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—— Abstract
We initiate the study of approximately counting the number of list packings of a graph. The
analogous problem for usual vertex coloring and list coloring has attracted substantial attention.
For list packing the setup is similar, but we seek a full decomposition of the lists of colors into
pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a
list coloring, but the converse is false. Recent works on list packing have focused on existence or
extremal results of on the number of list packings, but here we turn to the algorithmic aspects of
counting and sampling.

In graphs of maximum degree A and when the number of colors is at least Q(A?), we give a fully
polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural
Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some
motivation for our work is the investigation of an atypical spin system, one where the number of
spins for each vertex is much larger than the graph degree.
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1 Introduction

The classic graph coloring problem is to determine, for a graph G = (V, E) and number
of colors ¢, whether there is a coloring f : V' — [g] such that f is proper in the sense that
f(u) # f(v) for every edge uv € E. List coloring emerged in the late 20th century as an
adversarial version of this problem [27, 13]. To define list coloring, we take a list size ¢ € N
and assign to each v € V' a list of allowed colors L(u) of size g. One can think of the list
assignment L as supplied by an adversary who might try to prevent the existence of a coloring
respecting the lists. If, under any choices of such an assignment of lists, the graph G admits
a proper coloring f such that f(u) € L(u) for every vertex u, then we say that G is ¢-list
colorable (also known as g-choosable in some works). In some ways list coloring and classical
graph coloring are similar, e.g., the complete graph on n vertices requires ¢ > n for both
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problems. But all bipartite graphs can be colored with two colors, while K, ,, requires lists
of length Q(logn) in the list coloring setting [13].

List coloring also arises naturally in various other ways. Notably, if we take a classic
graph coloring problem and pre-color some vertices then we can express the problem of
completing the coloring through list coloring. We set L(u) to be the subset of the colors not
used by any pre-colored vertex in the neighborhood of u (though these lists may not have
equal sizes). The idea of list coloring has been extended in several interesting directions,
and in this work we study a very recent and structured variant known as list packing [6].
The setup is the same as for list coloring with a fixed list size ¢, but instead of seeking just
one proper coloring where each vertex is colored from its list, we seek ¢ pairwise-disjoint
proper colorings from the lists. We consider two colorings f and f’ of a graph disjoint if, for
all vertices u we have f(u) # f'(u). We call this collection of ¢ pairwise-disjoint proper list
colorings a list packing. Given a graph G and list size ¢, if a list packing can be found for
any lists of size ¢ chosen by an adversary then we say that G is ¢-list packable.

One motivation for list packing in [6] is to challenge the state-of-the-art in list coloring.
For example, a folklore result states that a bipartite graph of maximum degree A is ¢-list
colorable for ¢ > (14 o(1))A/log A (see also [1] and a recent improvement of the leading
constant due to Bradshaw [4]). Amongst other foundational results on list packing, the
folklore result was matched for the significantly more structured notion of list packing in [6].
A notable difference between known results for list packing and list coloring is that a general
graph of maximum degree A is ¢-list packable for ¢ > 2A (improved to ¢ > 2A —2 for A > 4
in [8]); whilst such G are ¢-list colorable for ¢ > A +1 (and even ¢ = A if A > 3 and G does
not contain a clique on A + 1 vertices [13]). Despite the gap in known results, there is scant
evidence that more than A + 1 colors are ever required for list packing [8, 6].

Early work on list packing has focused on the problem of existence, though many
arguments for existence also provide efficient constructions of list packings. An extremal
perspective on counting list packings was recently investigated by Kaul and Mudrock [21],
and related problems where one seeks many list colorings or “flexible” list colorings are
studied in [20, 7]. In this work we turn to the study of approximately counting the number
of L-packings of a graph G with a fixed ¢-list assignment L. This is a natural question by
analogy with the same questions for graph coloring and list coloring: is there an efficient
procedure that, given a graph G and a number of colors ¢, approximates the number of
proper g-colorings of G (e.g., to within a factor 2)? This question is well-studied in the
field of approximate counting and sampling, and is an important test-bed for algorithmic
techniques. A longstanding open question is the existence of such an approximate counting
algorithm that works for all ¢ > A 4 1 on graphs of maximum degree A. An influential
collection of results using various techniques requires conditions such as ¢ > eA + 1 [2],
g > 2A [17, 22], ¢ > 11A/6 [26], and even ¢ > (11/6 — €)A for some small € > 0 [10, 9].
Another branch of research on the algorithmic aspects of counting graph colorings seeks to
sample perfectly uniformly from the set of proper g-colorings of a graph. The pioneering
result is due to Huber [15], with improvements and new techniques supplied in a number of
later works [23, 22, 3, 16]. Interestingly, one application of such perfect samplers is to design
approximate counting algorithms that can be faster than analogous approaches which use
approximate samplers.

