0, 0 ⩽ 𝑏 < 1 and 0 <

𝑎2 + 𝑏2 < 1. We substitute in formula (6)

𝑝1 = 𝑎, 𝑝2 = −𝑝0 = 𝑏, 𝜙1 =
−2𝑛√
1 − 𝑏2

, 𝜙2 =
2𝑏𝑛

(1 − 𝑏2)3∕2
,

obtaining the inflection condition at 𝑇𝑛(𝑟0):

𝑏 − 𝑏

[
1 −

2𝑎𝑛√
1 − 𝑏2

]3

=
2𝑎3𝑏𝑛

(1 − 𝑏2)3∕2
. (10)

This is satisfied if 𝑎 = 0 or 𝑏 = 0, corresponding to four inflection points of the curve 𝑇𝑛(𝛾), as
described by Theorem 2.
We claim that there are no other solutions to Equation (10) with 𝑛 ⩾ 1 and 0 < 𝑎2 + 𝑏2 < 1. Set

𝑥 = 𝑎∕
√

1 − 𝑏2. Assuming 𝑎, 𝑏 ≠ 0, Equation (10) becomes

(4𝑛2 − 1)𝑥2 − 6𝑛𝑥 + 3 = 0. (11)

The discriminant of this quadratic equation in𝑥 is a positivemultiple of 1 − 𝑛2. Thus Equation (11)
has a solution with 𝑛 ⩾ 1 only for 𝑛 = 1. But in this case the solution is 𝑥 = 1, that is, 𝑎2 + 𝑏2 = 1,
which is out of range.

4.3 The four cusps are ordinary

Dually, this amounts to proving the non-degeneracy of the four inflection points of𝑇𝑛(𝛾). Suppose,
without loss of generality, that𝑂 = (𝑎, 0), 𝑎 > 0, hence 𝛾 is given by𝑝 = 𝑎 cos 𝛼, and the inflection
points of 𝑇𝑛(𝛾) are 𝑇𝑛(𝑟0), where 𝑟0 = (0, 0), (𝜋, 0) or ±(𝜋∕2, 𝑎).
Begin with 𝑟0 = (0, 0). The 3-jet of 𝛾 at this point is parametrized by

𝜀 ↦
(

𝜀, 𝑎𝜀 −
𝑎

6
𝜀3
)

.
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 16 of 23

Then 𝑟𝑛 ∶= 𝑇𝑛(𝑟0) = (𝑛𝜋, 0). We calculate mod 𝜀4:

arccos
(

𝑎𝜀 −
𝑎

6
𝜀3
)

=
𝜋

2
− 𝑎𝜀 +

𝑎(1 − 𝑎2)

6
𝜀3,

hence the 3-jet of 𝑇𝑛(𝛾) at 𝑟𝑛 is parametrized by

𝜀 ↦

(
𝑛𝜋 + (1 − 2𝑛𝑎)𝜀 +

𝑛𝑎
(
1 − 𝑎2

)
3

𝜀3, 𝑎𝜀 −
𝑎

6
𝜀3

)
. (12)

Let

𝜀 ∶= (1 − 2𝑛𝑎)𝜀 +
𝑛𝑎

(
1 − 𝑎2

)
3

𝜀3.

If 1 − 2𝑛𝑎 ≠ 0 this can be inverted,

𝜀 =
𝜀

1 − 2𝑛𝑎
−

𝑛𝑎
(
1 − 𝑎2

)
𝜀3

3(1 − 2𝑛𝑎)4
,

so that

𝑎𝜀 −
𝑎

6
𝜀3 =

𝑎

1 − 2𝑛𝑎
𝜀 −

𝑎
(
1 − 2𝑛𝑎3

)
6(1 − 2𝑛𝑎)4

𝜀3.

The 3-jet of 𝑇𝑛(𝛾) at 𝑟𝑛 can thus be reparametrized as

𝜀 ↦

(
𝑛𝜋 + 𝜀,

𝑎

1 − 2𝑛𝑎
𝜀 −

𝑎
(
1 − 2𝑛𝑎3

)
6(1 − 2𝑛𝑎)4

𝜀3

)
.

