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Abstract11

We give a randomized algorithm that approximates the number of independent sets in a dense,12

regular bipartite graph—in the language of approximate counting, we give an FPRAS for #BIS13

on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to14

“high-temperature” problems on bounded-degree graphs, and our contribution is a notable exception15

as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused16

complement to the long line of work in combinatorial optimization, showing that CSPs such as17

Max-Cut and Unique Games are easy on dense graphs via spectral arguments.18

Our contributions include a novel extension of the method of graph containers that differs19

considerably from other recent low-temperature algorithms. The additional key insights come from20

spectral graph theory and have previously been successful in approximation algorithms. As a result,21

we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In22

particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e.,23

bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.24

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;25

Mathematics of computing → Approximation algorithms; Theory of computation → Algorithm26

design techniques27

Keywords and phrases approximate counting, independent sets, bipartite graphs, graph containers28

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.10329

Category Track A: Algorithms, Complexity and Games30

Related Version Full Version: https://arxiv.org/abs/2307.0953331

Funding Ewan Davies: Supported in part by NSF grant CCF-230970732

Aditya Potukuchi: Supported in part by NSERC Discovery grants RGPIN-2023-05087 & DGECR-33

2023-0040834

1 Introduction35

Exactly computing the number i(G) of independent sets in a graph G is #P-hard, even when36

restricted to bipartite graphs [41]. In the general case, approximating i(G) (to within, say, a37

constant factor) is NP-hard, even when restricted to d-regular graphs with d ≥ 6 [20, 46, 45].38

Restricted to bipartite graphs the problem of counting independent sets is known as #BIS,39

and the prospect of hardness of approximation is less clear because finding a maximum40
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independent set can be done in polynomial time. Under polynomial-time approximation-41

preserving reductions, many natural counting problems are equivalent to #BIS [17], and the42

complexity of approximating #BIS has received a lot of attention. Existing approximation43

algorithms for #BIS include “high-temperature” algorithms that work when degrees on one44

side of the bipartition are small [38], “low-temperature” algorithms that require additional45

assumptions such as expansion [11, 29] or unbalanced degrees [8], and exponential-time46

algorithms that are nonetheless faster than algorithms for the general, non-bipartite case [24].47

The description of these methods in terms of temperature is due to a common generalization48

in terms of weighted counting and strong connections to statistical physics, where counting49

(weighted) independent sets corresponds to computing the partition function of the hard-core50

model.51

The idea that Max-CSP optimization problems such as Max-Cut and Unique Games52

should be easy to approximate on dense graphs—perhaps because they have good expansion53

properties—is well-established [3, 18, 19]. Many of the techniques that apply to dense or54

expanding graphs have been generalized in interesting directions. In particular, spectral55

methods give good results in both dense graphs and expanders, and in many cases can be56

extended to more refined structural properties such as small-set expansion and threshold rank57

to great effect. Most of the prominent approaches to Max-CSPs relevant to this work fall into58

three categories: algorithmic regularity lemmas which began with Frieze and Kannan [19] and59

were extended to threshold rank by Oveis Gharan and Trevisan [39]; convex hierarchies and60

correlation rounding [4, 6, 25]; and the spectral technique of subspace enumeration due to61

Kolla and Tulsiani [36, 37]. Prior to these developments were several algorithms demonstrating62

that counting problems on dense graphs admit efficient approximation algorithms [1, 16, 33],63

though these results do not apply to counting independent sets.64

An analogous theme in approximate counting is to obtain algorithms on expander graphs65

or random graphs [7, 10, 21, 26, 29]. Despite superficial similarity to the aforementioned work66

on Max-CSPs in the sense that these works give algorithms for dense or expanding instances,67

there is relatively little work establishing any common underlying phenomenon that makes68

Max-CSP problems and counting problems easy on dense or expanding graphs. A notable69

exception is due to Risteski [42], who connected the work on correlation rounding and convex70

hierarchies [6] to the broad and well-studied problem of approximating partition functions.71

His approach is also known as the variational method. Regularity methods and correlation72

rounding do provide some evidence of structure common to these problems; for example,73

Coja–Oghlan and various coauthors have developed a range of regularity lemmas and applied74

them to both Max-CSPs and spin models on random graphs [5, 13, 14], and Coja–Oghlan75

and Perkins independently discovered correlation rounding in the context of Gibbs measures76

and partition functions [15]. Counting independent sets is not typically one of the examples77

studied, though occasionally this is more for convenience than for fundamental reasons.78

In the specific context of #BIS, connections to Max-CSP research are even more scarce.79

The polymer approach of Jenssen, Keevash and Perkins [29] is a major algorithmic break-80

through for #BIS which shows that several prominent #BIS-hard problems can be approx-81

imated in polynomial time on bounded-degree expander graphs (and thus random d-regular82

graphs for d = O(1)). Further refinements of the method broaden the range of problems83

covered [21, 26], provide faster algorithms based on rapid mixing of Markov chains known as84

polymer dynamics [11], or weaken the structural properties required by applying container85

theorems to combinatorial enumeration problems that arise in the method [10, 32]. None86

of these developments give polynomial-time algorithms in dense graphs, however. Carlson,87

Davies, and Kolla [9] applied the polymer method to approximate the Potts model partition88