Motivated by simple and powerful ideas such as the Markov chain Monte Carlo approach
to counting colorings due to Jerrum [17] (see also [25]), we seek similar results for list packing.
The list packing problem, however, presents novel difficulties. Observe that finding a list
coloring gets strictly easier as the list size ¢ grows. Supposing that one has a technique that
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works with lists of size qg, then given larger lists one can take arbitrary subsets of the lists
of size qp and apply the technique in a black-box fashion. In contrast, for list packing with
larger g we are required to find ever more list colorings which must also be pairwise-disjoint.
Given lists of size ¢ > qo, it is not at all clear how to extend an arbitrary collection of gg
pairwise-disjoint list colorings to a full list packing. The methods of [8, 6] provide evidence
that showing the existence of a list packing does get easier with larger ¢, albeit for less
straightforward and general reasons. Whether counting list packings should get easier as ¢
grows is another matter, but we confirm this principle in the setting of approximate counting
by giving an algorithm that approximately counts list packings which works for all ¢ large
enough in terms of the maximum degree.

Approximate counting of combinatorial objects such as list colorings, independent sets,
and matchings corresponds to approximating the so-called partition function of a spin system
from statistical physics. We are interested in the study of counting and sampling list packings
as it presents an unusual type of spin system. Typically, the number of spins available for
each vertex in a spin system is small. In the Ising model of magnetism vertices take a spin
from {4, —}, and in the (antiferromagnetic) Potts model associated with proper g-colorings,
the spins are the ¢ colors. Parameter ranges frequently studied for this model on graphs
of maximum degree A include the case when ¢ is close to A + 1. The natural spin system
associated with g-list packings, however, has ¢! spins for each vertex. Since a vertex u has
a list of ¢ colors which we must decompose into ¢ choices, one for each list coloring in the
packing, the spins for u naturally correspond to permutations of the list L(u). One of our
contributions is to study a somewhat natural combinatorial problem which involves a spin
system on bounded degree graphs with many more spins than commonly-studied examples.
We hope that further insights into algorithmic techniques for approximate counting can be
gained by studying an unusual spin system.

2 Results

Our main result is the existence of an approximate counting algorithm for list packings. We
define an e-approximation of a real number x as a real number y satisfying e™¢ < z/y < e°.
We use the standard notion of a fully polynomial-time randomized approximation scheme
(FPRAS) for a counting problem. This is a randomized algorithm that, given € > 0, yields
an e-approximation of the true answer in time polynomial in the input size and 1/e.

Before we state the result, we need some more notation for list packings focusing on a
specific list assignment L. Given a graph G we call an assignment L : V(G) — 2N of lists
of colors to the vertices of G such that |L(u)| = ¢ for all vertices u a g-list assignment of
G. A proper coloring f of G such that f(u) € L(u) for all vertices u is called an L-coloring,
or a list coloring if the lists L are understood from context. Given a graph G and a g-list
assignment L, we call a collection of ¢ pairwise-disjoint L-colorings of G an L-packing. Note
that an L-packing corresponds to permutation of the lists L(v) for each vertex v.

» Theorem 1. There is an absolute constant C such that the following holds. For any A > 1
and q > CA?, let G be a graph of mazimum degree A. Then for any q-list assignment L of
G, there is an FPRAS for the number of L-packings of G.

We prove this result by analyzing the so-called “heat-bath Glauber dynamics” for list
packing. Briefly, the state space is the set of list packings of the graph and transitions involve
resampling a uniform random valid permutation of the list of a uniform random choice of
vertex. We define “valid” carefully and analyze this Markov chain later, noting here that
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we prove Theorem 1 by establishing rapid mixing of this chain and hence an approximate
sampling algorithm for a uniform L-packing under the same conditions.

A natural combinatorial problem on matchings in balanced bipartite graphs of large
minimum degree emerges during the proof of Theorem 1, leading to a probabilistic result
stated below that may be of independent interest. This is because the valid permutations of
the list L(v) correspond precisely to the perfect matchings in an auxiliary bipartite graph
that we construct from the list packing on the neighbors of v. Throughout, we assume
that A and ¢ are fixed constants and do not analyze the case where they are allowed to
depend on the number n of vertices of G as then algorithmic issues related to (perfectly)
sampling perfect matchings in 2¢g-vertex bipartite graphs become trivial2. We do not attempt
to optimize the dependence of the running time on ¢ or A.

Given a set A, we write U, for the uniform distribution on A. When a fixed ¢ is clear
from context, let dc be the Cayley metric on the symmetric group S;. That is, dc(p, p’) is
the minimum number of transpositions which one must compose with p to turn it into p'.
This is merely graph distance on the Cayley graph of S, generated by the transpositions. We
associate perfect matchings in a balanced bipartite graph H = ([¢]U]g], F) with permutations
p € S, where (4, p(7)) € E for each .

Given two random variables X, Y defined on the discrete probability spaces (Qx,px)
and (Qy,py), a coupling of X,Y is a random variable v = (X', Y”) defined on a probability
space (Qx x Qy,py) such that X and X’ have identical distributions and Y and Y’ have
identical distributions.

