

1 **Atomistic Mechanism of Al Substitution Effects on the Pseudo-Proper Typed Ferroelastic**
2 **Post-stishovite Transition by High-Pressure Single-Crystal X-Ray Diffraction**

3 Yanyao Zhang ^{a,b,*}, Stella Chariton ^c, Vitali B. Prakapenka ^c, Takuo Okuchi ^d, Jung-Fu Lin ^{a,*}

4 ^a Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of
5 Texas at Austin, Austin, TX 78712, USA

6 ^b Present address: Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA

7 ^c Center for Advanced Radiation Sources, University of Chicago, IL 60637, USA

8 ^d Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494,
9 Japan

10 * Corresponding authors. E-mail addresses: yanyaozh@stanford.edu (Y. Zhang),
11 afu@jsg.utexas.edu (J.-F. Lin).

12

13 **Abstract**

14 Influence of the Al substitution on the elastic properties of stishovite and its transition to post-
15 stishovite is of great importance in comprehending the seismic wave velocities of subducted
16 mid-ocean ridge basalt (MORB) within the mantle transition zone and the lower mantle.
17 However, Al effects on the transition mechanism and elasticity remain much debated due to the
18 lack of reliable information about atomic positions and crystal structures across the post-
19 stishovite transition. Here synchrotron single-crystal X-ray diffraction (SCXRD) has been
20 performed on Al1.3-SiO₂ (1.3 mol% Al) and Al2.1-SiO₂ (2.1 mol% Al) crystals in diamond anvil
21 cells with Boehler-Almax designed anvils up to ~41 GPa at 300 K. Refinements of SCXRD
22 spectra show that a phase transition from stishovite (space group *P4₂/mnm*; No. 136) to CaCl₂-
23 typed post-stishovite (space group *Pnnm*; No. 58) occurs between 20.4-22.5 GPa in the Al1.3-
24 SiO₂ crystal and 14.3-16.4 GPa in the Al2.1-SiO₂ crystal. The post-stishovite transition is
25 accompanied by splitting of O coordinates, crossover of apical and equatorial (Si,Al)-O bond
26 lengths, and vanishing of (Si,Al)O₆ octahedral distortion. The Al substitution in stishovite results
27 in a faster decrease in the O coordinate, stiffer apical but softer equatorial (Si,Al)-O bond, and a
28 less distorted (Si,Al)O₆ octahedron under pressure. The correlation between the crossover of the

29 (Si,Al)-O bond lengths and post-stishovite transition, together with complimentary optic modes
30 and spontaneous strains, support the notion that the Al1.3-SiO₂ and Al2.1-SiO₂ crystals undergo
31 a pseudo-proper typed ferroelastic post-stishovite transition. The reduction in elastic moduli and
32 sound velocities with the Al substitution in stishovite may be attributed to decreased O
33 coordinates, softer apical (Si,Al)-O₃ bonds, and less distorted (Si,Al)O₆ octahedra at high
34 pressure. Correlation between elasticity from Landau modeling and (Si,Al)-O bond length
35 difference from this study reveals that at a constant degree of (Si,Al)O₆ octahedral distortion, the
36 Al substitution results in lower elastic moduli and sound velocities, which in turn aids in our
37 understanding of seismic properties of MORB in the deep mantle.

38

39 **Keywords:** Al-bearing stishovite, single-crystal X-ray diffraction, pseudo-proper typed
40 ferroelastic transition, post-stishovite, lower-mantle seismic scatterers, elasticity

41

42 **Running title:** Atomistic Mechanism of Aluminum-Bearing Post-Stishovite Transition

43

44 **Introduction**

45 Stishovite is expected to be an abundant component in subducted mid-ocean ridge basalt
46 (MORB) in the mantle transition zone and the lower mantle (Hirose et al. 1999; Litasov and
47 Ohtani 2005; Ishii et al. 2019). Previous experimental studies have shown that in a MORB
48 composition, stishovite can accommodate up to 4 mol% Al in its structure mainly through charge-
49 coupled substitutions of $\text{Al}^{3+} + \text{H}^+ = \text{Si}^{4+}$ and $2\text{Al}^{3+} + V_{\text{O}}^{2+}$ (oxygen vacancy) = 2Si^{4+} (Pawley et
50 al. 1993; Litasov et al. 2007). The Al substitution can affect the elastic properties of stishovite
51 and post-stishovite transition, which are of great importance in understanding seismic wave
52 properties of subducting MORB in the deep Earth. Specifically, previous X-ray diffraction
53 studies have shown that 0.7-2.1 mol% Al substitution can reduce the density of stishovite by
54 ~0.2-1.2% at 15 GPa (Ono et al. 2002; Lakshtanov et al. 2005; Zhang et al. 2022; Criniti et al.
55 2023). Previous ultrasonic data have shown that 1.3 mol% Al substitution reduces the shear wave
56 velocity (V_S) and compressional wave velocity (V_P) of stishovite by ~4.1% and ~3.5%,

57 respectively, at 18.4 GPa and 1700 K (Gréaux et al. 2016). These findings have been used to
58 interpret the negative sound velocity perturbation in the mantle transition zone (Simmons and
59 Gurrola 2000; Tauzin et al. 2013; Gréaux et al. 2016).

60

61 Of particular interest in deep-mantle seismology is the role of Al dissolution on the velocity
62 reductions across the post-stishovite transition (Lakshtanov et al. 2005, 2007b; Bolfan-Casanova
63 et al. 2009; Umemoto et al. 2016; Zhang et al. 2022; Criniti et al. 2023). Al-bearing stishovite
64 transforms into a CaCl_2 -typed post-stishovite phase with the transition pressure ranging from 50-
65 55 GPa in Al-free stishovite to 16-24 GPa in stishovite with approximately 1.3-2.4 mol% Al
66 (Andrault et al. 1998; Lakshtanov et al. 2007b; Bolfan-Casanova et al. 2009; Zhang et al. 2022).
67 That is, Al substitution in stishovite can significantly lower the post-stishovite transition
68 pressure. Although the sound velocity across the Al-dependent transition has not been
69 experimentally measured, the Al effect on the post-stishovite transition mechanism is the key to
70 shed light on the elasticity across the transition (Carpenter et al. 2000; Umemoto et al. 2016;
71 Zhang et al. 2021, 2022; Criniti et al. 2023). Previous works on the high-pressure Raman optic
72 modes and spontaneous strains of stishovite crystals with 1.3, 2.1, and 2.4 mol% Al (denoted as
73 Al1.3-SiO_2 , Al2.1-SiO_2 , and Al2.4-SiO_2) have shown that the Raman shifts of B_{1g} and A_{1g} modes
74 change linearly with symmetry-breaking strain (e_1-e_2), indicating a pseudo-proper typed
75 ferroelastic transition. This observation is consistent with the transition mechanism in the pure-
76 endmember stishovite (Lakshtanov et al. 2007b; Zhang et al. 2022). Landau modeling on this
77 type of transition further shows a maximum V_s reduction of ~29 % in the Al1.3-SiO_2 and Al2.1-
78 SiO_2 crystals, which has been used to explain small-scale negative V_s anomalies beneath
79 subduction region in the upper part of the lower mantle (Niu et al. 2003; Kaneshima 2016, 2019;
80 Zhang et al. 2022). However, a recent study on the Al1.7-SiO_2 crystal has shown that after the
81 post-stishovite transition at ~16 GPa, the B_{1g} mode continues to soften up to ~20 GPa and then
82 flattens up to ~30 GPa (Criniti et al. 2023). This leads to a non-linear coupling or a decoupling
83 between the soft optic mode and the spontaneous strain, and thus, the transition is not classified
84 as a pseudo-proper type. This discrepancy may be due to the peak identification of the B_{1g} or A_{1g}
85 mode in Raman spectra or the use of twinned crystals in the experiments. Unlike Lakshtanov et
86 al. (2007b) and Zhang et al. (2022), where only one dominant peak was observed in the Raman

87 shift region of the B_{1g} or A_{1g} mode at high pressure, Criniti et al. (2023) observed 3-4 intense
88 peaks in the region of 180-230 cm⁻¹ at 14.8-38.1 GPa such that the optic mode identification
89 became challenging.

