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Abstract—Understanding the intricate cellular environment
within biological tissues is crucial for uncovering insights into
complex biological functions. While single-cell RNA sequencing
has significantly enhanced our understanding of cellular states,
it lacks the spatial context to fully comprehend the cellular en-
vironment. Spatial transcriptomics (ST) addresses this limitation
by enabling transcriptome-wide profiling while preserving spatial
context. One of the principal challenges in ST data analysis is
spatial clustering. Modern ST sequencing procedures typically
include a high-resolution histology image, which has been shown
in previous studies to be closely connected to gene expression
profiles. However, current spatial clustering methods often fail
to fully utilize the image information, limiting their ability to
capture critical spatial and cellular interactions.

In this study, we propose the spatial transcriptomics multi-
modal clustering (stMMC) model, a novel contrastive learning-
based deep learning approach that integrates gene expression
data with histology image features through a multi-modal parallel
graph autoencoder. We tested stMMC against four state-of-the-
art baseline models on two public ST datasets. The experiments
demonstrated the superior performance of stMMC in terms of
ARI and NMI and an ablation study validated the contributions
of key components.

Index Terms—spatial transcriptomics, contrastive learning,
multi-modal, graph neural network, genomic data

I. INTRODUCTION

Biological tissue samples contain highly complex cellular
processes, which are shaped by cell distribution patterns, cell
types, cell states, composition, and cell-cell interactions [1].
Such information is crucial for understanding tissue develop-
ment, repair, and responses to external signals [1], [2]. Single-
cell RNA sequencing technology has evolved dramatically in
recent years to be more efficient, accessible, and accurate,
which enables researchers to obtain deep insights into cellular
states and led to the discovery of new cell types [3]. However,
while single-cell sequencing provides valuable insights, the
lack of contextual information limits the understanding of
how cells cohabit, interact, and communicate within their
environments [4], [5].

Spatial transcriptomics (ST) addresses this gap by enabling
transcriptome-wide profiling while preserving spatial context
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[6], [7], which enables researchers to move beyond the scope
of cell clustering to find higher-order tissue structures. Spatial
clustering on ST data has become a standard first step for
any downstream analysis, such as tissue anatomy visualization,
finding domain-dependent biomarkers, and mapping molecular
regulatory networks [8]–[11]. As the amount of ST data
rapidly expands, with technologies such as Visium [12], seq-
FISH+ [13], and MERFISH [14] becoming more accessible,
there is a growing need for advanced spatial clustering meth-
ods. Current ST procedures also contain a high-resolution his-
tology image. While prior studies have proven that histology
image features and gene expression are closely linked [15],
[16], most current analytical methods do not fully integrate
spatial information and histology images with gene expression
data. This limitation obstructs the clustering models from
extracting critical information from the histology images, such
as cell-cell interactions and spatial changes in cell states.

Given these challenges, finding patterns in gene expression
profiles with spatial and image context remains one of the
significant challenges in spatial transcriptomics analysis. To
address this, we propose a novel contrastive learning-based
deep learning model named the spatial transcriptomics multi-
modal clustering (stMMC) model, which integrates both gene
expression and histology image features through a parallel
graph autoencoder, leveraging contrastive learning to regulate
feature extraction for each modality. Our contributions of this
study are: i) we propose stMMC, a novel multi-modal con-
trastive learning-based clustering method using high-resolution
histology images for spatial clustering in spatial transcrip-
tomics data; ii) we demonstrate that combining gene expres-
sion data and learned histology image features improves the
spatial clustering performance and paves a new way for future
research; iii) we conduct experiments to show the proposed
method achieves superior performance on benchmark datasets.

II. RELATED WORKS

As ST sequencing has emerged as a powerful tool for map-
ping gene expression profiles with spatial context, researchers
have proposed several methods to tackle the spatial clustering



Fig. 1: The overall structure of stMMC is plotted here, where trapezoids represent the GCN layer, and rectangles represent
extracted features. Two GCNs share the same weight are connected with dashed lines with double arrowheads. stMMC takes
two data modalities and passes them through the multi-modal parallel graph autoencoder (MPGA), where each modality is
regulated by a contrastive learning mechanism, which is shown in Figure 2. The MPGA reconstructs a refined gene expression
data, which is then used for spatial clustering.

problem [17]. These methods can be divided into three major
categories based on how they extract features: 1) conventional-
based methods; 2) neural-network-based methods using only
location information; and 3) neural-network-based methods
using both location information and image features.

