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Abstract

We consider Directed Steiner Forest (DSF), a fundamental problem in network design. The input to
DSF is a directed edge-weighted graph G = (V,E) and a collection of vertex pairs {(si, ti)}i∈[k]. The
goal is to find a minimum cost subgraph H of G such that H contains an si-ti path for each i ∈ [k]. DSF

is NP-Hard and is known to be hard to approximate to a factor of Ω(2log
1−ε(n)) for any fixed ε > 0 [17].

DSF admits approximation ratios of O(k1/2+ε) [10] and O(n2/3+ε) [4].
In this work we show that in planar digraphs, an important and useful class of graphs in both

theory and practice, DSF is much more tractable. We obtain an O(log6 k)-approximation algorithm
via the junction tree technique. Our main technical contribution is to prove the existence of a low
density junction tree in planar digraphs. To find an approximate junction tree we rely on recent results
on rooted directed network design problems [24, 11], in particular, on an LP-based algorithm for the
Directed Steiner Tree problem [11]. Our work and several other recent ones on algorithms for planar
digraphs [24, 36, 11] are built upon structural insights on planar graph reachability and shortest path
separators [41].
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1 Introduction

Network design is a rich field of study in algorithms and discrete optimization. Problems in this area are
motivated by various practical applications and have also been instrumental in the development of important
tools and techniques. Two fundamental problems in network design are Steiner Tree and Steiner Forest. In
Steiner Forest, the input is a graph G = (V,E) with non-negative edge costs c : E → R+ and a collection
of vertex pairs D = {(si, ti)}i∈[k]; the goal is to find a subgraph H ⊆ G of minimum cost such that for each
i ∈ [k], there exists an si-ti path in H. The Steiner Tree problem is a special case of Steiner Forest in which
there exists some root r ∈ V such that si = r for all i ∈ [k]; in other words, the goal is to connect a single
source to a given set of sink vertices. When the input graph is undirected, these problems are both NP-Hard
and APX-hard to approximate, and also admit constant-factor approximation algorithms; see Section 1.2
for a detailed discussion.

This paper considers the setting in which the input graph is directed. In Directed Steiner Forest (DSF),
the input is a directed graph G = (V,E) with edge-costs c : E → R+, and the goal is to find a min-cost
subgraph that contains a directed path (dipath) from si to ti for each i ∈ [k]. Directed Steiner Tree (DST)
is the special case when there is a single source r that needs to be connected to the sinks ti, i ∈ [k]. In many
settings directed graph problems tend to be more difficult to handle. Unlike their undirected counterparts,
DST and DSF have strong lower bounds on their approximability. DST is known to be hard to approximate
to a factor of Ω(log2−ε(k)) unless NP has randomized quasi-polynomial time algorithms [32], and to a factor
Ω(log2 k/ log log k) under other complexity assumptions [29] (see Section 1.2). Furthermore, a natural cut-
based LP relaxation (used in approximation algorithms for several undirected network design problems)
has a polynomial factor integrality gap; Ω(

√
k) [44] or Ω(nδ) for some fixed δ > 0 [38]. The best known

approximation ratios for DST are O(kε) for any fixed ε > 0 in polynomial time [43] and O(log2 k/ log log k)
in quasi-polynomial time [29]. Whether DST admits a polynomial time poly-logarithmic approximation ratio
has remained a challenging open problem for over 25 years.

The Directed Steiner Forest problem, on the other hand, is known not to admit a polylogarithmic
approximation ratio unless P = NP. This is because DSF is hard to approximate to a factor Ω(2log

1−ε(n)) for
any ε > 0 via a simple reduction from the Label-Cover problem [17]. One technical reason for this difficulty
is that, in spite of the name, a minimal feasible solution to DSF may not be a forest (unlike the case of
undirected graphs). Note the contrast here to DST, in which a minimal feasible solution is an out-tree
rooted at r. Due to this lack of structure as well as aforementioned hardness results, there has been limited
progress in the development of approximation algorithms. The current best approximation ratios for DSF are
O(k1/2+ε) [10] in the regime when k is small, and O(n2/3+ε) [4] when k is large; both results were obtained
over a decade ago.

Recently, Friggstad and Mousavi [24] made exciting progress on DST by obtaining a simple O(log k)-
approximation in planar digraphs. Note that this establishes a separation between the hardness of DST in
general digraphs and in planar digraphs. A follow-up work by Chekuri et al. [11] shows that the cut-based
LP relaxation for DST has an integrality gap of O(log2 k) in planar digraphs, which is in sharp contrast to
the known lower bounds in general digraphs. Motivated by these positive results, as well as the inherent
practical interest of planar graphs, we consider Directed Steiner Forest in planar digraphs (planar-DSF), and
prove that it admits a poly-logarithmic approximation ratio.

Theorem 1.1. There is an O(log6 k)-approximation for Directed Steiner Forest in planar digraphs, where

k is the number of terminal pairs.

Remark 1.1. (Node Weights) Our algorithm and analysis generalize relatively easily to the setting in

which both edges and nodes have non-negative weights. This is a consequence of the technique. The standard

reduction of node-weighted problems to edge-weighted problems in directed graphs does not necessarily preserve

planarity. Node-weighted Steiner pr oblems have also been considered separately in the undirected setting;

see Section 1.2.

1.1 Technical Overview and Outline We prove Theorem 1.1 by employing the so-called junction tree

technique. This technique allows one to reduce a multicommodity problem (such as DSF) to its rooted/single-
source counterpart (such as DST). The power of this technique comes from the fact that in several network
design problems, the single-source problem is often easier to solve. Junction-based schemes were initially
highlighted in the context of non-uniform buy-at-bulk network design [31, 9], although the basic idea was
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already implicitly used for DSF in [8]. The technique has since been used to make progress in a variety of
network design problems including improvements to DSF (see Section 1.2).