90

91 High-pressure SCXRD data with refined atomic positions, bond lengths, and bond angles are
92 well documented in pure-endmember stishovite and post-stishovite (Sugiyama et al. 1987; Ross
93 et al. 1990; Yamanaka et al. 2002; Zhang et al. 2023). In pure-endmember stishovite, the oxygen
94 position and bond angles change little (< 1.3%) with increasing pressure up to ~51.4 GPa.
95 Importantly, apical Si-O bond is initially longer than the equatorial Si-O bond, and due to
96 different compressibility, their bond lengths cross over at ~51.4 GPa where a pseudo-proper
97 typed transition occurs (Zhang et al. 2023). Refinement of SCXRD data on Al0.6-SiO₂ and
98 Al1.7-SiO₂ crystals at ambient conditions shows minimal changes in atomic positions and slight
99 alterations in bond lengths and bond angles within data uncertainties (Smyth et al. 1995; Criniti
100 et al. 2023). In the Al1.7-SiO₂ crystal, the Al substitution shifts the transition down to ~16 GPa,
101 but the trend and slope of (Si,Al)-O bond lengths and the crossover pressure are similar to those
102 in pure-endmember SiO₂ (Criniti et al. 2023). Because the crossover of two Si-O bond lengths
103 can be correlated to the vanishing of shear modulus ($C_{11}-C_{12}$) (Zhang et al. 2021, 2023), the
104 Al1.7-SiO₂ crystal would have a shear softening at ~51 GPa. This conclusion is inconsistent with
105 the shear softening pressure reported in other Al-bearing single crystals in literatures
106 (Lakshtanov et al. 2007b; Zhang et al. 2022). This discrepancy likely results from the severe
107 twinning in the Al1.7-SiO₂ crystal throughout the transition and in the post-stishovite phase,
108 which is indicated from both Raman spectra, where multiple peaks were observed for the B_{1g} or
109 A_{1g} mode as mentioned earlier, and SCXRD data, where multiple lattices with different
110 crystallographic orientations were found (Criniti et al. 2023). Because the peak position of the
111 B_{1g} or A_{1g} mode is sensitive to the Al content (Kingma et al. 1995; Lakshtanov et al. 2007a;
112 Zhang et al. 2022), different Raman peak positions mean that each twin component may have
113 different Al contents, and thus, different compressional behaviors at high pressure. Also, each
114 twin component undergoes deformation due to not only quasi-hydrostatic compression from the
115 pressure medium and but also additional stress from other twin components, potentially affecting
116 the high-pressure SCXRD data (Parsons 2003). To overcome these issues and gain a better

117 understanding of the transition mechanism and elastic properties, one needs to conduct SCXRD
118 experiments on high-quality Al-bearing stishovite crystals without apparent twinning to obtain
119 high-quality structural refinement results. The combination of high-quality crystallographic
120 information, together with Raman optic mode, spontaneous strains, and elasticity, can help
121 unravel the effects of Al on the transition mechanism and elastic properties across the post-
122 stishovite transition.

123

124 In this study, synchrotron SCXRD experiments have been conducted on high-quality Al1.3-SiO₂
125 and Al2.1-SiO₂ crystals up to 41.4 GPa and 41.1 GPa, respectively, using Boehler-Almax
126 designed anvils in diamond anvil cells (DACs). Refinements of high-pressure SCXRD data show
127 space group, atomistic, and octahedral parameters of these crystals at high pressure. The Al1.3-
128 SiO₂ and Al2.1-SiO₂ crystals underwent stishovite (space group *P4₂/nnm*) to CaCl₂-typed post-
129 stishovite (space group *Pnnm*) transition between 20.4-22.5 GPa and 14.3-16.4 GPa,
130 respectively, where O coordinates split, apical and equatorial (Si,Al)-O bond lengths cross over,
131 and (Si,Al)O₆ octahedral distortion vanishes. The Al substitution results in a more rapid
132 reduction in the O coordinate, stiffer apical (Si,Al)-O bond but softer equatorial (Si,Al)-O bond,
133 and a less distorted (Si,Al)O₆ octahedron at high pressure. Together with complimentary optical
134 Raman data, these Al-dependent atomistic and octahedral parameters are used to understand the
135 transition mechanism and elastic properties, including elastic modulus (C_{ij}), adiabatic bulk and
136 shear modulus (K_S and G), and sound velocities (V_S and V_P), across the post-stishovite transition.

137

138 **Experimental details**

139 Al-bearing stishovite crystals were synthesized using both 5000-ton and 1000-ton Kawai-type
140 multi-anvil apparatus with run # 5K3302 and 1K2965, respectively, at the Institute for Planetary
141 Materials at Okayama University. Details of sample synthesis and characterization can be found
142 in Zhang et al. (2022). Briefly, run # 5K3302 was synthesized at 20 GPa and 1973 K for 16.5
143 hours while run # 1K2965 was synthesized at 19.2 GPa and 1973 K for 7 hours. Qualitative
144 chemical mappings on selected large crystals using a scanning electron microscopy with energy
145 dispersive X-ray spectroscopy (SEM/EDS) have shown that Si, Al, and O elements distribute

146 homogeneously throughout the crystals. Further quantitative chemical analysis using a JEOL
147 Electron Microprobe (EPMA) have shown that the crystals contain 3.43(6) wt% Al_2O_3 (1.34(2)
148 mol% Al; denoted as Al1.3- SiO_2) in run # 5K3302 and 5.37(4) wt% Al_2O_3 in run # 1K2965
149 (2.10(2) mol% Al; denoted as Al2.1- SiO_2). Water contents were estimated to be 0.25(5) wt%
150 H_2O (0.55(11) mol% H) in Al1.3- SiO_2 and 0.27(5) wt% H_2O (0.59(11) mol% H) in Al2.1- SiO_2
151 using an unpolarized Fourier-transform infrared spectroscopy (FTIR). Analysis of synchrotron
152 SCXRD data at ambient shows a tetragonal structure with the $P4_2/mnm$ space group (No. 136)
153 for these crystals (Table 1).

