

# Sampling List Packings

<sup>1</sup> **Evan Camrud**  

<sup>3</sup> Department of Mathematics and Statistics, Middlebury College, VT, USA

<sup>4</sup> **Ewan Davies**<sup>1</sup>  

<sup>5</sup> Department of Computer Science, Colorado State University, CO, USA

<sup>6</sup> **Alex Karduna** 

<sup>7</sup> Department of Computer Science, Colorado State University, CO, USA

<sup>8</sup> **Holden Lee**  

<sup>9</sup> Department of Applied Mathematics and Statistics, Johns Hopkins University, MD, USA

---

## <sup>10</sup> — Abstract —

<sup>11</sup> We initiate the study of approximately counting the number of list packings of a graph. The  
<sup>12</sup> analogous problem for usual vertex coloring and list coloring has attracted substantial attention.  
<sup>13</sup> For list packing the setup is similar, but we seek a full decomposition of the lists of colors into  
<sup>14</sup> pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a  
<sup>15</sup> list coloring, but the converse is false. Recent works on list packing have focused on existence or  
<sup>16</sup> extremal results of on the number of list packings, but here we turn to the algorithmic aspects of  
<sup>17</sup> counting and sampling.

<sup>18</sup> In graphs of maximum degree  $\Delta$  and when the number of colors is at least  $\Omega(\Delta^2)$ , we give a fully  
<sup>19</sup> polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural  
<sup>20</sup> Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some  
<sup>21</sup> motivation for our work is the investigation of an atypical spin system, one where the number of  
<sup>22</sup> spins for each vertex is much larger than the graph degree.

<sup>23</sup> **2012 ACM Subject Classification** Theory of computation → Random walks and Markov chains;  
<sup>24</sup> Mathematics of computing → Approximation algorithms

<sup>25</sup> **Keywords and phrases** List packing, Graph colouring, Markov chains, Path coupling

<sup>26</sup> **Related Version** *Full Version:* <https://arxiv.org/abs/2402.03520>

<sup>27</sup> **Funding** *Ewan Davies:* supported in part by NSF grant CCF-2309707

<sup>28</sup> **Acknowledgements** We thank Colin McSwiggen and Semon Rezchikov for organizing Random  
<sup>29</sup> Theory 2023, where this collaboration began. We thank Charlie Carlson and Guillem Perarnau for  
<sup>30</sup> comments that led to improvements to the exposition of the paper.

---

## <sup>31</sup> 1 Introduction

<sup>32</sup> The classic graph coloring problem is to determine, for a graph  $G = (V, E)$  and number  
<sup>33</sup> of colors  $q$ , whether there is a coloring  $f : V \rightarrow [q]$  such that  $f$  is proper in the sense that  
<sup>34</sup>  $f(u) \neq f(v)$  for every edge  $uv \in E$ . List coloring emerged in the late 20th century as an  
<sup>35</sup> adversarial version of this problem [27, 13]. To define list coloring, we take a list size  $q \in \mathbb{N}$   
<sup>36</sup> and assign to each  $u \in V$  a list of allowed colors  $L(u)$  of size  $q$ . One can think of the list  
<sup>37</sup> assignment  $L$  as supplied by an adversary who might try to prevent the existence of a coloring  
<sup>38</sup> respecting the lists. If, under any choices of such an assignment of lists, the graph  $G$  admits  
<sup>39</sup> a proper coloring  $f$  such that  $f(u) \in L(u)$  for every vertex  $u$ , then we say that  $G$  is  $q$ -list  
<sup>40</sup> colorable (also known as  $q$ -choosable in some works). In some ways list coloring and classical  
<sup>41</sup> graph coloring are similar, e.g., the complete graph on  $n$  vertices requires  $q \geq n$  for both

---

<sup>1</sup> Corresponding author

42 problems. But all bipartite graphs can be colored with two colors, while  $K_{n,n}$  requires lists  
 43 of length  $\Omega(\log n)$  in the list coloring setting [13].

44 List coloring also arises naturally in various other ways. Notably, if we take a classic  
 45 graph coloring problem and pre-color some vertices then we can express the problem of  
 46 completing the coloring through list coloring. We set  $L(u)$  to be the subset of the colors not  
 47 used by any pre-colored vertex in the neighborhood of  $u$  (though these lists may not have  
 48 equal sizes). The idea of list coloring has been extended in several interesting directions,  
 49 and in this work we study a very recent and structured variant known as list packing [6].  
 50 The setup is the same as for list coloring with a fixed list size  $q$ , but instead of seeking just  
 51 one proper coloring where each vertex is colored from its list, we seek  $q$  pairwise-disjoint  
 52 proper colorings from the lists. We consider two colorings  $f$  and  $f'$  of a graph disjoint if, for  
 53 all vertices  $u$  we have  $f(u) \neq f'(u)$ . We call this collection of  $q$  pairwise-disjoint proper list  
 54 colorings a *list packing*. Given a graph  $G$  and list size  $q$ , if a list packing can be found for  
 55 any lists of size  $q$  chosen by an adversary then we say that  $G$  is  $q$ -list packable.

56 One motivation for list packing in [6] is to challenge the state-of-the-art in list coloring.  
 57 For example, a folklore result states that a bipartite graph of maximum degree  $\Delta$  is  $q$ -list  
 58 colorable for  $q \geq (1 + o(1))\Delta / \log \Delta$  (see also [1] and a recent improvement of the leading  
 59 constant due to Bradshaw [4]). Amongst other foundational results on list packing, the  
 60 folklore result was matched for the significantly more structured notion of list packing in [6].  
 61 A notable difference between known results for list packing and list coloring is that a general  
 62 graph of maximum degree  $\Delta$  is  $q$ -list packable for  $q \geq 2\Delta$  (improved to  $q \geq 2\Delta - 2$  for  $\Delta \geq 4$   
 63 in [8]); whilst such  $G$  are  $q$ -list colorable for  $q \geq \Delta + 1$  (and even  $q = \Delta$  if  $\Delta \geq 3$  and  $G$  does  
 64 not contain a clique on  $\Delta + 1$  vertices [13]). Despite the gap in known results, there is scant  
 65 evidence that more than  $\Delta + 1$  colors are ever required for list packing [8, 6].

66 Early work on list packing has focused on the problem of existence, though many  
 67 arguments for existence also provide efficient constructions of list packings. An extremal  
 68 perspective on counting list packings was recently investigated by Kaul and Mudrock [21],  
 69 and related problems where one seeks many list colorings or “flexible” list colorings are  
 70 studied in [20, 7]. In this work we turn to the study of approximately counting the number  
 71 of  $L$ -packings of a graph  $G$  with a fixed  $q$ -list assignment  $L$ . This is a natural question by  
 72 analogy with the same questions for graph coloring and list coloring: is there an efficient  
 73 procedure that, given a graph  $G$  and a number of colors  $q$ , approximates the number of  
 74 proper  $q$ -colorings of  $G$  (e.g., to within a factor 2)? This question is well-studied in the  
 75 field of approximate counting and sampling, and is an important test-bed for algorithmic  
 76 techniques. A longstanding open question is the existence of such an approximate counting  
 77 algorithm that works for all  $q \geq \Delta + 1$  on graphs of maximum degree  $\Delta$ . An influential  
 78 collection of results using various techniques requires conditions such as  $q \geq e\Delta + 1$  [2],  
 79  $q \geq 2\Delta$  [17, 22],  $q \geq 11\Delta/6$  [26], and even  $q \geq (11/6 - \epsilon)\Delta$  for some small  $\epsilon > 0$  [10, 9].  
 80 Another branch of research on the algorithmic aspects of counting graph colorings seeks to  
 81 sample perfectly uniformly from the set of proper  $q$ -colorings of a graph. The pioneering  
 82 result is due to Huber [15], with improvements and new techniques supplied in a number of  
 83 later works [23, 22, 3, 16]. Interestingly, one application of such perfect samplers is to design  
 84 approximate counting algorithms that can be faster than analogous approaches which use  
 85 approximate samplers.

86 Motivated by simple and powerful ideas such as the Markov chain Monte Carlo approach  
 87 to counting colorings due to Jerrum [17] (see also [25]), we seek similar results for list packing.  
 88 The list packing problem, however, presents novel difficulties. Observe that finding a list  
 89 coloring gets strictly easier as the list size  $q$  grows. Supposing that one has a technique that

90 works with lists of size  $q_0$ , then given larger lists one can take arbitrary subsets of the lists  
 91 of size  $q_0$  and apply the technique in a black-box fashion. In contrast, for list packing with  
 92 larger  $q$  we are required to find ever more list colorings which must also be pairwise-disjoint.  
 93 Given lists of size  $q > q_0$ , it is not at all clear how to extend an arbitrary collection of  $q_0$   
 94 pairwise-disjoint list colorings to a full list packing. The methods of [8, 6] provide evidence  
 95 that showing the *existence* of a list packing does get easier with larger  $q$ , albeit for less  
 96 straightforward and general reasons. Whether *counting* list packings should get easier as  $q$   
 97 grows is another matter, but we confirm this principle in the setting of approximate counting  
 98 by giving an algorithm that approximately counts list packings which works for all  $q$  large  
 99 enough in terms of the maximum degree.