The high-level idea is as follows: we say H ⊆ G is a partial solution if it is a feasible solution for some
subset of terminal pairs. We look for a low-density partial solution, where density is defined as ratio of the
cost of the partial solution to the number of terminal pairs it contains. Using a standard iterative approach
for covering problems, one can reduce the original problem to the min-density partial solution problem while
losing an additional O(log k) factor in the approximation ratio. In general, finding a min-density partial
solution may still be hard; therefore, we restrict our attention to well-structured solutions. We aim to find
partial solutions that contain some “junction” vertex r ∈ V through which many pairs connect. Formally, in
the context of DSF, we say a junction tree on terminal pairs DH ⊆ D is a subgraph H ⊆ G with a root r
such that for every terminal pair (si, ti) ∈ DH , H contains an si-r path and an r-ti path.1 The density of
H is c(H)/|DH |. The proof of Theorem 1.1 proceeds in two steps; first, we show that there exists a junction
tree of low density, and second, we provide an algorithm to efficiently find a low-density junction tree given
that one exists.

The key technical contribution of this paper is the first step: showing that any instance of planar-DSF
contains a low-density junction tree. We prove the following Theorem in Section 2:

Theorem 1.2. Given an instance (G,D) of planar-DSF, there exists a junction tree of density

O(log2 k)OPT/k in G where k = |D| and OPT is the cost of an optimum solution for (G,D).

We prove the preceding theorem by considering an optimum solution E∗ ⊆ E; we find several junction
trees in E∗ that are mostly disjoint and, in total, cover a large fraction of terminal pairs.

Remark 1.2. We note that this proof strategy shows that there exists a low-density junction tree with respect

to the optimal integral solution. It is an interesting open problem to prove a poly-logarithmic factor upper

bound on the integrality gap of the natural cut-based LP relaxation for planar-DSF.

We employ two tools developed by Thorup [41] on directed planar graphs in his work on reachability and
approximate shortest path oracles. The first is a “layering” of a directed graph such that every path is
contained in at most two consecutive layers, and each layer contains some nice tree-like structure. This
allows us to restrict our attention to two layers at a time. We remark that a similar layering approach was
recently used by [36] to obtain improved upper bounds on the multicommodity flow-cut gap in directed planar
graphs; this was partly the inspiration for this work. The second tool is a “separator” theorem (essentially
proved in [39], but given explicitly in [41]), which states that every planar graph contains three short paths
whose removal results in connected components each containing at most half the number of vertices. We use
this shortest-path separator to devise a recursive approach similar to that of [41]. We then restrict attention
to one level of recursion in which many si-ti paths pass through the separator, and show that in this case,
we can use the nodes on the separator as roots for low-density junction trees.

For the second step, we prove the following theorem in Section 3:

Theorem 1.3. Given an instance (G,D) of planar-DSF, there exists an efficient algorithm to obtain a

junction tree of G of density at most O(log3 k) times the optimal junction tree density in G.

We show that any approximation algorithm for planar-DST with respect to the optimal fractional

solution to an LP relaxation can be used to derive an approximation algorithm for finding the min-density
junction tree. This uses a standard bucketing and scaling argument, initially given in the context of junction
trees for buy-at-bulk network design [9]. This approach crucially relies on the fact that there exists a good
approximation algorithm for planar-DST with respect to the natural LP relaxation. Finding junction trees
without using the LP is not as straight forward. It is also not enough to be able to solve the min-density
Directed Steiner Tree problem; there exist algorithms to do so in planar graphs via purely combinatorial
techniques [11], however this approach does not extend to finding a good density junction tree due to the
additional requirement that for each (si, ti) ∈ DH , we need to connect both si and ti to r.

1This definition of junction tree does not necessarily correspond to a tree in a digraph; the terminology originated from the

undirected setting.
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1.2 Related Work DST in general digraphs: Directed Steiner Tree was first studied in approximation
by Zelikovsky [43], who obtained an O(kε)-approximation for any fixed ε > 0. Charikar et al. [8] built on
ideas from [43] to devise an O(log3 k)-approximation in quasi-polynomial time. This was later improved to
O(log2 k/ log log k) in quasi-polynomial time, by Grandoni et al. [29] who used an LP-based approach, and
by Ghuge and Nagarajan [26] who used a recursive greedy approach building on ideas in [12]. In terms of
hardness, it is not difficult to see that DST generalizes Set Cover and is therefore hard to approximate to a
factor (1− ε) log k [19]; in fact, it is hard to approximate to a factor Ω(log2−ε(k)) unless NP has randomized
quasipolynomial time algorithms [32]. Grandoni et al. [29] recently showed that even with quasi-polynomial
time algorithms, DST is not approximable within a factor Ω(log2 k/ log log k) unless the Projection Games

Conjecture fails or NP ⊆ ZPTIME(2n
δ

) for some δ ∈ (0, 1). DST and algorithmic ideas for it are closely
related to those for Group Steiner tree (GST) and Polymatroid Steiner tree (PST). We refer the reader to
some relevant papers [25, 44, 10, 7, 11] for more details.

DSF and Junction Schemes: The first nontrivial approximation for Directed Steiner Forest was an
Õ(k2/3)-approximation given by Charikar et al. [8]. This follows a similar iterative density-based procedure
as the junction tree approach; however, they restrict to trees of a much simpler structure. This approximation
ratio was subsequently improved to O(k

1
2
+ε) [10]; [10] showed that given an instance (G,D) of DSF, there

exists a junction tree of density at most O(k1/2) times the optimum. They then provide an algorithm to find
a low-density junction tree via height reduction and Group Steiner Tree rounding. DSF has improved
approximation ratios when k is large. [21] obtained an O(nε · min(n4/5,m2/3))-approximation using a
junction-based approach. This analysis was refined by [4] using ideas developed for finding good directed
spanners, giving an improved approximation ratio of O(n2/3+ε). DSF with uniform edge costs admits an
O(n3/5+ε)-approximation [13].

DSF and DST have also been considered from a parameterized complexity perspective. DST is fixed
parameter tractable parameterized by the number of terminals [18]. On the other hand, DSF is W [1]-hard
[30]; however, it is polynomial time solvable if the number of terminals k is constant [20, 22].

Undirected Graphs: Steiner Tree admits a simple 2-approximation by taking a minimum spanning tree
on the terminal set. There has been a long line of work improving this approximation factor using greedy
techniques [42, 3, 35, 33], culminating in a

(

1 + ln 3
2

)

-approximation given by Robins and Zelikovsky [40].
This remained the best known approximation ratio for several years, until Byrka et al. developed an LP-
based (ln 4+ ε)-approximation [6, 27]. The Steiner Tree problem is APX-hard to approximate; in fact, there
is no approximation factor better than 96

95 unless P = NP [14]. The Steiner Forest problem in undirected
graphs admits a 2-approximation via primal-dual techniques [1, 28] and iterated rounding [34]. The node
weighted versions of Steiner Tree and Steiner Forest admit an O(log k)-approximation where k is the number
of terminals [37], and further this ratio is asymptotically tight via a reduction from Set Cover.

