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Abstract
A major aim of gravitational wave astronomy is to test observationally the Kerr
nature of black holes. The strongest such test, with minimal additional assump-
tions, is provided by observations of multiple ringdown modes, also known as
black hole spectroscopy. For the gravitational wave merger event GW 190521,
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we have previously claimed the detection of two ringdown modes emitted
by the remnant black hole. In this paper we provide further evidence for the
detection of multiple ringdown modes from this event. We analyse the recov-
ery of simulated gravitational wave signals designed to replicate the ringdown
properties of GW190521. We quantify how often our detection statistic reports
strong evidence for a sub-dominant (¢,m,n) = (3,3,0) ringdown mode, even
when no such mode is present in the simulated signal. We find this only occurs
with a probability ~0.02, which is consistent with a Bayes factorof 56 = 1 (1o
uncertainty) found for GW190521. We also quantify our agnostic analysis of
GW190521, in which no relationship is assumed between ringdown modes, and
find that only 1 in 250 simulated signals without a (3,3,0) mode yields a result
as significant as GW190521. Conversely, we verify that when simulated signals
do have an observable (3,3,0) mode they consistently yield a strong evidence
and significant agnostic results. We also find that constraints on deviations
from the (3,3,0) mode on GW190521-like signals with a (3,3,0) mode are
consistent with what was obtained from our previous analysis of GW190521.
Our results support our previous conclusion that the gravitational wave sig-
nal from GW190521 contains an observable sub-dominant (¢,m,n) = (3,3,0)
mode.

Keywords: black holes, general relativity, gravitational waves,
quasi-normal modes

1. Introduction

Einstein’s theory of general relativity (GR) predicts that black holes are stable to perturbations
[1]. A distorted black hole should settle down to a stationary Kerr state through the emission
of gravitational waves [2]. This applies to the remnant black hole formed in a binary black
hole merger event, which is highly distorted on formation, but is expected to eventually settle
down to a Kerr black hole due to the emission of gravitational waves. According to theory, the
gravitational waveform in the late stages of a merger event consists of a spectrum of quasi-
normal modes (QNMs) with a rich structure of different fundamental modes and overtones [3].
Several numerical studies confirm this expectation that the remnant black hole settles down to
equilibrium by emitting QNMs; see e.g. [4-7].

The spectrum consists of a set of complex frequencies (determined by the black hole mass
and spin) labeled by three integers (¢,m,n), with £ > 2, —¢ < m < ¢, and n > 0. Modes with
n > 1 are known as ‘overtones’. Using black hole spectroscopy, the observation of more than
one such ringdown mode can be used to determine if the black hole is consistent with GR
[8, 9]. A clear and unambiguous determination of multiple ringdown modes provides one of
the strongest tests of the Kerr nature of black holes in our Universe and a possible route to
discover new physics beyond standard GR. See [10] for a general Bayesian formulation for
implementing such tests of GR.

QNMs for a Schwarzschild black hole were first identified by Vishveshwara [11, 12], and
further studied within black hole perturbation theory by Chandrasekhar and Detweiler [13].
They were suggested to be the gravitational waves emitted by a perturbed black hole in [14].
There remain several outstanding theoretical questions regarding black hole QNMs which are
also important for observational studies. The first is the question of the start time for the ring-
down. When the remnant black hole is formed, it is initially highly distorted away from a
Kerr black hole. The black hole loses these distortions over time, and at some point it can be
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considered to be a linear perturbation of a Kerr black hole. There is some evidence that we
can go closer to the merger with just the usual QNMs defined within linear perturbation the-
ory by including overtones [4, 15]. This is also related to the earlier work on the close-limit
approximation which shows that it is possible to model the merger regime within linear per-
turbation theory [16, 17]. On the other hand, there is also more recent evidence of the presence
of quadratic combinations of the QNMs which would arise in second-order perturbation theory
[18-20] but these will be sub-dominant and for observational purposes we can consider linear
perturbation theory to be a good approximation a short time after the merger. It is not clear
when (and if [21]) this perturbative regime can be distinguished and the choice of start time
is an important issue. See [9, 22] for studies of the start time of the ringdown phase, and [18,
19, 23, 24] for studies of possible non-linear effects. The different regimes seen in the gravit-
ational wave signal are expected to have counterparts in the strong field dynamical spacetime
region near the binary system [25-27]. See e.g. [4, 5, 28-30] for studies of black hole horizon
geometry in the post-merger phase and whether a ringdown regime can be identified using the
horizon dynamics as well.

