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Abstract10

We initiate the study of approximately counting the number of list packings of a graph. The11

analogous problem for usual vertex coloring and list coloring has attracted substantial attention.12

For list packing the setup is similar, but we seek a full decomposition of the lists of colors into13

pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a14

list coloring, but the converse is false. Recent works on list packing have focused on existence or15

extremal results of on the number of list packings, but here we turn to the algorithmic aspects of16

counting and sampling.17

In graphs of maximum degree ∆ and when the number of colors is at least Ω(∆2), we give a fully18

polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural19

Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some20

motivation for our work is the investigation of an atypical spin system, one where the number of21

spins for each vertex is much larger than the graph degree.22
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1 Introduction31

The classic graph coloring problem is to determine, for a graph G = (V,E) and number32

of colors q, whether there is a coloring f : V → [q] such that f is proper in the sense that33

f(u) ̸= f(v) for every edge uv ∈ E. List coloring emerged in the late 20th century as an34

adversarial version of this problem [27, 13]. To define list coloring, we take a list size q ∈ N35

and assign to each u ∈ V a list of allowed colors L(u) of size q. One can think of the list36

assignment L as supplied by an adversary who might try to prevent the existence of a coloring37

respecting the lists. If, under any choices of such an assignment of lists, the graph G admits38

a proper coloring f such that f(u) ∈ L(u) for every vertex u, then we say that G is q-list39

colorable (also known as q-choosable in some works). In some ways list coloring and classical40

graph coloring are similar, e.g., the complete graph on n vertices requires q ≥ n for both41
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problems. But all bipartite graphs can be colored with two colors, while Kn,n requires lists42

of length Ω(log n) in the list coloring setting [13].43

List coloring also arises naturally in various other ways. Notably, if we take a classic44

graph coloring problem and pre-color some vertices then we can express the problem of45

completing the coloring through list coloring. We set L(u) to be the subset of the colors not46

used by any pre-colored vertex in the neighborhood of u (though these lists may not have47

equal sizes). The idea of list coloring has been extended in several interesting directions,48

and in this work we study a very recent and structured variant known as list packing [6].49

The setup is the same as for list coloring with a fixed list size q, but instead of seeking just50

one proper coloring where each vertex is colored from its list, we seek q pairwise-disjoint51

proper colorings from the lists. We consider two colorings f and f ′ of a graph disjoint if, for52

all vertices u we have f(u) ̸= f ′(u). We call this collection of q pairwise-disjoint proper list53

colorings a list packing. Given a graph G and list size q, if a list packing can be found for54

any lists of size q chosen by an adversary then we say that G is q-list packable.55

One motivation for list packing in [6] is to challenge the state-of-the-art in list coloring.56

For example, a folklore result states that a bipartite graph of maximum degree ∆ is q-list57

colorable for q ≥ (1 + o(1))∆/ log ∆ (see also [1] and a recent improvement of the leading58

constant due to Bradshaw [4]). Amongst other foundational results on list packing, the59

folklore result was matched for the significantly more structured notion of list packing in [6].60

A notable difference between known results for list packing and list coloring is that a general61

graph of maximum degree ∆ is q-list packable for q ≥ 2∆ (improved to q ≥ 2∆ − 2 for ∆ ≥ 462

in [8]); whilst such G are q-list colorable for q ≥ ∆ + 1 (and even q = ∆ if ∆ ≥ 3 and G does63

not contain a clique on ∆ + 1 vertices [13]). Despite the gap in known results, there is scant64

evidence that more than ∆ + 1 colors are ever required for list packing [8, 6].65

Early work on list packing has focused on the problem of existence, though many66

arguments for existence also provide efficient constructions of list packings. An extremal67

perspective on counting list packings was recently investigated by Kaul and Mudrock [21],68

and related problems where one seeks many list colorings or “flexible” list colorings are69

studied in [20, 7]. In this work we turn to the study of approximately counting the number70

of L-packings of a graph G with a fixed q-list assignment L. This is a natural question by71

analogy with the same questions for graph coloring and list coloring: is there an efficient72

procedure that, given a graph G and a number of colors q, approximates the number of73

proper q-colorings of G (e.g., to within a factor 2)? This question is well-studied in the74

field of approximate counting and sampling, and is an important test-bed for algorithmic75

techniques. A longstanding open question is the existence of such an approximate counting76

algorithm that works for all q ≥ ∆ + 1 on graphs of maximum degree ∆. An influential77

collection of results using various techniques requires conditions such as q ≥ e∆ + 1 [2],78

q ≥ 2∆ [17, 22], q ≥ 11∆/6 [26], and even q ≥ (11/6 − ϵ)∆ for some small ϵ > 0 [10, 9].79

Another branch of research on the algorithmic aspects of counting graph colorings seeks to80

sample perfectly uniformly from the set of proper q-colorings of a graph. The pioneering81

result is due to Huber [15], with improvements and new techniques supplied in a number of82

later works [23, 22, 3, 16]. Interestingly, one application of such perfect samplers is to design83

approximate counting algorithms that can be faster than analogous approaches which use84

approximate samplers.85

Motivated by simple and powerful ideas such as the Markov chain Monte Carlo approach86

to counting colorings due to Jerrum [17] (see also [25]), we seek similar results for list packing.87

The list packing problem, however, presents novel difficulties. Observe that finding a list88

coloring gets strictly easier as the list size q grows. Supposing that one has a technique that89
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works with lists of size q0, then given larger lists one can take arbitrary subsets of the lists90

of size q0 and apply the technique in a black-box fashion. In contrast, for list packing with91

larger q we are required to find ever more list colorings which must also be pairwise-disjoint.92