Given a Markov chain Z; with state space € and transition matrix P, a coupling of Z; is
a Markov chain (X4, Y:) with state space 2 x  and transition matrix P satisfying

Z ﬁ((l‘,y), (x’,y’)) = P(JZ,J?/),
y' €N

S Pl(wy), (@ y) = P(y,y):

z' e

That is, each coordinate of the coupling is a faithful copy of Z;, though the transitions of the
coordinates are not necessarily independent.

» Lemma 2. There are constants C1, Cy such that the following hold. Suppose that ¢ > C1 A,
and let H = (V, E) be a bipartite graph in which |V| = 2q and the bipartition is balanced.
Suppose that H has minimum degree at least ¢ — A. Let e € E be an edge of H, let L be the
set of perfect matchings of H containing e, and let R the set of perfect matchings of H not
containing e. Then there is a coupling v of Ur and Urur such that

CyA
E(ppr)~rylde(p, p')] < .

This lemma is the main bottleneck for improving the dependence of ¢ on A in our main
theorem. In particular, removing the factor of A would also improve Theorem 1 by a factor
of A.

2 Given a bipartite graph of constant order which contains a perfect matching, sampling a perfect
matching uniformly at random can be done in constant time, e.g. by exhaustively enumerating the
perfect matchings and selecting one at random.
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3 Technical overview

We prove Theorem 1 by the standard Markov chain Monte Carlo approach and the path
coupling technique of Bubley and Dyer [5]. We study an ergodic Markov chain—the heat-bath
Glauber dynamics—whose stationary distribution is uniform on the list packings of a graph,
and use path coupling to show rapid mixing. Then a well-known and generic reduction from
counting to sampling yields Theorem 1. Path coupling reduces the potentially challenging
task of proving rapid mixing of a Markov chain to designing a coupling on adjacent states
according to some graph I" on the state space 2. We largely follow the notation of [12] and
consider

M= {Ptp()}?im

an ergodic Markov chain on state space §2 with initial distribution py and transition operator
P. We denote the (unique) stationary distribution by 7, and denote by p; := P'p, the
distribution of the state of the chain M after t steps. We use the standard notion of mixing
time of Markov chains given by

tmix(€) == maxmin {¢t > 0: dpv(ps, 7) < €},

Po

where dtv is total variation distance.

Typically, we write w and w’ for states of the chain before a transition and o := Puw,
o' := Puw' for the (random) states after one step of the chain from w and w’ respectively.

» Theorem 3 (Bubley and Dyer [5], see also [12]). Let 2 be the state space of a Markov chain
M and let T be a weighted, directed graph on vertez set Q) with edge weights in N. Let & be the
quasi-metric® on 0 given by taking shortest paths in T, and suppose that §(w,w’) < D < oo
for all w,w’ € Q.

For each (w,w’) € E(T'), suppose that we have a coupling vy, of the random variables o
(with distribution Pw) and o’ (with distribution Pw') for which E (s 51~~[0(c,0")] < Bd(w,w’).
Then if B < 1, we have tmix(e) < log(D/e)/(1 - 3).

The theorem may seem rather abstract, so we briefly discuss a well-known application
to list coloring as a warm-up to the main argument for list packing. Let G be a graph of
maximum degree A and let L be a ¢-list assignment of G. Let Q be the set of L-colorings
of GG, and let M be the heat-bath Glauber dynamics on €2, defined as follows. Note that
states w € Q are colorings and hence functions V(G) — N. A transition of M from a state
w is performed by choosing a vertex u € V(@) uniformly at random, sampling a color ¢ in
L(u) \ w(N(u)), and moving to the state o with o(u) = ¢ and o(v) = w(v) for all v # w.
That is, the transition operator P is defined via
1. sampling a vertex u ~ Uy (),

2. sampling a color ¢ ~ UL (u)\w(N(u));

3. defining o by o(v) := ¢ v u’ and moving to the state o.

wl) v#£u
Note that L(u) \ w(N(u)) is the set of available colors for u. These colors are in the list L(u)
but are not used by the coloring w on the neighbors of u so setting w(u) to one of them
yields a valid list coloring. This chain is reversible, and when ¢ > A + 2 it is ergodic [18,
Exercises 4.1] with stationary distribution uniform on .

3 that is, a function which satisfies the conditions of a metric except symmetry
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For the purpose of constructing the couplings required by Theorem 3, let I" be the
weighted, directed graph on Q where (w,w’) is an edge if and only if the colorings w,w’
differ at exactly one vertex and let all edge weights be 1. From the proof of ergodicity [18§]
it follows that we can take D = (A + 1)n in Theorem 3 and define couplings as follows.
Let (w,w’) € E(T') and suppose that the colorings w and w’ differ at the vertex v*. Sample
u € V(@) uniformly at random and update the color of u in both chains (intuitively, this
decision helps the chains coalesce). That is, the distribution v of (o,0”’) is defined by the

Markov transition (w,w’) ik (0,0") itself defined by
1. sampling a vertex u ~ Uy (@),
2. sampling a pair of available colors (a,b) from a distribution +, such that

Ve 1= arg max Pr (a=b) (1)
~" is a coupling of (a,b)~y
UL\ (N (w)) and UL (u)\w! (N (u))

3. defining o and ¢’ by updating the color of u in each to a and b respectively:

a v=1u oy b v=u
G(U)'_{w(v) vA U o) {w(v) vA U

and moving to the state (o, 0").
Observe that 7. is defined as the coupling on the uniform distributions of available colors,
UL (u)\w(N () and UL u)\w’ (N (u))> Which maximizes the probability the colors are the same.
The important property of this definition in terms of applying Theorem 3 is that this coupling
minimizes the expectation of the discrete metric on the sample.