154

155 Short-symmetric DACs equipped with 300 μm Boehler-Almax designed diamond anvils and
156 tungsten-carbide seats with a large aperture of $\sim 80^\circ$ (40) were used in the high-pressure SCXRD
157 measurements. A piece of 260 μm thick rhenium gasket was pre-indented to $\sim 35 \mu\text{m}$ thick, and a
158 hole with a diameter of 190 μm was drilled in the center of the pre-indented area to serve as a
159 sample chamber. To obtain sufficient deflection data for reliable refinements of crystal structures
160 at high pressure, we double-side polished two Al1.3- SiO_2 crystals with (3.2, -2.3, -0.9) and (1.9, -
161 3.1, 1.4) orientations and three Al2.1- SiO_2 crystals with (2.7, -0.0, 0.1), (1.6, 3.8, 0.4), and (3.4, -
162 0.6, 1.6) orientations down to 10-15 μm and cut them to approximately 20 by 30 μm big. These
163 two batches of crystals were loaded into the sample chamber of a DAC separately, together with
164 platinum (Pt) and ruby as pressure calibrants. Ruby was used to determine pressure after gas
165 loading while Pt was used to measure pressure during in situ SCXRD measurements. Two Al1.3-
166 SiO_2 crystals or three Al2.1- SiO_2 crystals were placed at an equal distance to Pt to minimize the
167 stress difference across the crystals (Fig. 1). Neon was finally loaded into the chamber up to
168 21,000 Psi as a pressure medium in the Mineral Physics Laboratory at the University of Texas at
169 Austin. The pressure after neon loading was measured by shifts of the fluorescence peak of ruby
170 (Dewaele et al. 2008).

171

172 High-pressure synchrotron SCXRD experiments were performed on the Al1.3- SiO_2 and Al2.1-
173 SiO_2 crystals at the beamline 13ID-D of the GSECARS, Advanced Photon Source, Argonne
174 National Laboratory. An incident X-ray beam with 0.2952 \AA wavelength and 10% intensity was
175 focused on 3 by 3 μm areas of each crystal. The sample stage was rotated over $\pm 33^\circ$ about its

176 vertical axis. XRD frames were collected 1 or 2 s at every 0.5° of the rotation by a CdTe Pilatus
177 1 M detector. The total number of frames is 132 for each crystal. A membrane setup was used to
178 control pressure in DAC which was determined by the unit-cell volume of Pt based on its
179 equation of state (EoS) parameters (Fei et al. 2007). The SCXRD data were collected every 2-3
180 GPa up to 41.4 GPa for Al1.3-SiO₂ and up to 41.1 GPa for Al2.1-SiO₂ crystals. Together with the
181 use of the Bohler-Almax anvils with an opening (4θ) of ~80°, the experimental setup allowed us
182 to obtain more reflection spots especially with small *d*-spacings and to avoid intensity saturations
183 of the spots.

184

185 We followed the same procedure as Zhang et al. (2022a) to resolve and refine crystal structures.
186 To begin with, CrysAlisPRO software was used to find a proper unit cell, calculate unit-cell
187 parameters, determine intensity for each *hkl* reflection, and then correct for absorption using the
188 SCALE3 ABSPACK scaling algorithm for each crystal (Rigaku 2015). Subsequently, two
189 datasets of Al1.3-SiO₂ or 3 datasets of Al2.1-SiO₂ crystals were then combined at each given
190 pressure as an input for the structural analysis using JANA software (Petrícek et al. 2014). The
191 space group and crystal structure of the samples were determined using a charge-flipping
192 algorithm (Petrícek et al. 2014). Site occupancies of Si and Al were fixed to be 0.960 Si and
193 0.040 Al for the Al1.3-SiO₂ crystal and 0.937 Si and 0.063 Al for the Al2.1-SiO₂ crystal based on
194 the EPMA analysis results (Zhang et al. 2022). The H atom was not included in the structural
195 refinement due to its low concentration and small atomic scattering factor (i.e., low diffracting
196 power). Eventually, the atomic coordinates and isotropic/anisotropic displacement parameters
197 were refined, and the quality of the refinements were evaluated by three residual *R*-factors (R_{int} ,
198 R_1 , and R_2 ; Table 1). Refined structural parameters, including bond lengths, bond angles, and
199 polyhedral parameters, were measured and calculated using VESTA software (Momma and
200 Izumi 2011). The Crystallographic Information Framework (CIF) files for both Al1.3-SiO₂ and
201 Al2.1-SiO₂ crystals at different pressures can be found in supplementary materials.

202

203 **Results**

204 **Structural refinement**

205 Analysis of raw SCXRD patterns show a range of 66-439 total reflections for the Al1.3-SiO₂
206 crystal and 106-423 total reflections for the Al2.1-SiO₂ crystal at high pressure (Figs. 1a and 1b).
207 These reflection spots exhibit a circular shape and their full-width at half maximum (FWHM)
208 remains unchanged between 0.04-0.09° under pressures up to ~41 GPa in both Al1.3-SiO₂ and
209 Al2.1-SiO₂ crystals (Fig. 1c), indicating that the remarkable single-crystal quality remains
210 unaltered throughout the compression (Zhang et al. 2023). The original reflections were
211 subsequently categorized into 31-66 and 40-64 unique reflections for the Al1.3-SiO₂ and Al2.1-
212 SiO₂ crystal, respectively, which were used to calculate lattice parameters under high pressure
213 (Table 1). The R_{int} values were obtained to be in a range of 1.3-13.8 %, indicating a good quality
214 of our derived lattice parameters (Table 1). Analysis of lattice parameters at high pressure shows
215 that a axis splits into a and b axis at ~16.1 GPa in Al1.3-SiO₂ and ~21.1 GPa in Al2.1-SiO₂,
216 while the length of c axis and unit-cell volume decrease continuously throughout the
217 compression (Fig. S1). Based on the Birch-Murnaghan EoS fitting of the data, the ambient
218 isothermal bulk modulus ($K_{\text{T}0}$) and its first-order pressure derivative ($K_{\text{T}0}'$) for Al-bearing
219 stishovite were derived to be $K_{\text{T}0} = 301(2)$ GPa and $K_{\text{T}0}' = 4$ (fixed) for Al1.3-SiO₂ and $K_{\text{T}0} =$
220 292(2) GPa and $K_{\text{T}0}' = 4$ (fixed) for Al2.1-SiO₂ (Table S1) (Angel 2000). These results are
221 consistent with the published high-pressure lattice parameters and EoS parameters for the Al-
222 bearing stishovite (Zhang et al. 2022).