Given lists of size q > q0, it is not at all clear how to extend an arbitrary collection of q093

pairwise-disjoint list colorings to a full list packing. The methods of [8, 6] provide evidence94

that showing the existence of a list packing does get easier with larger q, albeit for less95

straightforward and general reasons. Whether counting list packings should get easier as q96

grows is another matter, but we confirm this principle in the setting of approximate counting97

by giving an algorithm that approximately counts list packings which works for all q large98

enough in terms of the maximum degree.99

Approximate counting of combinatorial objects such as list colorings, independent sets,100

and matchings corresponds to approximating the so-called partition function of a spin system101

from statistical physics. We are interested in the study of counting and sampling list packings102

as it presents an unusual type of spin system. Typically, the number of spins available for103

each vertex in a spin system is small. In the Ising model of magnetism vertices take a spin104

from {+,−}, and in the (antiferromagnetic) Potts model associated with proper q-colorings,105

the spins are the q colors. Parameter ranges frequently studied for this model on graphs106

of maximum degree ∆ include the case when q is close to ∆ + 1. The natural spin system107

associated with q-list packings, however, has q! spins for each vertex. Since a vertex u has108

a list of q colors which we must decompose into q choices, one for each list coloring in the109

packing, the spins for u naturally correspond to permutations of the list L(u). One of our110

contributions is to study a somewhat natural combinatorial problem which involves a spin111

system on bounded degree graphs with many more spins than commonly-studied examples.112

We hope that further insights into algorithmic techniques for approximate counting can be113

gained by studying an unusual spin system.114

2 Results115

Our main result is the existence of an approximate counting algorithm for list packings. We116

define an ϵ-approximation of a real number x as a real number y satisfying e−ϵ ≤ x/y ≤ eϵ.117

We use the standard notion of a fully polynomial-time randomized approximation scheme118

(FPRAS) for a counting problem. This is a randomized algorithm that, given ϵ > 0, yields119

an ϵ-approximation of the true answer in time polynomial in the input size and 1/ϵ.120

Before we state the result, we need some more notation for list packings focusing on a121

specific list assignment L. Given a graph G we call an assignment L : V (G) → 2N of lists122

of colors to the vertices of G such that |L(u)| = q for all vertices u a q-list assignment of123

G. A proper coloring f of G such that f(u) ∈ L(u) for all vertices u is called an L-coloring,124

or a list coloring if the lists L are understood from context. Given a graph G and a q-list125

assignment L, we call a collection of q pairwise-disjoint L-colorings of G an L-packing. Note126

that an L-packing corresponds to permutation of the lists L(v) for each vertex v.127

▶ Theorem 1. There is an absolute constant C such that the following holds. For any ∆ ≥ 1128

and q ≥ C∆2, let G be a graph of maximum degree ∆. Then for any q-list assignment L of129

G, there is an FPRAS for the number of L-packings of G.130

We prove this result by analyzing the so-called “heat-bath Glauber dynamics” for list131

packing. Briefly, the state space is the set of list packings of the graph and transitions involve132

resampling a uniform random valid permutation of the list of a uniform random choice of133

vertex. We define “valid” carefully and analyze this Markov chain later, noting here that134
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we prove Theorem 1 by establishing rapid mixing of this chain and hence an approximate135

sampling algorithm for a uniform L-packing under the same conditions.136

A natural combinatorial problem on matchings in balanced bipartite graphs of large137

minimum degree emerges during the proof of Theorem 1, leading to a probabilistic result138

stated below that may be of independent interest. This is because the valid permutations of139

the list L(v) correspond precisely to the perfect matchings in an auxiliary bipartite graph140

that we construct from the list packing on the neighbors of v. Throughout, we assume141

that ∆ and q are fixed constants and do not analyze the case where they are allowed to142

depend on the number n of vertices of G as then algorithmic issues related to (perfectly)143

sampling perfect matchings in 2q-vertex bipartite graphs become trivial2. We do not attempt144

to optimize the dependence of the running time on q or ∆.145

Given a set A, we write UA for the uniform distribution on A. When a fixed q is clear146

from context, let dC be the Cayley metric on the symmetric group Sq. That is, dC(ρ, ρ′) is147

the minimum number of transpositions which one must compose with ρ to turn it into ρ′.148

This is merely graph distance on the Cayley graph of Sq generated by the transpositions. We149

associate perfect matchings in a balanced bipartite graph H = ([q]⊔ [q], E) with permutations150

ρ ∈ Sq where (i, ρ(i)) ∈ E for each i.151

Given two random variables X,Y defined on the discrete probability spaces (ΩX , pX)152

and (ΩY , pY ), a coupling of X,Y is a random variable γ = (X ′, Y ′) defined on a probability153

space (ΩX × ΩY , pγ) such that X and X ′ have identical distributions and Y and Y ′ have154

identical distributions.155

Given a Markov chain Zt with state space Ω and transition matrix P , a coupling of Zt is156

a Markov chain (Xt, Yt) with state space Ω × Ω and transition matrix P̂ satisfying157 ∑
y′∈Ω

P̂ ((x, y), (x′, y′)) = P (x, x′),158

∑
x′∈Ω

P̂ ((x, y), (x′, y′)) = P (y, y′).159

That is, each coordinate of the coupling is a faithful copy of Zt, though the transitions of the160

coordinates are not necessarily independent.161

▶ Lemma 2. There are constants C1, C2 such that the following hold. Suppose that q ≥ C1∆,162

and let H = (V,E) be a bipartite graph in which |V | = 2q and the bipartition is balanced.163