It has long been expected that only the most dominant ringdown mode will be observable
with the current generation of gravitational wave detectors [31, 32]. Those expectations were
based on astrophysical assumptions about the total mass and mass ratio distributions of bin-
ary black hole systems in the observable Universe, which in turn determine the amplitudes
of various ringdown modes [33]. However, evidence for an overtone of the dominant mode
of GW150914 was presented in [15, 34]. There it was shown that it is possible to model the
gravitational waveform as a superposition of ringdown modes starting from the merger by
using the overtones of the dominant mode. This is a significant result, though there remain
several interesting open questions regarding data analysis and theoretical issues. Some of the
data analysis issues are discussed in [35-38]. On the theoretical side, the stability of the over-
tones under small perturbations raises several interesting open questions; see e.g. [39-43].
Evidence of a second fundamental mode, without using overtones, was first presented for the
event GW190521 in [44], henceforth referred to as ‘Capano et al’, and will be elaborated
further in this paper.

With this analysis we address three fundamental questions. Firstly, if a signal explicitly
does not contain any sub-dominant ringdown modes, how often does our detection pipeline
falsely claim the existence of such modes? Secondly, if one or more sub-dominant modes are
present in the data, how often does our pipeline correctly recover them? Thirdly, if our pipeline
is used to constrain deviations from Kerr, how well do the resulting inferred parameters match
those of the simulated signal? The key results for detection of a second mode are shown in
figures 4 and 5. Figure 4 shows the result of applying the ‘agnostic analysis’ performed in
Capano e al to a set of simulated signals that do not have a (3,3,0) mode as compared to a set
that do. Figure 5(left) applies the ‘Kerr analysis’ from Capano er al to simulated signals without
a (3,3,0) mode, and shows that the false alarm probability is consistent with expectations from
noise. Figure 5(right) quantifies the ability of the Kerr analysis to detect the (3, 3,0) mode when
it is present, as a function of Bayes factor.

In section 2 we give additional details of how the data is treated in the analysis of Capano
et al. Section 3 explains how we generate the simulated data sets. In sections 4 and 5 we
investigate the statistical significance of detecting two modes versus one using a set of simu-
lated signals. Section 4 presents an agnostic analysis that looks at the consistency of the second
mode with the first mode. Section 5 presents an analysis more closely tied to the Kerr hypo-
thesis, analysing the likelihood of two Kerr modes versus just one. In section 6 we use our
simulated signals to compare the accuracy with which the no hair theorem can be tested using
fundamental modes for an event similar to GW190521.
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We conclude this introduction by briefly summarizing some basic properties of the event
GW190521, which will be relevant in the rest of this paper.

1.1 GW7190521

The gravitational wave event GW 190521 was detected on 21st May 2019 at 03:02:29 UTC by
the Advanced LIGO and Advanced Virgo detectors [45]. The most conservative explanation
of the signal is the binary merger of two black holes [45, 46], although there are also various
other interpretations of this event [47-52].

While the progenitors of the event GW 190521 are open to speculation, in most scenarios
the final outcome is still likely to be a single black hole. The event GW190521 shows clear
evidence of a dominant ringdown mode of a final black hole after the merger [45]. In Capano
et al [44] the ringdown signal was found to contain an additional sub-dominant ringdown
mode. The dominant mode is consistent with being the (¢,m,n) = (2,2,0) ringdown mode of
aKerr black hole; the second mode is consistent with the sub-dominant fundamental (¢, m,n) =
(3,3,0) mode. As detailed in this paper, under a Kerr hypothesis, the Bayes factor preferring
the existence of the (2,2,0) and (3,3,0) modes over just the (2,2,0) or the (2,2,0) and (2,2, 1)
modes is estimated to be 56 = 1 (1o uncertainty).

If GW190521 is indeed a binary black hole merger, the inferred total mass of the system
would make it one of the most massive binary black hole systems observed to date [53, 54].
Other interpretations have found even higher total masses [47]. A high total mass implies that
very little of the inspiral phase occurs inside the sensitive band of the detectors and the recorded
signal is dominated by the merger and ringdown. Therefore an analysis that focuses solely on
the ringdown phase is of interest and avoids some of the modelling issues in the progenitor
inspiral phase.

Inferences about the final black hole parameters using the ringdown signal alone are sens-
itive to the assumed start time of the ringdown [9, 35]. Different starting times can lead to
different results [55, 56]. A ringdown-only analysis must explicitly exclude some of the signal
that is outside the ringdown phase. In this work we present additional details of the approach
used in Capano et al. Parameter estimates for the event GW 190521 based on the binary black
hole interpretation are shown in figures 1 and 2. These estimates come from different authors
using different methods [44, 54, 57, 58]. The redshifted final total mass spans a wide range
from around 200 Mg, to nearly 400 M.