C. Carlson, E. Davies, A. Kolla and A. Potukuchi 103:3

function on (bounded-degree) graphs with bounded threshold rank, but the conditions their89

analysis requires are prohibitively restrictive, and it is unclear whether their techniques can90

be applied to #BIS. While Risteski’s approach has been extended and improved [28, 35],91

results are stated for spin models with soft constraints such as the Ising and Potts models,92

and the approximation guarantees degrade in the presence of the hard constraints that are93

inherent to independent sets.94

1.1 Main result95

We specifically address the superficial similarities between algorithms for Max-CSPs and96

counting independent sets by giving an algorithm for approximately counting independent97

sets in dense, regular bipartite graphs which combines the highly successful techniques of98

polymer models, subspace enumeration, and container theorems for the enumeration of99

independent sets in bipartite graphs. Our approximation guarantee is of the strong type100

typically sought in approximate counting. We say that a relative ϵ-approximation of a real101

number x is a real number y such that e−ϵ ≤ x/y ≤ eϵ, and a fully polynomial randomized102

approximation scheme (FPRAS) for a counting problem is an algorithm that with probability103

at least 3/4 outputs a relative ϵ-approximation to the solution in time polynomial in the104

instance size and 1/ϵ.105

▶ Theorem 1. For each δ ∈ (0, 1) there is an FPRAS for #BIS on the class of d-regular106

bipartite graphs G with d = ⌊δ|V (G)|/2⌋.107

We use spectral methods and subspace enumeration to enumerate small cuts in d-regular108

bipartite graphs via an ϵ-net of the vector space spanned by small eigenvalues of the109

Laplacian matrix of the graph, influenced by the use of these methods in combinatorial110

optimization [2, 36, 37] and approximate counting. Some of our analysis builds upon the111

perturbative approach of [27, 29] and an important refinement of this method due to Jenssen112

and Perkins [30] (and with Potukuchi [31]) that uses graph container lemmas of the type113

developed by Sapozhenko [43, 44]. While container theorems for independent sets have114

been used to control enumeration problems that arise in establishing the convergence of the115

cluster expansion [30, 31, 32], and these have inspired container-like theorems for controlling116

analogous enumeration problems [10], our addition of subspace enumeration here has a117

different purpose.118

In terms of running time, our result improves upon the dense case of an algorithm of119

Jenssen, Perkins, and Potukuchi [32] which runs in subexponential time on d-regular bipartite120

graphs for all d ≥ ω(1). In the case d = Θ(n) their algorithm takes time exp(Ω(log4 n)), and121

our contribution works for any accuracy parameter ϵ, which is not given by the methods122

in [32]. The improvement stems from incorporating the spectral techniques mentioned123

above, which lets us sidestep algorithmic cluster expansion. That is, our spectral techniques124

overcome an obstacle in the algorithm of [32] related to polynomial accuracy: we can achieve125

arbitrary accuracy without resorting to a naive enumeration of polymers (which in this126

setting are connected subgraphs of the square of the instance).127

An interesting question posed in [32] is whether #BIS admits a general subexponential-128

time algorithm. One of our technical contributions is to show that a perspective on graph129

spectra involving higher-order eigenvalues and eigenvectors advances our understanding of130

#BIS.131

ICALP 2024
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2 Overview132

Fix δ > 0 and for d = ⌊δn⌋, a bipartite graph G = (X ∪ Y, E) on 2n vertices. Let ϵ > 0 and133

note that we allow ϵ to depend on n.134

Our proof begins with the well-known observation that to enumerate independent sets135

in a bipartite graph it suffices to enumerate deviations from the “ideal” independent set X.136

That is, we have the identity137

i(G) =
∑

A⊆X

2|Y \N(A)| (1)138

because, for a fixed A ⊆ X, any vertex of Y \N(A) can be added to A without spanning139

an edge. There is a similar formula for i(G) based on enumerating deviations from Y . An140

important achievement of [29] is to give a rigorous proof that in bipartite graphs with strong141

expansion, typical independent sets are small deviations from either X or Y . Intuitively, we142

see a hint of this idea in equation (1) as when G is an expander we expect that N(A)≫ |A|143

and so the terms on the right-hand side are small unless |A| is small. Given this, one might144

hope to obtain an algorithm provided one can solve the problem of efficiently enumerate145

the small deviations and quantifing their contributions to i(G). This is done in [29] by146

approximating i(G) with the sum of two polymer models, and brute force enumeration of147

terms in the cluster expansion for these models.148

If the bipartite graph is not an expander, then large deviations from X and Y must be149

handled. For example, in a 2n-vertex disjoint union of complete d-regular bipartite graphs, a150

significant number of independent sets intersect both X and Y on Ω(n) vertices. To extend151

the algorithm to all bipartite graphs, using an idea from [32] we can separate contributions152

from expanding and non-expanding pieces of the deviation A. The first step is to break153

A ⊆ X in the sum in (1) into pieces with disjoint neighborhoods. We say that a subset154

A ⊆ X is polymer2 if it is connected in the square G2 of G, and note that any A ⊆ X admits155

a unique partition into polymers which have disjoint neighborhoods. We call the polymers156

in this partition the components of A and denote the set of components of A by K(A). We157

say that two polymers are compatible if their neighborhoods are disjoint, and that a set or158

tuple of polymers is compatible if the polymers in it are pairwise compatible. Thus, subsets159

A ⊆ X correspond to compatible sets of polymers via the unique partition into polymers160

with disjoint neighborhoods.161

▷ Claim 2.

i(G) =
∑
k≥0

1
k!

∑
(A1,...,Ak) s.t.

each Ai is a polymer and
(A1, . . . , Ak) compatible

2
∣∣Y \

⋃k

j=1
N(Aj)

∣∣
. (2)162

Proof. The claim follows from the correspondence between subsets A ⊆ X and sets of163

compatible polymers given by A 7→ K(A). By convention, we sum over compatible tuples of164

polymers which leads to the term 1/k! to account for the permutations of each tuple. We165

use the fact that compatible polymers have disjoint neighborhoods for the correspondence of166

the summands. ◁167

The closure [A] of a subset A ⊆ X is [A] := {x ∈ X : N(x) ⊆ N(A)}, and we say that A168

is closed if A = [A]. Note that A is closed if and only if each component of A is closed. A169

2 In related works the term “2-linked” is used for the property of being connected in G2.
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subset A ⊆ X is called t-expanding if |N(A)| = |[A]|+ t, and (in a slight abuse of terminology170

that we hope the reader permits) t-contracting if |N(A)| < |[A]|+ t. For a fixed t0 that we171

determine later, we split the sum over polymers in (2) according to t0-contraction. To do172

this, for each subset A ⊆ X, let XA = X \N(N(A)) and YA = Y \N(A). Let PA be the set173

of polymers which are subsets of XA and define174

Ξ(A) :=
∑
k≥0

1
k!