Suppose that H has minimum degree at least q − ∆. Let e ∈ E be an edge of H, let L be the164

set of perfect matchings of H containing e, and let R the set of perfect matchings of H not165

containing e. Then there is a coupling γ of UR and UL∪R such that166

E(ρ,ρ′)∼γ [dC(ρ, ρ′)] ≤ C2∆
q

.167

This lemma is the main bottleneck for improving the dependence of q on ∆ in our main168

theorem. In particular, removing the factor of ∆ would also improve Theorem 1 by a factor169

of ∆.170

2 Given a bipartite graph of constant order which contains a perfect matching, sampling a perfect
matching uniformly at random can be done in constant time, e.g. by exhaustively enumerating the
perfect matchings and selecting one at random.
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3 Technical overview171

We prove Theorem 1 by the standard Markov chain Monte Carlo approach and the path172

coupling technique of Bubley and Dyer [5]. We study an ergodic Markov chain—the heat-bath173

Glauber dynamics—whose stationary distribution is uniform on the list packings of a graph,174

and use path coupling to show rapid mixing. Then a well-known and generic reduction from175

counting to sampling yields Theorem 1. Path coupling reduces the potentially challenging176

task of proving rapid mixing of a Markov chain to designing a coupling on adjacent states177

according to some graph Γ on the state space Ω. We largely follow the notation of [12] and178

consider179

M := {P t p0}∞
t=0,180

an ergodic Markov chain on state space Ω with initial distribution p0 and transition operator181

P . We denote the (unique) stationary distribution by π, and denote by pt := P tp0 the182

distribution of the state of the chain M after t steps. We use the standard notion of mixing183

time of Markov chains given by184

tmix(ϵ) := max
p0

min {t ≥ 0 : dTV(pt, π) ≤ ϵ} ,185

where dTV is total variation distance.186

Typically, we write ω and ω′ for states of the chain before a transition and σ := Pω,187

σ′ := Pω′ for the (random) states after one step of the chain from ω and ω′ respectively.188

▶ Theorem 3 (Bubley and Dyer [5], see also [12]). Let Ω be the state space of a Markov chain189

M and let Γ be a weighted, directed graph on vertex set Ω with edge weights in N. Let δ be the190

quasi-metric3 on Ω given by taking shortest paths in Γ, and suppose that δ(ω, ω′) ≤ D < ∞191

for all ω, ω′ ∈ Ω.192

For each (ω, ω′) ∈ E(Γ), suppose that we have a coupling γ, of the random variables σ193

(with distribution Pω) and σ′ (with distribution Pω′) for which E(σ,σ′)∼γ [δ(σ, σ′)] ≤ βδ(ω, ω′).194

Then if β < 1, we have tmix(ϵ) ≤ log(D/ϵ)/(1 − β).195

The theorem may seem rather abstract, so we briefly discuss a well-known application196

to list coloring as a warm-up to the main argument for list packing. Let G be a graph of197

maximum degree ∆ and let L be a q-list assignment of G. Let Ω be the set of L-colorings198

of G, and let M be the heat-bath Glauber dynamics on Ω, defined as follows. Note that199

states ω ∈ Ω are colorings and hence functions V (G) → N. A transition of M from a state200

ω is performed by choosing a vertex u ∈ V (G) uniformly at random, sampling a color c in201

L(u) \ ω(N(u)), and moving to the state σ with σ(u) = c and σ(v) = ω(v) for all v ̸= u.202

That is, the transition operator P is defined via203

1. sampling a vertex u ∼ UV (G),204

2. sampling a color c ∼ UL(u)\ω(N(u)),205

3. defining σ by σ(v) :=
{
c v = u

ω(v) v ̸= u
, and moving to the state σ.206

Note that L(u) \ ω(N(u)) is the set of available colors for u. These colors are in the list L(u)207

but are not used by the coloring ω on the neighbors of u so setting ω(u) to one of them208

yields a valid list coloring. This chain is reversible, and when q ≥ ∆ + 2 it is ergodic [18,209

Exercises 4.1] with stationary distribution uniform on Ω.210

3 that is, a function which satisfies the conditions of a metric except symmetry
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For the purpose of constructing the couplings required by Theorem 3, let Γ be the211

weighted, directed graph on Ω where (ω, ω′) is an edge if and only if the colorings ω, ω′
212

differ at exactly one vertex and let all edge weights be 1. From the proof of ergodicity [18]213

it follows that we can take D = (∆ + 1)n in Theorem 3 and define couplings as follows.214

Let (ω, ω′) ∈ E(Γ) and suppose that the colorings ω and ω′ differ at the vertex v∗. Sample215

u ∈ V (G) uniformly at random and update the color of u in both chains (intuitively, this216

decision helps the chains coalesce). That is, the distribution γ of (σ, σ′) is defined by the217

Markov transition (ω, ω′) Pγ7→ (σ, σ′) itself defined by218

1. sampling a vertex u ∼ UV (G),219

2. sampling a pair of available colors (a, b) from a distribution γc such that220

γc := arg max
γ′ is a coupling of

UL(u)\ω(N(u)) and UL(u)\ω′(N(u))

Pr
(a,b)∼γ′

(a = b) (1)221

3. defining σ and σ′ by updating the color of u in each to a and b respectively:222

σ(v) :=
{
a v = u

ω(v) v ̸= u
, σ′(v) :=

{
b v = u

ω(v) v ̸= u
,223

and moving to the state (σ, σ′).224

Observe that γc is defined as the coupling on the uniform distributions of available colors,225

UL(u)\ω(N(u)) and UL(u)\ω′(N(u)), which maximizes the probability the colors are the same.226