100 Approximate counting of combinatorial objects such as list colorings, independent sets,  
 101 and matchings corresponds to approximating the so-called partition function of a spin system  
 102 from statistical physics. We are interested in the study of counting and sampling list packings  
 103 as it presents an unusual type of spin system. Typically, the number of spins available for  
 104 each vertex in a spin system is small. In the Ising model of magnetism vertices take a spin  
 105 from  $\{+, -\}$ , and in the (antiferromagnetic) Potts model associated with proper  $q$ -colorings,  
 106 the spins are the  $q$  colors. Parameter ranges frequently studied for this model on graphs  
 107 of maximum degree  $\Delta$  include the case when  $q$  is close to  $\Delta + 1$ . The natural spin system  
 108 associated with  $q$ -list packings, however, has  $q!$  spins for each vertex. Since a vertex  $u$  has  
 109 a list of  $q$  colors which we must decompose into  $q$  choices, one for each list coloring in the  
 110 packing, the spins for  $u$  naturally correspond to permutations of the list  $L(u)$ . One of our  
 111 contributions is to study a somewhat natural combinatorial problem which involves a spin  
 112 system on bounded degree graphs with many more spins than commonly-studied examples.  
 113 We hope that further insights into algorithmic techniques for approximate counting can be  
 114 gained by studying an unusual spin system.

## 115 2 Results

116 Our main result is the existence of an approximate counting algorithm for list packings. We  
 117 define an  $\epsilon$ -approximation of a real number  $x$  as a real number  $y$  satisfying  $e^{-\epsilon} \leq x/y \leq e^\epsilon$ .  
 118 We use the standard notion of a *fully polynomial-time randomized approximation scheme*  
 119 (FPRAS) for a counting problem. This is a randomized algorithm that, given  $\epsilon > 0$ , yields  
 120 an  $\epsilon$ -approximation of the true answer in time polynomial in the input size and  $1/\epsilon$ .

121 Before we state the result, we need some more notation for list packings focusing on a  
 122 specific list assignment  $L$ . Given a graph  $G$  we call an assignment  $L : V(G) \rightarrow 2^{\mathbb{N}}$  of lists  
 123 of colors to the vertices of  $G$  such that  $|L(u)| = q$  for all vertices  $u$  a  $q$ -list assignment of  
 124  $G$ . A proper coloring  $f$  of  $G$  such that  $f(u) \in L(u)$  for all vertices  $u$  is called an  $L$ -coloring,  
 125 or a list coloring if the lists  $L$  are understood from context. Given a graph  $G$  and a  $q$ -list  
 126 assignment  $L$ , we call a collection of  $q$  pairwise-disjoint  $L$ -colorings of  $G$  an  $L$ -packing. Note  
 127 that an  $L$ -packing corresponds to permutation of the lists  $L(v)$  for each vertex  $v$ .

128 **Theorem 1.** *There is an absolute constant  $C$  such that the following holds. For any  $\Delta \geq 1$   
 129 and  $q \geq C\Delta^2$ , let  $G$  be a graph of maximum degree  $\Delta$ . Then for any  $q$ -list assignment  $L$  of  
 130  $G$ , there is an FPRAS for the number of  $L$ -packings of  $G$ .*

131 We prove this result by analyzing the so-called “heat-bath Glauber dynamics” for list  
 132 packing. Briefly, the state space is the set of list packings of the graph and transitions involve  
 133 resampling a uniform random valid permutation of the list of a uniform random choice of  
 134 vertex. We define “valid” carefully and analyze this Markov chain later, noting here that

135 we prove Theorem 1 by establishing rapid mixing of this chain and hence an approximate  
 136 sampling algorithm for a uniform  $L$ -packing under the same conditions.

137 A natural combinatorial problem on matchings in balanced bipartite graphs of large  
 138 minimum degree emerges during the proof of Theorem 1, leading to a probabilistic result  
 139 stated below that may be of independent interest. This is because the valid permutations of  
 140 the list  $L(v)$  correspond precisely to the perfect matchings in an auxiliary bipartite graph  
 141 that we construct from the list packing on the neighbors of  $v$ . Throughout, we assume  
 142 that  $\Delta$  and  $q$  are fixed constants and do not analyze the case where they are allowed to  
 143 depend on the number  $n$  of vertices of  $G$  as then algorithmic issues related to (perfectly)  
 144 sampling perfect matchings in  $2q$ -vertex bipartite graphs become trivial<sup>2</sup>. We do not attempt  
 145 to optimize the dependence of the running time on  $q$  or  $\Delta$ .

146 Given a set  $A$ , we write  $\mathcal{U}_A$  for the uniform distribution on  $A$ . When a fixed  $q$  is clear  
 147 from context, let  $d_C$  be the Cayley metric on the symmetric group  $S_q$ . That is,  $d_C(\rho, \rho')$  is  
 148 the minimum number of transpositions which one must compose with  $\rho$  to turn it into  $\rho'$ .  
 149 This is merely graph distance on the Cayley graph of  $S_q$  generated by the transpositions. We  
 150 associate perfect matchings in a balanced bipartite graph  $H = ([q] \sqcup [q], E)$  with permutations  
 151  $\rho \in S_q$  where  $(i, \rho(i)) \in E$  for each  $i$ .

152 Given two random variables  $X, Y$  defined on the discrete probability spaces  $(\Omega_X, p_X)$   
 153 and  $(\Omega_Y, p_Y)$ , a coupling of  $X, Y$  is a random variable  $\gamma = (X', Y')$  defined on a probability  
 154 space  $(\Omega_X \times \Omega_Y, p_\gamma)$  such that  $X$  and  $X'$  have identical distributions and  $Y$  and  $Y'$  have  
 155 identical distributions.

156 Given a Markov chain  $Z_t$  with state space  $\Omega$  and transition matrix  $P$ , a coupling of  $Z_t$  is  
 157 a Markov chain  $(X_t, Y_t)$  with state space  $\Omega \times \Omega$  and transition matrix  $\widehat{P}$  satisfying

$$158 \quad \sum_{y' \in \Omega} \widehat{P}((x, y), (x', y')) = P(x, x'),$$

$$159 \quad \sum_{x' \in \Omega} \widehat{P}((x, y), (x', y')) = P(y, y').$$

160 That is, each coordinate of the coupling is a faithful copy of  $Z_t$ , though the transitions of the  
 161 coordinates are not necessarily independent.

162 **► Lemma 2.** *There are constants  $C_1, C_2$  such that the following hold. Suppose that  $q \geq C_1\Delta$ ,  
 163 and let  $H = (V, E)$  be a bipartite graph in which  $|V| = 2q$  and the bipartition is balanced.  
 164 Suppose that  $H$  has minimum degree at least  $q - \Delta$ . Let  $e \in E$  be an edge of  $H$ , let  $\mathcal{L}$  be the  
 165 set of perfect matchings of  $H$  containing  $e$ , and let  $\mathcal{R}$  the set of perfect matchings of  $H$  not  
 166 containing  $e$ . Then there is a coupling  $\gamma$  of  $\mathcal{U}_\mathcal{R}$  and  $\mathcal{U}_{\mathcal{L} \cup \mathcal{R}}$  such that*

$$167 \quad \mathbb{E}_{(\rho, \rho') \sim \gamma} [d_C(\rho, \rho')] \leq \frac{C_2 \Delta}{q}.$$

168 This lemma is the main bottleneck for improving the dependence of  $q$  on  $\Delta$  in our main  
 169 theorem. In particular, removing the factor of  $\Delta$  would also improve Theorem 1 by a factor  
 170 of  $\Delta$ .

---

<sup>2</sup> Given a bipartite graph of constant order which contains a perfect matching, sampling a perfect matching uniformly at random can be done in constant time, e.g. by exhaustively enumerating the perfect matchings and selecting one at random.