∑
(B1,...,Bk) s.t.

Bi ∈ PA is not t0-contracting
and (B1, . . . , Bk) compatible

2−
∑k

i=1
|N(Bi)|,175

where the inner sum is over compatible k-tuples of polymers, each of which is not t0-contracting176

(equivalently, t-expanding for some t ≥ t0).177

▷ Claim 3.

i(G) =
∑
k≥0

1
k!

∑
(A1,...,Ak) s.t.

each Ai is a t0-contracting polymer
and (A1, . . . , Ak) compatible

2
∣∣Y \⋃k

j=1 N(Aj)
∣∣
· Ξ

(⋃k
j=1 Aj

)
. (3)178

Proof. From Claim 2 we can split the sum over tuples of polymers into a sum over tuples179

of t0-contracting polymers and tuples of non-t0-contracting polymers. The idea is to first180

sum over tuples (A1, . . . , Ak) of t0-contracting polymers and then use the fact that for181

A =
⋃k

j=1 Aj the quantity Ξ(A) contains a sum over the ways to extend this tuple to one182

containing non-t0-contracting polymers and the summand is the additional contribution that183

each such extension makes. The definition of PA means that any Bi ∈ PA is compatible with184

each component of A. With a little care, one can check that the permutaions of the tuples185

are correctly taken into account and the claim follows. ◁186

A further refinement of the expression for i(G) groups t0-contracting polymers according187

to their neighborhoods. The motivation for this is that two subsets A ⊆ X and B ⊆ X (each188

corresponding to the union of some compatible tuple of t0-contracting polymers) have the189

same contribution in the sum if N(A) = N(B) because this implies that Ξ(A) = Ξ(B). For190

a subset A ⊆ X write191

D(A) :=
∏

A′∈K(A)

∣∣{B′ ⊆ A′ : B′ is a polymer and N(B′) = N(A′)}
∣∣.192

The quantity D(A) counts the number of subsets B of A such that N(B) = N(A) and which193

are formed by choosing for each component A′ of A, a subset B′ ⊆ A′ which is a polymer.194

Note that if A′ is t0-contracting then so is any polymer B′ ⊆ A′ with N(B′) = N(A′). For195

convenience, we define A to be the set of all A ⊆ X with closed, t0-contracting components.196

▷ Claim 4.

i(G) =
∑
A∈A
D(A) · 2|Y \N(A)| · Ξ(A), (4)197

Proof. From Claim 3 we can restrict the sum over tuples of t0-contracting polymers to198

closed t0-contracting polymers provided, for each compatible tuple (A1, . . . , Ak) of closed199

t0-contracting polymers, we multiply their contribution to the sum by a term counting the200

number of ways of getting that contribution with polymers that are not necessarily closed.201

Identifying compatible tuples of closed polymers with their union, i.e. setting A =
⋃k

j=1 Aj ,202

ICALP 2024
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the contribution to the sum from A is 2|Y \N(A)| ·Ξ(A). The term D(A) is exactly the number203

of ways of getting this contribution. The claim follows from the conversion of the sum back204

into one over suitable subsets of X, namely those in A, instead of a sum over compatible205

tuples of polymers. ◁206

Now that we have a suitable expression (4) for i(G), we can describe how our algorithm207

approximates i(G). Our algorithm simply enumerates the sets A ∈ A, approximates each208

D(A) term, and uses the fact (which we must prove) that 1 is a good approximation of each209

Ξ(A) to approximate i(G). Given these subroutines, computing the sum (4) is straightforward.210

The analysis of our algorithm thus splits into three separate components. Recall that the211

input is a d-regular bipartite graph G on 2n vertices such that for some constant δ > 0 we212

have d = ⌊δn⌋, and an approximation error ϵ. We set t0 = C log(n/ϵ), where C = C(δ) is213

large enough, and the correctness and running time of our algorithm follows from the results214

below. Note that for this choice of t0 an exponential such as 4t0 is polynomial in n and 1/ϵ.215

▶ Lemma 5. For t0 ≤ 2−8d, the set A = {A ⊆ X : A closed and t0-contracting} has size at216

most nO(1/δ) · 4t0 and can be enumerated in the same time.217

The proof of this lemma uses subspace enumeration to find small cuts in G, and then for218

each such small cut enumerates the sets A ∈ A which are close to the cut. See Section 4.219

▶ Lemma 6. Let A ⊆ X be a closed t0-contracting polymer. Then for ϵ′, ρ′ > 0 there220

is a randomized algorithm running in time polynomial in n, 1/ϵ′ and log(1/ρ′) that with221

probability at least 1−ρ′ outputs a relative ϵ′-approximation to the number of polymers B ⊆ A222

such that N(B) = N(A).223

This lemma uses straightforward estimation of an expectation by repeated sampling, and224

is very similar to the analogous result in [32]. The proof is in Section 5. We use the lemma in225

each component of the sets A ∈ A in the claim below. This claim requires an upper bound226

on t0, but this is a small technical detail as the only way to violate this bound is to choose227

an error parameter ϵ so small that one has time for brute force because an FPRAS can take228

time polynomial in 1/ϵ, see Section 3 where we use the claim.229

▷ Claim 7. Suppose that t0 ≤ d/2. Then each set A ∈ A has at most 2/δ = O(1)230

components, and for ϵ′, ρ′ > 0 there is a randomized algorithm running in time polynomial231

in n, 1/ϵ′ and log(1/ρ′) that, given a set A ∈ A as input, with probability 1− ρ′ obtains an232