The tangent ‘line’ at 𝑟𝑛 = (𝑛𝜋, 0) is the graph of

𝑝(𝛼) =
𝑎

1 − 2𝑛𝑎
sin(𝛼 − 𝑛𝜋),

with 3-jet at 𝑟𝑛 parametrized by

𝜀 ↦

(
𝑛𝜋 + 𝜀,

𝑎

1 − 2𝑛𝑎
𝜀 −

𝑎

6(1 − 2𝑛𝑎)
𝜀3

)
.

This coincides with the 3-jet of 𝑇𝑛(𝛾) at 𝑟𝑛 if and only if

𝑎
(
1 − 2𝑛𝑎3

)
(1 − 2𝑛𝑎)4

=
𝑎

1 − 2𝑛𝑎
,

which simplifies to

(4𝑛2 − 1)𝑎2 − 6𝑛𝑎 + 3 = 0. (13)
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17 of 23 BOR et al.

The only solution is 𝑎 = 𝑛 = 1, which is excluded.

Remark 5. We notice amysterious coincidence between Equations (11) and (13).We could not find
an explanation.

If 1 − 2𝑛𝑎 = 0 then the parametrized 3-jet (12) becomes

𝜀 ↦

(
𝑛𝜋 +

1 − 𝑎2

6
𝜀3, 𝑎𝜀 −

𝑎

6
𝜀3

)
. (14)

Let

𝜀 ∶= 𝑎𝜀 −
𝑎

6
𝜀3,

with inverse

𝜀 =
𝜀

𝑎
+

𝜀3

6𝑎3
.

Then (14) can be reparametrized as

𝜀 ↦

(
𝑛𝜋 +

(
1 − 𝑎2

)
6𝑎3

𝜀3, 𝜀

)
.

This is vertical at 𝑟𝑛 = (𝑛𝜋, 0), so the tangent ‘line’ at 𝑟𝑛 is the vertical line 𝛼 = 𝑛𝜋. It coincides
with the 2-jet of the above, but not with the 3-jet, as claimed. The argument for 𝑟0 = (𝜋, 0) is
similar and is omitted.
For 𝑟0 = (𝜋∕2, 𝑎) we proceed in a similar way. The ‘line’ 𝛾 is the graph of 𝑝 = 𝑎 sin 𝛼, whose

3-jet at 𝑟0 is parametrized by

𝜀 ↦
(

𝜋

2
+ 𝜀, 𝑎 −

𝑎

2
𝜀2
)

.

The image of this 3-jet under 𝑇𝑛 is the 3-jet at 𝑇𝑛(𝑟0) parametrized by

𝜀 ↦

(
𝛼𝑛 + 𝜀 +

𝑎𝑛√
1 − 𝑎2

𝜀2, 𝑎 −
𝑎

2
𝜀2

)
, 𝛼𝑛 =

𝜋

2
+ 2𝑛 arccos 𝑎.

Let

𝜀 ∶= 𝜀 +
𝑎𝑛√

1 − 𝑎2
𝜀2,

with inverse

𝜀 = 𝜀 −
𝑎𝑛√

1 − 𝑎2
𝜀2 +

2𝑎2𝑛2

1 − 𝑎2
𝜀3.
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 18 of 23

We get the parametrization of the 3-jet of 𝑇𝑛(𝛾) at 𝑇𝑛(𝑟0),

𝜀 ↦

(
𝛼𝑛 + 𝜀, 𝑎 −

𝑎

2
𝜀2 +

𝑎2𝑛√
1 − 𝑎2

𝜀3

)
. (15)

The ‘line’ tangent to 𝑇𝑛(𝛾) at 𝑇𝑛(𝑟0) is given by 𝑝 = 𝑎 cos(𝛼 − 𝛼𝑛), with 3-jet at 𝑇𝑛(𝑟0)

parametrized by

𝜀 ↦
(

𝛼𝑛 + 𝜀, 𝑎 −
𝑎

2
𝜀2
)

.