### 171 3 Technical overview

172 We prove Theorem 1 by the standard Markov chain Monte Carlo approach and the path  
 173 coupling technique of Bubley and Dyer [5]. We study an ergodic Markov chain—the heat-bath  
 174 Glauber dynamics—whose stationary distribution is uniform on the list packings of a graph,  
 175 and use path coupling to show rapid mixing. Then a well-known and generic reduction from  
 176 counting to sampling yields Theorem 1. Path coupling reduces the potentially challenging  
 177 task of proving rapid mixing of a Markov chain to designing a coupling on adjacent states  
 178 according to some graph  $\Gamma$  on the state space  $\Omega$ . We largely follow the notation of [12] and  
 179 consider

180 
$$\mathcal{M} := \{P^t p_0\}_{t=0}^{\infty},$$

181 an ergodic Markov chain on state space  $\Omega$  with initial distribution  $p_0$  and transition operator  
 182  $P$ . We denote the (unique) stationary distribution by  $\pi$ , and denote by  $p_t := P^t p_0$  the  
 183 distribution of the state of the chain  $\mathcal{M}$  after  $t$  steps. We use the standard notion of mixing  
 184 time of Markov chains given by

185 
$$t_{\text{mix}}(\epsilon) := \max_{p_0} \min \{t \geq 0 : d_{\text{TV}}(p_t, \pi) \leq \epsilon\},$$

186 where  $d_{\text{TV}}$  is total variation distance.

187 Typically, we write  $\omega$  and  $\omega'$  for states of the chain before a transition and  $\sigma := P\omega$ ,  
 188  $\sigma' := P\omega'$  for the (random) states after one step of the chain from  $\omega$  and  $\omega'$  respectively.

189 ▶ **Theorem 3** (Bubley and Dyer [5], see also [12]). *Let  $\Omega$  be the state space of a Markov chain  
 190  $\mathcal{M}$  and let  $\Gamma$  be a weighted, directed graph on vertex set  $\Omega$  with edge weights in  $\mathbb{N}$ . Let  $\delta$  be the  
 191 quasi-metric<sup>3</sup> on  $\Omega$  given by taking shortest paths in  $\Gamma$ , and suppose that  $\delta(\omega, \omega') \leq D < \infty$   
 192 for all  $\omega, \omega' \in \Omega$ .*

193 For each  $(\omega, \omega') \in E(\Gamma)$ , suppose that we have a coupling  $\gamma$ , of the random variables  $\sigma$   
 194 (with distribution  $P\omega$ ) and  $\sigma'$  (with distribution  $P\omega'$ ) for which  $\mathbb{E}_{(\sigma, \sigma') \sim \gamma}[\delta(\sigma, \sigma')] \leq \beta \delta(\omega, \omega')$ .  
 195 Then if  $\beta < 1$ , we have  $t_{\text{mix}}(\epsilon) \leq \log(D/\epsilon)/(1 - \beta)$ .

196 The theorem may seem rather abstract, so we briefly discuss a well-known application  
 197 to list coloring as a warm-up to the main argument for list packing. Let  $G$  be a graph of  
 198 maximum degree  $\Delta$  and let  $L$  be a  $q$ -list assignment of  $G$ . Let  $\Omega$  be the set of  $L$ -colorings  
 199 of  $G$ , and let  $\mathcal{M}$  be the heat-bath Glauber dynamics on  $\Omega$ , defined as follows. Note that  
 200 states  $\omega \in \Omega$  are colorings and hence functions  $V(G) \rightarrow \mathbb{N}$ . A transition of  $\mathcal{M}$  from a state  
 201  $\omega$  is performed by choosing a vertex  $u \in V(G)$  uniformly at random, sampling a color  $c$  in  
 202  $L(u) \setminus \omega(N(u))$ , and moving to the state  $\sigma$  with  $\sigma(u) = c$  and  $\sigma(v) = \omega(v)$  for all  $v \neq u$ .  
 203 That is, the transition operator  $P$  is defined via

- 204 1. sampling a vertex  $u \sim \mathcal{U}_{V(G)}$ ,  
 205 2. sampling a color  $c \sim \mathcal{U}_{L(u) \setminus \omega(N(u))}$ ,  
 206 3. defining  $\sigma$  by  $\sigma(v) := \begin{cases} c & v = u \\ \omega(v) & v \neq u \end{cases}$ , and moving to the state  $\sigma$ .

207 Note that  $L(u) \setminus \omega(N(u))$  is the set of available colors for  $u$ . These colors are in the list  $L(u)$   
 208 but are not used by the coloring  $\omega$  on the neighbors of  $u$  so setting  $\omega(u)$  to one of them  
 209 yields a valid list coloring. This chain is reversible, and when  $q \geq \Delta + 2$  it is ergodic [18,  
 210 Exercises 4.1] with stationary distribution uniform on  $\Omega$ .

---

<sup>3</sup> that is, a function which satisfies the conditions of a metric except symmetry

## 6 Sampling List Packings

211 For the purpose of constructing the couplings required by Theorem 3, let  $\Gamma$  be the  
 212 weighted, directed graph on  $\Omega$  where  $(\omega, \omega')$  is an edge if and only if the colorings  $\omega, \omega'$   
 213 differ at exactly one vertex and let all edge weights be 1. From the proof of ergodicity [18]  
 214 it follows that we can take  $D = (\Delta + 1)n$  in Theorem 3 and define couplings as follows.  
 215 Let  $(\omega, \omega') \in E(\Gamma)$  and suppose that the colorings  $\omega$  and  $\omega'$  differ at the vertex  $v^*$ . Sample  
 216  $u \in V(G)$  uniformly at random and update the color of  $u$  in both chains (intuitively, this  
 217 decision helps the chains coalesce). That is, the distribution  $\gamma$  of  $(\sigma, \sigma')$  is defined by the  
 218 Markov transition  $(\omega, \omega') \xrightarrow{P_\gamma} (\sigma, \sigma')$  itself defined by  
 219 1. sampling a vertex  $u \sim \mathcal{U}_{V(G)}$ ,  
 220 2. sampling a pair of available colors  $(a, b)$  from a distribution  $\gamma_c$  such that

$$221 \quad \gamma_c := \arg \max_{\substack{\gamma' \text{ is a coupling of} \\ \mathcal{U}_{L(u) \setminus \omega(N(u))} \text{ and } \mathcal{U}_{L(u) \setminus \omega'(N(u))}}} \Pr_{(a,b) \sim \gamma'} (a = b) \quad (1)$$

222 3. defining  $\sigma$  and  $\sigma'$  by updating the color of  $u$  in each to  $a$  and  $b$  respectively:

$$223 \quad \sigma(v) := \begin{cases} a & v = u \\ \omega(v) & v \neq u \end{cases}, \quad \sigma'(v) := \begin{cases} b & v = u \\ \omega'(v) & v \neq u \end{cases},$$

224 and moving to the state  $(\sigma, \sigma')$ .

225 Observe that  $\gamma_c$  is defined as the coupling on the uniform distributions of available colors,  
 226  $\mathcal{U}_{L(u) \setminus \omega(N(u))}$  and  $\mathcal{U}_{L(u) \setminus \omega'(N(u))}$ , which maximizes the probability the colors are the same.  
 227 The important property of this definition in terms of applying Theorem 3 is that this coupling  
 228 minimizes the expectation of the discrete metric on the sample.

229 If  $u \in N(v^*)$  the sets of available colors for  $u$  can be different making  $\gamma_c$  nontrivial.  
 230 In this case, let  $C = \omega(N(u) \setminus \{v^*\})$  and note that the two sets of available colors are  
 231  $A = (L(u) \setminus C) \setminus \{\omega(v^*)\}$  and  $B = (L(u) \setminus C) \setminus \{\omega'(v^*)\}$ . We wish to couple  $\mathcal{U}_A$  and  $\mathcal{U}_B$  such  
 232 that the probability of choosing the same color is maximized, and the best general coupling  
 233 is not too hard to find.

234 ▶ **Lemma 4** (See e.g., [18, Lemma 4.10]). *Let  $U$  be a finite set and  $A, B \subset U$ . Then there is  
 235 a coupling  $\gamma_c$  of  $\mathcal{U}_A$  and  $\mathcal{U}_B$  such that*

$$236 \quad \Pr_{(a,b) \sim \gamma_c} (a = b) = \frac{|A \cap B|}{\max\{|A|, |B|\}},$$

237 where  $(a, b)$  is a random element of  $A \times B$  chosen according to the coupling  $\gamma_c$ .