ϵ′-approximation of D(A).233

Proof. Any t0-contracting set must have size at least d − t0, and in the case t0 ≤ d/2 we234

have d− t0 ≥ d/2 and hence each A ∈ A has at least 2n/d = 2/δ components.235

Observe that if A ∈ A has ℓ components then running the algorithm of Lemma 6 on each236

component with error parameter ϵ′/ℓ and probability parameter ρ′/ℓ yields, with probability237

at least 1−ρ′, a relative ϵ-approximation to D(A) in time polynomial in n, ℓ/ϵ′ and log(ℓ/ρ′).238

When t0 ≤ d/2 we have the upper bound ℓ = O(1) from above and the claim follows. ◁239

▶ Lemma 8. Let A ∈ A, then 1 ≤ Ξ(A) ≤ eϵ/2.240

This result means that 1 is a relative ϵ/2-approximation for each of the Ξ(A) terms241

appearing in (4). The proof is based on graph container methods due to Sapozhenko [43,242

44], which have since been refined, [23, 22, 34, 40], and their application to algorithmic243

counting [30, 31, 32]. We give the proof in Section 6.244
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3 The algorithm and proof of Theorem 1245

Input A ⌊δn⌋-regular bipartite graph G = (X ∪ Y, E) on 2n vertices and an approximation246

error ϵ > 0.247

Output A relative ϵ-approximation i′ of i(G).248

Recall that C = C(δ) is a large enough constant, and that t0 = C log(n/ϵ). In the249

following proof, implicit constants in the O(·) notation and implicit polynomials are allowed250

to depend on δ but not ϵ. If ϵ ≤ n exp(−d/(28C)) then we can afford to run a brute force251

algorithm that computes i(G) exactly in time eO(n) and the running time is still polynomial252

in 1/ϵ. Otherwise, we note that for all large enough n we have d− 27t0 ≥ d/2 and run the253

following algorithm. For convenience, we assume that ϵ ≤ 1 and simply run the algorithm254

for ϵ = 1 if the given ϵ is larger.255

First, construct the set A, which can be done in time (n/ϵ)O(1) by Lemma 5. Note also256

that |A| is polynomial in n and 1/ϵ. Then, for each A ∈ A compute an ϵ/2-approximation257

D̃A of DA with the algorithm of Claim 7 and probability parameter ρ′ = 3/(4|A|). Then258

log(1/ρ′) is polynomial in log n and log(1/ϵ) so the running time of this step is polynomial in259

n and 1/ϵ. By a union bound, with probability at least 3/4 we get the desired approximation260

in each application of the claim, and thus a valid relative ϵ/2-approximation D̃A of each DA.261

Then output i′ =
∑

A∈A D̃A2|Y \N(A)|. By Lemma 8 and the analysis above, the output is a262

valid ϵ-approximation of i(G) obtained in time (n/ϵ)O(1), thus proving Theorem 1.263

4 Subspace enumeration and contracting sets264

The proof of Lemma 5 has two parts. First, we show how to enumerate small cuts using265

subspace enumeration. For related results see [2, 36, 37]. We use the term cut to mean a266

subset of V = X ∪ Y , and the value |∇(C)| of a cut C is the number of edges with precisely267

one endpoint in C. Subspace enumeration involves what is commonly called an ϵ-net of a268

subset U ′ of a vector space, which is a collection of points such that U ′ is contained in the269

union of the balls of radius ϵ around each point. Since we reserve ϵ for the error parameter270

in our algorithm, our nets are ξ-nets.271

▶ Lemma 9. Let G = (V, E) be a d-regular bipartite graph on N = 2n vertices. There is a272

set Ccut ⊆ 2V such that |Ccut| ≤ nO(n/d) and Ccut has the following property. For all t ≥ 1273

and cuts S ⊆ V with value |∇(S)| ≤ td, there is some C ∈ Ccut such that |S △ C| ≤ 32t and274

|∇(C)| ≤ 33td. Moreover, the set Ccut can be constructed in time nO(n/d).275

Proof. Let d = λ1 ≥ · · · ≥ λN = −d be the spectrum of the adjacency matrix A of G. The276

facts that λ1 = d = −λN and that the spectrum of A is symmetric about zero are standard,277

see e.g. [12]. Let k be such that A has precisely 2k eigenvalues of absolute value at least d/2.278

Counting closed walks of length two gives279

Tr(A2) = Nd =
N∑

i=1
λ2

i ≥ kd2/2,280

and hence k ≤ 4n/d.281

Let L = dI −A be the Laplacian matrix of G and let e1, . . . , eN be an orthonormal basis282

of eigenvectors of L such that ei has eigenvalue µi with 0 = µ1 ≤ · · · ≤ µN = 2d. By the283

definition of k, it must be the case that µk+1 > d/2. Let U be the span of e1, . . . ek, and U⊥
284

ICALP 2024
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be the orthogonal complement of U . For ξ =
√

2, we require an efficient construction of a285

ξ-net E ⊆ U covering all vectors of L2-norm at most
√

n in U . For example, we can take286

E :=
{

p =
k∑

i=1
xiei : x1, . . . , xk ∈ (ξ/

√
k) · Z, ∥p∥ ≤

√
n

}
,287

yielding |E| ≤ (2
√

nk/ξ)k. Then every vector in U with L2-norm at most
√

n lies at most288

distance ξ from a vector in E .289

The algorithm to construct Ccut is as follows. Start with Ccut = ∅ and for each point290

p ∈ E , form p′ by rounding each coordinate of p to {0, 1} (breaking ties with 1/2 7→ 1) and291

add the vertex subset with indicator vector p′ to Ccut.292

We now show that Ccut has the desired properties. By the construction of Ccut and E we293

have |Ccut| ≤ |E| ≤ nO(n/d). To establish the other property of Ccut, let t ≥ 1 and consider294

an arbitrary subset S ⊆ V with |∇(S)| ≤ td. Let s be the indicator vector of the set S and295

write this vector in the eigenbasis of L as s =
∑N

i=1 siei. Let u =
∑k

i=1 siei be the projection296

of s onto U and let p be the point in E closest to u. Indicator vectors of subsets of V have297