If u € N(v*) the sets of available colors for u can be different making 7. nontrivial.
In this case, let C' = w(N(u) \ {v*}) and note that the two sets of available colors are
A= (Lu)\C)\{w(*)} and B = (L(u)\ C) \ {w'(v*)}. We wish to couple U4 and Upg such
that the probability of choosing the same color is maximized, and the best general coupling
is not too hard to find.

» Lemma 4 (See e.g., [18, Lemma 4.10]). Let U be a finite set and A, B C U. Then there is
a coupling v. of Uy and Up such that

|AnN B|
Pr (a=b) =221
bt =Y = AL BT

where (a,b) is a random element of A x B chosen according to the coupling ..

Let m = max{|A|,|B|}. We have AN B = (L(u) \ C) \ {w(v*),w'(v*)}. Checking the
four cases according to whether each of w(v*) and w’(v*) are in L(u) \ C, we observe that
|AN B| > m — 1. By Lemma 4, we can ensure that the two chains choose the same color
with probability at least 1 — 1/m. Considering the definitions of A and B, we also have
m > q — A. Returning to the analysis of the coupling v described above, we have

1 A
E(U’U/)NV[5(0'7 O'/)] S 1 —+ ﬁ (—1 —+ q—A) .
This comes from the facts that §(w,w’) = 1 by assumption, the probability 1/n that we
successfully reduce the distance by 1 in an update to v*, and the probability of at most
A/n that we choose to update a neighbor of v*, and in this case fail to choose the same
color in the coupling of the color choice in each chain given by Lemma 4 (which occurs
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with probability at most 1/(¢ — A) given that we update a neighbor of v*). Set 8 to the
right-hand side above and solve for 5 < 1 to obtain g > 2A.

Well-known works that first studied this technique [17, 5, 18] give a similar proof, though
Jerrum [17] manually constructed a coupling of the Markov chain and did not appeal to
path coupling. With path coupling, it is slightly easier to study a variant of the Markov
chain known as the “Metropolis Glauber dynamics” where the transition is defined slightly
differently, though the same lower bound on g is required in the argument for this chain.

Our argument for list packing follows the same outline as above using the heat-bath
dynamics for list packings, but it is much harder to construct the coupling. In particular,
we need an analogue of Lemma 4 for the much more intricate combinatorial setting of list
packings. We describe this in the next subsection.

3.1 Coupling perfect matchings

In the list packing setting, each spin is a permutation of a list. The central problem one
faces when adapting the above sketch to list packing is the issue of coupling the choice of
available permutations in the case that we are updating the spin of u in two copies of the
Glauber dynamics which differ at a neighbor v € N(u). It turns out (see e.g. [6] and earlier
works such as [24]) that there is an auxiliary bipartite graph in which available permutations
for u correspond to perfect matchings.

Given a graph G with ¢-list assignment L, let 2 be the set of L-packings of G, and
let w e Q. Let fi,...,fy be the L-colorings represented by w. To be explicit, suppose
that for each vertex v of G we write L(v) in ascending order as ¢ y,...,¢q0- Then we
identify V(G) with [n] and consider §2 as a subset of S’ such that with v € [n] we define
Jioooo fq : V(G) = N by fi(v) = ¢, (i),0» Where we interpret w, as a permutation of L(v) so
that w, (i) is the color assigned to v in the ith coloring in the packing. This notation has
the advantage that many of the dependencies are explicit, but to avoid a proliferation of
subscripts we omit them where it is possible to fix some context in advance.

For a vertex u € V(G), we construct the availability graph H, = H,(G, L,w) as follows.
We consider the vertex set of H,, as [¢] U [g], the disjoint union of two copies of the set
[¢]. The left copy consists of “packing indices” and the right copy consists of “list indices”.
For clarity, the edges of H,, are considered oriented from left to right so that (i,j) joins
packing index ¢ to list index j. Suppose that L(u) = {c1,...,¢,} is supplied in some fixed
order. Then in H, we include each edge (i,5) € [q]? such that c¢; is an available color for
u in the coloring f;. That is, (¢, ) is an edge of H, if and only if ¢; ¢ f;(IN(u)). One can
check the defintions and observe that perfect matchings in H, correspond to the available
permutations p € S, for u in the sense that setting w, to an available p yields a valid list
packing. The heat-bath Glauber dynamics for L-packings thus works in much the same way
as for L-colorings. The transition from a state w is defined by choosing a vertex u € V(QG)
uniformly at random, and then a perfect matching in H,(G, L, w) uniformly at random. It is
straightforward to check that the chain is reversible and has uniform stationary distribution;
we prove that it is ergodic (for large enough ¢) in Lemma 7.