This coincides with the 2-jet of (15), but not the third, as claimed. The case 𝑟0 = (−𝜋∕2, −𝑎) is
similar and is omitted.

5 MISCELLANEA

We present here briefly some results and conjectures, inspired by the previous sections.

5.1 Liouville billiards

Recall that a Riemannian metric in a two-dimensional domain is called a Liouville metric if there
exist coordinates (𝑥, 𝑦) in which it is given by the formula

(𝑓(𝑥) + g(𝑦))(𝑑𝑥2 + 𝑑𝑦2),

where 𝑓 and g are smooth functions of one variable, such that 𝑓(𝑥) + g(𝑦) > 0 for all 𝑥, 𝑦. The
coordinate lines form a Liouville net, consisting of two families of mutually orthogonal curves.
The Euclidean metric in the plane admits a Liouville net consisting of confocal conics, corre-

sponding to the respective elliptic coordinates. The degenerations of this net include the net of
confocal parabolas and the net consisting of concentric circles and the radial lines (as well as the
trivial net consisting of the horizontal and vertical lines).
The elliptic coordinates in 3-space, restricted to a triaxial ellipsoidwhich is a level surface of one

of the coordinates, define a Liouville metric whose Liouville net consists of the lines of curvature;
see Figure 12.
One considers a billiard system in a geodesically convex domainwith a smooth closed boundary

on a Riemannian surface: the trajectories aremade of geodesic segments, and the law of reflection
is the same as in the Euclidean case (the angle of incidence equals the angle of reflection). Similar
to the case of billiards in an ellipse in the plane, the billiard systemon aLiouville surfacewhose bil-
liard table is bounded by a coordinate line from the Liouville net is integrable: a generic trajectory
has all its segments tangent to a fixed curve of the Liouville net; see [9, 12, 14–16] for details.
Themain ingredient in the proof of Theorem 1was the complete integrability of the billiard ball

map in ellipses and its consequences, such as a version of the Arnold–Liouville theorem (Proposi-
tion 1). For this reason, Theorem 1 and its proof extend, with appropriate adjustments, to Liouville
billiards as well.
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19 of 23 BOR et al.

F IGURE 1 2 The lines of curvature on an ellipsoid form a Liouville net, associated with the elliptic
coordinates in ℝ3. The billiard system on the ellipsoid, whose table is bounded by one of these curves, is
completely integrable.

We note that this set-up includes billiards bounded by conics in the hyperbolic and spherical
geometries, the closest ‘relatives’ of the Euclidean billiard inside an ellipse. Concerning spherical
and hyperbolic conics, see, for example, [11].

5.2 Cusps on axes

As noted in Remark 2(a), when a light source𝑂 is placed on one of the axes of an ellipse, two of the
cusps on the 𝑛th caustic by reflection from 𝑂 will be located on this axis, but Theorem 1 does not
give their location. Here we fill this gap, using the classical ‘mirror equation’ of geometric optics
[20, Equation (5.9)].

Proposition 2. Let 𝑂 = (𝑥0, 0), |𝑥0| < 𝑎, and let 𝑂𝑛 (resp., 𝑂′
𝑛) be the cusp of the 𝑛th caustic by

reflection from𝑂 along the trajectory leaving𝑂 in the positive (resp., negative) direction of the 𝑥-axis.
Then

𝑂𝑛 = (−1)𝑛𝑓𝑛(𝑂), 𝑂′
𝑛 = (−1)𝑛+1𝑓𝑛(−𝑂),

where𝑓 is a hyperbolicMöbius transformation of the𝑥-axis with fixed points at the foci±𝐹 = (±𝑐, 0),
𝑐 =

√
𝑎2 − 𝑏2. Furthermore, 𝐹 is an unstable fixed point of 𝑓 and −𝐹 is stable. Thus, as 𝑛 → ∞,

𝑂2𝑛 → −𝐹, 𝑂2𝑛+1 → 𝐹, 𝑂′
2𝑛 → 𝐹, 𝑂′

2𝑛+1 → −𝐹.