238 Let  $m = \max\{|A|, |B|\}$ . We have  $A \cap B = (L(u) \setminus C) \setminus \{\omega(v^*), \omega'(v^*)\}$ . Checking the  
 239 four cases according to whether each of  $\omega(v^*)$  and  $\omega'(v^*)$  are in  $L(u) \setminus C$ , we observe that  
 240  $|A \cap B| \geq m - 1$ . By Lemma 4, we can ensure that the two chains choose the same color  
 241 with probability at least  $1 - 1/m$ . Considering the definitions of  $A$  and  $B$ , we also have  
 242  $m \geq q - \Delta$ . Returning to the analysis of the coupling  $\gamma$  described above, we have

$$243 \quad \mathbb{E}_{(\sigma, \sigma') \sim \gamma} [\delta(\sigma, \sigma')] \leq 1 + \frac{1}{n} \left( -1 + \frac{\Delta}{q - \Delta} \right).$$

244 This comes from the facts that  $\delta(\omega, \omega') = 1$  by assumption, the probability  $1/n$  that we  
 245 successfully reduce the distance by 1 in an update to  $v^*$ , and the probability of at most  
 246  $\Delta/n$  that we choose to update a neighbor of  $v^*$ , and in this case fail to choose the same  
 247 color in the coupling of the color choice in each chain given by Lemma 4 (which occurs

248 with probability at most  $1/(q - \Delta)$  given that we update a neighbor of  $v^*$ ). Set  $\beta$  to the  
 249 right-hand side above and solve for  $\beta < 1$  to obtain  $q > 2\Delta$ .

250 Well-known works that first studied this technique [17, 5, 18] give a similar proof, though  
 251 Jerrum [17] manually constructed a coupling of the Markov chain and did not appeal to  
 252 path coupling. With path coupling, it is slightly easier to study a variant of the Markov  
 253 chain known as the “Metropolis Glauber dynamics” where the transition is defined slightly  
 254 differently, though the same lower bound on  $q$  is required in the argument for this chain.

255 Our argument for list packing follows the same outline as above using the heat-bath  
 256 dynamics for list packings, but it is much harder to construct the coupling. In particular,  
 257 we need an analogue of Lemma 4 for the much more intricate combinatorial setting of list  
 258 packings. We describe this in the next subsection.

### 259 3.1 Coupling perfect matchings

260 In the list packing setting, each spin is a permutation of a list. The central problem one  
 261 faces when adapting the above sketch to list packing is the issue of coupling the choice of  
 262 available permutations in the case that we are updating the spin of  $u$  in two copies of the  
 263 Glauber dynamics which differ at a neighbor  $v \in N(u)$ . It turns out (see e.g. [6] and earlier  
 264 works such as [24]) that there is an auxiliary bipartite graph in which available permutations  
 265 for  $u$  correspond to perfect matchings.

266 Given a graph  $G$  with  $q$ -list assignment  $L$ , let  $\Omega$  be the set of  $L$ -packings of  $G$ , and  
 267 let  $\omega \in \Omega$ . Let  $f_1, \dots, f_q$  be the  $L$ -colorings represented by  $\omega$ . To be explicit, suppose  
 268 that for each vertex  $v$  of  $G$  we write  $L(v)$  in ascending order as  $c_{1,v}, \dots, c_{q,v}$ . Then we  
 269 identify  $V(G)$  with  $[n]$  and consider  $\Omega$  as a subset of  $S_q^n$  such that with  $v \in [n]$  we define  
 270  $f_1, \dots, f_q : V(G) \rightarrow \mathbb{N}$  by  $f_i(v) = c_{\omega_v(i),v}$ , where we interpret  $\omega_v$  as a permutation of  $L(v)$  so  
 271 that  $\omega_v(i)$  is the color assigned to  $v$  in the  $i$ th coloring in the packing. This notation has  
 272 the advantage that many of the dependencies are explicit, but to avoid a proliferation of  
 273 subscripts we omit them where it is possible to fix some context in advance.

274 For a vertex  $u \in V(G)$ , we construct the *availability graph*  $H_u = H_u(G, L, \omega)$  as follows.  
 275 We consider the vertex set of  $H_u$  as  $[q] \sqcup [q]$ , the disjoint union of two copies of the set  
 276  $[q]$ . The left copy consists of “packing indices” and the right copy consists of “list indices”.  
 277 For clarity, the edges of  $H_u$  are considered oriented from left to right so that  $(i, j)$  joins  
 278 packing index  $i$  to list index  $j$ . Suppose that  $L(u) = \{c_1, \dots, c_q\}$  is supplied in some fixed  
 279 order. Then in  $H_u$  we include each edge  $(i, j) \in [q]^2$  such that  $c_j$  is an available color for  
 280  $u$  in the coloring  $f_i$ . That is,  $(i, j)$  is an edge of  $H_u$  if and only if  $c_j \notin f_i(N(u))$ . One can  
 281 check the definitions and observe that perfect matchings in  $H_u$  correspond to the available  
 282 permutations  $\rho \in S_q$  for  $u$  in the sense that setting  $\omega_u$  to an available  $\rho$  yields a valid list  
 283 packing. The heat-bath Glauber dynamics for  $L$ -packings thus works in much the same way  
 284 as for  $L$ -colorings. The transition from a state  $\omega$  is defined by choosing a vertex  $u \in V(G)$   
 285 uniformly at random, and then a perfect matching in  $H_u(G, L, \omega)$  uniformly at random. It is  
 286 straightforward to check that the chain is reversible and has uniform stationary distribution;  
 287 we prove that it is ergodic (for large enough  $q$ ) in Lemma 7.

288 An important consideration when  $G$  has maximum degree  $\Delta$  is that  $H_u$  has minimum  
 289 degree  $q - \Delta$ . This follows from the properties of a list packing: at packing index  $i$  any color  
 290 that is not available must be used by  $f_i$  on a neighbor of  $u$  and there are at most  $\Delta$  such  
 291 neighbors. Similarly, for a color  $c_j$  with color index  $j$ , any packing index  $i$  in which  $c_j$  is  
 292 not available is explained by  $c_j$  being used by  $f_i$  on  $N(u)$ . Since the colorings in a packing  
 293 are pairwise-disjoint, each such index must be due to distinct neighbors of  $u$ , of which there  
 294 are at most  $\Delta$ . It is useful to observe that for any  $\omega \in S_q^n$ , even one that may not be a

proper list packing in the sense that the  $q$  list colorings it represents may not be proper, the definition of availability graph still makes sense and the observation on the minimum degree still applies. That is, the key property of  $q$ -list packings on graphs of maximum degree  $\Delta$  that yields the minimum degree bound  $q - \Delta$  is that the list colorings represented are pairwise-disjoint. This fact is convenient in the proof of Lemma 5.

To construct the coupling we consider the weighted, directed graph  $\Gamma$  on  $\Omega$  where  $(\omega, \omega')$  is an edge if and only if the list packings  $\omega$  and  $\omega'$  differ at exactly one vertex. For the edge  $(\omega, \omega') \in E(\Gamma)$ , let  $v$  be the unique vertex at which the two packings differ, and assign weight  $d_C(\omega_v, \omega'_v)$  to the edge. As with list coloring, the key computation is how much the expected distance changes for one step of the coupling in the case that we start at  $(\omega, \omega')$  and update a neighbor  $u$  of the unique vertex  $v$  at which  $\omega$  and  $\omega'$  differ. We prove the following result which plays the role of Lemma 4 in our proof.

► **Lemma 5.** *There is a universal constant  $C$  such that if  $q > C\Delta^2$  the following holds.*

Let  $(\omega, \omega') \in E(\Gamma)$  be an edge of weight  $\psi$  in  $\Gamma$  and let  $v$  be the unique vertex at which  $\omega$  and  $\omega'$  differ. Let  $u \in N(v)$  and consider the availability graphs  $H$  and  $H'$  for  $u$  in the packings  $\omega$  and  $\omega'$  respectively.

Then there exists a coupling  $\gamma$  of the uniform distributions on perfect matchings on  $H$  and  $H'$  which satisfies

$$\mathbb{E}_{(\rho, \rho') \sim \gamma} [d_C(\rho, \rho')] \leq \frac{\psi}{2\Delta}.$$

Note that in the conclusion any bound strictly better than  $\psi/\Delta$  suffices for an application of Theorem 3, and one might expect to obtain results in the case of exactly  $\psi/\Delta$  as well [17, 5, 12]. We do not attempt to optimize the constant  $C$  in our argument and hence  $\psi/(2\Delta)$  is sufficient. Lemma 5 is a simple corollary of Lemma 2, and with these results in hand the rest of the argument for Theorem 1 is standard.

### 3.2 Organization

In Section 4 we define a Markov chain on list packings, prove ergodicity and establish rapid mixing given our results on coupling perfect matchings. In Section 5 we prove Lemmas 2 and 5. We conclude with some remarks in Section 6.

## 4 Glauber dynamics for list packing

In this section we fix an  $n$ -vertex graph  $G$  of maximum degree  $\Delta$ , a  $q$ -list assignment  $L$  of  $G$ , and let  $\Omega$  be the set of  $L$ -packings of  $G$ .