Planar and Minor-Free Graphs: Improved approximation ratios have been obtained for several problems
in special classes of graphs, such as planar and minor-free graphs. We first discuss undirected graphs. In
planar graphs, Steiner Tree admits a PTAS [5]; this was later extended to a PTAS for Steiner Forest in
graphs of bounded genus [2]. Recently, [15] obtained a QPTAS for Steiner Tree in minor-free graphs.
Furthermore, although the node-weighted variant of Steiner Tree captures Set Cover in general graphs, there
exists a constant factor approximation in planar graphs, and more generally, in any proper minor-closed
graph family [16]. In directed graphs, along with the recent results discussed above, Friggstad and Mousavi
obtained a constant-factor approximation for DST in minor-free graphs in the setting where the input graph
is quasi-bipartite [23].

1.3 Definitions and Notation For a directed graph G, we let V (G) and E(G) denote the vertex and
edge sets of G respectively. For E′ ⊆ E, we let V (E′) denote the set of vertices in the graph induced by E′.
For a subset S ⊆ V , we let δ+(S) denote the set of all edges (u, v) with u ∈ S, v /∈ S, and we let δ−(S)
denote the set of all edges (u, v) with u /∈ S, v ∈ S. We will sometimes consider the undirected version of G;
this is the underlying undirected graph obtained by ignoring orientations of edges in E.

For any directed path (dipath) P ⊆ G, and for any u,w ∈ P , we write u <P w if u appears before w
in P . We define >P , ≤P , and ≥P similarly. For u,w ∈ P with u ≤P w, we let P [u,w] denote the subpath
of P from u to w. We denote the length of a path P , which is the number of edges in P , by |P |. For
any u, v, w ∈ G, if P ′ is a u-v path and P ′′ is a v-w path, we let P ′ ◦ P ′′ denote the concatenation of P ′
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Figure 1: Example of a two-layered digraph. Bolded edges form the two-layered spanning tree; remaining
edges in the graph are dashed. The two dipaths for each root to leaf path are denoted by blue and red edges:
the first dipath away from the root given in blue and the second towards the root in red.

and P ′′. We will sometimes abuse notation and conflate path with dipath when it is clear from context.
Unless explicitly stated, we do not distinguish between paths and walks, since we are only concerned with
reachability.

Given an instance (G,D) of planar-DSF, we let OPT denote the value of an optimal solution.

Definition 1.1. (Junction Tree) A junction tree on terminal pairs DH ⊆ D is a subgraph H ⊆ G with a

root r such that for every terminal pair (si, ti) ∈ DH , H contains an si-r path and an r-ti path. The density
of a junction tree is the ratio of its cost c(H) to the number of terminal pairs |DH |. We say a terminal pair

(si, ti) ∈ D is covered by H if (si, ti) ∈ DH ; that is, there exists an si-ti walk in H containing r.

For ease of notation, when considering subsets of terminal pairs D′ ⊆ D, we sometimes write i ∈ D′ to
mean (si, ti) ∈ D′.

2 Existence of a good junction tree

This section proves Theorem 1.2, restated below:

Theorem 2.1. Given an instance (G,D) of planar-DSF, there exists a junction tree of density

O(log2 k)OPT/k in G where k = |D| and OPT is the cost of an optimum solution for (G,D).

Definition 2.1. A 2-layered spanning tree of a digraph G is a rooted tree that is a spanning tree of the

undirected version of G such that any path from the root to a leaf is the concatenation of at most 2 dipaths

of G. A 2-layered digraph is a digraph that has a 2-layered spanning tree. The root of a 2-layered digraph

is the root of its 2-layered spanning tree.

Remark 2.1. Note that a two-layered digraph may have additional edges aside from the spanning tree; we

do not pose any restrictions on the directions of these edges. See Figure 1 for an example.

The proof of Theorem 1.2 consists of three stages. First, in Section 2.1, we use a decomposition given
by Thorup [41] of a directed graph into several 2-layered digraphs while preserving planarity. Using this
decomposition, we show that it suffices to consider cases where the optimal solution is a 2-layered digraph;
thus reducing proving Theorem 1.2 to proving Lemma 2.1:

Lemma 2.1. Let (G,D) be an instance of planar-DSF. Suppose there exists a feasible solution E∗ ⊆ E(G)
such that G∗ := (V (E∗), E∗) is a 2-layered digraph. Let r denote the root of G∗. Suppose that for each

(si, ti) ∈ D, there exists an si-ti path in G∗ \ {r}. Then there exists a junction tree H ⊆ G∗ \ {r} of density

at most O(log2 k)c(E∗)/k.
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v0
... ...

L0 L1
Lj−1 Lj Lj+1

Figure 2: Layers constructed from G∗. Dotted lines represent edges inside each layer, while solid lines
represent edges between layers. In this example, j is odd.

In Section 2.2, we use a recursive procedure built on a separator lemma on planar digraphs [41] to reduce
proving Lemma 2.1 to Lemma 2.2:

Lemma 2.2. Let (G,D) be an instance of planar-DSF. Suppose there exists a feasible solution E∗ ⊆ E(G)
that contains a dipath P ⊆ E∗ with the following property: every terminal pair (si, ti) ∈ D has a dipath

Pi ⊆ E∗ from si to ti such that V (P ) ∩ V (Pi) 6= ∅. Then E∗ contains a junction tree of density at most

O(log k)c(E∗)/k.

We conclude by proving Lemma 2.2 in Section 2.3.

2.1 Reduction to 2-Layered Digraphs In this section, we show that Lemma 2.1 suffices to prove
Theorem 1.2, thus reducing to the case where the optimal solution is a 2-layered digraph. Let (G,D) be
an instance of planar-DSF, and let G∗ = (V ∗, E∗) be an optimal feasible solution of cost OPT. We assume
without loss of generality that E∗ induces a weakly connected graph; if not, we apply this decomposition on
each weakly connected component separately. We use a decomposition of digraphs given by Thorup [41]. We
include the details and proofs here for the sake of completeness, and to highlight some additional properties
that we need. Let v0 ∈ V ∗ be an arbitrary node in G∗. We let L0 be the set of all nodes in V ∗ that are
reachable from v0 in G∗. Then, we define alternating “layers” as follows:

Lj =

{

{v ∈ V ∗ \ ∪j′<jLj′ : v can reach Lj−1 in G∗} j is odd

{v ∈ V ∗ \ ∪j′<jLj′ : v is reachable from Lj−1 in G∗} j is even
.