An important consideration when G has maximum degree A is that H, has minimum
degree g — A. This follows from the properties of a list packing: at packing index ¢ any color
that is not available must be used by f; on a neighbor of v and there are at most A such
neighbors. Similarly, for a color ¢; with color index j, any packing index ¢ in which ¢; is
not available is explained by ¢; being used by f; on N(u). Since the colorings in a packing
are pairwise-disjoint, each such index must be due to distinct neighbors of u, of which there
are at most A. It is useful to observe that for any w € Sy, even one that may not be a
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proper list packing in the sense that the ¢ list colorings it represents may not be proper,
the definition of availability graph still makes sense and the observation on the minimum
degree still applies. That is, the key property of g-list packings on graphs of maximum degree
A that yields the minimum degree bound ¢ — A is that the list colorings represented are
pairwise-disjoint. This fact is convenient in the proof of Lemma 5.

To construct the coupling we consider the weighted, directed graph I' on © where (w,w’)
is an edge if and only if the list packings w and w’ differ at exactly one vertex. For the edge
(w,w’) € E(T), let v be the unique vertex at which the two packings differ, and assign weight
dc(wy,w!)) to the edge. As with list coloring, the key computation is how much the expected
distance changes for one step of the coupling in the case that we start at (w,w’) and update
a neighbor u of the unique vertex v at which w and w’ differ. We prove the following result
which plays the role of Lemma 4 in our proof.

» Lemma 5. There is a universal constant C' such that if ¢ > CA? the following holds.
Let (w,w’) € E(T) be an edge of weight 1) in T and let v be the unique vertex at which
w and w' differ. Let w € N(v) and consider the availability graphs H and H' for u in the
packings w and w' respectively.
Then there exists a coupling v of the uniform distributions on perfect matchings on H
and H' which satisfies

P
E(p,p’)~v[dC(P> P/)] < I9A”

Note that in the conclusion any bound strictly better than /A suffices for an application of
Theorem 3, and one might expect to obtain results in the case of exactly /A as well [17, 5, 12].
We do not attempt to optimize the constant C' in our argument and hence /(2A) is sufficient.
Lemma 5 is a simple corollary of Lemma 2, and with these results in hand the rest of the
argument for Theorem 1 is standard.

3.2 Organization

In Section 4 we define a Markov chain on list packings, prove ergodicity and establish rapid
mixing given our results on coupling perfect matchings. In Section 5 we prove Lemmas 2
and 5. We conclude with some remarks in Section 6.

4  Glauber dynamics for list packing

In this section we fix an n-vertex graph G of maximum degree A, a ¢-list assignment L of G,
and let Q be the set of L-packings of G.

We consider heat-bath Glauber dynamics M = M(G, L) for list packing. Given a state
w € Q and a vertex u € V(G), we say that a permutation p in S, is available for v in w if
setting w, to p yields a valid list packing. Transitions of M are defined as follows. From
state w € , choose vertex v € V(@) uniformly at random, choose an available permutation
p € Sq uniformly at random, and let the new state be o given by o, = p and o, = w,
for v # u. It is straightforward to check that this is a reversible Markov chain on  with
uniform stationary distribution. The question of ergodicity is less straightforward, though
the standard argument for list coloring adapts easily. We require a simple corollary of Hall’s
classic result on perfect matchings in bipartite graphs.

» Lemma 6 (Corollary of Hall's theorem [14]). Let H be a bipartite graph with q vertices on
each side and minimum degree d > q/2. Then H contains a perfect matching.
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Sketch proof. Let the bipartition be A U B and consider a subset X C A. If 1 < |X]| <d
then |N(X)| > d > | X]|. If instead d+1 < | X| < ¢ then N(X) must be all of B since for each
neighborhood of a vertex in B must intersect X. The result follows from Hall’s theorem. <«

» Lemma 7. For g > 2A + 2 the Markov chain M is ergodic.

Proof. Because there are self-transitions at every state, it suffices to show that the (finite)
state space is connected.

Every state w € € can be connected to an arbitrary w’ € ) as follows. Label the vertices
of G with the integers 1,...,n arbitrarily, and for ¢ = 1, ..., n, sequentially turn w; into w,
as follows. If setting w; equal to w} is not possible (i.e. w} is not available for 7 in w) then
it’s because some neighbor j of ¢ with j > 7 uses a color at a particular packing index which
conflicts with w;. To solution is to repack each such neighbor j in w, i.e. change w; to a new
permutation of L(j), in turn such that the repacking is proper and avoids any such conflicts.
These repacking steps are steps of the chain.