We consider heat-bath Glauber dynamics  $\mathcal{M} = \mathcal{M}(G, L)$  for list packing. Given a state  $\omega \in \Omega$  and a vertex  $u \in V(G)$ , we say that a permutation  $\rho$  in  $S_q$  is *available* for  $u$  in  $\omega$  if setting  $\omega_u$  to  $\rho$  yields a valid list packing. Transitions of  $\mathcal{M}$  are defined as follows. From state  $\omega \in \Omega$ , choose vertex  $u \in V(G)$  uniformly at random, choose an available permutation  $\rho \in S_q$  uniformly at random, and let the new state be  $\sigma$  given by  $\sigma_u = \rho$  and  $\sigma_v = \omega_v$  for  $v \neq u$ . It is straightforward to check that this is a reversible Markov chain on  $\Omega$  with uniform stationary distribution. The question of ergodicity is less straightforward, though the standard argument for list coloring adapts easily. We require a simple corollary of Hall's classic result on perfect matchings in bipartite graphs.

► **Lemma 6** (Corollary of Hall's theorem [14]). *Let  $H$  be a bipartite graph with  $q$  vertices on each side and minimum degree  $d \geq q/2$ . Then  $H$  contains a perfect matching.*

337 **Sketch proof.** Let the bipartition be  $A \sqcup B$  and consider a subset  $X \subset A$ . If  $1 \leq |X| \leq d$   
338 then  $|N(X)| \geq d \geq |X|$ . If instead  $d+1 \leq |X| \leq q$  then  $N(X)$  must be all of  $B$  since for each  
339 neighborhood of a vertex in  $B$  must intersect  $X$ . The result follows from Hall's theorem.  $\blacktriangleleft$

340 **► Lemma 7.** *For  $q \geq 2\Delta + 2$  the Markov chain  $\mathcal{M}$  is ergodic.*

341 **Proof.** Because there are self-transitions at every state, it suffices to show that the (finite)  
342 state space is connected.

343 Every state  $\omega \in \Omega$  can be connected to an arbitrary  $\omega' \in \Omega$  as follows. Label the vertices  
344 of  $G$  with the integers  $1, \dots, n$  arbitrarily, and for  $i = 1, \dots, n$ , sequentially turn  $\omega_i$  into  $\omega'_i$   
345 as follows. If setting  $\omega_i$  equal to  $\omega'_i$  is not possible (i.e.  $\omega'_i$  is not available for  $i$  in  $\omega$ ) then  
346 it's because some neighbor  $j$  of  $i$  with  $j > i$  uses a color at a particular packing index which  
347 conflicts with  $\omega_i$ . To solution is to repack each such neighbor  $j$  in  $\omega$ , i.e. change  $\omega_j$  to a new  
348 permutation of  $L(j)$ , in turn such that the repacking is proper *and* avoids any such conflicts.  
349 These repacking steps are steps of the chain.

350 To perform the repacking, we find a perfect matching in a suitable modification of the  
351 availability graph  $H'_j = H_j(G, L, \omega')$ . Recall that perfect matchings in  $H'_j$  correspond to the  
352 available permutations  $\rho$  for  $u$  in  $\omega'$ . We have an additional condition on the permutation  $\rho$   
353 that we seek, namely that  $\rho$  does not correspond to a color choice for  $j$  that is incompatible  
354 with turning  $\omega_i$  into  $\omega'_i$ . We can encode this in the availability graph by deleting an edge  
355  $(a, b)$  such that the  $b$ -th color in  $L(j)$  is used at packing index  $a$  in color choices represented  
356 by  $\omega'_i$ . After this modification, the availability graph has minimum degree  $q - \Delta - 1$ , so the  
357 condition  $q \geq 2\Delta + 2$  allows for an application of Lemma 6. This shows that the necessary  
358 repackings exist, and thus that  $\Omega$  is connected by transitions of the chain that occur with  
359 positive probability.  $\blacktriangleleft$

360 **► Theorem 8.** *The mixing time  $t_{\text{mix}}(\epsilon)$  of  $\mathcal{M}$  is at most  $O(n \log(n/\epsilon))$ .*

361 **Proof.** We apply Theorem 3 with the following coupling defined on edges of the weighted  
362 graph  $\Gamma$  on  $\Omega$  such that  $(\omega, \omega')$  is an edge of weight  $d_C(\omega_v, \omega'_v)$  whenever  $\omega$  and  $\omega'$  differ at a  
363 single vertex  $v$ . Lemma 7 shows that  $\Gamma$  is connected, and we note that the diameter  $D$  is at  
364 most  $(\Delta + 1)(q - 1)n = O(n)$ . This is because the sequence of steps constructed in Lemma 7  
365 consists of edges of  $\Gamma$ , the total number of steps is at most  $(\Delta + 1)n$  because we repack each  
366 vertex  $v$  at most once for each neighbor of  $v$  to avoid conflict and at most once more to agree  
367 with  $\omega'$ . As the Cayley distance on  $S_q$  takes values in  $\{0, 1, \dots, q - 1\}$ , the diameter bound  
368 follows.

369 Let  $(\omega, \omega')$  be an edge of  $\Gamma$  of weight  $\psi$ . We define the coupling as follows. We choose  
370  $u \in V(G)$  uniformly at random and update  $u$  in both packings. If  $u \notin N(v)$  then the sets of  
371 available permutations of  $L(u)$  in both packings are identical and we choose one uniformly at  
372 random to use in both chains. If  $u = v$  this results in a distance of zero, else the distance is  
373 unchanged. If  $u \in N(v)$  then we use the coupling of Lemma 5 to choose the permutations of  
374  $L(u)$  in the packings. Let  $(\sigma, \sigma')$  be the random state after one step of the coupling started  
375 from  $(\omega, \omega')$ . Then

$$\mathbb{E}[\delta(\sigma, \sigma')] \leq \psi + \frac{1}{n} \left( -\psi + \Delta \frac{\psi}{2\Delta} \right) = \psi \left( 1 - \frac{1}{2n} \right).$$

377 Theorem 3 now gives mixing time  $t_{\text{mix}}(\epsilon) = O(n \log(n/\epsilon))$ .  $\blacktriangleleft$

378 The proof of Theorem 1 using Theorem 8 is now entirely standard. We sketch the  
379 argument here. Counting list packings is a *self-reducible* problem in the sense of [19] and

380 so having an almost-uniform sampler, which follows from running the Markov chain for  
 381 polynomially many steps, is equivalent to having an FPRAS. Concretely, construct a sequence  
 382  $G = G_m \supset \dots \supset G_1 \supset G_0 = (V(G), \emptyset)$  of graphs by starting from  $G$  and removing an  
 383 arbitrary edge to form the next member of the sequence. For a fixed  $q$ -list assignment  $L$  of  
 384  $G$  we can let  $\Omega_i$  be the set of  $L$ -packings of  $G_i$  and write

$$385 \quad |\Omega_m| = |\Omega_0| \prod_{i=1}^m \frac{|\Omega_i|}{|\Omega_{i-1}|}.$$

386 We have  $|\Omega_0| = (q!)^n$  and can estimate each ratio in the product as it's the probability  
 387 that when we choose a uniformly random  $\omega \in \Omega_{i-1}$  we have  $\omega \in \Omega_i$ . We also note that  
 388  $\frac{1}{1+q!} \leq \frac{|\Omega_i|}{|\Omega_{i-1}|} \leq 1$  because  $\Omega_i \subset \Omega_{i-1}$  and we can construct the following bipartite graph  $B$   
 389 on  $(\Omega_{i-1} \setminus \Omega_i) \sqcup \Omega_i$ . Let  $uv$  be the edge removed from  $G_i$  to form  $G_{i-1}$ , and include the edge  
 390  $(\omega, \omega')$  in  $B$  if  $\omega'$  can be obtained from  $\Omega$  by permuting the list of  $u$ . Then any  $\omega \in \Omega_{i-1} \setminus \Omega_i$   
 391 is connected to at least one element in  $\Omega_i$  by Lemma 6, and there are at most  $q!$  ways to  
 392 permute  $L(u)$  so from the other side the degrees are at most  $q!$ . We do not attempt to  
 393 optimize this argument; more intricate arguments yield stronger lower bounds, but we are  
 394 merely interested in a bound independent of  $n$ . This observation lets us repeat the analysis  
 395 of Jerrum [17] for the case of colorings in the setting of list packings. Briefly, we use multiple  
 396 copies of the almost uniform sampler offered by the Markov chain to estimate each ratio. To  
 397 make this work, one has to bound the variance of the estimator for each ratio and manage  
 398 the overall error with Chebyshev's inequality, but this is standard. See e.g., [17].