L2-norm at most
√

n, and hence ∥u− p∥ ≤ ξ.298

Without considering our need for an efficient construction, the idea is that because ∇(S)299

is small we know that s is an indicator vector close to its projection u onto U . Thus, if we300

form Ccut as the union of all sets whose indicator vectors are close to vectors in U , each set301

S of interest has an indicator vector that lies within a distance twice the definition of “close”302

to a set in C.303

To make the above sketch efficient, we replace U with the ξ-net E . Note that304

td ≥ |∇(S)| = sTLs =
N∑

i=1
µis

2
i ≥

d

2

N∑
i=k+1

s2
i .305

306

But
∑N

i=k+1 s2
i = ∥s−u∥2, so we have the bound ∥s−u∥ ≤

√
2t. Then we immediately have307

∥s− p∥ ≤
√

2t + ξ from the triangle inequality. Let p′ be obtained from p by rounding each308

coordinate to {0, 1}, breaking ties with 1/2 7→ 1, and let C ⊆ V be the set whose indicator309

vector is p′. We have |S△C| = ∥s−p′∥2 and we bound the latter with the triangle inequality.310

In particular, s is an indicator vector of distance at most
√

2t + ξ from p and p′ must be the311

closest indicator vector to p, hence ∥p− p′∥ ≤
√

2t + ξ. Then ∥s− p∥ ≤ 2(
√

2t + ξ), and312

because t ≥ 1 and ξ =
√

2 we have313

|S △ C| ≤ 4
(√

t + ξ
)2
≤ 32t.314

It remains to bound the value of the cut |∇(C)|, and the desired bound follows from the315

observation that316

|∇(C)| ≤ |∇(S)|+ d|S △ C| ≤ td + 32td = 33td. ◀317

Lemma 9 tells us that there is an efficient construction of a collection Ccut of cuts such318

that any small cut S must be close to a cut in Ccut in Hamming distance. We now show that319

given a small cut S we can enumerate the sets A ∈ A which are close to S. For this to be320

useful, it must be that each A ∈ A is close to some small cut, and we give the details of this321

later.322

▶ Lemma 10. Fix any c ≥ 1 and let t ≤ d
8c . Given a cut C with value at most td, there323

are at most 4t closed t-contracting subsets A ⊆ X such that |A △ (C ∩ X)| ≤ ct and324

|N(A)△ (C ∩ Y )| ≤ ct. Moreover, these sets A can be enumerated in time 4t · nO(1).325
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Proof. Let A′ := C ∩X and W ′ := C ∩ Y . By the fact that G is d-regular, |E(A′, W ′)| ≤326

d min{|A′|, |W ′|} and hence |∇(C)| ≥ d max
{
|W ′| − |A′|, |A′| − |W ′|

}
. By assumption, we327

have |∇(C)| ≤ td and therefore
∣∣|W ′| − |A′|

∣∣ ≤ t.328

Set329

SX :=
{

v ∈ X \A′ : |N(v) \W ′| ≤ 3ct
}

, and330

SY :=
{

v ∈W ′ : |N(v) ∩A′| ≤ ct
}

,331
332

so that SX ⊆ X consists of vertices in X \A′ with almost all of their neighbors in W ′ and333

SY ⊆ Y consists of vertices in W ′ with almost all of their neighbors in X \A′. We have the334

following claims.335

▷ Claim 11. For any closed t-contracting subset A ⊆ X such that |A△A′| ≤ ct, A\A′ ⊆ SX .336

Proof. Suppose for contradiction that there is a vertex v ∈ A \A′ such that337

|N(v) \W ′| > 3ct.338

We derive the contradiction using the facts that |∇(A ∩A′)| = d|A ∩A′| and that any of the339

edges in ∇(A ∩ A′) not incident to W ′ contribute to the value of the cut C. These facts340

imply that |E(A ∩A′, W ′)| ≥ d|A ∩A′| − t · d, and hence341

|N(A ∩A′) ∩W ′| ≥ |A ∩A′| − t.342

Then because A is closed and non-expanding,343

|A|+ t ≥ |N(A)| ≥ |N((A ∩A′) ∪ {v})|344

> |N((A ∩A′) ∪ {v}) ∩W ′|+ 3ct345

≥ |A ∩A′|+ 2ct ≥ |A|+ ct,346
347

which is a contradiction because there is a strict inequality in the chain and c ≥ 1. ◁348

▷ Claim 12. For any t-contracting subset A ⊆ X such that |A△A′| ≤ ct, W ′\N(A∩A′) ⊆ SY .349

Proof. We note that for each vertex v in W ′ \N(A ∩A′), we have that350

N(v) ∩A′ ⊆ A′ \A.351

Since |A′ \A| ≤ ct, it follows that |N(v) ∩A′| ≤ ct. ◁352

We can now complete the proof of the lemma. Using the degree constraints in the353

definitions of SX and SY , we have354

td ≥ |∇(C)|355

≥ |SX |(d− 3ct) + |SY |(d− ct)356

≥ (d/2) · (|SX |+ |SY |)357
358

where the last inequality uses t < d
8c . As a result, we have359

|SX |+ |SY | ≤ 2t.360

Putting Claim 11 and Claim 12 together, we have that each closed t-contracting sets A361

with |A△A′|, |N(A)△W ′| ≤ ct must be of the form362

A = [(A′ \N(S′
Y )) ∪ S′

X ]363

for some subsets S′
Y ⊆ SY and S′

X ⊆ SX . Thus, the total number of such A is at most364

2|SX |+|SY | ≤ 4t. Since we are given the cut C, SX and SY can be found in time polynomial365

in n as required. ◀366
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With these ingredients we can proof Lemma 5, which we recall states that A can be367

enumerated in time nO(1/δ)4t0 .368

Proof of Lemma 5. Since d = ⌊δn⌋, we construct Ccut as in Lemma 9 in time nO(1/δ). We369

then choose c = 32 and enumerate for each C ∈ Ccut, every closed t0-contracting subset A370

with |A△(C∩X)| ≤ 32t0 and |N(A)△(C∩Y )| ≤ 32t0 using Lemma 10. We are done if every371