Zhao et al. proposed BayesSpace, which is a Bayesian
statistical model that utilizes spatial neighborhood information
to refine the expression data and clustering on the low-
dimension representation [18]. Li et al. proposed BASS, which
is able to do multi-sample and multi-scale analysis and uti-
lizes a Bayesian hierarchical modeling framework for spatial
clustering [19]. Leiden is a widely adopted general clustering
model on graph-structured data [20]. It works by iteratively
optimizing the partitions to identify densely connected com-
munities within a network. These conventional-based methods
are very efficient for training and inferencing, but they do not
deal well with the high dimensionality of the ST data.

Most neural-network-based methods represent the location
information in the form of graphs and utilize graph neural
network (GNN) to extract a low-dimension representation out
of the gene expression data. Ren et al. proposed SpaceFlow,
which leverages GNN to integrate gene expression similarity
with spatial information and clusters on the spatially consistent
low-dimensional embeddings [21]. Fang et al. proposed stAA,
which is an adversarial variational graph autoencoder for
spatial clustering by using Wasserstein distance as the prior
distribution [22]. Xu et al. proposed SEDR, which integrates
learned expression features with the corresponding spatial
information using a variational graph autoencoder [23].

All of these methods do not utilize the information of

histology images and the few methods that do incorporate
images only use tissue morphology information. Hu et al.
proposed SpaGCN, which uses graph convolution networks
(GCN) to combine gene expression data, location informa-
tion, and an RGB value score vector from the histology
images [10]. Pham et al. proposed StLearn, which utilizes
spatial morphological gene expression (SME)-normalized data
to perform unsupervised clustering by grouping similar points
into clusters [24].

III. METHODS

As shown in Figure 1, the proposed model consists of three
major modules: i) the multi-modal parallel graph autoencoder
(MPGA) that consists of two independent graph autoencoders
(GAEs); ii) the contrastive learning module that regulates
each GAE through a contrastive learning mechanism utilizing
a corrupted graph; iii) the decoder & cluster module that
reconstructs the gene expression using a graph decoder and
takes the refined gene expression data through a cluster to
obtain the final spatial cluster assignments.

A. Problem Formulation
Consider a spatial transcriptomics dataset that has N spots

with M number of gene sequencing readings, which is denoted
as XG =

[
xG
1 ,x

G
2 , ...,x

G
N

]
∈ RN×M . M = 3000 genes

with the highest variance are selected as default for stMMC.
For histology images, a square patch corresponding to each
spot is extracted. An autoencoder pre-trained on ImageNet is
then used to extract image features from these patches. The
extracted image features are denoted as XI ∈ RN×D, where
D is the dimension of the image features.



To better utilize the location information along with gene
expression data and histology image features, we generated
a graph for each modality that incorporates spot relationship
information from the other modality. For example, we created
a graph for the gene expression modality using spot proximity
information from the histology image modality and vice versa.
Thus, we are able to fuse the information from different
modalities before the fusion by aggregation. The graph for
the gene expression modality is defined as GG = (XG, VS, EG,
where XG is the gene expression data, VS is the set of nodes
that each represents a spot on the sample, and EG is the set
of connecting edges based on the proximity between spots.
The corresponding adjacency matrix is denoted as AG, where
Aij = 1 when spot i and j are close in distance and Aij = 0
when two spots are far away. For any spot i in the GG, K = 3
nearest spots are selected to be connected. The graph for the
image feature modality is defined as GI = (XI, VS, EI), where
XI is the image features, VS is the set of spots on the sample
and EI is the set of edges based on similarities between gene
expression data. To compute the similarity edges, we used
PCA to reduce the dimension of the gene expression data and
then ran KNN based on the Euclidean distance among the
gene expression features to find the K = 3 nearest spots for
each spot. The corresponding adjacency matrix is AI , where
Aij = 1 when the expression data from spots i and j are
similar and Aij = 0 when the expression data from two spots
are quite different. In summary, we create a unique graph for
each modality that shares the same set of nodes, but with
different node attributes and different sets of edges that carry
information from the other modality.
B. Multi-modal Parallel Graph Autoencoder

To adequately extract information from each modality, two
independent GAEs are used within the MPGA.