To perform the repacking, we find a perfect matching in a suitable modification of the
availability graph H} = H;(G, L,w’). Recall that perfect matchings in H correspond to the
available permutations p for u in w’. We have an additional condition on the permutation p
that we seek, namely that p does not correspond to a color choice for j that is incompatible
with turning w; into w]. We can encode this in the availability graph by deleting an edge
(a,b) such that the b-th color in L(j) is used at packing index a in color choices represented
by wi. After this modification, the availability graph has minimum degree ¢ — A — 1, so the
condition ¢ > 2A + 2 allows for an application of Lemma 6. This shows that the necessary
repackings exist, and thus that €2 is connected by transitions of the chain that occur with
positive probability. <

» Theorem 8. The mizing time tmix(€) of M is at most O(nlog(n/e)).

Proof. We apply Theorem 3 with the following coupling defined on edges of the weighted
graph T on Q such that (w,w’) is an edge of weight d¢(w,,w,,) whenever w and w’ differ at a
single vertex v. Lemma 7 shows that I' is connected, and we note that the diameter D is at
most (A +1)(¢g —1)n = O(n). This is because the sequence of steps constructed in Lemma 7
consists of edges of I', the total number of steps is at most (A 4 1)n because we repack each
vertex v at most once for each neighbor of v to avoid conflict and at most once more to agree
with w’. As the Cayley distance on S, takes values in {0,1,...,¢ — 1}, the diameter bound
follows.

Let (w,w’) be an edge of T of weight 1. We define the coupling as follows. We choose
u € V(G) uniformly at random and update v in both packings. If u ¢ N(v) then the sets of
available permutations of L(u) in both packings are identical and we choose one uniformly at
random to use in both chains. If u = v this results in a distance of zero, else the distance is
unchanged. If u € N(v) then we use the coupling of Lemma 5 to choose the permutations of
L(w) in the packings. Let (o, 0’) be the random state after one step of the coupling started
from (w,w’). Then

E[3(c, o")] g¢+i<_¢+A2¢A) :¢(1 ! )

2
Theorem 3 now gives mixing time tyix(€) = O(nlog(n/e)). <

The proof of Theorem 1 using Theorem 8 is now entirely standard. We sketch the
argument here. Counting list packings is a self-reducible problem in the sense of [19] and
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so having an almost-uniform sampler, which follows from running the Markov chain for
polynomially many steps, is equivalent to having an FPRAS. Concretely, construct a sequence
G=G, D> - D2G DGy= (V(QA),0D) of graphs by starting from G and removing an
arbitrary edge to form the next member of the sequence. For a fixed ¢-list assignment L of
G we can let §; be the set of L-packings of GG; and write

m Qi
0] = || T 2
=1

Q1]

We have || = (¢!)" and can estimate each ratio in the product as it’s the probability
that when we choose a unformly random w € €;_; we have w € ;. We also note that
T iq! < |s|)Qi|1| < 1 because 2; C ;1 and we can construct the following bipartite graph B
on (€;-1\ Q) UQ,;. Let uv be the edge removed from G; to form G;_1, and include the edge

(w,w’) in B if ' can be obtained from 2 by permuting the list of u. Then any w € ;1\ ;

is connected to at least one element in §2; by Lemma 6, and there are at most ¢! ways to
permute L(u) so from the other side the degrees are at most ¢!. We do not attempt to
optimize this argument; more intricate arguments yield stronger lower bounds, but we are
merely interested in a bound independent of n. This observation lets us repeat the analysis
of Jerrum [17] for the case of colorings in the setting of list packings. Briefly, we use multiple
copies of the almost uniform sampler offered by the Markov chain to estimate each ratio. To
make this work, one has to bound the variance of the estimator for each ratio and manage
the overall error with Chebyshev’s inequality, but this is standard. See e.g., [17].

5 Coupling matchings

In this section we prove Lemmas 2 and 5. We first collect some results on auxiliary bipartite
graphs.

» Lemma 9. Let G = (V, E) be a bipartite graph with bipartition V = LU R. Let u;, and
wr be probability distributions over L and R. Let
p = min[l — pr(A) + pr(N(A))]-

There exists a coupling v of pr, and pr such that when (v, w) ~ =y, with probability p, vw is
an edge of G.

Proof. This follows from the max-flow min-cut theorem after introducing a source vertex s,
a sink vertex ¢, and introducing the following edges:

1. for v € L, the edge sv with capacity pur(v),

2. for v € R, the edge vt with capacity pgr(v),

3. for each edge e € G, an edge with capacity oco.

A max flow corresponds to a coupling ~ of the type we require with maximum probability
that vw is an edge. The value of the max flow is the same as the value of the min cut. If S, T
is a finite cut with s € S, t € T, letting A = SN L, B= 5N R, we must have N(A) C B,
and the value is pr (A°) + pur(B) > pr(A°) + pr(N(A)). Equality is achieved for B = N(A).
Taking the minimum over A then gives the lemma. |

» Corollary 10. Let G = (V, E) be a bipartite graph with bipartition V.= LU R. Suppose that

each vertex in L has degree contained in [mr, M1] and each vertex in R has degree contained

in [mgr, Mgr]. Then there exists a coupling v of the uniform distributions Uy, and Ug on L
mrmpg

and R respectively such that when (v, w) ~ 7, with probability at least A, VW ds an edge

of G.
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Proof. For each subset A C L, we can bound the number of edges between A and N(A):
mr|Al < |E(A,N(A))| < Mg|N(A)].