## 399 5 Coupling matchings

400 In this section we prove Lemmas 2 and 5. We first collect some results on auxiliary bipartite  
 401 graphs.

402 ▶ **Lemma 9.** *Let  $G = (V, E)$  be a bipartite graph with bipartition  $V = L \cup R$ . Let  $\mu_L$  and  
 403  $\mu_R$  be probability distributions over  $L$  and  $R$ . Let*

$$404 \quad p = \min_{A \subseteq L} [1 - \mu_L(A) + \mu_R(N(A))].$$

405 *There exists a coupling  $\gamma$  of  $\mu_L$  and  $\mu_R$  such that when  $(v, w) \sim \gamma$ , with probability  $p$ ,  $vw$  is  
 406 an edge of  $G$ .*

407 **Proof.** This follows from the max-flow min-cut theorem after introducing a source vertex  $s$ ,  
 408 a sink vertex  $t$ , and introducing the following edges:

- 409 1. for  $v \in L$ , the edge  $sv$  with capacity  $\mu_L(v)$ ,
- 410 2. for  $v \in R$ , the edge  $vt$  with capacity  $\mu_R(v)$ ,
- 411 3. for each edge  $e \in G$ , an edge with capacity  $\infty$ .

412 A max flow corresponds to a coupling  $\gamma$  of the type we require with maximum probability  
 413 that  $vw$  is an edge. The value of the max flow is the same as the value of the min cut. If  $S, T$   
 414 is a finite cut with  $s \in S, t \in T$ , letting  $A = S \cap L, B = S \cap R$ , we must have  $N(A) \subseteq B$ ,  
 415 and the value is  $\mu_L(A^c) + \mu_R(B) \geq \mu_L(A^c) + \mu_R(N(A))$ . Equality is achieved for  $B = N(A)$ .  
 416 Taking the minimum over  $A$  then gives the lemma. ◀

417 ▶ **Corollary 10.** *Let  $G = (V, E)$  be a bipartite graph with bipartition  $V = L \cup R$ . Suppose that  
 418 each vertex in  $L$  has degree contained in  $[m_L, M_L]$  and each vertex in  $R$  has degree contained  
 419 in  $[m_R, M_R]$ . Then there exists a coupling  $\gamma$  of the uniform distributions  $\mathcal{U}_L$  and  $\mathcal{U}_R$  on  $L$   
 420 and  $R$  respectively such that when  $(v, w) \sim \gamma$ , with probability at least  $\frac{m_L m_R}{M_L M_R}$ ,  $vw$  is an edge  
 421 of  $G$ .*

422 **Proof.** For each subset  $A \subseteq L$ , we can bound the number of edges between  $A$  and  $N(A)$ :

423 
$$m_L|A| \leq |E(A, N(A))| \leq M_R|N(A)|.$$

424 We also have

425 
$$m_R|R| \leq |E| \leq M_L|L|.$$

426 Then for any set  $A \subseteq L$ ,

427 
$$\frac{|N(A)|/|R|}{|A|/|L|} = \frac{|N(A)|}{|A|} \cdot \frac{|L|}{|R|} \geq \frac{m_L m_R}{M_L M_R}.$$

428 Then for any such  $A$ ,

429 
$$1 - \mathcal{U}_L(A) + \mathcal{U}_R(N(A)) \geq 1 - \mathcal{U}_L(A) + \frac{m_L m_R}{M_L M_R} \cdot \mathcal{U}_L(A) \geq \frac{m_L m_R}{M_L M_R}.$$

430 The conclusion follows from Lemma 9. ◀

431 We are now ready to prove Lemma 2, which we restate for convenience.

432 **► Lemma 2.** *There are constants  $C_1, C_2$  such that the following hold. Suppose that  $q \geq C_1\Delta$ ,  
433 and let  $H = (V, E)$  be a bipartite graph in which  $|V| = 2q$  and the bipartition is balanced.  
434 Suppose that  $H$  has minimum degree at least  $q - \Delta$ . Let  $e \in E$  be an edge of  $H$ , let  $\mathcal{L}$  be the  
435 set of perfect matchings of  $H$  containing  $e$ , and let  $\mathcal{R}$  the set of perfect matchings of  $H$  not  
436 containing  $e$ . Then there is a coupling  $\gamma$  of  $\mathcal{U}_\mathcal{R}$  and  $\mathcal{U}_{\mathcal{L} \cup \mathcal{R}}$  such that*

437 
$$\mathbb{E}_{(\rho, \rho') \sim \gamma} [d_C(\rho, \rho')] \leq \frac{C_2 \Delta}{q}.$$

438 **Proof.** Label the bipartitions by  $[q]$ . Without loss of generality the edge  $e$  is  $(1, 1)$ . We  
439 define an auxiliary bipartite graph on  $\mathcal{L} \cup \mathcal{R}$  as follows. For  $\rho \in \mathcal{L}$  and  $\rho' \in \mathcal{R}$ , connect  $\rho$  and  
440  $\rho'$  by an edge if  $\rho(1 \ i \ j) = \rho'$  for some  $i, j \in [q] \setminus \{1\}$  with  $i \neq j$ , i.e., they differ by a 3-cycle  
441 containing 1. Note that here we use standard group-theoretic notation for permutations in  
442  $S_q$  so that e.g.  $\rho(1 \ i \ j)$  is the product of the permutation  $\rho$  and the permutation  $(1 \ i \ j)$  (in  
443 standard cycle notation).

444 We bound the degrees of arbitrary matchings  $\rho \in \mathcal{L}$  and  $\rho' \in \mathcal{R}$ . Given  $\rho$ , we count the  
445 number of  $i, j$  for which  $\rho(1 \ i \ j) \in \mathcal{R}$ . Let  $N(i) = \{j : (i, j) \in E\}$  and  $N'(j) = \{i : (i, j) \in E\}$ .  
446 Given  $\rho \in \mathcal{L}$ , we know that  $\rho(1) = 1$ . We choose  $j \in N'(1) \setminus \{1\}$ ; there are at least  
447  $q - \Delta - 1$  choices. Any possible value of  $i$  must be in the set  $S_- \setminus \{j\}$ , where  $S_- :=$   
448  $\{\rho^{-1}(k) : k \in N(1) \setminus \{1\}\}$ ;  $S_- \setminus \{j\}$  has size at least  $q - \Delta - 2$ . A valid pair  $(i, j)$  is exactly  
449 one where  $j \in N'(1) \setminus \{1\}$ ,  $i \in S_- \setminus \{j\}$ , and  $(i, \rho(j)) \in E$ . Since at most  $\Delta + 1$  of edges  
450  $(i, \rho(j))$ ,  $j \in N'(1) \setminus \{1\}$  can land outside  $E$ , at least  $q - 2\Delta - 3$  of these edges are valid,  
451 i.e., there are at least  $(q - \Delta - 1)(q - 2\Delta - 3)$  valid choices of  $(i, j)$ . There are at most  
452  $(q - 1)(q - 2)$  choices.

453 Next, given  $\rho' \in \mathcal{R}$ , we count the number of  $i, j \in [q] \setminus \{1\}$ ,  $i \neq j$  for which  $\rho' = \rho(1 \ i \ j)$   
454 where  $\rho \in \mathcal{L}$ . First, note we must have  $\rho'(j) = 1$ . The requirement on  $i$  is that  $i \in N'(\rho'(1))$   
455 and  $\rho'(i) \in N(j)$ . There are at least  $q - \Delta - 2$  indices besides 1 and  $j$  satisfying each  
456 condition, so at least  $q - 2\Delta - 4$  possible indices. There are at most  $q - 2$  choices. By  
457 Corollary 10, there is a coupling  $\gamma$  of  $\mathcal{U}_\mathcal{L}$  and  $\mathcal{U}_\mathcal{R}$  such that with probability at least

458 
$$p := \frac{(q - \Delta - 1)(q - 2\Delta - 3)}{(q - 1)(q - 2)} \cdot \frac{q - 2\Delta - 4}{q - 2},$$

459  $(\rho, \rho') \in E$  are connected by an edge and hence have Cayley distance at most two. For  
 460 appropriate choices of  $C_1, K > 0$ ,  $1 - p \leq K\Delta/q$  for  $q \geq C_1\Delta$ . For this coupling  $\gamma$ , we hence  
 461 have

$$462 \quad \mathbb{E}_{(\rho, \rho') \sim \gamma}[d_C(\rho, \rho')] \leq \frac{K\Delta}{q} \cdot q + \left(1 - \frac{K\Delta}{q}\right) \cdot 2 \leq K'\Delta$$

463 for an appropriate constant  $K' > 0$ .