Z(l)
G = σ(ÃGZ(l−1)

G W(l−1)
G + B(l−1)

G ), (1)

Z(l)
I = σ(ÃIZ(l−1)

I W(l−1)
I + B(l−1)

I ), (2)

where l is the number of layers in the GAE, ÃG and ÃI are
both the normalized adjacency matrices, Z(l)

G ∈ RN×F and
Z(l)

I ∈ RN×F are the learned features from the l-th layer in the
gene expression GAE and image feature GAE, respectively,
F is the length of the learned features, σ is the activation
function, W(l)

G and W(l)
E are learnable weights for the l-th

layer, and B(l)
G and B(l)

I are the biases for the l-th layer. The
features in both modality are initialized as Z(0)

I = XI and
Z(0)

G = XG. The normalized adjacency matrix for A is defined
as Ã = D− 1

2 AD
1
2 , where D is the degree matrix of the graph.

The learned features from both GAEs are aggregated using
weight at each layer.

Z(l) = αlZ
(l)
G + (1− αl)Z

(l)
I , (3)

where αl is a learnable weight for l-th layer, and L is total
number of GCN layers. The aggregated feature, Z(L) is used
as the final learned feature from MPGA and serves as the input
for the graph decoder. A graph decoder is used to reconstruct
the gene expression data,

XRec = σ(ÃGZ(L)WRec + BRec). (4)
And the reconstruction loss is defined as the follow.

LRec =
N∑
i=1

∥xG
i − xRec

i ∥2, (5)

where xG
i ∈ RM is the gene expression data for i-th spot and

xRec
i ∈ RM is the reconstructed expression data for i-th spot.

Fig. 2: The detailed process of contrastive learning mechanism
for a random spot on any modality is plotted here, where
the top row is the corrupted graph, the bottom row is the
original graph. There are three steps of the contrastive learning
mechanism: 1) obtaining the learned spot feature by GCN;
2) computing the original local community representation
and the corrupted one; 3) assigning positive pairs to the
learned features and the community representation from the
same graph, and negative pair to the learned feature and the
community representation from different graphs.

C. Contrastive Learning Module

Contrastive learning is an emerging technique used to better
extract embedding features in unsupervised learning problems
and has shown promising results. The core mechanism of
contrastive learning is to assign positive and negative pairs
to different feature embeddings, and pull the embeddings
with positive pairs close and push the embeddings with
negative pairs far away. Inspired by the Deep Graph In-
fomax approach [25], a corrupted graph is generated for
each modality by shuffling nodes while maintaining the same
graph topology, denoted as G∗

G = (X∗
G, V

∗
S , EProximity) and

G∗
I = (X∗

I , V
∗

S , ESimilarity) for gene expression data and image



feature data, respectively. EProximity and ESimilarity stay the
same during the shuffle. Corrupted graphs are fed into the
same GAE within the same modality and corrupted learned
features are obtained, denoted as Z∗

I and Z∗
G. To obtain the

localized community information among spots, a community
representation is computed for each spot with the following
definition:

g
(m)
i =

1

|Neb(i)|
∑

j∈Neb(i)

zj,m, ∀ m ∈ [I,G] (6)

where zj,m is the learned representation for spot j in m-th
modality, and Neb(i) is the set of one-step neighbors of spot
i. The learned embedding from the original graph, zi,m and
the community representation from the original graph, gi,m
are assigned positive pairs, while the learned embedding from
the corrupted graph, z∗i,m and original community represen-
tation, gi are assigned negative pairs. The key idea of the
implemented contrastive learning mechanism is that the local
community representation of spot i, gi,m should be close to the
original learned embedding of the same spot, zi,m in the latent
space, but far away from the corrupted learned embedding
of the same spot, z∗

i,m. An illustration of this process for a
random spot is shown in Figure 2.

A neural network-based discriminator Θ(·) is used to dis-
tinguish between positive and negative pairs. Θ(zi,m, gi,m)
calculates a scalar probability score of the pair (zi,m, gi,m)
being positive. The contrastive learning loss is defined based
on binary cross-entropy loss as follows:

LCL = − 1

N

 ∑
m∈[G,I]

(
N∑
i=1

(
E(Xm,Am) [logΘ(zi,m, gi,m)]

+E(X∗
m,Am)

[
log(1−Θ(z∗

i,m, gi,m))
])))

. (7)

As the corrupted graph shares the same topology with the
original graph, a symmetric contrastive learning loss is defined
for the corrupted graph, G∗

m to make the overall model more
stable.