The important property of this definition in terms of applying Theorem 3 is that this coupling227

minimizes the expectation of the discrete metric on the sample.228

If u ∈ N(v∗) the sets of available colors for u can be different making γc nontrivial.229

In this case, let C = ω(N(u) \ {v∗}) and note that the two sets of available colors are230

A = (L(u) \C) \ {ω(v∗)} and B = (L(u) \C) \ {ω′(v∗)}. We wish to couple UA and UB such231

that the probability of choosing the same color is maximized, and the best general coupling232

is not too hard to find.233

▶ Lemma 4 (See e.g., [18, Lemma 4.10]). Let U be a finite set and A,B ⊂ U . Then there is234

a coupling γc of UA and UB such that235

Pr
(a,b)∼γc

(a = b) = |A ∩B|
max{|A|, |B|}

,236

where (a, b) is a random element of A×B chosen according to the coupling γc.237

Let m = max{|A|, |B|}. We have A ∩ B = (L(u) \ C) \ {ω(v∗), ω′(v∗)}. Checking the238

four cases according to whether each of ω(v∗) and ω′(v∗) are in L(u) \ C, we observe that239

|A ∩ B| ≥ m − 1. By Lemma 4, we can ensure that the two chains choose the same color240

with probability at least 1 − 1/m. Considering the definitions of A and B, we also have241

m ≥ q − ∆. Returning to the analysis of the coupling γ described above, we have242

E(σ,σ′)∼γ [δ(σ, σ′)] ≤ 1 + 1
n

(
−1 + ∆

q − ∆

)
.243

This comes from the facts that δ(ω, ω′) = 1 by assumption, the probability 1/n that we244

successfully reduce the distance by 1 in an update to v∗, and the probability of at most245

∆/n that we choose to update a neighbor of v∗, and in this case fail to choose the same246

color in the coupling of the color choice in each chain given by Lemma 4 (which occurs247
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with probability at most 1/(q − ∆) given that we update a neighbor of v∗). Set β to the248

right-hand side above and solve for β < 1 to obtain q > 2∆.249

Well-known works that first studied this technique [17, 5, 18] give a similar proof, though250

Jerrum [17] manually constructed a coupling of the Markov chain and did not appeal to251

path coupling. With path coupling, it is slightly easier to study a variant of the Markov252

chain known as the “Metropolis Glauber dynamics” where the transition is defined slightly253

differently, though the same lower bound on q is required in the argument for this chain.254

Our argument for list packing follows the same outline as above using the heat-bath255

dynamics for list packings, but it is much harder to construct the coupling. In particular,256

we need an analogue of Lemma 4 for the much more intricate combinatorial setting of list257

packings. We describe this in the next subsection.258

3.1 Coupling perfect matchings259

In the list packing setting, each spin is a permutation of a list. The central problem one260

faces when adapting the above sketch to list packing is the issue of coupling the choice of261

available permutations in the case that we are updating the spin of u in two copies of the262

Glauber dynamics which differ at a neighbor v ∈ N(u). It turns out (see e.g. [6] and earlier263

works such as [24]) that there is an auxiliary bipartite graph in which available permutations264

for u correspond to perfect matchings.265

Given a graph G with q-list assignment L, let Ω be the set of L-packings of G, and266

let ω ∈ Ω. Let f1, . . . , fq be the L-colorings represented by ω. To be explicit, suppose267

that for each vertex v of G we write L(v) in ascending order as c1,v, . . . , cq,v. Then we268

identify V (G) with [n] and consider Ω as a subset of Snq such that with v ∈ [n] we define269

f1, . . . , fq : V (G) → N by fi(v) = cωv(i),v, where we interpret ωv as a permutation of L(v) so270

that ωv(i) is the color assigned to v in the ith coloring in the packing. This notation has271

the advantage that many of the dependencies are explicit, but to avoid a proliferation of272

subscripts we omit them where it is possible to fix some context in advance.273

For a vertex u ∈ V (G), we construct the availability graph Hu = Hu(G,L, ω) as follows.274

We consider the vertex set of Hu as [q] ⊔ [q], the disjoint union of two copies of the set275

[q]. The left copy consists of “packing indices” and the right copy consists of “list indices”.276

For clarity, the edges of Hu are considered oriented from left to right so that (i, j) joins277

packing index i to list index j. Suppose that L(u) = {c1, . . . , cq} is supplied in some fixed278

order. Then in Hu we include each edge (i, j) ∈ [q]2 such that cj is an available color for279

u in the coloring fi. That is, (i, j) is an edge of Hu if and only if cj /∈ fi(N(u)). One can280

check the defintions and observe that perfect matchings in Hu correspond to the available281

permutations ρ ∈ Sq for u in the sense that setting ωu to an available ρ yields a valid list282

packing. The heat-bath Glauber dynamics for L-packings thus works in much the same way283

as for L-colorings. The transition from a state ω is defined by choosing a vertex u ∈ V (G)284

uniformly at random, and then a perfect matching in Hu(G,L, ω) uniformly at random. It is285

straightforward to check that the chain is reversible and has uniform stationary distribution;286

we prove that it is ergodic (for large enough q) in Lemma 7.287

An important consideration when G has maximum degree ∆ is that Hu has minimum288

degree q − ∆. This follows from the properties of a list packing: at packing index i any color289

that is not available must be used by fi on a neighbor of u and there are at most ∆ such290

neighbors. Similarly, for a color cj with color index j, any packing index i in which cj is291

not available is explained by cj being used by fi on N(u). Since the colorings in a packing292

are pairwise-disjoint, each such index must be due to distinct neighbors of u, of which there293

are at most ∆. It is useful to observe that for any ω ∈ Snq , even one that may not be a294