464 Next, note that we can define a coupling between  $\mathcal{U}_{\mathcal{L} \cup \mathcal{R}}$  and  $\mathcal{U}_{\mathcal{R}}$  as a mixture of the  
 465 identity coupling between  $\mathcal{U}_{\mathcal{R}}$  and  $\mathcal{U}_{\mathcal{R}}$  (with probability  $\frac{|\mathcal{R}|}{|\mathcal{L}|+|\mathcal{R}|}$ ) and the above coupling  
 466 (with probability  $\frac{|\mathcal{L}|}{|\mathcal{L}|+|\mathcal{R}|}$ ). The expected distance for this coupling is then

$$467 \quad \frac{|\mathcal{L}|}{|\mathcal{L}|+|\mathcal{R}|} \cdot K'\Delta \leq \frac{q-2}{(q-2)+(q-\Delta-1)(q-2\Delta-3)} \cdot K'\Delta \leq \frac{C_2\Delta}{q}$$

468 for appropriate  $C_2 > 0$ , as needed.  $\blacktriangleleft$

469  $\blacktriangleright$  **Lemma 5.** *There is a universal constant  $C$  such that if  $q > C\Delta^2$  the following holds.*

470 Let  $(\omega, \omega') \in E(\Gamma)$  be an edge of weight  $\psi$  in  $\Gamma$  and let  $v$  be the unique vertex at which  
 471  $\omega$  and  $\omega'$  differ. Let  $u \in N(v)$  and consider the availability graphs  $H$  and  $H'$  for  $u$  in the  
 472 packings  $\omega$  and  $\omega'$  respectively.

473 Then there exists a coupling  $\gamma$  of the uniform distributions on perfect matchings on  $H$   
 474 and  $H'$  which satisfies

$$475 \quad \mathbb{E}_{(\rho, \rho') \sim \gamma}[d_C(\rho, \rho')] \leq \frac{\psi}{2\Delta}.$$

476 **Proof.** Formally, we proceed by induction on  $\psi$ , though we need a more general statement  
 477 for the induction hypothesis. It is convenient to relax the requirement that  $\omega$  and  $\omega'$  are valid  
 478 list packings. For the application, it is important that the pair  $(\omega, \omega')$  are valid list packings  
 479 which agree on every vertex except  $u$ , but we construct the coupling of perfect matchings  
 480 in  $H$  and  $H'$  using a sequence of *near-valid* list packings  $\omega'' \in S_q^n$  in the sense that  $\omega''$   
 481 agrees with  $\omega$  and  $\omega'$  on all vertices except  $u$ , but we allow the (pairwise-disjoint) colorings  
 482 it represents to have monochromatic edges incident to  $v$ . We can still construct availability  
 483 graphs for  $u$  in these near-valid packings and consider their sets of perfect matchings for the  
 484 purposes of constructing an eventual coupling of the perfect matchings in  $H$  and  $H'$ . With  
 485 these definitions in place, the generalization that we prove by induction is the statement  
 486 obtained by replacing the assumption that  $\omega$  and  $\omega'$  are valid packings with the assumption  
 487 that they are near-valid.

488 The base case is  $\psi = 0$  in which the trivial coupling suffices as  $H$  and  $H'$ , and hence their  
 489 sets of perfect matchings, are identical.

490 The induction step follows from Lemma 2. The fact that  $d_C(\omega_v, \omega'_v) = \psi$  means that  
 491 there is a sequence of transpositions  $\tau_1, \dots, \tau_\psi$  such that  $\omega_v = \tau_\psi \cdots \tau_1 \omega'_v$ . Let  $H''$  be the  
 492 availability graph of the vertex  $u$  in the near-valid packing  $\omega''$  such that  $\omega''_v = \tau_\psi \omega_v$  and  
 493  $\omega''$  agrees with  $\omega$  on all other vertices. By induction, there is a coupling  $\gamma'$  of the uniform  
 494 distributions on perfect matchings in  $H''$  and  $H'$  such that

$$495 \quad \mathbb{E}_{(\rho'', \rho') \sim \gamma'}[d_C(\rho'', \rho')] \leq \frac{\psi-1}{2\Delta}.$$

496 Without loss of generality, suppose that  $\omega_v$  is the identity. Let  $\tau_\psi = (i\ j)$ , and note that  
 497 this gives

$$498 \quad E(H) \setminus E(H'') \subset \{(i, j), (j, i)\} \quad \text{and} \quad E(H'') \setminus E(H) \subset \{(i, i), (j, j)\}.$$

499 This is because any difference between the edges of  $H$  and  $H'$  is explained by applying  $\tau$  to  
500  $\omega_v$ . When  $\tau$  is a transposition, we swap the packing index of the coloring at which two colors  
501 in the list of  $v$  are used, which can swap two edges of the complement of the availability  
502 graph. It can be the case that the swapped color indices refer to different colors in  $L(u)$   
503 which is why we do not have equality.

504 We start with the case that

$$505 \quad E(H) \setminus E(H'') = \{(i, j), (j, i)\} \quad \text{and} \quad E(H'') \setminus E(H) = \{(i, i), (j, j)\},$$

506 the other cases are similar. Let  $X$  be the set of perfect matchings in  $H$  and let  $X''$  be the  
507 set of perfect matchings in  $H''$ . We seek a coupling of  $\mathcal{U}_X$  and  $\mathcal{U}_{X''}$  which we will combine  
508 with the coupling  $\gamma'$  to obtain the desired result.

509 We apply Lemma 2 to  $H$  and  $H - (i, j)$ , yielding a coupling  $\gamma_1$  of  $\mathcal{U}_X$  and  $\mathcal{U}_Y$ , where  
510  $Y$  is the set of perfect matchings in  $H - (i, j)$ . We can apply Lemma 2 again to  $H - (i, j)$   
511 and  $H - (i, j) - (j, i)$ , yielding a coupling  $\gamma_2$  of  $\mathcal{U}_Y$  and  $\mathcal{U}_Z$ , where  $Z$  is the set of perfect  
512 matchings in  $H - (i, j) - (j, i)$ . There is a slight technicality here as the minimum degree of  
513  $H - (i, j)$  is  $q - \Delta - 1$ , but this can be handled by setting  $\Delta$  to  $\Delta + 1$  and adjusting the  
514 constants slightly. Analogously, starting from  $H''$ , we construct a coupling  $\gamma''_1$  of  $\mathcal{U}_{X''}$  and  
515  $\mathcal{U}_{Y''}$  and a coupling  $\gamma''_2$  of  $\mathcal{U}_{Y''}$  and  $\mathcal{U}_Z$ , where  $Y''$  is the set of perfect matchings in  $H'' - (i, i)$ .  
516 A careful composition of these couplings gives the result. The composition of these couplings  
517 yields a distribution on  $X \times Y \times Z \times Y'' \times X''$  which is uniform on each individual set in the  
518 Cartesian product, and such that the expected distance between permutations from adjacent  
519 sets in the Cartesian product is at most  $C_2\Delta/q$ . Taking the first and last coordinate yields a  
520 coupling  $\gamma''$  of  $\mathcal{U}_X$  and  $\mathcal{U}_{X''}$  such that

$$521 \quad \mathbb{E}_{(\pi, \pi'') \sim \gamma''} [d_C(\pi, \pi'')] < \frac{4C_2\Delta}{q}.$$

522 This can be combined with  $\gamma'$  obtained by induction in the same way. Simple composition  
523 yields a distribution on  $X \times X'' \times X'$  which is uniform on each individual set in the Cartesian  
524 product. Taking the first and last coordinates we have a coupling  $\gamma$  of  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  such that

$$525 \quad \mathbb{E}_{(\pi, \pi') \sim \gamma} [d_C(\pi, \pi')] < \frac{\psi - 1}{2\Delta} + \frac{4C_2\Delta}{q}.$$

526 Since we assume  $q \geq C\Delta^2$ , for a large enough  $C$  this is at most  $\psi/(2\Delta)$  as required. The  
527 other cases proceed similarly, but require fewer applications of Lemma 2 and yield a stronger  
528 upper bound.  $\blacktriangleleft$

## 529 6 Concluding remarks

530 Many natural questions remain unanswered. We have chosen to extend some of the most  
531 fundamental techniques for counting list colorings to list packings, but there are many more  
532 recent improvements to consider. Dyer and Greenhill [11] study a Markov chain on (list)  
533 colorings whose transitions are defined by properly recoloring both endpoints of a uniform  
534 random edge and show that its mixing time is less than that of Glauber dynamics studied  
535 in [17, 25]. The flip dynamics employed by Vigoda [26] for counting colorings is an important  
536 technique that gets significantly below the number of colors required by Jerrum's approach.  
537 Extending Vigoda's approach to list *coloring* was first done by Chen et al. [10], roughly 20  
538 years after Vigoda's breakthrough. Though they also surpassed a significant barrier at  $11\Delta/6$   
539 colors related to 1-step contractions in Hamming distance of two colorings that differ at a

540 vertex. The history of this problem suggests that further generalizations, e.g. to list packing  
 541 may not be straightforward. While one can consider analogous dynamics for list packings and  
 542 hope to reduce the bound on  $q$  in Theorem 1, we do not have results showing the existence  
 543 of list packings in graphs of maximum degree  $\Delta$  for fewer than  $2\Delta - 2$  colors. In another  
 544 direction, the use of more advanced Markov chain techniques to give perfect sampling of list  
 545 packings could be interesting.