We continue this process until all vertices in V ∗ are covered by a layer; see Figure 2. Let ` denote the
index of the last layer. For j ∈ {0, . . . , `− 1}, we define Gj to be the graph obtained from G∗ by deleting all
nodes in ∪i>j+1Li and contracting all nodes in ∪i<jLj . We call this contracted node the root rj of Gj . It
is clear from construction that each Gj is a 2-layered digraph. Furthermore, each Gj is a minor of G∗ and
is thus planar.2

Claim 2.1. The total cost
∑`−1

j=0 c(E(Gj)) ≤ 2c(E∗).

Proof. We show that each edge of E∗ appears in at most two of the graphs from G0, . . . , G`−1. Since
E(Gj) ⊆ E∗ for all j, the claim follows. Let (u, v) ∈ E∗. If u, v are in the same layer Lj , then (u, v) is
only in Gj and Gj−1; all other graphs Gj′ either contract (when j′ > j) or delete (when j′ < j − 1) Lj . If
u, v are in distinct layers, they must be in adjacent layers Lj and Lj+1. For j′ > j + 1, both Lj and Lj+1

are contracted into the root, thus (u, v) /∈ Gj′ . For j′ < j, Lj+1 is deleted, thus once again (u, v) /∈ Gj′ .
Therefore the edge (u, v) can only appear Gj and/or Gj+1.

Claim 2.2. For each pair (si, ti) ∈ D, there exists some j ∈ {0, . . . , `− 1} such that Lj ∪ Lj+1 contains an

si-ti path.

2A graph H is a minor of G if it can be obtained from G by deleting and/or contracting edges of G. It is easy to see that if

G is planar, then any minor of G is planar as well.
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Proof. Let Pi be an si-ti path in E∗; such a path must exist by feasibility of E∗. Let j be the minimum
index such that Lj intersects Pi, and let v be a node in Lj ∩ Pi.

If j is even, any node reachable from Lj must be contained in ∪j′≤jLj′ ; thus Pi[v, ti] ⊆ ∪j′≤jLj′ . By
definition, Lj+1 contains all nodes in G∗ \ ∪j′≤jLj′ that can reach Lj ; thus Pi[si, v] must be contained in
∪j′≤j+1Lj′ .

Otherwise, if j is odd, any node that can reach Lj must be contained in ∪j′≤jLj′ , so Pi[si, v] ⊆ ∪j′≤jLj′ .
Lj+1 contains all nodes in G∗ \ ∪j′≤jLj′ reachable from Lj , so Pi[v, ti] ⊆ ∪j′≤j+1Lj′ .

In either case, Pi ⊆ ∪j′≤j+1Lj′ . Since j is the minimum index that intersects Pi, Pi ⊆ Lj ∪ Lj+1 as
desired.

Proof. [Reduction from Theorem 1.2 to Lemma 2.1] We partition the demand pairs D into D0, . . . , Dj−1,
where (si, ti) ∈ Dj if Lj ∪Lj+1 contains an si-ti path; if there are multiple such j we choose one arbitrarily.
Note that all terminal pairs are covered by this partition by Claim 2.2.

Since
∑`−1

j=0 c(E(Gj)) ≤ 2c(E∗) and D0, . . . , Dj−1 form a complete partition of D, there must be some
j ∈ {0, . . . , ` − 1} such that c(E(Gj))/|Dj | ≤ 2c(E∗)/|D|. We claim that (Gj , Dj) satisfies the conditions
of Lemma 2.1: Gj is a planar 2-layered digraph that is a feasible solution on all terminal pairs Dj , and for
each i ∈ Dj , there is an si-ti path contained in Lj ∪ Lj+1, thus avoiding the root of Gj . By Lemma 2.1,
there exists a junction tree H in Gj of density

O(log2 |Dj |)
c(E(Gj))

|Dj |
≤ O(log2 k)

2c(E∗)

|D| = O(log2 k)OPT/k.

Furthermore, since H does not contain the root of Gj , H is a subgraph of G∗.

2.2 Reduction from Two-Layered Digraphs to One-Path Setting In this section, we show that
assuming Lemma 2.2, we can prove Lemma 2.1, restated below:

Lemma 2.1. Let (G,D) be an instance of planar-DSF. Suppose there exists a feasible solution E∗ ⊆ E(G)
such that G∗ := (V (E∗), E∗) is a 2-layered digraph. Let r denote the root of G∗. Suppose that for each

(si, ti) ∈ D, there exists an si-ti path in G∗ \ {r}. Then there exists a junction tree H ⊆ G∗ \ {r} of density

at most O(log2 k)c(E∗)/k.

Fix an instance (G,D) of planar-DSF and a feasible solution E∗ satisfying the conditions outlined in
the statement of Lemma 2.1 above. Let T ∗ ⊆ E∗ be a 2-layered spanning tree with root r. Given any
undirected tree T , we let PT (u, v) denote the unique tree path from u to v. We will follow a recursive process
to partition D into subsets on which we build junction trees. To do so, we use the following separator lemma
on planar digraphs.

Lemma 2.3. ([41]) Given an undirected planar graph G = (V,E) with a spanning tree T rooted at r and

non-negative vertex weights w : V → R≥0, we can find three vertices u1, u2, u3 such that each component of

G \ (PT (r, u1) ∪ PT (r, u2) ∪ PT (r, u3)) has at most half the weight of G.