223

224 To further determine the crystal's space group, a subset of 27-45 and 31-70 reflections, where the
225 intensity (I) exceeds three times the standard deviation (σ) of the intensity (i.e., $I > 3\sigma(I)$), were
226 selected for the Al1.3-SiO₂ and Al2.1-SiO₂ crystals, respectively. The Al1.3-SiO₂ and Al2.1-SiO₂
227 crystals maintain a tetragonal structure with the $P4_2/mnm$ space group (No. 136) up to 20.4 and
228 14.3 GPa, whereas they adopt an orthorhombic structure with the $Pnnm$ space group (No. 58)
229 above 22.5 and 16.4 GPa, respectively (Fig. 2). Thus, the stishovite-to-post-stishovite transition
230 occurs at 20.4-22.5 GPa in the Al1.3-SiO₂ crystal and at 14.3-16.4 GPa in the Al2.1-SiO₂ crystal,
231 consistent with previous transition pressures determined by Raman and XRD analyses on the
232 same crystals (Zhang et al. 2022). The refined symmetries of both stishovite and post-stishovite
233 phases mean that the Si or Al atoms are located at (0, 0, 0) and the O atoms are located at (O_x,
234 O_y, 0). The coordinates O_x and O_y, together with isotropic/anisotropic displacement parameters

235 of all atoms, were further refined until the R_1 and R_2 values reached the minimal. The final R_1
236 and R_2 values are in a range of 4.8-11.6 % and 5.6-14.7 %, respectively, indicating a good quality
237 of our refined structural models (Table 1).

238

239 Atomistic parameters

240 Analysis of refined oxygen coordinates shows that $Ox(y)$ in the stishovite structure decreases
241 monotonically from 0.3067(3) at ambient pressure to 0.3021(9) at 20.4 GPa for Al1.3-SiO₂ and
242 from 0.3066(5) at ambient pressure to 0.3026(7) at 14.3 GPa for Al2.1-SiO₂ (Figs. 3a and 3d).
243 Across into the post-stishovite phase, the oxygen coordinate splits into Ox and Oy , indicating a
244 symmetry breaking from tetragonal to orthorhombic structure (Andrault et al. 1998). Oy
245 increases to 0.3143(10) and Ox decreases to 0.2813(9) at 41.4 GPa in the Al1.3-SiO₂ crystal,
246 while Oy increases to ~0.313 at ~27 GPa and becomes unchanged up to 41.1 GPa and Ox
247 decreases to 0.2803(17) at 41.1 GPa in the Al2.1-SiO₂ crystal.

248

249 The obtained atomic positions, together with lattice parameters, can be used to calculate bond
250 lengths and bond angles based on the symmetry and geometry of the crystal structure at given
251 pressure. As the Al1.3-SiO₂ crystal is compressed from ambient pressure to 41.4 GPa, the mean
252 bond length of apical (Si,Al)-O3 bonds decreases significantly from 1.820(1) Å to 1.699(4) Å
253 while that of equatorial (Si,Al)-O1(2) bonds decreases gently from 1.761(1) to 1.736(3), resulting
254 in a crossover of two bond lengths at ~21 GPa (Figs. 3b and 3e). Similarly, the significant
255 decrease of apical (Si,Al)-O3 bond length and gentle decrease of equatorial (Si,Al)-O1(2) bond
256 lead to a crossover of two bond lengths at ~17 GPa in the Al2.1-SiO₂ crystal. On the other hand,
257 the mean bond angle of $\angle(Si,Al)-O3-(Si,Al)$ in the stishovite phase increases as the pressure
258 increases, going from 130.65(4)° at ambient pressure to 130.99(10)° at 20.4 GPa for Al1.3-SiO₂
259 and from 130.70(6)° at ambient pressure to 130.96(8)° at 14.3 GPa for Al2.1-SiO₂ (Figs. 3c and
260 3f). After the post-stishovite transition, this angle exhibits a gradual increase, reaching
261 131.04(11)° at 41.4 GPa for Al1.3-SiO₂ and 131.26(15)° at 41.4 GPa for Al2.1-SiO₂. However,
262 $\angle O1-(Si,Al)-O1$ behaves inversely under pressure, decreasing from 98.71(7)° at ambient
263 pressure to 98.02(19)° at 20.4 GPa for Al1.3-SiO₂ and from 98.60(11)° at ambient pressure to

264 98.08(15) at 14.3 GPa for Al2.1-SiO₂. In the post-stishovite phase, this decrease accelerates,
265 reaching 96.98(19)° at 41.4 GPa for Al1.3-SiO₂ and 96.60(40)° at 41.1 GPa for Al2.1-SiO₂.
266 Finally, \angle O1-(Si,Al)-O3 is constrained to be 90° by the symmetry of tetragonal stishovite, while
267 it changes little (<0.5°) up to ~41 GPa in the post-stishovite phase for both Al1.3-SiO₂ and Al2.1-
268 SiO₂.

269

270 (Si,Al)O₆ octahedron

271 The refined atomic positions can also be used to determine the behavior of the (Si,Al)O₆
272 octahedron, a basic structural unit in the Al-bearing stishovite and post-stishovite structures (Fig.
273 4). The mean volume of the (Si,Al)O₆ octahedron (V_{oct}) decreases continuously from 7.439(7) Å³
274 at ambient conditions to 6.775(22) Å³ at 41.4 GPa for Al1.3-SiO₂ and 7.471(12) Å³ at ambient
275 conditions to 6.833(35) Å³ at 41.1 GPa for Al2.1-SiO₂ (Figs. 4a and 4d). This observation,
276 together with a continuous volume change across the transition (Fig. S1), indicates a second-
277 order characteristic of the Al-bearing post-stishovite transition (Carpenter et al. 2000).

278

279 The deformation of the (Si,Al)O₆ octahedron can be evaluated by distortion index (D) and bond
280 angle variance (σ^2), which describe the deviation from an ideal octahedral geometry with respect
281 to its bond length and bond angle, respectively. D can be calculated by a formula of $D(\%) =$
282 $\frac{100}{6} \sum_{i=1}^6 |l_i - l_{\text{avg}}| / l_{\text{avg}}$, where l_i is the i^{th} mean (Si,Al)-O bond length in an octahedron and l_{avg}
283 is the average of six mean (Si,Al)-O bond length in an octahedron (Renner and Lehmann 1986).
284 The D value of both Al1.3-SiO₂ and Al2.1-SiO₂ crystals decreases from ~1.5% at ambient
285 conditions to zero at transition pressure (Figs. 4b and 4e), indicating that the (Si,Al)O₆
286 octahedron becomes less distorted under compression in the stishovite phase. Across into the
287 post-stishovite phase, D increases monotonously with increasing pressure up to 0.956(3)% at
288 41.4 GPa for Al1.3-SiO₂ and 1.291(7)% at 41.1 GPa for Al2.1-SiO₂, indicating that the (Si,Al)O₆
289 octahedron becomes more distorted under compression in the post-stishovite phase. On the other
290 hand, σ^2 can be calculated by $\sigma^2(\text{deg}^2) = \frac{1}{11} \sum_{i=1}^{12} (\alpha_i - 90^\circ)^2$, where α_i is the i^{th} mean \angle O-
291 (Si,Al)-O in an octahedron (Robinson et al. 1971). The σ^2 value decreases from 27.56(3) deg² at

292 ambient pressure to 23.36(7) deg^2 at 20.4 GPa for Al1.3-SiO₂ and from 26.92(4) deg^2 at ambient
293 pressure to 23.72(5) deg^2 at 14.3 GPa for Al2.1-SiO₂. Across into the post-stishovite phase, σ^2
294 decreases faster down to 17.72(6) deg^2 at 41.4 GPa for Al1.3-SiO₂ and to 15.76(8) deg^2 at 41.1
295 GPa for Al2.1-SiO₂. This means that the angle distortion in the (Si,Al)O₆ octahedron diminishes
296 under pressure and this diminishing becomes faster in the post-stishovite phase.