Explicitly,

𝑓(𝑥) =
(𝑎2 + 𝑐2)𝑥 − 2𝑎𝑐2

−2𝑎𝑥 + 𝑎2 + 𝑐2
. (16)

Exception: If 𝐶 is a circle then 𝑓 is parabolic, with a single fixed point at (0,0). Thus, lim 𝑂𝑛 =

lim 𝑂′
𝑛 = (0, 0), as 𝑛 → ∞.

Proof. Let (𝑅(𝑥), 0) be the image of (𝑥, 0) after reflection off𝐶 at (𝑎, 0) and (𝐿(𝑥), 0) the image after
reflection at (−𝑎, 0). The 𝑥-coordinate of the successive images of (𝑥0, 0), starting with a reflection
at (𝑎, 0), are then

𝑅(𝑥0), 𝐿𝑅(𝑥0), 𝑅𝐿𝑅(𝑥0) …
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CUSPS OF CAUSTICS BY REFLECTION IN ELLIPSES 20 of 23

Note that 𝐿(𝑥) = −𝑅(−𝑥), hence the 𝑛th term in the above sequence is

𝑥𝑛 = (−1)𝑛(−𝑅)𝑛(𝑥0).

It remains to find an explicit formula for 𝑓(𝑥) ∶= −𝑅(𝑥).
The ‘mirror equation’ states that if an object is placed on the line normal to a convex mirror,

where the curvature of the mirror is 𝑘, at a distance 𝑑 from the mirror, then a reflected image of
the object will form at a distance 𝑑′ from the mirror, given by

1

𝑑
+

1

𝑑′
= 2𝑘. (17)

The curvature of𝐶 at (𝑎, 0) is 𝑎∕𝑏2, so setting 𝑑 = 𝑎 − 𝑥, 𝑑′ = 𝑎 + 𝑓(𝑥) in formula (17), we obtain

1

𝑎 − 𝑥
+

1

𝑎 + 𝑓(𝑥)
=

2𝑎

𝑏2
. (18)

Formula (16) for 𝑓(𝑥) follows. From formula (16) follows that

𝑓′(𝑐) =
(𝑎 + 𝑐)2

(𝑎 − 𝑐)2
, 𝑓′(−𝑐) =

(𝑎 − 𝑐)2

(𝑎 + 𝑐)2
.

Thus 𝑓′(𝑐) > 1 and 0 < 𝑓′(−𝑐) < 1. It follows that 𝑐 is an unstable fixed point of 𝑓 and−𝑐 is stable.
The formula for 𝑂′

𝑛 is obtained is a similar manner by considering the sequence
𝐿(𝑥0), 𝑅𝐿(𝑥0), 𝐿𝑅𝐿(𝑥0), … □

Next, we study the case when 𝑂 is on the minor axis.

Proposition 3. Let 𝑂 = (0, 𝑦0), |𝑦0| < 𝑏, and let 𝑂𝑛 (resp. 𝑂′
𝑛) be the cusp of the 𝑛th caustic by

reflection from 𝑂 along the trajectory leaving 𝑂 in the positive (resp. negative) direction of the 𝑦-axis.
Then

𝑂𝑛 = (−1)𝑛g𝑛(𝑂), 𝑂′
𝑛 = (−1)𝑛+1g𝑛(−𝑂),

where g is an elliptic Möbius transformation of the 𝑦-axis, conjugate to a rotation by 4𝜃, where 𝑐 +

𝑖𝑏 = 𝑎𝑒𝑖𝜃 (that is, 𝜃 is the angle between the 𝑥-axis and line through (0, 𝑏) and −𝐹 = (−𝑐, 0)).
Explicitly,

g(𝑦) =
𝑦
(
𝑐2 − 𝑏2

)
− 2𝑏𝑐2

2𝑏𝑦 + 𝑐2 − 𝑏2
. (19)