We also have
mp|R| < |E[ < ML|L|.

Then for any set A C L,

INCAI/IR] _ INCA] L] memg

[Al/ILL Al IR T M MR

Then for any such A,

mrmpg
M Mg

Up(A) > DEME

1~ Up(A) + Up(N(A)) > 1~ Up(A) + > T

The conclusion follows from Lemma 9. <
We are now ready to prove Lemma 2, which we restate for convenience.

» Lemma 2. There are constants C1, Co such that the following hold. Suppose that ¢ > C1A,
and let H = (V, E) be a bipartite graph in which |V| = 2q and the bipartition is balanced.
Suppose that H has minimum degree at least ¢ — A. Let e € E be an edge of H, let L be the
set of perfect matchings of H containing e, and let R the set of perfect matchings of H not
containing e. Then there is a coupling v of Ur and Urur such that

Co A

E(p,p)~ryldc(p, )] < .

Proof. Label the bipartitions by [¢g]. Without loss of generality the edge e is (1,1). We
define an auxiliary bipartite graph on £LUTR as follows. For p € £ and p’ € R, connect p and
p' by an edge if p(1ij) = p’ for some i,5 € [¢] \ {1} with i # j, i.e., they differ by a 3-cycle
containing 1. Note that here we use standard group-theoretic notation for permutations in
Sy so that e.g. p(147) is the product of the permutation p and the permutation (1¢75) (in
standard cycle notation).

We bound the degrees of arbitrary matchings p € £ and p’ € R. Given p, we count the
number of ¢, j for which p(1ij) € R. Let N(i) = {j : (4,4) € E} and N'(j) = {i: (4,j) € E}.
Given p € L, we know that p(1) = 1. We choose j € N'(1) \ {1}; there are at least
g — A — 1 choices. Any possible value of ¢ must be in the set S_ \ {j}, where S_ :=
{p7' (k) : k € N(1)\ {1}}; S—\ {j} has size at least ¢ — A — 2. A valid pair (i, ) is exactly
one where j € N'(1)\ {1}, i € S_\ {j}, and (4,p(j)) € E. Since at most A + 1 of edges
(i,p(j4)), g € N'(1) \ {1} can land outside E, at least ¢ — 2A — 3 of these edges are valid,
i.e., there are at least (¢ — A — 1)(q — 2A — 3) valid choices of (4,7). There are at most
(g — 1)(g — 2) choices.

Next, given p’ € R, we count the number of i,j € [g] \ {1}, ¢ # j for which p’ = p(1ij)
where p € L. First, note we must have p’(j) = 1. The requirement on 4 is that i € N'(p(1))
and p/(i) € N(j). There are at least ¢ — A — 2 indices besides 1 and j satisfying each
condition, so at least ¢ — 2A — 4 possible indices. There are at most ¢ — 2 choices. By
Corollary 10, there is a coupling « of U and Ur such that with probability at least

(g—A-1)(g—2A-3) ¢g—2A—4
(a—1)(g—-2) g—2
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(p,p') € E are connected by an edge and hence have Cayley distance at most two. For
appropriate choices of C;, K > 0,1 —p < KA/q for ¢ > C1A. For this coupling 7, we hence
have

KA KA
E(p,p)~ryldc(p; p')] < it (1 - q) 2<K'A

for an appropriate constant K’ > 0.
Next, note that we can define a coupling between U, r and Ur as a mixture of the
identity coupling between Ur and Ugr (with probability %) and the above coupling

with probability £l The expected distance for this coupling is then
[Z]+IR]
|£‘ / q—2 / A
——  K'A < CK'A <
L] + IR T (@-2)+(@-A-1)(¢g-2A-3) T g
for appropriate Cy > 0, as needed. <

» Lemma 5. There is a universal constant C' such that if ¢ > CA? the following holds.
Let (w,w’) € E(T) be an edge of weight 1) in T and let v be the unique vertex at which
w and w' differ. Let uw € N(v) and consider the availability graphs H and H' for u in the
packings w and w' respectively.
Then there exists a coupling v of the uniform distributions on perfect matchings on H
and H' which satisfies

P
E(p.on~~ldc(p, p)] < A

Proof. Formally, we proceed by induction on 1, though we need a more general statement
for the induction hypothesis. It is convenient to relax the requirement that w and w’ are valid
list packings. For the application, it is important that the pair (w,w’) are valid list packings
which agree on every vertex except u, but we construct the coupling of perfect matchings
in H and H' using a sequence of near-valid list packings w” € Sy in the sense that w"
agrees with w and w’ on all vertices except u, but we allow the (pairwise-disjoint) colorings
it represents to have monochromatic edges incident to v. We can still construct availability
graphs for v in these near-valid packings and consider their sets of perfect matchings for the
purposes of constructing an eventual coupling of the perfect matchings in H and H’. With
these definitions in place, the generalization that we prove by induction is the statement
obtained by replacing the assumption that w and w’ are valid packings with the assumption
that they are near-valid.