We define vertex weights w(v) = 1 if v ∈ D and w(v) = 0 otherwise. We consider the undirected version
of E∗; that is, we ignore all directions on E∗ and apply Lemma 2.3 on the undirected version of spanning
tree T ∗ with vertex weights w. From this, we obtain u1, u2, u3. Since T ∗ is a 2-layered spanning tree, each
path PT∗(r, ui) consists of at most 2 dipaths of E∗. We remove the root r and let Q1

i , Q
2
i denote the at most

two dipaths of PT∗(r, ui) \ {r}. Let S0 = ∪i∈[3]{Q1
i , Q

2
i } denote this set of at most 6 dipaths; we call this a

separator. We define D0 ⊆ D to be the set of all terminal pairs (si, ti) such that E∗ contains an si-ti path
going through one of the dipaths in S0. Equivalently, (si, ti) ∈ D0 iff there exists an si-ti path Pi ⊆ E∗ such
that V (Pi) ∩ V (S0) 6= ∅. See Figure 3 for an example of a separator with the corresponding set D0. We
let C0 be the set of weakly connected components of G \ (∪i∈[3]PT∗(r, ui)); we drop “weakly connected” and
simply refer to these as “components” in the remainder of this section. Note that each C ∈ C0 has at most
half the total number of terminals.

We recurse on each component C ∈ C0 as follows: we contract S0 into r and recurse on the sub-instance
consisting of C and the new contracted root r. It is not difficult to see that this new sub-instance is a
2-layered digraph and thus contains a 2-layered spanning tree T ∗

C . We repeat the same process as above,
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r

s1

t1

s2

t2

s3

t3

C1

C2

C3

u1

u2

u3

Figure 3: Example of separator and resulting weakly connected components. Solid black lines denote edges in
the separator S0, while dashed blue lines represent edges between components and the separator. Terminals
are labeled and denoted with boxes. In this example, D0 = {(s1, t1), (s2, t2)} since there exists an s1-t1 and
an s2-t2 path through the separator. Notice that (s2, t2) ∈ D0 even though s2 and t2 remain in the same
component C1.

applying Lemma 2.3 with T ∗
C , and weights the same as before for all nodes in C and w(r) = 0. We obtain

three nodes u′
1, u

′
2, u

′
3 ∈ C. Once again, we ignore r when considering the dipaths. We define SC

1 to be the
set of at most 6 dipaths in ∪i∈[3](PT (r, u

′
i) \ {r}), and let DC

1 be the set of all (si, ti) ∈ D with si, ti ∈ C
such that there exists an si-ti path in C with a non-empty intersection with a dipath in SC

1 .

Remark 2.2. In the recursive step, we choose to contract the separator into the root to maintain the property

that each recursive call still corresponds to a 2-layered digraph. It is important to remove the contracted root

r from the dipaths of Si, i > 0 to ensure that all nodes in the separator are nodes in G and all separators

are disjoint. We remove the root r from the dipaths of S0 to ensure that H does not contain the root of E∗,

in order to satisfy the lemma statement.

We continue this recursive process until each component has at most one terminal. Since the number of
terminals halve at each step, the total recursion depth is at most dlog 2ke = dlog ke+1. For ease of notation,
for j ≥ 1 we denote by Sj := ∪C∈Cj−1

SC
j the set of all dipaths constructed in the jth level of recursion and

let Dj := ∪C∈Cj−1
DC

j .

Claim 2.3. D ⊆ ∪
dlog ke+1
j∈0 Dj.

Proof. Fix (si, ti) ∈ D, and let Pi be an si-ti path in E∗ \ {r}. Let j be the first recursive level such that Pi

intersects Sj ; such a level must exist since by the last step of recursion, si and ti are in different components.
Let C be the component such that Pi intersects SC

j . Then Pi must be fully contained in C; else Pi would

have intersected a separator at an earlier level. Thus (si, ti) ∈ DC
j ∈ Dj .

Corollary 2.1. There exists a recursion level j∗ ∈ {0, . . . , dlog ke+ 1} such that |Dj∗| ≥
k

dlog ke+2 .

Corollary 2.1 allows us to focus on one recursion layer that covers a large number of terminal pairs, and
use the planar separators Sj∗ to reduce to the one path case.

Proof. [Reduction from Lemma 2.1 to Lemma 2.2] Let j∗ be the recursion level given by Corollary 2.1 such
that |Dj∗| ≥

k
dlog ke+2 . Recall that we define Cj∗ to be the set of all components at level j∗. Note that
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s1 s2 s3 s4

t1 t2t3 t4

a1
a2

a3 a4

b1 b2b3 b4
P

Figure 4: The path P is given with solid black lines. Blue dashed lines represent the paths between terminals
and P . Note that terminals can have multiple paths to/from P , as shown by s4/t4. In this example, terminal
pairs 1, 2, 3 all have mutually overlapping intervals and thus form a junction tree rooted at the vertex b1 = a3.

all components C ∈ C∗
j are disjoint; therefore,

∑
C∈Cj∗

c(E(C)) ≤ c(E∗). Furthermore, since (si, ti) ∈ DC
j∗

implies that si, ti ∈ C, DC
j∗ form a partition of Dj∗ . Thus there must be one component C ∈ Cj∗ such that

c(E(C))/|DC
j∗ | ≤ c(E∗)/|Dj∗ |. Fix this component C.

By construction, for all (si, ti) ∈ DC
j∗ there is an si-ti path intersecting SC

j∗ that is fully contained in

C \ {r}. Since SC
j∗ consists of at most 6 dipaths, there must be at least one dipath, which we call QC

j∗ , such

that at least 1
6 of the terminal pairs in DC

j∗ have paths that intersect QC
j∗ ; we denote this subset of terminal

pairs by D∗. We apply Lemma 2.2 on (C \ {r}, D∗) to obtain a junction tree H of density at most

O(log |D∗|)
c(C)

|D∗|
≤ O(log k)

6c(C)

|DC
j∗ |

≤ O(log k)
6c(E∗)

|Dj∗ |
≤ O(log2 k)c(E∗)/k.

2.3 One-Path Setting In this section we prove Lemma 2.2, restated below:

Lemma 2.2. Let (G,D) be an instance of planar-DSF. Suppose there exists a feasible solution E∗ ⊆ E(G)
that contains a dipath P ⊆ E∗ with the following property: every terminal pair (si, ti) ∈ D has a dipath

Pi ⊆ E∗ from si to ti such that V (P ) ∩ V (Pi) 6= ∅. Then E∗ contains a junction tree of density at most

O(log k)c(E∗)/k.