8 Sampling List Packings

proper list packing in the sense that the q list colorings it represents may not be proper,295

the definition of availability graph still makes sense and the observation on the minimum296

degree still applies. That is, the key property of q-list packings on graphs of maximum degree297

∆ that yields the minimum degree bound q − ∆ is that the list colorings represented are298

pairwise-disjoint. This fact is convenient in the proof of Lemma 5.299

To construct the coupling we consider the weighted, directed graph Γ on Ω where (ω, ω′)300

is an edge if and only if the list packings ω and ω′ differ at exactly one vertex. For the edge301

(ω, ω′) ∈ E(Γ), let v be the unique vertex at which the two packings differ, and assign weight302

dC(ωv, ω′
v) to the edge. As with list coloring, the key computation is how much the expected303

distance changes for one step of the coupling in the case that we start at (ω, ω′) and update304

a neighbor u of the unique vertex v at which ω and ω′ differ. We prove the following result305

which plays the role of Lemma 4 in our proof.306

▶ Lemma 5. There is a universal constant C such that if q > C∆2 the following holds.307

Let (ω, ω′) ∈ E(Γ) be an edge of weight ψ in Γ and let v be the unique vertex at which308

ω and ω′ differ. Let u ∈ N(v) and consider the availability graphs H and H ′ for u in the309

packings ω and ω′ respectively.310

Then there exists a coupling γ of the uniform distributions on perfect matchings on H311

and H ′ which satisfies312

E(ρ,ρ′)∼γ [dC(ρ, ρ′)] ≤ ψ

2∆ .313

Note that in the conclusion any bound strictly better than ψ/∆ suffices for an application of314

Theorem 3, and one might expect to obtain results in the case of exactly ψ/∆ as well [17, 5, 12].315

We do not attempt to optimize the constant C in our argument and hence ψ/(2∆) is sufficient.316

Lemma 5 is a simple corollary of Lemma 2, and with these results in hand the rest of the317

argument for Theorem 1 is standard.318

3.2 Organization319

In Section 4 we define a Markov chain on list packings, prove ergodicity and establish rapid320

mixing given our results on coupling perfect matchings. In Section 5 we prove Lemmas 2321

and 5. We conclude with some remarks in Section 6.322

4 Glauber dynamics for list packing323

In this section we fix an n-vertex graph G of maximum degree ∆, a q-list assignment L of G,324

and let Ω be the set of L-packings of G.325

We consider heat-bath Glauber dynamics M = M(G,L) for list packing. Given a state326

ω ∈ Ω and a vertex u ∈ V (G), we say that a permutation ρ in Sq is available for u in ω if327

setting ωu to ρ yields a valid list packing. Transitions of M are defined as follows. From328

state ω ∈ Ω, choose vertex u ∈ V (G) uniformly at random, choose an available permutation329

ρ ∈ Sq uniformly at random, and let the new state be σ given by σu = ρ and σv = ωv330

for v ̸= u. It is straightforward to check that this is a reversible Markov chain on Ω with331

uniform stationary distribution. The question of ergodicity is less straightforward, though332

the standard argument for list coloring adapts easily. We require a simple corollary of Hall’s333

classic result on perfect matchings in bipartite graphs.334

▶ Lemma 6 (Corollary of Hall’s theorem [14]). Let H be a bipartite graph with q vertices on335

each side and minimum degree d ≥ q/2. Then H contains a perfect matching.336
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Sketch proof. Let the bipartition be A ⊔ B and consider a subset X ⊂ A. If 1 ≤ |X| ≤ d337

then |N(X)| ≥ d ≥ |X|. If instead d+1 ≤ |X| ≤ q then N(X) must be all of B since for each338

neighborhood of a vertex in B must intersect X. The result follows from Hall’s theorem. ◀339

▶ Lemma 7. For q ≥ 2∆ + 2 the Markov chain M is ergodic.340

Proof. Because there are self-transitions at every state, it suffices to show that the (finite)341

state space is connected.342

Every state ω ∈ Ω can be connected to an arbitrary ω′ ∈ Ω as follows. Label the vertices343

of G with the integers 1, . . . , n arbitrarily, and for i = 1, . . . , n, sequentially turn ωi into ω′
i344

as follows. If setting ωi equal to ω′
i is not possible (i.e. ω′

i is not available for i in ω) then345

it’s because some neighbor j of i with j > i uses a color at a particular packing index which346

conflicts with ωi. To solution is to repack each such neighbor j in ω, i.e. change ωj to a new347

permutation of L(j), in turn such that the repacking is proper and avoids any such conflicts.348

These repacking steps are steps of the chain.349

To perform the repacking, we find a perfect matching in a suitable modification of the350

availability graph H ′
j = Hj(G,L, ω′). Recall that perfect matchings in H ′

j correspond to the351

available permutations ρ for u in ω′. We have an additional condition on the permutation ρ352

that we seek, namely that ρ does not correspond to a color choice for j that is incompatible353

with turning ωi into ω′
i. We can encode this in the availability graph by deleting an edge354