546 We finish with a natural conjecture on approximately counting list packings.

547 ▶ **Conjecture 11.** *For each  $\Delta$  and  $q \geq 2\Delta$  there is an FPRAS for counting the number of  
 548  $q$ -list packings of graphs of maximum degree  $\Delta$ .*

549 At the time of writing, we know of no reason that the lower bound on  $q$  cannot be reduced  
 550 to, say,  $\Delta + 1$ . The value  $2\Delta$  represents a significant barrier in the sense that the existence of  
 551 a list packing when  $q \geq 2\Delta$  is an elementary consequence of Hall's theorem (though arguably  
 552 not entirely trivial).

---

553 ————— **References** —————

- 554 1 Noga Alon, Stijn Cambie, and Ross J. Kang. Asymmetric List Sizes in Bipartite Graphs. *Annals of Combinatorics*, 25(4):913–933, 2021. doi:10.1007/s00026-021-00552-5.
- 555 2 Ferenc Bencs, Ewan Davies, Viresh Patel, and Guus Regts. On zero-free regions for the anti-  
 556 ferromagnetic Potts model on bounded-degree graphs. *Annales de l'Institut Henri Poincaré D*,  
 557 8(3):459–489, 2021. doi:10.4171/AIHPD/108.
- 558 3 Siddharth Bhandari and Sayantan Chakraborty. Improved bounds for perfect sampling of  
 559  $k$ -colorings in graphs. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on  
 560 Theory of Computing*, STOC 2020, pages 631–642, New York, NY, USA, 2020. Association for  
 561 Computing Machinery. doi:10.1145/3357713.3384244.
- 562 4 Peter Bradshaw. *Graph Colorings with Local Restrictions*. PhD thesis, Simon Fraser University,  
 563 2022. URL: <https://summit.sfu.ca/item/35851>.
- 564 5 R. Bubley and M. Dyer. Path coupling: A technique for proving rapid mixing in Markov  
 565 chains. In *Proceedings 38th Annual Symposium on Foundations of Computer Science*, pages  
 566 223–231, Miami Beach, FL, USA, 1997. IEEE Comput. Soc. doi:10.1109/SFCS.1997.646111.
- 567 6 Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, and Ross J. Kang. Packing  
 568 list-colorings. *Random Structures & Algorithms*, 64(1):62–93, 2024. doi:10.1002/rsa.21181.
- 569 7 Stijn Cambie, Wouter Cames van Batenburg, and Xuding Zhu. Disjoint list-colorings for  
 570 planar graphs. *arXiv preprint*, 2023. arXiv:2312.17233.
- 571 8 Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, and Ross J. Kang. List packing  
 572 number of bounded degree graphs. *Combinatorics, Probability and Computing*, 33(6):807–828,  
 573 2024. doi:10.1017/S0963548324000191.
- 574 9 Charlie Carlson and Eric Vigoda. Flip Dynamics for Sampling Colorings: Improving  $(11/6 - \epsilon)$   
 575 Using a Simple Metric. *To appear in SODA 2025*, 2025. doi:10.48550/arXiv.2407.04870.
- 576 10 Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved  
 577 Bounds for Randomly Sampling Colorings via Linear Programming. In *Proceedings of the  
 578 Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, Proceedings, pages 2216–  
 579 2234. Society for Industrial and Applied Mathematics, 2019. doi:10.1137/1.9781611975482.  
 580 134.
- 581 11 Martin Dyer and Catherine Greenhill. A more rapidly mixing Markov chain for graph  
 582 colorings. *Random Structures & Algorithms*, 13(3-4):285–317, 1998. doi:10.1002/(SICI)  
 583 1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO;2-R.
- 584 12 Martin Dyer and Catherine Greenhill. Random Walks on Combinatorial Objects. In J. D.  
 585 Lamb and D. A. Preece, editors, *Surveys in Combinatorics, 1999*, pages 101–136. Cambridge  
 586 University Press, 1 edition, 1999. doi:10.1017/CBO9780511721335.005.

- 588 13 Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In *Proceedings*  
589 *of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt*  
590 *State Univ., Arcata, Calif., 1979)*, Congress. Numer., XXVI, pages 125–157. Utilitas Math.,  
591 Winnipeg, Man., 1980.
- 592 14 P. Hall. On Representatives of Subsets. *Journal of the London Mathematical Society*, s1-  
593 10(1):26–30, 1935. doi:10.1112/jlms/s1-10.37.26.
- 594 15 Mark Huber. Exact sampling and approximate counting techniques. In *Proceedings of the*  
595 *Thirtieth Annual ACM Symposium on Theory of Computing*, STOC ’98, pages 31–40, New  
596 York, NY, USA, 1998. Association for Computing Machinery. doi:10.1145/276698.276709.
- 597 16 Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Perfectly Sampling  $k \geq (8/3 + o(1))\Delta$ -  
598 colorings in Graphs. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory*  
599 *of Computing*, STOC 2021, pages 1589–1600, New York, NY, USA, 2021. Association for  
600 Computing Machinery. doi:10.1145/3406325.3451012.
- 601 17 Mark Jerrum. A very simple algorithm for estimating the number of  $k$ -colorings of a low-degree  
602 graph. *Random Structures & Algorithms*, 7(2):157–165, 1995. doi:10.1002/rsa.3240070205.
- 603 18 Mark Jerrum. *Counting, Sampling and Integrating: Algorithms and Complexity*. Lectures in  
604 Mathematics ETH Zürich. Birkhauser Verlag, Basel Boston, MA, 2003.
- 605 19 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial  
606 structures from a uniform distribution. *Theoretical Computer Science*, 43:169–188, 1986.  
607 doi:10.1016/0304-3975(86)90174-X.
- 608 20 Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, and Michael J. Pelsmajer. Flexible list  
609 colorings: Maximizing the number of requests satisfied. *Journal of Graph Theory*, 106(4):887–  
610 906, 2024. doi:10.1002/jgt.23103.
- 611 21 Hemanshu Kaul and Jeffrey A. Mudrock. Counting Packings of List-colorings of Graphs. *arXiv*  
612 *preprint*, 2024. arXiv:2401.11025.
- 613 22 Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A Deterministic Algorithm for Counting  
614 Colorings with 2-Delta Colors. In *2019 IEEE 60th Annual Symposium on Foundations*  
615 *of Computer Science (FOCS)*, pages 1380–1404, Baltimore, MD, USA, 2019. IEEE. doi:  
616 10.1109/FOCS.2019.00085.
- 617 23 Pinyan Lu and Yitong Yin. Improved FPTAS for Multi-spin Systems. In David Hutchison,  
618 Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,  
619 Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri  
620 Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Prasad Raghavendra, Sofya  
621 Raskhodnikova, Klaus Jansen, and José D. P. Rolim, editors, *Approximation, Randomization,*  
622 *and Combinatorial Optimization. Algorithms and Techniques*, volume 8096, pages 639–654.  
623 Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-40328-6\_44.
- 624 24 Kyle MacKeigan. Independent coverings and orthogonal colourings. *Discrete Mathematics*,  
625 344(8):112431, 2021. doi:10.1016/j.disc.2021.112431.
- 626 25 Jesús Salas and Alan D. Sokal. Absence of phase transition for antiferromagnetic Potts models  
627 via the Dobrushin uniqueness theorem. *Journal of Statistical Physics*, 86(3):551–579, 1997.  
628 doi:10.1007/BF02199113.
- 629 26 E. Vigoda. Improved bounds for sampling colorings. In *40th Annual Symposium on Foundations*  
630 *of Computer Science*, pages 51–59, New York City, NY, USA, 1999. IEEE Comput. Soc.  
631 doi:10.1109/SFFCS.1999.814577.
- 632 27 Vadim G Vizing. Coloring the vertices of a graph in prescribed colors. *Diskret. Analiz*, 29(3):10,  
633 1976.