Fix an instance (G,D) of planar-DSF and a solution E∗ with dipath P ⊆ E∗ satisfying the conditions
outlined in the statement of Lemma 2.2 above. We will sometimes overload notation and write P as V (P ).
We label the vertices on P as v0, . . . , v|P |. For each terminal pair si-ti, let ai denote the first node in P that
si can reach, and let bi denote the last node in P that can reach ti (here, reachability is defined using edges
in E∗). By the condition in Lemma 2.2, ai ≤P bi for all i ∈ [k]; else no si-ti path could intersect P . We let
Ii denote the interval P [ai, bi]. We let Psi denote the path in E∗ from si to ai and let Pti denote the path
in E∗ from bi to ti. See Figure 4 for an example.

We start with a simple observation regarding these intervals and their relation to junction trees; we show
that if there exists a set of intervals which all overlap at a common vertex, then we can form a junction tree
on the corresponding terminal pairs.

Claim 2.4. Let D′ ⊆ D such that ∩i∈D′Ii 6= ∅, i.e. all intervals overlap. Let astart = mini∈D′ ai and bend =
maxi∈D′ bi, where min and max are taken with respect to ≤P . Then H = P [astart, bend]∪

⋃
i∈D′(Psi ∪Pti) is

a valid junction tree on D′.

Proof. Let v be some element in ∩i∈D′Ii; this will be the root of the junction tree H. It suffices to show
that for all (si, ti) ∈ D′, si can reach v and v can reach ti in H. Let (si, ti) ∈ D′. By definition of astart

and bend, and since v ∈ Ii, we have that astart ≤P ai ≤P v ≤P bi ≤P bend. Therefore P [ai, v] and P [v, bi]
are contained in H. Thus the si-v path Psi ◦ P [ai, v] is contained in H, as is the v-ti path P [v, bi] ◦ Pti , as
desired.
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Claim 2.4 provides a natural way to obtain junction trees in E∗: we partition D into groups such that
in each group, all corresponding intervals overlap at a common vertex, and then form the junction trees
accordingly. To partition D, we first separate terminal pairs based on their interval lengths; recall that path
lengths are defined in terms of number of edges, so the length of the interval Ii is the number of edges from
ai to bi in P . We let D0 denote the set of all (si, ti) ∈ D such that ai = bi; these correspond to 0-length
intervals. For j ∈ {1, . . . , log |P | + 1}, let Dj = {(si, ti) : |Ii| ∈ [2j−1, 2j)}. For v ∈ P , we let Dv

j ⊆ Dj be
the set of all (si, ti) ∈ Dj such that v ∈ Ii. We construct the set of groups

G = {Dv
0 : ∃i ∈ D0 s.t. ai = bi = v} ∪

⋃

j∈[log |P |+1]

{Dv`
j : ` is a multiple of 2j−1}.

Note that for each group Dv
j , v ∈ ∩i∈Dv

j
Ii. Therefore, each group Dv

j is associated with a junction tree Hv
j

with root v as given by Claim 2.4. We let H denote the set of all such junction trees.

Claim 2.5. Every (si, ti) ∈ D is in some group in G.

Proof. Fix (si, ti) ∈ D. If ai = bi, then (si, ti) ∈ D0, so (si, ti) ∈ Dai

0 ∈ G. Else, |Ii| ∈ {1, . . . , |P |}, so
∃j ∈ {1, . . . , log |P |+1} such that (si, ti) ∈ Dj . Let ` be the first multiple of 2j−1 such that v` ≥P ai. Then
P [ai, v`] ≤ 2j−1. Since (si, ti) ∈ Dj , |Ii| ≥ 2j−1; thus v` ≤P bi. Therefore v` ∈ Ii, so (si, ti) ∈ Dv`

j ∈ G.

We will show that the junction trees in H have, on average, low density. To do so, one must ensure that
each edge e ∈ E∗ only appears in O(log k) junction trees to maintain the cost bound. A technical difficulty
is reasoning about the edges of E∗ \ P , since the paths between terminals and the path P may intersect
and share edges. The following key observation provides some structure on these paths with respect to the
intervals:

Claim 2.6. For any i, i′ ∈ [k], if Psi ∩ Psi′ 6= ∅, then ai = ai′ . Similarly, Pti ∩ Pti′ 6= ∅, then bi = bi′ .

Proof. Consider i, i′ ∈ [k], and suppose without loss of generality that ai ≤P ai′ . Let v ∈ Psi ∩ Psi′ . Then
Psi′ [si′ , v] ◦ Psi [v, ai] is a path from si′ to ai in E∗. Since we defined ai′ as the earliest point that si′ can
reach on P , it must be the case that ai′ ≤P ai, so ai = ai′ . An analogous argument shows that for any
i, i′ ∈ [k], if Pti ∩ Pti′ 6= ∅, then bi = bi′ .

Claim 2.7. Each node in P appears in at most 5 log |P | + 6 junction trees in H. The same holds for each

edge in P .

Proof. Let u ∈ P . By Claim 2.4, for any Hv
j ∈ H, Hv

j ∩ P = P [astart, bend], where astart is the first interval
start point and bend is the last interval end point of all intervals of Dv

j . Notice that since the intervals of Dv
j

overlap at a common vertex, P [astart, bend] is equivalent to ∪i∈Djv
Ii.

First, consider j = 0. In this case, for any v, ∪i∈Dv
0
Ii = {v}. Thus u ∈ Dv

0 if and only if u = v, so u is
in at most one group when j = 0.

Next, fix j ≥ 1, and consider some v` such that Dv`

j ∈ G. Note that (si, ti) ∈ Dv`
j implies that |Ii| < 2j

and v` ∈ Ii. Therefore, it must be the case that ai >P v`−2j and bi <P v`+2j . Thus for any Dv`

j ∈ G,

∪i∈D
v`
j
Ii ⊆ P [v`−2j , v`+2j ]. Therefore if u ∈ Dv`

j , then v` has to be within 2j edges of u. Since G only

contains Dv`

j for ` a multiple of 2j−1, there are at most 5 values of ` that are multiples of 2j−1 such that

v` can either reach or be reached by u within 2j edges. Therefore, u is in at most 5 groups for any fixed j.
Summing over all j = 1, . . . , log |P |+ 1 gives the desired bound.

Each edge e ∈ P is only in a junction tree H if both its endpoints are also in H. Thus the same upper
bound holds for each edge in P .

Claim 2.8. Each node in V (E∗) \P appears in at most 10 log |P |+12 junction trees in H. The same holds

for each edge in E∗ \ P .