(a, b) such that the b-th color in L(j) is used at packing index a in color choices represented355

by ω′
i. After this modification, the availability graph has minimum degree q − ∆ − 1, so the356

condition q ≥ 2∆ + 2 allows for an application of Lemma 6. This shows that the necessary357

repackings exist, and thus that Ω is connected by transitions of the chain that occur with358

positive probability. ◀359

▶ Theorem 8. The mixing time tmix(ϵ) of M is at most O(n log(n/ϵ)).360

Proof. We apply Theorem 3 with the following coupling defined on edges of the weighted361

graph Γ on Ω such that (ω, ω′) is an edge of weight dC(ωv, ω′
v) whenever ω and ω′ differ at a362

single vertex v. Lemma 7 shows that Γ is connected, and we note that the diameter D is at363

most (∆ + 1)(q − 1)n = O(n). This is because the sequence of steps constructed in Lemma 7364

consists of edges of Γ, the total number of steps is at most (∆ + 1)n because we repack each365

vertex v at most once for each neighbor of v to avoid conflict and at most once more to agree366

with ω′. As the Cayley distance on Sq takes values in {0, 1, . . . , q − 1}, the diameter bound367

follows.368

Let (ω, ω′) be an edge of Γ of weight ψ. We define the coupling as follows. We choose369

u ∈ V (G) uniformly at random and update u in both packings. If u /∈ N(v) then the sets of370

available permutations of L(u) in both packings are identical and we choose one uniformly at371

random to use in both chains. If u = v this results in a distance of zero, else the distance is372

unchanged. If u ∈ N(v) then we use the coupling of Lemma 5 to choose the permutations of373

L(u) in the packings. Let (σ, σ′) be the random state after one step of the coupling started374

from (ω, ω′). Then375

E[δ(σ, σ′)] ≤ ψ + 1
n

(
−ψ + ∆ ψ

2∆

)
= ψ

(
1 − 1

2n

)
.376

Theorem 3 now gives mixing time tmix(ϵ) = O(n log(n/ϵ)). ◀377

The proof of Theorem 1 using Theorem 8 is now entirely standard. We sketch the378

argument here. Counting list packings is a self-reducible problem in the sense of [19] and379
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so having an almost-uniform sampler, which follows from running the Markov chain for380

polynomially many steps, is equivalent to having an FPRAS. Concretely, construct a sequence381

G = Gm ⊃ · · · ⊃ G1 ⊃ G0 = (V (G), ∅) of graphs by starting from G and removing an382

arbitrary edge to form the next member of the sequence. For a fixed q-list assignment L of383

G we can let Ωi be the set of L-packings of Gi and write384

|Ωm| = |Ω0|
m∏
i=1

|Ωi|
|Ωi−1|

.385

We have |Ω0| = (q!)n and can estimate each ratio in the product as it’s the probability386

that when we choose a unformly random ω ∈ Ωi−1 we have ω ∈ Ωi. We also note that387

1
1+q! ≤ |Ωi|

|Ωi−1| ≤ 1 because Ωi ⊂ Ωi−1 and we can construct the following bipartite graph B388

on (Ωi−1 \ Ωi) ⊔ Ωi. Let uv be the edge removed from Gi to form Gi−1, and include the edge389

(ω, ω′) in B if ω′ can be obtained from Ω by permuting the list of u. Then any ω ∈ Ωi−1 \ Ωi390

is connected to at least one element in Ωi by Lemma 6, and there are at most q! ways to391

permute L(u) so from the other side the degrees are at most q!. We do not attempt to392

optimize this argument; more intricate arguments yield stronger lower bounds, but we are393

merely interested in a bound independent of n. This observation lets us repeat the analysis394

of Jerrum [17] for the case of colorings in the setting of list packings. Briefly, we use multiple395

copies of the almost uniform sampler offered by the Markov chain to estimate each ratio. To396

make this work, one has to bound the variance of the estimator for each ratio and manage397

the overall error with Chebyshev’s inequality, but this is standard. See e.g., [17].398

5 Coupling matchings399

In this section we prove Lemmas 2 and 5. We first collect some results on auxiliary bipartite400

graphs.401

▶ Lemma 9. Let G = (V,E) be a bipartite graph with bipartition V = L ∪R. Let µL and402

µR be probability distributions over L and R. Let403

p = min
A⊆L

[1 − µL(A) + µR(N(A))].404

There exists a coupling γ of µL and µR such that when (v, w) ∼ γ, with probability p, vw is405

an edge of G.406

Proof. This follows from the max-flow min-cut theorem after introducing a source vertex s,407

a sink vertex t, and introducing the following edges:408

1. for v ∈ L, the edge sv with capacity µL(v),409

2. for v ∈ R, the edge vt with capacity µR(v),410

3. for each edge e ∈ G, an edge with capacity ∞.411

A max flow corresponds to a coupling γ of the type we require with maximum probability412

that vw is an edge. The value of the max flow is the same as the value of the min cut. If S, T413

is a finite cut with s ∈ S, t ∈ T , letting A = S ∩ L, B = S ∩ R, we must have N(A) ⊆ B,414

and the value is µL(Ac) + µR(B) ≥ µL(Ac) + µR(N(A)). Equality is achieved for B = N(A).415

Taking the minimum over A then gives the lemma. ◀416

▶ Corollary 10. Let G = (V,E) be a bipartite graph with bipartition V = L∪R. Suppose that417

each vertex in L has degree contained in [mL,ML] and each vertex in R has degree contained418

in [mR,MR]. Then there exists a coupling γ of the uniform distributions UL and UR on L419

and R respectively such that when (v, w) ∼ γ, with probability at least mLmR

MLMR
, vw is an edge420

of G.421
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Proof. For each subset A ⊆ L, we can bound the number of edges between A and N(A):422

mL|A| ≤ |E(A,N(A))| ≤ MR|N(A)|.423

We also have424

mR|R| ≤ |E| ≤ ML|L|.425

Then for any set A ⊆ L,426

|N(A)|/|R|
|A|/|L|

= |N(A)|
|A|

· |L|
|R|

≥ mLmR

MLMR
.427

Then for any such A,428

1 − UL(A) + UR(N(A)) ≥ 1 − UL(A) + mLmR

MLMR
· UL(A) ≥ mLmR

MLMR
.429

The conclusion follows from Lemma 9. ◀430

We are now ready to prove Lemma 2, which we restate for convenience.431

▶ Lemma 2. There are constants C1, C2 such that the following hold. Suppose that q ≥ C1∆,432

and let H = (V,E) be a bipartite graph in which |V | = 2q and the bipartition is balanced.433