The peak gravitational wave strain is expected to occur close to the merger. The GPS time
of the peak strain in the Hanford detector was initially estimated by the LIGO Scientific and
Virgo Collaborations (LVC) using a numerical relativity (NR) surrogate waveform model,
NRSur7dq4 [59], to be 1242442967.4306 10997 (median +£90% credible interval) [46]. See
[58] for further discussion. As can be seen in figure 2, estimates of the merger coalescence
time range over some 20 ms depending on the waveform model considered. This is a signific-
ant time range since, in geometric units, it corresponds to approximately 13M for an object
with a mass M = 300 M. For this reason, in Capano et al a range of starting times for the ring-
down analysis was used, which spans the uncertainty of merger time estimation. See section 3
for more details.

Subsequent to Capano et al and this work, Siegel et al [60] found evidence for sub-dominant
ringdown modes in GW190521. The identification of the modes differed from Capano et al.
In the Siegel ef al analysis the (2,1,0) and (2,2,0) modes were most prominent, while the
(3,3,0) mode identified in Capano et al was labelled as the (3,2,0) mode. This yielded mass
and spin estimates that were more compatible with the NRSur7dqg4 results (a major motivation
for their work). However, the amplitude of the (2,1,0) mode in their model exceeds that of

4
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Figure 1. Comparison of the final mass and spin of GW190521, as estimated by
NRSur7dg4 [57], IMRPhenomXPHM [54], IMRPhenomTPHM [58], and a Kerr ring-
down with both the (2,2,0) and (3,3,0) modes [44]. The solid and dashed lines corres-
pond to 50% and 90% credible contour, respectively. The IMRPhenomTPHM results
have a second mode in the posterior that is consistent with the Kerr ringdown results.

the (2,2,0). This can happen for highly precessing signals [61]. In Capano et al the amplitude
prior on all modes were constrained to be less than that of the (2,2,0). We use the same priors
here, and focus our attention on the (2,2,0), (3,3,0), and (2,2, 1) modes, relevant to the results
in Capano et al. Consequently, our results here are not designed to discriminate between the
interpretation of Capano et al and the interpretation presented in Siegel ef al.

2. Basics of ringdown detection and parameter estimation

In this section we summarize some essential elements of the data analysis procedure that we
employ. Since we analyze exclusively the ringdown which is only a part of the full signal, an
important challenge is to identify the portion of the full signal corresponding to the ringdown.
Similarly, it is necessary to ensure that the procedure for extracting this portion of the data
properly takes into account correlations with neighboring time samples that should be excluded
from the analysis.

Lets = {so,...,sy_1 } denote time-ordered samples of the strain data from a gravitational
wave detector. The data is sampled every Ar seconds over a duration 7, so that the number
of samples is N = |T/At] + 1. A network of K detectors sampled in this way will produce a
set of samples spet = {s1,...,8x}. The strain data is assumed to be a combination of a possible
signal h and noise n

s=h-+n. M
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Figure 2. Comparison of the final mass, mass ratio, and coalescence time in the
Livingston detector as estimated by the NRSur7dq4 [57], IMRPhenomXPHM [54], and
IMRPhenomTPHM [58] waveform models. The solid and dashed lines correspond to
50% and 90% credible contour, respectively. The second mode in final mass found by
IMRPhenomTPHM, which is consistent with the Kerr ringdown results (cf figure 1),
corresponds to a second mode at more asymmetric masses. This mode also yields a
coalescence time that is ~6ms earlier than the equal mass mode found by the other
approximants. This earlier coalescence time estimate is ~ 12 ms before the time at which
the Bayes factor for the (2,2,0) + (3,3,0) mode peaks in Capano et al [44]. It is also
consistent with the time at which the evidence for the (2,2,0) + (2,2, 1) Kerr ringdown
model peaks.

Let p(s|, H) be the likelihood of the data s in the presence of a signal with given parameters
A under background hypotheses H, such as the signal model. The probability of finding a
realisation of noise n under the hypotheses H is p(n|H). Therefore the likelihood for data s
can be written as

p(S|>\,H):p(S*h()\) |Hﬂn)? (2

where the right-hand side is under the hypothesis # that no signal is present. In gravitational-
wave astronomy, in the absence of a signal, it is common to assume over short times that the
detectors output stochastic Gaussian noise which is independent across detectors. With this
assumption the probability density function describing the time-ordered noise samples of the
detector network ny is a product of KN—dimensional multivariate normal distributions,

exp [-4 20 mf € 'y
V@r) " TT5, detc,

Here, C, is the covariance matrix of the noise in detector d, and we drop the hypotheses H in
our notation. See [62] for further details.