LCL C = − 1

N

 ∑
m∈[G,I](

N∑
i=1

(
E(X∗

m,Am)

[
logΘ(z∗

i,m, g∗
i,m)

]
+E(X∗

m,Am)

[
log(1−Θ(zi,m, g∗

i,m))
]))

, (8)

where g∗
i,m is the community representation of spot i on the

corrupted graph. The final total loss function is defined as
follows:

LTotal = θ1LRec + θ2(LCL + LCL C), (9)
where θ1 and θ2 are hyperparameters for the strength of
different loss terms. The default values for θ1 and θ2 in stMMC
are 10 and 1.
D. Clustering Module

The reconstructed data is used for spatial clustering through
a separate clustering module. The default clustering algorithm
used in stMMC is mclust [26]. Other conventional clustering
methods can also be applied. We observed that some spots

were clustered out of sync with their local spot neighborhood
in stMMC’s clustering assignments, which led to a dete-
rioration in clustering performance, especially on manually
annotated datasets. To address this issue, we introduced an
optional smoothing step. After the clustering module produces
the initial assignments, each spot is reassigned to the same
cluster as the majority cluster of its nearest b neighbors. The
optimal value of b is set to 50.

(a) Ground Truth (b) stMMC

(c) Leiden (d) GraphST

(e) SpaGCN (f) stLearn

Fig. 3: All the clustering assignments of the proposed method,
stMMC and four baseline models are plotted against the
ground truth for DLPFC Slice 151507.

IV. RESULTS

We tested stMMC against four state-of-the-art baseline
models that cover all three of the major categories, Leiden,
GraphST, stLearn, and SpaGCN [10], [20], [24], [27]. We
conducted the experiments on two datasets containing 13 slice
samples in total: i) DLPFC (LIBD human dorsolateral pre-
frontal cortex) [12], and ii) mouse 3x3 1mm from 10x Ge-
nomics [28]. The DLPFC dataset is a widely used benchmark
dataset for spatial transcriptomics and is also the only one
of the two datasets annotated by human experts. The dataset,



TABLE I: ARI and NMI scores of stMMC and Baseline Models on DLPFC Datasets

Slice 151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676

stMMC ARI 0.446 0.470 0.442 0.481 0.418 0.404 0.617 0.624 0.632 0.600 0.545 0.572
NMI 0.652 0.642 0.646 0.625 0.560 0.633 0.711 0.690 0.727 0.687 0.652 0.658

Leiden ARI 0.150 0.146 0.114 0.098 0.116 0.065 0.153 0.086 0.205 0.210 0.239 0.226
NMI 0.222 0.196 0.209 0.187 0.153 0.145 0.176 0.111 0.305 0.290 0.259 0.284

GraphST ARI 0.421 0.452 0.438 0.461 0.402 0.379 0.564 0.538 0.587 0.538 0.541 0.542
NMI 0.626 0.575 0.614 0.559 0.523 0.576 0.627 0.664 0.686 0.657 0.617 0.629

SpaGCN ARI 0.404 0.444 0.424 0.381 0.402 0.192 0.551 0.265 0.430 0.288 0.241 0.298
NMI 0.515 0.462 0.489 0.497 0.497 0.361 0.522 0.546 0.576 0.434 0.349 0.401

stLearn ARI 0.425 0.294 0.414 0.266 0.337 0.188 0.279 0.337 0.311 0.315 0.446 0.359
NMI 0.595 0.514 0.606 0.494 0.505 0.353 0.458 0.468 0.496 0.495 0.574 0.534

mouse 3x3 1mm is annotated by a graph-based clustering
model in 10x Genomics Space Ranger v2.0.1. However, the
histology image in mouse 3x3 1mm has a much higher reso-
lution than that in DLPFC. While both datasets are collected
using 10x genomics Visium platform with the diameter of
the spot at about 55 µm, the image patches of a spot from
DLPFC are about 96 pixels in width and the image patches
from mouse 3x3 1mm are about 219 pixels in width. The
number of clusters ranges from 6 to 9 on DLPFC slices and
is 12 on the mouse 3x3 1mm dataset. stMMC is available at
https://github.com/NabaviLab/stMMC. Adjusted random index
(ARI) and normalized mutual information (NMI) are the
metrics used in this experiment. A server with an 18-core CPU
and 2 Nvidia RTX A5000 GPUs is used to run all experiments.
A. Results on Human Annotated Data

The performance of stMMC and four baseline models in
terms of ARI and NMI is shown in Table I. stMMC clearly
outperforms almost all four baseline models in both metrics.
GraphST shows consistent performance as the second-best
model across almost all slices, which is in line with the
previous benchmark paper [8]. stLearn demonstrates incon-
sistent performance, achieving second or a very close third-
best performance in about half of the sample slices, but also
performing close to the worst model in some slices. The
performance of SpaGCN is also inconsistent across slices but
mostly worse than stLearn. Leiden performs the worst among
all models as expected as it is the only model that is not
designed specifically for ST data.