Suppose that H has minimum degree at least q − ∆. Let e ∈ E be an edge of H, let L be the434

set of perfect matchings of H containing e, and let R the set of perfect matchings of H not435

containing e. Then there is a coupling γ of UR and UL∪R such that436

E(ρ,ρ′)∼γ [dC(ρ, ρ′)] ≤ C2∆
q

.437

Proof. Label the bipartitions by [q]. Without loss of generality the edge e is (1, 1). We438

define an auxiliary bipartite graph on L ∪ R as follows. For ρ ∈ L and ρ′ ∈ R, connect ρ and439

ρ′ by an edge if ρ(1 i j) = ρ′ for some i, j ∈ [q] \ {1} with i ≠ j, i.e., they differ by a 3-cycle440

containing 1. Note that here we use standard group-theoretic notation for permutations in441

Sq so that e.g. ρ(1 i j) is the product of the permutation ρ and the permutation (1 i j) (in442

standard cycle notation).443

We bound the degrees of arbitrary matchings ρ ∈ L and ρ′ ∈ R. Given ρ, we count the444

number of i, j for which ρ(1 i j) ∈ R. Let N(i) = {j : (i, j) ∈ E} and N ′(j) = {i : (i, j) ∈ E}.445

Given ρ ∈ L, we know that ρ(1) = 1. We choose j ∈ N ′(1) \ {1}; there are at least446

q − ∆ − 1 choices. Any possible value of i must be in the set S− \ {j}, where S− :=447 {
ρ−1(k) : k ∈ N(1) \ {1}

}
; S− \ {j} has size at least q − ∆ − 2. A valid pair (i, j) is exactly448

one where j ∈ N ′(1) \ {1}, i ∈ S− \ {j}, and (i, ρ(j)) ∈ E. Since at most ∆ + 1 of edges449

(i, ρ(j)), j ∈ N ′(1) \ {1} can land outside E, at least q − 2∆ − 3 of these edges are valid,450

i.e., there are at least (q − ∆ − 1)(q − 2∆ − 3) valid choices of (i, j). There are at most451

(q − 1)(q − 2) choices.452

Next, given ρ′ ∈ R, we count the number of i, j ∈ [q] \ {1}, i ̸= j for which ρ′ = ρ(1 i j)453

where ρ ∈ L. First, note we must have ρ′(j) = 1. The requirement on i is that i ∈ N ′(ρ′(1))454

and ρ′(i) ∈ N(j). There are at least q − ∆ − 2 indices besides 1 and j satisfying each455

condition, so at least q − 2∆ − 4 possible indices. There are at most q − 2 choices. By456

Corollary 10, there is a coupling γ of UL and UR such that with probability at least457

p := (q − ∆ − 1)(q − 2∆ − 3)
(q − 1)(q − 2) · q − 2∆ − 4

q − 2 ,458
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(ρ, ρ′) ∈ E are connected by an edge and hence have Cayley distance at most two. For459

appropriate choices of C1,K > 0, 1 − p ≤ K∆/q for q ≥ C1∆. For this coupling γ, we hence460

have461

E(ρ,ρ′)∼γ [dC(ρ, ρ′)] ≤ K∆
q

· q +
(

1 − K∆
q

)
· 2 ≤ K ′∆462

for an appropriate constant K ′ > 0.463

Next, note that we can define a coupling between UL∪R and UR as a mixture of the464

identity coupling between UR and UR (with probability |R|
|L|+|R| ) and the above coupling465

(with probability |L|
|L|+|R| ). The expected distance for this coupling is then466

|L|
|L| + |R|

·K ′∆ ≤ q − 2
(q − 2) + (q − ∆ − 1)(q − 2∆ − 3) ·K ′∆ ≤ C2∆

q
467

for appropriate C2 > 0, as needed. ◀468

▶ Lemma 5. There is a universal constant C such that if q > C∆2 the following holds.469

Let (ω, ω′) ∈ E(Γ) be an edge of weight ψ in Γ and let v be the unique vertex at which470

ω and ω′ differ. Let u ∈ N(v) and consider the availability graphs H and H ′ for u in the471

packings ω and ω′ respectively.472

Then there exists a coupling γ of the uniform distributions on perfect matchings on H473

and H ′ which satisfies474

E(ρ,ρ′)∼γ [dC(ρ, ρ′)] ≤ ψ

2∆ .475

Proof. Formally, we proceed by induction on ψ, though we need a more general statement476

for the induction hypothesis. It is convenient to relax the requirement that ω and ω′ are valid477

list packings. For the application, it is important that the pair (ω, ω′) are valid list packings478

which agree on every vertex except u, but we construct the coupling of perfect matchings479

in H and H ′ using a sequence of near-valid list packings ω′′ ∈ Snq in the sense that ω′′
480

agrees with ω and ω′ on all vertices except u, but we allow the (pairwise-disjoint) colorings481

it represents to have monochromatic edges incident to v. We can still construct availability482

graphs for u in these near-valid packings and consider their sets of perfect matchings for the483

purposes of constructing an eventual coupling of the perfect matchings in H and H ′. With484

these definitions in place, the generalization that we prove by induction is the statement485

obtained by replacing the assumption that ω and ω′ are valid packings with the assumption486

that they are near-valid.487

The base case is ψ = 0 in which the trivial coupling suffices as H and H ′, and hence their488

sets of perfect matchings, are identical.489

The induction step follows from Lemma 2. The fact that dC(ωv, ω′
v) = ψ means that490

there is a sequence of transpositions τ1, . . . , τψ such that ωv = τψ · · · τ1ω
′
v. Let H ′′ be the491

availability graph of the vertex u in the near-valid packing ω′′ such that ω′′
v = τψωv and492