A ∈ A appears in this enumeration process, as the running times combine to give the required372

nO(1/δ)4t0 . This holds because each A ∈ A is closed and t0-contracting and hence setting373

SA = A ∪N(A), by a double counting argument, we have |∇(SA)| = d|N(A)| − d|A| ≤ t0d.374

So each A ∈ A corresponds to a cut of value at most t0d and hence some C ∈ Ccut has375

|SA △ C| ≤ 32t0 by Lemma 9. ◀376

5 Approximating the number of covers377

For convenience, we restate Lemma 6 here.378

▶ Lemma 6. Let A ⊆ X be a closed t0-contracting polymer. Then for ϵ′, ρ′ > 0 there379

is a randomized algorithm running in time polynomial in n, 1/ϵ′ and log(1/ρ′) that with380

probability at least 1−ρ′ outputs a relative ϵ′-approximation to the number of polymers B ⊆ A381

such that N(B) = N(A).382

Proof. The method is exactly the same as [32, Lem. 17], but in our setting with d = ⌊δn⌋383

the resulting algorithm runs in time polynomial in n.384

Let |A| = a, N(A) = W have size |W | = w, and let W ′ = {v ∈ W : |N(v) ∩ A| ≤ d/2}385

have size |W ′| = w′. Let386

D = {B ⊆ A : N(B) = W and B is a polymer}387

be the set whose size we wish to estimate.388

By [32, Cor. 10], there is a polymer A′ ⊆ A of size at most389

2a

d
log d + 2w

d
+ 2(w − a) ≤ 2

δ
(1 + log n) + 2t0390

such that N(A′) = W . Then |D| ≥ 2a−( 2
δ (1+log n)+2t0), because any subset of A which391

contains A′ is a polymer. Now |D| can be estimated to relative error ϵ′ with probability at392

least 1− ρ by sampling393

1
(ϵ′)2 log(1/ρ)nO(1/δ)4t0394

subsets of A uniformly at random, and this can be proved with a suitable application of the395

Chernoff bound. ◀396

6 Enumerative lemmas397

In this section we prove Lemma 8 which states that for A ∈ A we have 1 ≤ ΞA ≤ eϵ/2.398

Proof of Lemma 8. For the proof, we fix an arbitrary A ∈ A. The terms in the sum giving399

ΞA are non-negative, and the lower bound comes from the term k = 0 which contributes400

1. For the upper bound, we use recent results on graph containers and adapt them to our401

purposes.402
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Recall that a polymer is a 2-linked subset B ⊆ X and that the function ΞA involves a403

sum over tuples of non-t0-contracting polymers. For convenience, we define G(w, t) to be the404

set of t-expanding polymers with neighborhood size w,405

G(w, t) = {B ⊆ X, polymer : |N(B)| = w, |N(B)| − |[B]| = t}.406

In terms of this notation, we have407

ΞA =
∑
k≥0

∑
{B1,...,Bk}∈PA compatible

s.t. each Bi not t0-contracting

2−
∑k

i=1
|N(Bi)| (5)408

≤
∑
k≥0

1
k!

∑
t≥t0

∑
w≥0
|G(w, t)|2−w

k

, (6)409

410

where we drop the requirement on the tuples of being compatible and relax the requirement411

that the Bi are subsets of XA to being subsets of X, and hence have an upper bound. To412

proceed, we require upper bounds on |G(w, t)| and split into two cases according to t. The413

following result is proved in the rest of this section and Appendix A.414

▶ Lemma 13. There is an absolute constant γ > 0 such that for t0 ≤ t, and any integer w,415

|G(w, t)| ≤ 2w−γt.416

With this lemma in hand, and because each neighborhood size w that we see is in [1, n],417

there is an absolute constant γ > 0 such that418

ΞA ≤
∑
k≥0

1
k!

∑
t≥t0

n2−γt

k

(7)419

=
∑
k≥0

1
k!

(
n

2−γt0

1− 2−γ

)k

= exp
(

n
2−γt0

1− 2−γ

)
. (8)420

421

This at most the required eϵ/2 provided that422

t0 ≥
1
γ

log2

(
2

1− 2−γ

n

ϵ

)
,423

which our choice t0 = C log(n/ϵ) satisfies for all large enough constants C = C(δ). ◀424

Before we proceed with the proof of Lemma 13, we would like to remark out that one of425

the main contributions of this paper is to handle the case when t is small.426

Proof of Lemma 13. We first take care of the case when t ≥ log4 n. For each v ∈ V , let us427

define428

G′(v, w, t) = {A ∈ G(w, t) : v ∈ A}.429

First, we observe that log2 d · t
d ≤ log2 n · n

δn ≪ log4 n. Lemma 4 in [32] gives us that there430

is a constant c such that for each v, G′(v, w, t) ≤ 2w−ct. Thus, we have431

|G(w, t)| ≤
∑

v

|G′(v, w, t)| ≤ n · 2n−ct ≤ 2n−ct/2
432
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for n large enough.433

Before we address the case when t0 ≤ t < log4 n, let us set up some additional notation.434

Given a vertex v ∈ V and a subset S ⊆ V , we write dS(v) for the number of neighbors of v435

in S.436

▶ Definition 14 (Essential subset). For a subset A ⊆ X, we write W = N(A) and Ws =
{

y ∈437

W : dA(y) ≥ s
}

. We say that F is an essential set for A if W ⊇ F ⊇Wd/2 and N(F ) ⊇ [A].438

It may be useful to consider such an F an approximation for the neighborhood W = N(A).439