Proof. Fix u ∈ V (E∗) \ P . If u is in any junction tree H, it must be in some Psi and/or some Pti ; it may
be in many such paths for various terminal pairs. Let Ds = {i : u ∈ Psi} and Dt = {i : u ∈ Pti}.
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By Claim 2.6, there exists some node a ∈ P such that for all i ∈ Ds, ai = a. Similarly, there exists
some b ∈ P such that for all i ∈ Dt, bi = b. By construction of junction trees in Claim 2.4, for any H ∈ H,
u ∈ H only if a ∈ H or b ∈ H. By Claim 2.7, a and b are each in at most 5 log |P |+ 6 junction trees in H.
Therefore, u is in at most 2(5 log |P |+ 6) junction trees in H.

Each edge e ∈ E∗ is only in a junction tree H if both its endpoints are also in H. Thus the same upper
bound holds for each edge in E∗.

We conclude the proof of the main lemma:

Proof. [Proof of Lemma 2.2] By Claims 2.7 and 2.8, each edge of E∗ is in at most O(log |P |) junction trees,
so

∑
H∈H c(H) ≤ O(log |P |)c(E∗). We note that while |P | could be as large as Θ(n), we can effectively

assume |P | ≤ 2k as follows. First, we assume E∗ = P ∪i∈[k] (Psi ∪ Pti); these are the only edges used in
junction trees H and constitutes a feasible solution. Then, we can ignore all degree-2 nodes in P : if vi ∈ P
has degree 2 in E∗, we can replace the edges e′ = (vi−1, vi) and e′′ = (vi, vi+1) with an edge e = (vi−1, vi+1)
of cost c(e′) + c(e′′) without changing feasibility of E∗. The only nodes in P that have degree greater than
2 in E∗ are the points ai, bi for i ∈ [k]. Thus we can assume |P | ≤ 2k, and

∑
H∈H c(H) ≤ O(log k)c(E∗).

By Claim 2.5, all terminal pairs are covered by at least one junction tree in H. Therefore, the total
density of junction trees in H is O(log k)c(E∗)/k. An averaging argument shows that there must be at least
one H∗ ∈ H that has density at most O(log k)c(E∗)/k.

3 Finding a good junction tree

In this section we show that there exists an efficient algorithm to find an approximate min-density junction
tree, proving Theorem 1.3 restated below:

Theorem 3.1. Given an instance (G,D) of planar-DSF, there exists an efficient algorithm to obtain a

junction tree of G of density at most O(log3 k) times the optimal junction tree density in G.

We employ an LP-based approach. We consider a natural cut-based LP relaxation for DST with variables
xe ∈ [0, 1] for e ∈ E indicating whether or not e is in the solution. Here, the input is a digraph G = (V,E)
with root r and terminals ti, i ∈ [k].

(DST-LP)

min
∑

e∈E

c(e)xe

s.t.
∑

e∈δ+(S)

xe ≥ 1 ∀S ⊆ V, r ∈ S, ∃i s.t. ti /∈ S

xe ≥ 0 ∀ e ∈ E

We prove the following lemma:

Lemma 3.1. Suppose there exists an α-approximation for DST in planar graphs with respect to the optimal

solution to DST-LP. Then, given a planar-DSF instance (G,D), there exists an efficient algorithm to obtain

a junction tree of G of density at most O(α · log k) times the optimal junction tree density in G.

It was recently shown by [11] that there exists an O(log2 k) approximation for DST in planar graphs
with respect to the optimal solution to DST-LP. Therefore it suffices to prove Lemma 3.1 to prove Theorem
1.3.

Let (G,D) be an instance to planar-DSF. We start by guessing the root r of the junction structure,
as we can repeat this algorithm for each r ∈ V and choose the resulting junction structure of minimum
density. We consider the following LP relaxation for finding the minimum density junction tree rooted at
r. We follow a similar structure to that of DST-LP, with additional variables ysi and yti for each i ∈ [k] to
indicate whether or not si and ti are included in the solution. We ensure that ysi = yti so that the junction
tree includes complete pairs rather than individual terminals. We also change the direction of flow from
each si to the root r. The resulting minimum density would be (

∑
e∈E c(e)xe)/(

∑
i∈[k] yti); we normalize
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∑
i∈[k] yti = 1.

(Den-LP)

min
∑

e∈E

c(e)xe

s.t.
∑

e∈δ+(S)

xe ≥ yti ∀i ∈ [k], ∀S ⊆ V, r ∈ S, ti /∈ S

∑

e∈δ−(S)

xe ≥ ysi ∀i ∈ [k], ∀S ⊆ V, r ∈ S, si /∈ S

ysi = yti ∀i ∈ [k]
∑

i∈[k]

yti = 1

xe, ysi , yti ≥ 0 ∀ e ∈ E, i ∈ [k]

We claim that Den-LP provides a valid lower bound for the optimum density of a junction tree through
r.

Claim 3.1. For any junction tree H of G, there exists a feasible fractional solution (x, y) to Den-LP such

that
∑

e∈E c(e)xe = c(H)/|DH |, where DH is the set of terminal pairs covered by H.

Proof. Let H be any junction tree of G, let DH ⊆ D be the terminal pairs covered by H. Consider (x, y)
given by xe = 1/|DH | if e ∈ H and 0 otherwise, yti = 1/|DH | if (si, ti) ∈ DH and 0 otherwise, and ysi = yti
for all i ∈ [k]. For each (si, ti) ∈ DH , since H contains an si-r path and an r-ti path, x supports a flow of
1/|DH | from si to r and r to ti; thus the first two sets of constraints are satisfied. It is easy to verify that
the rest of the constraints are satisfied and that

∑
e∈E c(e)xe = c(H)/|DH |.

Despite the fact that the LP has exponentially many constraints, it can be solved efficiently via a separation
oracle: suppose we are given a fractional solution (x, y). The first two sets of constraints are satisfied if for
every i ∈ [k], x supports a flow of at least yti from r to ti and a flow of at least ysi from si to r; these can
be checked via min-cut computations. There are only polynomially many remaining constraints; thus these
can be checked in polynomial time. One can also write a compact LP via additional flow variables.

To find a junction tree of G, We first solve Den-LP to obtain an optimal fractional solution (x∗, y∗).
For j = 0, . . . , log k, we let Dj = {(si, ti) ∈ D : yti ∈ ( 1

2j+1 ,
1
2j ]}. We will show that there exists a group

θ ∈ {0, . . . , log k} for which the total y∗ value is large; thus x∗ supports a good fraction of flow from the root
to/from Dθ.