297

298 As the tetragonal symmetry starts to breaks down into the orthorhombic structure, the (Si,Al)O₆
299 octahedron rotates about the *c* axis in the post-stishovite phase (Fig. S2). The mean rotation
300 angle, Φ , can be calculated by $\Phi(\text{°}) = 45^\circ - \arctan(a \cdot 0x/b/0y)$ (Range et al. 1987; Zhang et
301 al. 2023). The Φ value increases significantly up to $\sim 2.5^\circ$ at ~ 30 GPa and ~ 23 GPa for the Al1.3-
302 SiO₂ and Al2.1-SiO₂ crystal, respectively, and then gradually increases up to $\sim 4^\circ$ at ~ 41 GPa for
303 both crystals (Fig. S2). This nonlinear increase under pressure results from a nonlinear pressure
304 dependence of the Raman shift of the A_g mode which represents a rotational vibration of O in the
305 (Si,Al)O₆ octahedron about the *c* axis (Hemley et al. 1986).

306

307 **Discussion**

308 To better understand the Al substitution effects on the post-stishovite transition, we compare
309 atomistic and octahedral parameters of Al-bearing stishovite with those of pure-endmember
310 stishovite by Zhang et al. (2023). In this section, we first fit high-pressure atomistic and
311 octahedral data using an EoS or a linear function. This allows us to obtain compressibility or
312 pressure-dependent behavior of these parameters. Subsequently, we discuss the influence of Al
313 substitution on both atomistic and octahedral parameters as well as their high-pressure behaviors.
314 Finally, we compare our results to previous crystallographic data on Al-bearing stishovite to gain
315 further insights on the post-stishovite transition mechanism.

316

317 **Equations of state and axial incompressibility fitting**

318 Our high-pressure crystallographic data are further evaluated using the Birch-Murnaghan EoS
319 for V_{oct} , an axial EoS for mean (Si,Al)-O bond lengths, and a linear function for atomistic and

320 octahedral parameters (Tables 4 and S2). First, the third-order Birch-Murnaghan EoS can be
321 expressed as

$$P = (1 + 2f_{oct})^{2.5} [3K_{0,oct}f_{oct} + 4.5K_{0,oct}(K'_{0,oct} - 4)f_{oct}^2] \quad (1)$$

322 where f_{oct} is the Eulerian finite strain, $f_{oct} = [(V_{0,oct}/V_{oct})^{2/3} - 1]/2$; $V_{0,oct}$, $K_{0,oct}$, and $K'_{0,oct}$
323 are the volume, bulk modulus, and its first-order pressure derivative of the (Si,Al)O₆ octahedron
324 (Birch 1947; Angel 2000). The obtained EoS parameters of Al-bearing stishovite are $K_{0,oct} =$
325 351(2) GPa and $K'_{0,oct} = 4$ (fixed) for the Al1.3-SiO₂ crystal and $K_{0,oct} = 357(2)$ GPa and $K'_{0,oct} =$
326 4 (fixed) for the Al2.1-SiO₂ crystal (Table 4). Additionally, an axial third-order EoS is used to fit
327 the mean (Si,Al)-O bond length data (l) at high pressure,

$$P = (1 - 2f_l)^{2.5} [-K_{0,l}f_l + 0.5K_{0,l}(K'_{0,l} - 4)f_l^2] \quad (2)$$

328 where f_l is the axial finite strain, $f_l = [1 - (l_0/l)^2]/2$; l_0 , $K_{0,l}$, and $K'_{0,l}$ are the bond length,
329 linear modulus, and its first-order pressure derivative at ambient conditions (Birch 1947; Angel
330 2000). The fitting yields $K_{0,(Si,Al)-O3} = 404(9)$ GPa and $K_{0,(Si,Al)-O1(2)} = 2561(52)$ GPa for the
331 Al1.3-SiO₂ crystal and $K_{0,(Si,Al)-O3} = 368(18)$ GPa and $K_{0,(Si,Al)-O1(2)} = 4007(165)$ GPa for the
332 Al2.1-SiO₂ crystal, when their $K'_{0,l}$ are fixed as 12 (Table 4). Finally, some atomistic and
333 octahedral parameters of Al-bearing stishovite phase are fitted using a linear function in a form
334 of $M = a_0 + a_1 * P$, where M is the oxygen coordinate, bond angle, distortion index, or bond angle
335 variance; a_0 and a_1 are fitted coefficients which are listed in Table S2.

336

337 **Al substitution effects on atomistic parameters**

338 Comparison between our results and previous data on pure stishovite shows that 2.1 mol % Al
339 substitution in stishovite leads to Ox(y), \angle (Si,Al)-O3-(Si,Al), and \angle O1-(Si,Al)-O1 change of
340 only \sim 0.04%, \sim 0.06%, and \sim 0.13%, respectively, at ambient conditions (Smyth et al. 1995;
341 Criniti et al. 2023; Zhang et al. 2023). This indicates that the influence of Al substitution on the
342 oxygen coordinate and bond angle are rather insignificant (Fig. 5a). Moreover, the 2.1 mol% Al
343 substitution increases apical (Si,Al)-O3 bond length by \sim 0.8% and equatorial (Si,Al)-O1(2) bond
344 length by \sim 0.5% (Fig. 5b), leading to a larger Al-bearing octahedron and thus a larger unit cell in
345 Al-bearing stishovite compared to that in pure-endmember stishovite (Fig. S1). On the other

346 hand, the Al effects on the slope of these parameters under pressure are more prominent. $Ox(y)$
347 and $\angle O1-(Si,Al)-O1$ decrease faster whereas $\angle (Si,Al)-O3-(Si,Al)$ increases faster under
348 pressure in Al-bearing stishovite than pure-endmember stishovite (Figs. 5d and 5f). Importantly,
349 the equatorial $(Si,Al)-O1(2)$ bond becomes stiffer whereas the apical $(Si,Al)-O3$ bond becomes
350 softer with the Al substitution (Fig. 5e). Specifically, $K_{0,(Si,Al)-O1(2)}$ is 2.69 times larger whereas
351 $K_{0,(Si,Al)-O3}$ is 1.69 times smaller in the Al2.1-SiO₂ crystal than in pure-endmember stishovite
352 (Zhang et al. 2023). This leads to the crossover of two bond lengths at lower pressure in Al-
353 bearing stishovite.