The base case is ¥ = 0 in which the trivial coupling suffices as H and H’, and hence their
sets of perfect matchings, are identical.

The induction step follows from Lemma 2. The fact that do(wy,w]) = ¢ means that
there is a sequence of transpositions 71, ..., 7y such that w, = 7y -+ - Tw,. Let H"” be the
availability graph of the vertex w in the near-valid packing w” such that w] = 7yw, and
w" agrees with w on all other vertices. By induction, there is a coupling ' of the uniform
distributions on perfect matchings in H” and H' such that

-1
2A
Without loss of generality, suppose that w, is the identity. Let 7, = (4 j), and note that

this gives

E(H)\ E(H")  {(i,), (§,i)} and E(H")\ E(H) C {(i,4), (4,4)}-

E(P”,P’)""Y/ [dc (p”, p/)} S
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This is because any difference between the edges of H and H’ is explained by applying T to
wy. When 7 is a transposition, we swap the packing index of the coloring at which two colors
in the list of v are used, which can swap two edges of the complement of the availability
graph. It can be the case that the swapped color indices refer to different colors in L(u)
which is why we do not have equality.

We start with the case that

E(H)\E(H") ={(i,7), ()} and EH")\ E(H) ={(i,4), (4,4)},

the other cases are similar. Let X be the set of perfect matchings in H and let X" be the
set of perfect matchings in H”. We seek a coupling of Ux and Uy which we will combine
with the coupling v/ to obtain the desired result.

We apply Lemma 2 to H and H — (4, ), yielding a coupling 1 of Ux and Uy, where
Y is the set of perfect matchings in H — (i,5). We can apply Lemma 2 again to H — (4, j)
and H — (4,7) — (4,1), yielding a coupling 75 of Uy and Uz, where Z is the set of perfect
matchings in H — (4,7) — (4,¢). There is a slight technicality here as the minimum degree of
H — (i,7) is ¢ — A — 1, but this can be handled by setting A to A 4+ 1 and adjusting the
constants slightly. Analogously, starting from H”, we construct a coupling { of Ux~ and

Uy and a coupling 74 of Uy and Uz, where Y is the set of perfect matchings in H"” — (i, 7).

A careful composition of these couplings gives the result. The composition of these couplings
yields a distribution on X x Y x Z x Y” x X" which is uniform on each individual set in the
Cartesian product, and such that the expected distance between permutations from adjacent
sets in the Cartesian product is at most CyA/q. Taking the first and last coordinate yields a
coupling 7" of Ux and Ux~ such that

4C5A

E w1y [do (m, 7)) < P

This can be combined with 7’ obtained by induction in the same way. Simple composition

yields a distribution on X x X" x X’ which is uniform on each individual set in the Cartesian

product. Taking the first and last coordinates we have a coupling v of Ux and Ux- such that
v —1  4CA

E(mﬂ/)N,y[dc(W,’]T/)] < T + p .

Since we assume ¢ > CA2?, for a large enough C this is at most 1//(2A) as required. The
other cases proceed similarly, but require fewer applications of Lemma 2 and yield a stronger
upper bound. |

6 Concluding remarks

Many natural questions remain unanswered. We have chosen to extend some of the most
fundamental techniques for counting list colorings to list packings, but there are many more
recent improvements to consider. Dyer and Greenhill [11] study a Markov chain on (list)
colorings whose transitions are defined by properly recoloring both endpoints of a uniform
random edge and show that its mixing time is less than that of Glauber dynamics studied
in [17, 25]. The flip dynamics employed by Vigoda [26] for counting colorings is an important

technique that gets significantly below the number of colors required by Jerrum’s approach.

Extending Vigoda’s approach to list coloring was first done by Chen et al. [10], roughly 20
years after Vigoda’s breakthrough. Though they also surpassed a significant barrier at 11A/6
colors related to 1-step contractions in Hamming distance of two colorings that differ at a

13
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vertex. The history of this problem suggests that further generalizations, e.g. to list packing
may not be straightforward. While one can consider analogous dynamics for list packings and
hope to reduce the bound on ¢ in Theorem 1, we do not have results showing the existence
of list packings in graphs of maximum degree A for fewer than 2A — 2 colors. In another
direction, the use of more advanced Markov chain techniques to give perfect sampling of list
packings could be interesting.

We finish with a natural conjecture on approximately counting list packings.

» Conjecture 11. For each A and q > 2A there is an FPRAS for counting the number of
q-list packings of graphs of maximum degree A.

At the time of writing, we know of no reason that the lower bound on ¢ cannot be reduced
to, say, A + 1. The value 2A represents a significant barrier in the sense that the existence of
a list packing when ¢ > 2A is an elementary consequence of Hall’s theorem (though arguably
not entirely trivial).
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