Claim 3.2. There exists θ ∈ {0, . . . , log k} such that
∑

i∈Dθ
yti ≥ 1/(2 log k + 2).

Proof. If (si, ti) ∈ D \ (∪log k
j=0 Dj), then yti ≤

1
2log k+1 = 1

2k . Therefore, the total y value of pairs not covered

by the sets Dj is at most
∑

i/∈∪log k
j=0

Dj
yti ≤ k 1

2k = 1
2 . Since

∑
i∈[k] yti = 1, the total y value of pairs covered

by the sets Dj is at least
∑

i∈∪log k
j=0

Dj
yti ≥

1
2 . Since there are log k+1 disjoint groups, there is a group whose

total y value is at least 1/(2(log k + 1)).

Let θ be given by Claim 3.2. We use the α-approximation algorithm for DST twice: first, we consider
the instance on G with terminal set Dt

θ = {ti : (si, ti) ∈ Dθ} and obtain a directed r-tree Tt. Second, we let
G′ be obtained from G by reversing the direction of all edges. We apply the α-approximation algorithm for
DST on G′ with terminal set Ds

θ = {si : (si, ti) ∈ Dθ} and obtain a directed r-tree Ts in G′. Note that Ts is
a directed in-tree in G; therefore, T = Tt ∪ Ts is a valid junction tree on G and terminal pairs Dθ.

Claim 3.3. 2θ+1x∗ is a feasible solution to DST-LP on both of the following instances:

• G with terminal set Dt
θ,
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• G′ with terminal set Ds
θ.

Proof. We first consider G with terminal set Dt
θ. Fix S ⊆ V , ti ∈ Dt

θ such that r ∈ S, ti /∈ S. Since x∗ is a
feasible solution to Den-LP and i ∈ Dθ,

∑

e∈δ+
G
(S)

2θ+1x∗
e ≥ 2θ+1yti > 2θ+1 1

2θ+1
= 1.

Next, we consider G′ with terminal set Ds
θ, and fix S ⊆ V and si ∈ Ds

θ such that r ∈ S, si /∈ S. Then, using
the fact that ysi = yti for all i, we use the same argument as above:

∑

e∈δ+
G′

(S)

2θ+1x∗
e =

∑

e∈δ−
G
(S)

2θ+1x∗
e ≥ 2θ+1ysi = 2θ+1yti > 2θ+1 1

2θ+1
= 1.

In both cases, all corresponding constraints in DST-LP are satisfied.

Claim 3.4. The density of T is at most O(α log k)
∑

e∈E c(e)x∗
e.

Proof. By Claim 3.3, along with the fact that the DST algorithm used to construct Tt and Ts is an α-
approximation with respect to the optimal fractional solution, the costs of Tt and Ts are each upper bounded
by α2θ+1

∑
e∈E c(e)x∗

e.

To bound the number of terminals covered by T , i.e. |Dθ|, note that
∑

i∈Dθ
yti ≤

∑
i∈Dθ

1/2θ = |Dθ|1/2
θ.

Thus by Claim 3.2, |Dθ| ≥ 2θ
∑

i∈Dθ
yti ≥ 2θ/(2 log k + 2). Therefore, the density of T is at most

c(Tt) + c(Ts)

|Dθ|
≤

2 log k + 2

2θ
(α2θ+2

∑

e∈E

c(e)x∗
e) = 8α(log k + 1)

∑

e∈E

c(e)x∗
e.

Lemma 3.1 follows from Claim 3.4, Claim 3.1, and the fact that T is a valid junction tree.

4 Proof of Theorem 1.1

Theorem 1.2 and Theorem 1.3 suffice to conclude the proof of Theorem 1.1 via a greedy covering approach
that is standard for covering problems such as Set Cover.

Proof. [Proof of Theorem 1.1] Let (G,D) be an instance of planar-DSF. Combining Theorems 1.2 and 1.3,
we can find a junction tree of density at most O(log5 k)OPT(G)/k. Let H1 be such a junction tree on (G,D),
and let D1 be the set of terminal pairs covered by H1. We remove D1 from D and repeat until all terminal
pairs are covered. Since each junction tree covers at least one terminal pair, this process terminates in at
most k iterations. Let H1, . . . , H` be the junction trees formed by this process, and for j ∈ [`], let Dj be the
set of terminals covered by Hj . We denote by D<j the set ∪j′<jDj′ . We then return H = ∪j∈[`]Hj .

It is clear by construction that H is a feasible solution: for each i ∈ [k], there exists some junction tree
Hj that covers (si, ti), and the path in Hj from si to its root concatenated with the path from the root to
ti is an si-ti path in H. To bound the cost of H, note that c(H) ≤

∑
j∈[`] c(Hj) =

∑
j∈[`] |Dj | · density(Hj).

By construction, each Hj has density at most O(log5 kj)OPT(G)/kj , where kj = |D \D<j | is the number of
terminals remaining when constructing Hj . Therefore,

c(H) ≤
∑

j∈[`]

|Dj | ·O(log5 kj)
OPT(G)

|D \D<j |
≤ O(log5 k)OPT(G)

∑

j∈[`]

|D \D<j | − |D \D<j+1|

|D \D<j |
.

The term
∑

j∈[`]
|D\D<j |−|D\D<j+1|

|D\D<j |
is bounded by the k’th harmonic number Hk, thus c(H) is at most

O(log6 k)OPT(G).
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5 Conclusion

Several open questions arise from our work in this paper. It is unlikely that the O(log6 k) approximation ratio
that we obtained is tight. There are no known lower bounds that rule out a constant-factor approximation
for DSF in planar graphs. Closing this gap is a compelling question. Second, can we establish a poly-
logarithmic ratio upper bound on the integrality gap of the natural cut-based LP relaxation for planar-DSF?
Our techniques do not directly generalize to fractional solutions (see Remark 1.2); however, we are hopeful
that other approaches may yield positive results. Another direction for future research is to extend this
work and also the recent work on DST and related problems from planar graphs to any proper minor-closed
family of graphs. Finally, there are several generalizations of DST and DSF that may also admit positive
results in planar graphs.

Acknowledgements: We thank the anonymous reviewers for helpful suggestions and pointers to related
work.
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