ω′′ agrees with ω on all other vertices. By induction, there is a coupling γ′ of the uniform493

distributions on perfect matchings in H ′′ and H ′ such that494

E(ρ′′,ρ′)∼γ′ [dC(ρ′′, ρ′)] ≤ ψ − 1
2∆ .495

Without loss of generality, suppose that ωv is the identity. Let τψ = (i j), and note that496

this gives497

E(H) \ E(H ′′) ⊂ {(i, j), (j, i)} and E(H ′′) \ E(H) ⊂ {(i, i), (j, j)}.498
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This is because any difference between the edges of H and H ′ is explained by applying τ to499

ωv. When τ is a transposition, we swap the packing index of the coloring at which two colors500

in the list of v are used, which can swap two edges of the complement of the availability501

graph. It can be the case that the swapped color indices refer to different colors in L(u)502

which is why we do not have equality.503

We start with the case that504

E(H) \ E(H ′′) = {(i, j), (j, i)} and E(H ′′) \ E(H) = {(i, i), (j, j)},505

the other cases are similar. Let X be the set of perfect matchings in H and let X ′′ be the506

set of perfect matchings in H ′′. We seek a coupling of UX and UX′′ which we will combine507

with the coupling γ′ to obtain the desired result.508

We apply Lemma 2 to H and H − (i, j), yielding a coupling γ1 of UX and UY , where509

Y is the set of perfect matchings in H − (i, j). We can apply Lemma 2 again to H − (i, j)510

and H − (i, j) − (j, i), yielding a coupling γ2 of UY and UZ , where Z is the set of perfect511

matchings in H − (i, j) − (j, i). There is a slight technicality here as the minimum degree of512

H − (i, j) is q − ∆ − 1, but this can be handled by setting ∆ to ∆ + 1 and adjusting the513

constants slightly. Analogously, starting from H ′′, we construct a coupling γ′′
1 of UX′′ and514

UY ′′ and a coupling γ′′
2 of UY ′′ and UZ , where Y ′′ is the set of perfect matchings in H ′′ − (i, i).515

A careful composition of these couplings gives the result. The composition of these couplings516

yields a distribution on X × Y ×Z × Y ′′ ×X ′′ which is uniform on each individual set in the517

Cartesian product, and such that the expected distance between permutations from adjacent518

sets in the Cartesian product is at most C2∆/q. Taking the first and last coordinate yields a519

coupling γ′′ of UX and UX′′ such that520

E(π,π′′)∼γ′′ [dC(π, π′′)] < 4C2∆
q

.521

This can be combined with γ′ obtained by induction in the same way. Simple composition522

yields a distribution on X×X ′′ ×X ′ which is uniform on each individual set in the Cartesian523

product. Taking the first and last coordinates we have a coupling γ of UX and UX′ such that524

E(π,π′)∼γ [dC(π, π′)] < ψ − 1
2∆ + 4C2∆

q
.525

Since we assume q ≥ C∆2, for a large enough C this is at most ψ/(2∆) as required. The526

other cases proceed similarly, but require fewer applications of Lemma 2 and yield a stronger527

upper bound. ◀528

6 Concluding remarks529

Many natural questions remain unanswered. We have chosen to extend some of the most530

fundamental techniques for counting list colorings to list packings, but there are many more531

recent improvements to consider. Dyer and Greenhill [11] study a Markov chain on (list)532

colorings whose transitions are defined by properly recoloring both endpoints of a uniform533

random edge and show that its mixing time is less than that of Glauber dynamics studied534

in [17, 25]. The flip dynamics employed by Vigoda [26] for counting colorings is an important535

technique that gets significantly below the number of colors required by Jerrum’s approach.536

Extending Vigoda’s approach to list coloring was first done by Chen et al. [10], roughly 20537

years after Vigoda’s breakthrough. Though they also surpassed a significant barrier at 11∆/6538

colors related to 1-step contractions in Hamming distance of two colorings that differ at a539
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vertex. The history of this problem suggests that further generalizations, e.g. to list packing540

may not be straightforward. While one can consider analogous dynamics for list packings and541

hope to reduce the bound on q in Theorem 1, we do not have results showing the existence542

of list packings in graphs of maximum degree ∆ for fewer than 2∆ − 2 colors. In another543

direction, the use of more advanced Markov chain techniques to give perfect sampling of list544

packings could be interesting.545

We finish with a natural conjecture on approximately counting list packings.546

▶ Conjecture 11. For each ∆ and q ≥ 2∆ there is an FPRAS for counting the number of547

q-list packings of graphs of maximum degree ∆.548

At the time of writing, we know of no reason that the lower bound on q cannot be reduced549

to, say, ∆ + 1. The value 2∆ represents a significant barrier in the sense that the existence of550

a list packing when q ≥ 2∆ is an elementary consequence of Hall’s theorem (though arguably551

not entirely trivial).552
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