▶ Definition 15 (Container). We call a tuple (S′, T ′) ∈ 2X × 2Y a γ′-container for a subset440

A ⊆ X that is t-contracting, with neighborhood W = N(A) if441

1. S′ ⊇ [A] and Wd/2 ⊆ T ′ ⊆W ,442

2. dY \T ′(v) ≤ γ′t for each v ∈ S′, and443

3. dS′(v) ≤ γ′t for each v ∈ Y \ T ′.444

The following two results show the existence of containers and bound the number of sets for445

which a given container is a γ′-container.446

▶ Lemma 16. For any γ′ > 0 and any set F ⊆ Y , there is a set Cind ⊆ 2X × 2Y of size at447

most nO(1/γ′) such that any A ⊆ X for which F is an essential set, has a γ′-container in448

Cind.449

▶ Lemma 17. There is an absolute constant γ′′ > 0 such that the following holds.450

For any γ′ > 0, w < n, t < log4 n, and tuple (S′, T ′) ∈ Cind, there are at most 2w−γ′′t
451

sets A ∈ G(w, t) such that (S′, T ′), and is a γ′-container for A.452

Since the proofs of these results are small modifications of existing container results,453

e.g. [40], we defer their proofs to Appendix A. We are now ready to handle the case of small t454

as follows. Consider an integer t ∈ [t0, log4 n] and a set A ∈ G(w, t). Define SA := [A]∪N(A).455

As in the proof of Lemma 5, we have that |∇(SA)| = d|N(A)| − d|[A]| = td. By Lemma 9,456

there is a cut C ∈ Ccut such that g := |SA △ C| ≤ O(t). Let A′ := C ∩X and W ′ := C ∩ Y .457

Consider the set W ′
g = {u ∈ Y : dA′(u) > g}. We have the following two claims.458

▷ Claim 18. W ⊇W ′
g ⊇Wd/2.459

Proof. Consider a vertex u ∈Wd/2. We have460

dA′(u) ≥ dA(u)− |A \A′| ≥ d/2− |L△ L′| ≥ d/2− g > g,461

where the last inequality holds since d = ⌊δn⌋ and g = O(log4 n). Therefore u ∈ W ′
g.462

Moreover, consider a vertex u ∈W ′
g. We have463

dA(u) ≥ dA′(u)− |A′ \A| > g − |L△ L′| > 0,464

and hence u ∈W . ◁465

▷ Claim 19. A ⊆ N(W ′
g).466

Proof. Suppose otherwise, i.e. there is a vertex u ∈ A such that for each vertex v ∈ N(u) we467

have dA′(v) ≤ g. For any such v, we have468

dA(v) ≤ dA′(v) + |A \A′| ≤ dA′(v) + |L△ L′| ≤ 2g.469

This gives us that470

t · d = |E(W, X \A)| ≥ |E(N(u), W \A)| ≥ d(d− 2g),471

contradicting the assumptions that d = ⌊δn⌋ and t and g are both O(log4 n). ◁472
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Claims 18 and 19 show that W ′
g is an essential set for A. The set A ∈ G(w, t) may be473

constructed by474

1. choosing the appropriate cut C in the set Ccut constructed in Lemma 9,475

2. constructing the essential subset W ′
g for it as above,476

3. using Lemma 16 to obtain a γ′-container of A, where γ′ is the absolute constant of477

Lemma 17, and finally478

4. reconstructing A from the γ′-container with Lemma 17.479

There are nO(1/δ) choices for L′ in the first step, a unique construction of W ′
g for the second,480

nO(1/γ′) possible containers in the third step, and 2w−γ′′t ways for the final step. In total481

there are482

2w−γ′′t+O(1/γ′+1/δ) log n ≤ 2w−γ′′t/2
483

such sets A ∈ G(w, t). The last inequality comes from our assumption that t ≥ t0 for our484

choice of t0 = C(δ) log(n/ϵ) ≥ C log(n) (because wlog ϵ ≤ 1) satisfying485

t0 ≥ Ω
(

log n

γ′′

(
1
γ′ + 1

δ

))
. ◀486

7 Concluding remarks and future directions487

1. Naturally, a next goal is to understand the power and limitations of the methods presented,488

especially in conjunction with existing cluster expansion methods. More specifically, we489

are curious about the following two questions:490

a. Can this spectral point of view help with our understanding of independent sets in a491

larger class of bipartite graphs?492

b. To what extent do these methods help in reducing the computation needed to implement493

algorithmic cluster expansion?494

In this context, the problem of approximating the number of independent sets in small-set495

expanders feels within striking distance.496

2. Our next remark concerns Lemma 9. As mentioned before, similar results have had497

other applications in optimization and Unique Games [2, 36, 37], though we take a subtly498

different viewpoint worth noting: we seek to approximate all cuts in the graph, not just499

small ones. In any case, we find the lemma interesting in its own right and conjecture500

something stronger.501

▶ Conjecture 20. Lemma 9 holds with |Ccut| ≤ 2O(n/d).502

If true, this would be best possible, as evidenced by a disjoint union of 1/δ components.503

Setting t = 0 in this case gives exactly 21/δ cuts of size 0.504

3. Finally, we leave open the problem of making our algorithm deterministic. At the moment,505

the only step where randomness is used is Lemma 6.506
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initialize T ′ ← F

while ∃ v ∈ [A] s.t. dW \T ′(v) > γ′t, pick such a v do
T ′ ← T ′ ∪N(v)

end while
initialize S′ ← {v ∈ X : dY \T ′(v) ≤ γ′t}
while ∃ v ∈ Y \W s.t. dS′(v) > γ′t, pick such a v do

S′ ← S′ \N(v)
end while
T ′ ← T ′ ∪ {v ∈ Y : dS(v) > γ′t}
return (S′, T ′)

The lemma follows provided we can show that (S′, T ′) as given by the algorithm above is a659