Proof. The proof of formula (19) is very similar to the above proof of formula (16) and is omitted.
Using formula (19), one finds that g(𝑦) has no fixed points, hence it is elliptic, that is, conjugate to
a rotation. The angle of rotation is given by the derivative at the complex fixed points. The complex
fixed points of (19) are ±𝑖𝑐, with

g ′(𝑖𝑐) =

(
𝑐 − 𝑖𝑏

𝑐 + 𝑖𝑏

)2

, g ′(−𝑖𝑐) =

(
𝑐 + 𝑖𝑏

𝑐 − 𝑖𝑏

)2

.
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21 of 23 BOR et al.

F IGURE 13 Caustics by reflection from an external light source 𝑂: (a) each line through 𝑂, incident to the
interior of 𝐶, produces 2 billiards trajectories, tangent to the same conic confocal to 𝐶; (b) the 1st caustic by
reflection off an ellipse, showing two cusps, lying on the confocal hyperbola through 𝑂. (c) The first two caustics
by reflection off a circle, from an exterior light source 𝑂, showing two cusps for each caustic, lying on the line
through 𝑂 and the center of the circle. (d) A coffee cup ‘half-caustic’, showing a single cusp.

Let 𝑐 + 𝑖𝑏 = 𝑎𝑒𝑖𝜃. Then g ′(𝑖𝑐) = 𝑒−4𝑖𝜃, g ′(−𝑖𝑐) = 𝑒4𝑖𝜃, from which follows the statement about the
angle of rotation. □

5.3 A light source outside an ellipse

Let us place a light source𝑂 outside an ellipse 𝐶. For each line through𝑂 intersecting the interior
of 𝐶 we consider the two billiard trajectories in the interior of 𝐶, whose initial rays are aligned
with the line. One then finds analogues of the two conjectures and two theorems of this article,
with ‘4’ replaced by ‘2’ throughout: the 𝑛th caustic by reflection of these rays is tangent to 𝐶 at
the contacts points with 𝐶 of the two tangents to 𝐶 through 𝑂, and has 2 cusps, located on the
hyperbola confocal with 𝐶 and passing through 𝑂; see Figure 13.

5.4 The complexity of caustics by reflection

Figure 14 illustrates the observation that the complexity of the𝑛th caustic by reflection in an ellipse
increaseswith 𝑛. There aremanyways tomeasure ‘complexity’; for example, onemay consider the
number of times that the caustic goes to infinity (these points correspond to the vertical tangents
of the curve 𝑇𝑛(𝛾) ⊂ ). It would be interesting to make conjectures in this direction.

5.5 Pseudo-integrable billiards

One may consider billiard tables bounded by arcs of confocal conics; such billiards were intro-
duced in [7]. Since confocal conics intersect at right angles, these billiard tables have angles that
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F IGURE 14 The second, fifth, and eighth caustics by reflection in an ellipse. The cusps are marked by gray
circles.

F IGURE 15 The first three caustics by reflection in a table bounded by two confocal parabolas.

F IGURE 16 Caustics by refraction of a parallel beam in a circle. The figures show three distinct values of
the index of refraction 𝜇 (from left to right): 1 < 𝜇 < 2, 𝜇 = 2, 𝜇 > 2. The cusps occur on the line through the
center of the circle and parallel to the rays and on a concentric circle of radius 1∕𝜇.

are multiples of 𝜋∕2. Figure 15 shows caustics by reflection in a table bounded by two confocal
parabolas. Although four cusps still lie on the confocal parabolas that pass through the source of
light, there are additional cusps, and their number increases with 𝑛.

5.6 Caustics by refraction

One could extend the experimental study and make conjectures about caustics by refraction in
ellipses. Cayley considered the first such caustic in the case of a circle in [6]; see Figure 16 taken
from p. 286 of Cayley’s text.
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