To better understand the clustering performance, the pre-
diction of stMMC and baseline models for slice 151507 are
mapped back onto the histology image shown in Figure 3.
Compared to all baseline models, stMMC is the best at cap-
turing major segmentation between clusters and its separation
of the cluster is closer to the ground truth. GraphST captures
some major segmentation but also splits larger clusters where
no actual segmentation exists. Both SpaGCN and stLearn
correctly capture the segmentation of major clusters in the top-
right corner, but both suffer from out-of-sync small clusters.
TABLE II: ARI and NMI Scores of stMMC and Baseline
Models on mouse 3x3 1mm

Model ARI NMI
stMMC 0.527 0.761
Leiden 0.398 0.687
GraphST 0.459 0.680
SpaGCN 0.431 0.636
stLearn 0.511 0.760

(a) Ground Truth (b) stMMC

(c) Leiden (d) GraphST

(e) SpaGCN (f) stLearn

Fig. 4: All the clustering assignments of the proposed method,
stMMC and four baseline models are plotted against the
ground truth for the Mouse 3x3 1mm dataset.

B. Results on Model Annotated Data

For the mouse 3x3 1mm dataset, the performance of
stMMC and baseline models in terms of ARI and NMI is
shown in Table II. The proposed method, stMMC clearly
outperforms all four baseline models. We believe the higher
resolution histology image in mouse 3x3 1mm helps stMMC
achieve a better overall performance in terms of ARI and NMI.
In Figure 4, the clustering assignments of stMMC and baseline
models are mapped back onto the original histology image.



The segmentation by stMMC and GraphST is very close to
the ground truth, while other baseline models split some of the
major clusters. The segmentation lines by stMMC are closer
to the grand truth compared to the ones by GraphST.

TABLE III: Ablation Study for stMMC on DLPFC 151673

Components ARI NMISmoothing Contrastive Image
✓ ✓ ✓ 0.632 0.727
✗ ✓ ✓ 0.582 0.679
✓ ✗ ✓ 0.586 0.668
✓ ✓ ✗ 0.603 0.683
✗ ✗ ✓ 0.556 0.617
✓ ✗ ✗ 0.577 0.635
✗ ✓ ✗ 0.571 0.631
✗ ✗ ✗ 0.523 0.594

C. Ablation Study
To determine the contributions of each major component

in stMMC, an ablation study on the contrastive learning
mechanism, image feature modality, and the smoothing step is
conducted on DLPFC dataset slice 151673 as shown in Table
III. For variations that omit one component, stMMC without
contrastive learning mechanism and stMMC without smooth-
ing step causes the worst performance deterioration, with over
7% drop in ARI and about 8% drop in NMI, and stMMC
without image feature modality causes a slightly smaller drop
in performance, 4.6% drop in ARI and 6.1% drop in NMI.
For variations that omit two components, stMMC without both
the contrastive learning mechanism and smoothing step sees a
worse performance than the other two. And stMMC without
all three components is the worst performing one as expected.
We can conclude that the contrastive learning mechanism and
smoothing steps are the two most impactful components in
stMMC and all the major components contribute as expected.

V. CONCLUSIONS

In this study, we proposed stMMC, a novel deep-learning
spatial clustering method for spatial transcriptomics, which
leverages a contrastive learning mechanism for better feature
extraction. To the best of our knowledge, stMMC is the
first method that integrates histology image features as an
additional modality for spatial clustering. stMMC effectively
integrates gene expression data and histology image features
by using a multi-modal parallel graph autoencoder, which is
proven to improve the clustering performance over state-of-
the-art baseline models in experiments.

We conducted experiments with stMMC and four baseline
models on two public datasets consisting of 13 sample slices in
total, DLPFC and mouse 3x3 1mm. The experimental results
demonstrate that stMMC consistently outperforms state-of-
the-art baseline methods in terms of ARI and NMI scores.
Visualization of the clustering assignments shows that stMMC
is better at capturing important cluster separations. Further-
more, the ablation study validates the contributions of the three
major components, the contrastive learning mechanism and the
incorporation of the histology image features. These results
indicate that stMMC is not only spatial clustering in spatial
transcriptomics but also sets a foundation for future works that

could further explore clustering in spatial transcriptomics as
multi-modal data.
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