354

355 **Al effects on SiO₆ octahedral geometry**

356 The Al-dependent bond lengths and bond angles can result in Al-dependent octahedral
357 parameters (Fig. 6). The $(Si,Al)O_6$ octahedron volume, V_{oct} , increases with Al substitution mainly
358 due to increased epical and equatorial $(Si,Al)-O$ bond lengths in Al-bearing stishovite (Fig. 6a).
359 The bulk modulus, $K_{0,oct}$, decreases by only ~2 % with 2.1 mol% Al substitution, meaning that
360 the Al substitution slightly increases the compressibility of the $(Si,Al)O_6$ octahedron at high
361 pressure (Fig. 6d). Moreover, the distortion index, D , of the Al1.3-SiO₂ and Al2.1-SiO₂ crystals
362 is ~15-16 % larger than that of pure-endmember stishovite at ambient conditions, indicating that
363 an Al-bearing $(Si,Al)O_6$ octahedron is more distorted than a pure SiO₆ octahedron (Fig. 6b). At
364 high pressure, D decreases faster with the Al substitution because of the stiffer $(Si,Al)-O1(2)$
365 bond and the softer apical $(Si,Al)-O3$ bond, leading to vanishing of bond length distortion in the
366 $(Si,Al)O_6$ octahedron at lower pressure (Fig. 6e). Additionally, the angle variance, σ^2 , of the
367 Al1.3-SiO₂ and Al2.1-SiO₂ crystals decreases slightly with the Al substitution at ambient
368 conditions (Fig. 6c). It decreases under pressure in Al-bearing stishovite while remains
369 unchanged in pure-endmember stishovite (Fig. 6f). This indicates that the Al substitution leads to
370 bond angles more regular in the Al-bearing $(Si,Al)O_6$ octahedron.

371

372 **Comparison to previous studies**

373 The atomistic and octahedral parameters of the Al1.3-SiO₂ and Al2.1-SiO₂ crystals at ambient
374 conditions are compared with those in the literature (Figs. 4 and 5) (Smyth et al. 1995; Criniti et
375 al. 2023; Zhang et al. 2023). However, our refined high-pressure data are not consistent with that
376 of the Al1.7-SiO₂ crystal in Criniti et al. (2023). Unlike our refined structural data which show
377 apparent Al effects at high pressure, the trends and slopes of atomistic and octahedral parameters
378 of their Al1.7-SiO₂ crystal under pressure are similar to those of pure-endmember stishovite,
379 except for $K_{0,oct}$ and the splitting of the O coordinates. $K_{0,oct}$ of the Al1.7-SiO₂ crystal is ~11%
380 lower while the splitting of the O coordinates is smaller than that of our crystals, although the
381 Al1.7-SiO₂ crystal has Al content between our two crystals. This discrepancy could be due to
382 different Al contents in different twinning components that can affect the compressional behavior
383 of the crystal.

384

385 **Implications**

386 **Atomistic understanding of Al substitutional effects on the elasticity of stishovite**

387 Our SCXRD studies reveal Al effects on the atomistic and octahedral parameters which can help
388 understand Al effects on density, bulk modulus, shear modulus, and sound velocities of
389 stishovite. Previous studies have shown that the Al substitution can reduce the density of
390 stishovite at the rate of ~0.02 g·cm⁻³/mol% at ambient conditions (Smyth et al. 1995; Ono et al.
391 2002; Lakshtanov et al. 2007a; Litasov et al. 2007; Zhang et al. 2021, 2022; Criniti et al. 2023).
392 This can be explained by increased apical and equatorial (Si,Al)-O bond lengths and increased
393 V_{oct} in Al-bearing stishovite. Moreover, the 1.7% Al substitution can reduce the bulk and shear
394 modulus by 6.3 or 12.6% and 3.2 or 14.9%, respectively, based on previous Brillouin or
395 ultrasonic studies (Lakshtanov et al. 2007a; Gréaux et al. 2016). The reduction in bulk modulus
396 could be caused by the decrease in both linear modulus of (Si,Al)-O₃ bond length and O
397 coordinates with the Al substitution. The reduction in shear modulus could be attributed to a
398 more rapid decrease of the (Si,Al)-O bond length difference under pressure as a result from a
399 stiffer equatorial (Si,Al)-O₁₍₂₎ and a softer apical (Si,Al)-O₃ bond. Specifically, the bond length
400 difference can be correlated with shear modulus along [110] direction, $(C_{11}-C_{12})/2$, in the
401 stishovite structure (Zhang et al. 2023). That is, $(C_{11}-C_{12})/2$ decreases as the bond length
402 difference decreases. The more rapid decrease of the (Si,Al)-O bond length difference can thus

403 result in a reduced shear modulus at given pressure in Al-bearing stishovite. Finally, combined Al
404 effects on density and bulk/shear modulus can lead to a reduction of sound velocity in Al-bearing
405 stishovite.

406

407 **Al effects on the post-stishovite transition mechanism**

408 The transition mechanism of Al-bearing stishovite can be deduced from an integration of our
409 SCXRD refinement results and recent Raman and spontaneous strain results on the same crystals
410 (Zhang et al. 2022). The SCXRD results have revealed that the Al1.3-SiO₂ and Al2.1-SiO₂
411 crystals have more compressible apical (Si,Al)-O₃ and less compressible equatorial (Si,Al)-
412 O₁₍₂₎ bond than pure-endmember stishovite, and thus, the crossover of two bonds and the
413 vanishing of the (Si,Al)O₆ distortion occur at much lower pressure (Fig. 7a). This transition
414 pressure coincides well with the tetragonal to orthorhombic transition where the *a* axis splits into
415 *a* and *b* axis, the O coordinate splits, and the (Si,Al)O₆ octahedron starts to rotate about the *c*
416 axis. These crystallographic changes in Al-bearing stishovite across the transition are consistent
417 with that in the pseudo-proper typed transition in pure-endmember stishovite under pressure
418 (Zhang et al. 2023), although the transition pressure is much lower in Al-bearing stishovite. On
419 the other hand, a recent Raman and spontaneous strain study on the same crystals has revealed
420 that the soft *B*_{1g} mode, as the driving force of the transition, is coupled linearly with the
421 symmetry-breaking strain (*e*₁-*e*₂), consistent with the mechanism of a pseudo-proper typed
422 transition (Carpenter et al. 2000; Zhang et al. 2022). These integrated datasets here validate that
423 the Al1.3-SiO₂ and Al2.1-SiO₂ stishovite undergoes a pseudo-proper typed ferroelastic transition
424 frat ~21 GPa and ~17 GPa, respectively.

425

426 Our crystallographic data can be used with a pseudo-proper typed Landau model (Carpenter et
427 al. 2000) to provide new insights into Al effects on the driving force of the transition. The free
428 energy difference between post-stishovite and stishovite is a polynomial expression of the order
429 parameter, *Q*, which describes the driving force of the transition (Carpenter et al. 2000). A
430 previous SCXRD study on pure-endmember stishovite has revealed that *Q* increases linearly
431 with octahedral rotation angle, Φ , in the pseudo-proper typed post-stishovite transition (Zhang et

432 al. 2023). A linear fit to the Q - Φ data of our Al1.3-SiO₂ and Al2.1-SiO₂ crystals shows that the Al
433 substitution can increase the slope of the relation (Fig. 7b). That is, at a given Φ , Q is larger, and
434 thus, the free energy difference between post-stishovite and post-stishovite becomes larger in our
435 Al-bearing crystals. Therefore, the Al substitution can stabilize the post-stishovite phase at a
436 relatively lower pressure than the pure-endmember counterpart.