γ′-container for A by establishing properties 1–3, and provided we can show a good enough660

bound on the total number of outputs (S′, T ′) which can occur for a fixed F as A varies.661

To prove that the output (S′, T ′) is a γ′-container of A, we first show that S′ ⊇ [A] and662

Wd/2 ⊆ T ′ ⊆W , establishing 1. Since F is an essential subset for A, we initialize T ′ ← F ,663

and T ′ can then only grow, we have Wd/2 ⊆ T ′. Clearly, T ′ ⊆ W at the end of the first664

while loop. After the second initialize statement, we have that each vertex v ∈ [A] satisfies665

dW \T ′(v) ≤ dY \T ′(v) ≤ γ′t. Therefore, S′ ⊇ A at the end of this line. This property is666

maintained during the second while loop since we only delete N(v) from S for v ̸∈W . This667

also means that in the penultimate line, all vertices added to T ′ are from W . Thus T ′ ⊆W668

is also maintained at the end of the algorithm. Next, we prove 3. At the beginning of the669

second loop, every v ∈ S′ satisfies dY \T ′(v) ≤ γ′t. Since vertices are only removed from S and670

added to T ′ after this point, this property is preserved till the end. Finally, to prove 2 note671

that the penultimate line of the algorithm ensures that every v ∈ Y \ T satisfies dS(v) ≤ γ′t.672

To bound the number of possible outputs for a fixed F , note that before the start of the673

first loop we have |W \ T ′| ≤ O(t). Each step in the first loop of the algorithm removes γt674

vertices from W \ T ′. Therefore, this loop runs at most O(1/γ′) times. Next, each step in675

the second loop removes at least γ′t vertices from S \ [A]. Immediately after the second676

initialize statement, we have677

dt ≥ |E(S′ \ [A], T ′)| ≥ (d− γ′t)|S′ \ [A]|.678

As a result, |S′ \ [A]| = O(t). So the second loop runs for at most 1/γ′ steps. The output is679

determined by the set of O(1/γ′) vertices chosen in both loops, so the number of possible680

outputs for the algorithm for a given F is at most nO(1/γ′). ◀681

A.2 Proof of Lemma 17682

We restate the result for convenience.683

▶ Lemma 17. There is an absolute constant γ′′ > 0 such that the following holds.684

For any γ′ > 0, w < n, t < log4 n, and tuple (S′, T ′) ∈ Cind, there are at most 2w−γ′′t
685

sets A ∈ G(w, t) such that (S′, T ′), and is a γ′-container for A.686

We need the following lemma687

▶ Lemma 21. Let (S′, T ′) be a γ′-container for a set A ∈ G(w, t). Then |S′| ≤ |T ′|.688

Proof. Let us denote W = N(A). First, we observe that |E(S′, W )| ≤ d|T ′|+ γ′t|W \ T ′|689

by 3. We also have that |E(S′, W )| ≥ d|[A]|+ |S′ \ [A]|(d− γ′t) = d|S′| − γ′t|S′ \ [A]| by 1690
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and 2. Combining these inequalities, we have691

|S′| ≤ |T ′|+ γ′t(|S′ \ [A]|+ |W \ |T ′||)
d

. (9)692

Since T ′ ⊇Wd/2, we have that |W \ T ′| ≤ O(t) and693

td = |E(W, X \ [A])| ≥
∑

v∈S′\[A]

dT ′(v) ≥ |S′ \ [A]|(d− γ′t)694

695

which gives |S′ \ [A]| = O(t). So (9) implies696

|S′| ≤ |T ′|+ O

(
γ′t2

d

)
.697

Since t ≤ log4 n, d = ⌊δn⌋, and |S′| and |T ′| are both integers, we have that |S′| ≤ |T ′|. ◀698

We finish the proof using the following lemma from [40], whose proof we reproduce for699

clarity.700

▶ Lemma 22 ([40], Lemma 11). There is an absolute constant γ′′ > 0 such that the following701

holds.702

For any tuple (S′, T ′) ∈ 2X × 2Y such that |S′| ≤ |T ′|, there are at most 2w−γ′′t sets703

A ∈ G(w, t) such that [A] ⊆ S′ and T ′ ⊆ N(A).704

To be precise, in [40] the graph in question is the d-dimensional hypercube and additional705

hypotheses are stated, namely w − t < n/4 and w > d4. These play no role in the proof,706

however, and it extends verbatim to the result stated above.707

Proof. Throughout, we denote W = N(A), and let α > 0 be a constant that will be708

determined later.709

If |S′| < w − αt, then A is among the possible 2w−αt subsets of S′. Suppose otherwise,710

that |S′| > w − αt. Let A∗ ∈ G(w, t) such that (S′, T ′) is a γ′-container for A∗ and let711

W ∗ = N(A∗). We have that [A] is completely determined by W \W ∗ and W ∗ \W . Since712

W ∗ \W ⊆W ∗ \ T , and713

|W ∗ \ T ′| ≤ |W ∗| − |T ′| = |W | − |T ′| ≤ |W | − |S′| ≤ αt,714

there are at most 2αt choices for W ∗ \W . Next, for each vertex in W \W ∗, we choose a715

neighbor in A \A∗ ⊆ S′ \A∗. Observe that W \W ∗ = N(A \A∗) \W ∗. Since716

|W \W ∗| ≤ |W \ F | = |W | − |F | ≤ |W | − |S′| ≤ αt,717

and718

|S′ \A∗| ≤ |S′| − |A∗| = |S′| − |A| ≤ |T ′| − |A| ≤ |W | − |A| = t.719

Therefore, the number of choices for W \W ∗ is at most720 (
t

αt

)
≤ 2H(α)t.721

Once we have [A], there are at most 2w−t possibilities for A. Thus the total number of722

choices is at most723

2w−t+t(α+H(α)).724

Choosing e.g., α = 0.17 allows one to choose γ′′ = 0.17. ◀725
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