437

438 Deep-mantle elasticity

439 Our crystallographic data can be further correlated with elastic properties to shed light on the Al
440 effects on the elasticity across the post-stishovite transition in the lower mantle. Here, we co-plot
441 C_{ij} , K_S , G , V_P , and V_S as a function of bond length difference between apical (Si,Al)-O3 and
442 equatorial (Si,Al)-O1(2) bonds ($\Delta l_{Si(Al)-O}$) that reflects the degree of octahedral distortion
443 (distortion index D) (Fig. 8). The C_{ij} , K_S , G , V_P , and V_S values of the Al1.3-SiO₂ and Al2.1-SiO₂
444 crystals at high pressures were previously derived from Raman and EoS data within the
445 framework of Landau theory (Carpenter et al. 2000; Zhang et al. 2022). All C_{ij} 's of Al-bearing
446 stishovite increase with decreasing $\Delta l_{Si(Al)-O}$, except for C_{11} which slightly decreases until $\Delta l_{Si(Al)-O}$
447 vanishes (Figs. 8a and 8b). Compared to the pure-endmember stishovite, the Al effect on C_{ij} 's at
448 an initial $\Delta l_{Si(Al)-O}$ value of ~ 0.05 Å is insignificant, except for shear moduli C_{44} and C_{66} which are
449 $\sim 6\text{-}8$ % lower in Al1.3-SiO₂ and Al2.1-SiO₂. This reduction in shear moduli at ~ 0.05 Å $\Delta l_{Si(Al)-O}$
450 may result from the decreased oxygen coordinate $Ox(y)$ and octahedral angle variance σ^2 in Al-
451 bearing stishovite that can make the shear deformation along the principle planes (i.e., the (100),
452 (010), (001) planes) easier. As $\Delta l_{Si(Al)-O}$ decreases, the slopes of C_{ij} 's of Al-bearing stishovite are
453 more gentle than that of pure-endmember stishovite, indicating that the Al substitution can
454 diminish the influence of $\Delta l_{Si(Al)-O}$ and D on C_{ij} 's. In other words, at a given bond length
455 difference and octahedral distortion, the Al substitution can lead to lower C_{ij} 's. Across into the
456 post-stishovite phase, as $\Delta l_{Si(Al)-O}$ becomes negative, elastic moduli C_{11} , C_{13} , and C_{44} split into
457 pairs of (C_{11} and C_{22}), (C_{13} and C_{23}), and (C_{44} and C_{55}). This splitting in Al1.3-SiO₂ and Al2.1-
458 SiO₂ are smaller than that in pure-endmember SiO₂, indicating again that the Al substitution can
459 lead to a smaller change in C_{ij} 's at a certain degree of octahedral distortion. Furthermore, the Al
460 effect on K_S , G , V_P , and V_S are similar to that on C_{ij} 's (Figs. 8c and 8d). That is, at given $\Delta l_{Si(Al)-O}$
461 and D , the K_S , G , V_P , and V_S values of Al1.3-SiO₂ and Al2.1-SiO₂ are $\sim 2\text{-}31$ %, $\sim 8\text{-}36$ %, $\sim 2\text{-}$

462 11 %, and ~4-12 % lower than that of pure-endmember SiO_2 , respectively. Particularly, when the
463 bond length distortion vanishes (i.e., $\Delta l_{\text{Si(Al)-O}} = 0$), the Al substitution enhances maximum G , V_P ,
464 and V_S reduction during the transition.

465

466 Our SCXRD data have revealed the role of the Al substitution in the elastic properties and
467 transition mechanism across the post-stishovite transition, and thus, can provide new insights
468 into geophysical behavior of subducted mid-ocean ridge basalt (MORB) within the mantle
469 transition zone and the lower mantle. The decrease in K_S and G with the Al substitution in
470 stishovite could be due to smaller O coordinates, softer $(\text{Si,Al})\text{-O}_3$ bonds, and less distorted
471 $(\text{Si,Al})\text{O}_6$ octahedra. At a given degree of the $(\text{Si,Al})\text{O}_6$ octahedra distortion, the Al substitution
472 leads to smaller K_S , G , V_P , and V_S values in stishovite phase. This reduction in sound velocities
473 can be used to explain -3.4% V_P and -4.2% V_S perturbations in the mantle transition zone
474 (Simmons and Gurrola 2000; Tauzin et al. 2013; Gréaux et al. 2016). On the other hand, our
475 SCXRD data, together with previous Raman optic modes and spontaneous strains (Zhang et al.
476 2022), have shown that the Al substitution would not change the transition mechanism in
477 stishovite, but significantly reduces transition pressure through a faster decrease of the $(\text{Si,Al})\text{-O}$
478 bond length difference under pressure. At $\Delta l_{\text{Si(Al)-O}} = 0$ where the post-stishovite transition occurs,
479 G , V_P , and V_S reduce with the Al substitution. This Al-dependent transition pressure and elasticity
480 can be used to explain the seismically-observed small-scale V_S anomalies beneath subduction
481 regions in the shallow lower mantle (Niu et al. 2003; Lakshtanov et al. 2007b; Kaneshima 2016,
482 2019; Zhang et al. 2022).

483

484 **Acknowledgments and Funding**

485 High-pressure SCXRD experiments were performed at 13ID-D, GSECARS, which was
486 supported by the National Science Foundation (EAR-0622171). This research used resources of
487 the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User
488 Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract
489 No. DE-AC02-06CH11357. Jung-Fu Lin acknowledges support from Geophysics Program of the

490 U.S. National Science Foundation (EAR-1916941 and EAR-2001381) and the Joint-Use User
491 Program of the Institute for Planetary Materials, Okayama University.

492

493 **References Cited**

494 Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landau-type
495 transition in stishovite. *Science*, 282, 720–724.

496 Angel, R.J. (2000) Equations of State. *Reviews in Mineralogy and Geochemistry*, 41, 35–59.

497 Birch, F. (1947) Finite elastic strain of cubic crystals. *Physical Review*, 71, 809–824.

498 Bolfan-Casanova, N., Andrault, D., Amiguet, E., and Guignot, N. (2009) Equation of state and
499 post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. *Physics of
500 the Earth and Planetary Interiors*, 174, 70–77.

501 Carpenter, M.A., Hemley, R.J., and Mao, H. (2000) High-pressure elasticity of stishovite and the
502 P42/mnm = Pnnm phase transition. *Journal of Geophysical Research: Solid Earth*, 105,
503 807–816.

504 Criniti, G., Ishii, T., Kurnosov, A., Glazyrin, K., and Ballaran, T.B. (2023) High-pressure phase
505 transition and equation of state of hydrous Al-bearing silica. *American Mineralogist*, in
506 press.

507 Dewaele, A., Torrent, M., Loubeyre, P., and Mezouar, M. (2008) Compression curves of
508 transition metals in the Mbar range: Experiments and projector augmented-wave
509 calculations. *Physical Review B - Condensed Matter and Materials Physics*, 78, 1–13.

510 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an
511 internally consistent pressure scale. *Proceedings of the National Academy of Sciences of
512 the United States of America*, 104, 9182–9186.

513 Gréaux, S., Kono, Y., Wang, Y., Yamada, A., Zhou, C., Jing, Z., Inoue, T., Higo, Y., Irifune, T.,
514 Sakamoto, N., and others (2016) Sound velocities of aluminum-bearing stishovite in the
515 mantle transition zone. *Geophysical Research Letters*, 43, 4239–4246.

516 Hemley, R.J., Mao, H.-K., and Chao, E.C.T. (1986) Raman Spectrum of Natural and Synthetic

517 Stishovite. *Physics and Chemistry of Minerals*, 13, 285–290.

518 Hirose, K., Fei, Y., Ma, Y., and Mao, H.K. (1999) The fate of subducted basaltic crust in the
519 Earth's lower mantle. *Nature*, 397, 53–56.

520 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to
521 the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by
522 Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted
523 Slabs. *Journal of Geophysical Research: Solid Earth*, 124, 3491–3507.

524 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. *Physics of the Earth and*
525 *Planetary Interiors*, 257, 105–114.

526 ——— (2019) Seismic scatterers in the lower mantle near subduction zones. *Geophysical*
527 *Journal International*, 218, 1873–1891.

528 Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.K. (1995) Transformation of stishovite to
529 a denser phase at lower-mantle pressures. *Nature*, 374, 243–245.

530 Lakshtanov, D.L., Vanpeteghem, C.B., Jackson, J.M., Bass, J.D., Shen, G., Prakapenka, V.B.,
531 Litasov, K., and Ohtani, E. (2005) The equation of state of Al,H-bearing SiO₂ stishovite to
532 58 GPa. *Physics and Chemistry of Minerals*, 32, 466–470.

533 Lakshtanov, D.L., Litasov, K.D., Sinogeikin, S. V., Hellwig, H., Li, J., Ohtani, E., and Bass, J.D.
534 (2007a) Effect of Al³⁺ and H⁺ on the elastic properties of stishovite. *American*
535 *Mineralogist*, 92, 1026–1030.

536 Lakshtanov, D.L., Sinogeikin, S. V., Litasov, K.D., Prakapenka, V.B., Hellwig, H., Wang, J.,
537 Sanches-Valle, C., Perrillat, J.P., Chen, B., Somayazulu, M., and others (2007b) The post-
538 stishovite phase transition in hydrous alumina-bearing SiO₂ in the lower mantle of the
539 earth. *Proceedings of the National Academy of Sciences of the United States of America*,
540 104, 13588–13590.

541 Litasov, K.D., and Ohtani, E. (2005) Phase relations in hydrous MORB at 18–28 GPa:
542 Implications for heterogeneity of the lower mantle. *Physics of the Earth and Planetary*
543 *Interiors*, 150, 239–263.

544 Litasov, K.D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D.L., Bass, J.D., and Ito, E. (2007)
545 High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. *Earth*
546 and *Planetary Science Letters*, 262, 620–634.

547 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
548 volumetric and morphology data. *Journal of Applied Crystallography*, 44, 1272–1276.

549 Niu, F., Kawakatsu, H., and Fukao, Y. (2003) Seismic evidence for a chemical heterogeneity in
550 the midmantle: A strong and slightly dipping seismic reflector beneath the Mariana
551 subduction zone. *Journal of Geophysical Research: Solid Earth*, 108, 1–12.

552 Ono, S., Suto, T., Hirose, K., Kuwayama, Y., Komabayashi, T., and Kikegawa, T. (2002)
553 Equation of state of Al-bearing stishovite to 40 GPa at 300 K. *American Mineralogist*, 87,
554 1486–1489.

555 Parsons, S. (2003) Introduction to twinning. *Acta Crystallographica Section D Biological*
556 *Crystallography*, D59, 1995–2003.

557 Pawley, A.R., McMillan, P.F., and Holloway, J.R. (1993) Hydrogen in stishovite, with
558 implications for mantle water content. *Science*, 261, 1024–1026.

559 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic computing system
560 JANA2006: General features. *Zeitschrift fur Kristallographie*, 229, 345–352.

561 Range, K.-J., Rau, F., Klement, U., and Heyns, A.M. (1987) β -PtO₂: high pressure synthesis of
562 single crystals and structure refinement. *Materials Research Bulletin*, 22, 1541–1547.

563 Renner, B., and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO₄
564 units in crystals. *Zeitschrift fur Kristallographie - New Crystal Structures*, 175, 43–59.

565 Rigaku, O.D. (2015) Crysallis Pro. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire,
566 England.

567 Robinson, K., Gibbs, G. V., and Ribbe, P.H. (1971) Quadratic Elongation: A Quantitative
568 Measure of Distortion in Coordination Polyhedra. *Science*, 172, 567–570.

569 Ross, N.L., Jin-Fu Shu, Hazen, R.M., and Gasparik, T. (1990) High-pressure crystal chemistry of
570 stishovite. *American Mineralogist*, 75, 739–747.

571 Simmons, N.A., and Gurrola, H. (2000) Multiple seismic discontinuities near the base of the
572 transition zone in the Earth's mantle. *Nature*, 405, 559–562.

573 Smyth, J.R., Swope, R.J., and Pawley, A.R. (1995) H in rutile-type compounds: II. Crystal
574 chemistry of Al substitution in H-bearing stishovite. *American Mineralogist*, 80, 454–456.

575 Sugiyama, M., Endo, S., and Koto, K. (1987) The crystal structure of stishovite under pressure
576 up to 6 GPa. *Mineralogical Journal*, 13, 455–466.

577 Tauzin, B., Van Der Hilst, R.D., Wittlinger, G., and Ricard, Y. (2013) Multiple transition zone
578 seismic discontinuities and low velocity layers below western United States. *Journal of
579 Geophysical Research: Solid Earth*, 118, 2307–2322.

580 Umemoto, K., Kawamura, K., Hirose, K., and Wentzcovitch, R.M. (2016) Post-stishovite
581 transition in hydrous aluminous SiO₂. *Physics of the Earth and Planetary Interiors*, 255, 18–
582 26.

583 Yamanaka, T., Fukuda, T., and Tsuchiya, J. (2002) Bonding character of SiO₂ stishovite under
584 high pressures up to 30 Gpa. *Physics and Chemistry of Minerals*, 29, 633–641.

585 Zhang, Y., Fu, S., Wang, B., and Lin, J.F. (2021) Elasticity of a Pseudoproper Ferroelastic
586 Transition from Stishovite to Post-Stishovite at High Pressure. *Physical Review Letters*,
587 126, 25701.

588 Zhang, Y., Fu, S., Karato, S. ichiro, Okuchi, T., Chariton, S., Prakapenka, V.B., and Lin, J.F.
589 (2022) Elasticity of Hydrated Al-Bearing Stishovite and Post-Stishovite: Implications for
590 Understanding Regional Seismic VS Anomalies Along Subducting Slabs in the Lower
591 Mantle. *Journal of Geophysical Research: Solid Earth*, 127, 1–16.

592 Zhang, Y., Chariton, S., He, J., Fu, S., Prakapenka, V.B., and Lin, J.F. (2023) Atomistic insight
593 into the ferroelastic post-stishovite transition by high-pressure single-crystal X-ray
594 diffraction refinements. *American Mineralogist*, 108, 110–119.

595

596