3

p (nnet) =
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If the detector’s noise is wide-sense stationary and ergodic, which is typically the case for
the LIGO and Virgo detectors, the noise likelihood takes a simple form

K
> nd,nd] )
d=1

Here, the inner product (-, -) is defined as

l\)\'—*

p (nnel xexp [

N/2 1.

oovg = 1S 0]

where # is the discrete Fourier transform of the time series u, an asterisk denotes the complex
conjugate, and S, is the power spectral density of the detector’s noise. To obtain the posterior
probability density function p(Als, H) for the parameters A, we use Bayes’ theorem

1
p()\|S,H) = 2P(S|)\,H)p(>\‘H), (6)

where p(s|A, H) is the likelihood function, p(\|H) is the prior, and Z is a normalization con-
stant known as the evidence, depending only on the data. Taking the ratio of evidences Z, /Zp
for two different models H4 and Hp yields the ‘Bayes factor’. In this work, the signal mod-
els will be GW ringdown waveforms with only fundamental modes and overtones. If our prior
belief for the validity of the two models is the same, the Bayes factor gives the odds that model
A is favoured over model B. Kass and Raftery [63] suggested Bayes factors greater than 3.2,
10 and 100 are considered substantial, strong, and decisive, respectively.
The ringdown waveform model takes the following form

M ,-
h+ + lhx = Ff Z 7ZSfmn ([/a @, Xf) Almne (Remt+dem) 3 (7)

Lmn

where A/, are the plus/cross polarizations of the wave, My is the total mass of the remnant
black hole in the detector frame and Dy, is the source luminosity distance. The waveform is
decomposed with respect to the spin-2 weighted spheroidal basis _,Sg,,,, which is a function
of the remnant black hole’s spin )y, the inclination angle « and azimuthal angle ¢ relative to the
observer. The amplitude and phase of the QNMs are denoted by Ay, and ¢g;,,. The complex
frequency is Qgun = 27 fomn + i/ Tomn, Where the characteristic frequency f,,, and decay time
Temn are solely determined by the mass and spin of the remnant black hole, as predicted by the
no-hair theorem in GR. We also consider an agnostic ringdown waveform model in this work,
for which we absorb the My/D; term into the amplitude and replace the spheroidal harmonics
with arbitrary complex numbers Xy ,,, = eibemn,

In a standard full-signal analysis, to obtain the likelihood for the signal hypothesis, the
noise ng in equation (4) is replaced by the residuals s; — h,. This requires that h is an accurate
model of the signal across the entire observation time 7, which is not valid for a ringdown-only
analysis. QNMs only model the gravitational wave from a binary black hole after the merger,
when the two component black holes have formed a single, perturbed black hole. Performing
Bayesian inference using QNMs as the signal model therefore requires ignoring times from
the data when the ringdown prescription is not valid.

We perform the ‘gating and in-painting’ technique [64] to remove the influence of pre-
ringdown data. Define n’ = n, + x, where n, is the noise with the pre-merger data zeroed

7
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out. We solve for x such that C~'n’ = 0 in the gated region. Doing so, we can use n’ in the
frequency-domain likelihood equation (4) to obtain the same result as if we excised the gated
time and directly computed the likelihood in equation (3).

We use the gated-Gaussian likelihood described above in the open source PyCBC
Inference library [65, 66]. We evaluate the noise residuals with n, = s, — h, (i.e. the residual
with the gated region zeroed out) and solve for x under the condition

C 'x=-C'n, (8)

where the overbar indicates the gated region. We can then use x+ 8, —h, in the standard
likelihood, equation (4).

For all analyses we use a gate of two seconds, ending at the start time of the ringdown.
We use the ‘v2’ 4kHz data for GW190521 [67], which is made publicly available by the
Gravitational Wave Open Science Center [68]. For all injections we fix the sky location to
the values given by the maximum likelihood result from the NRSur7dg4 analysis in Nitz and
Capano [57]. For sampling the parameter space we use the dynesty nested sampler [69].

In this work we consider a variety of signal models with different combinations of angu-
lar and overtone modes characterized by equation (7). The fundamental mode is (¢,m,n) =
(2,2,0), and we further consider models with an additional (2,2, 1) overtone or (3,3,0) mode,
whose complex frequencies are either predicted by the Kerr hypothesis or treated agnostically
as parameters to be determined. We list the priors p(A|H) for all parameters used in this work
in table 1. In particular, the (2,2,1) amplitude is chosen to be [0,5] times that of the (2,2,0)
mode’s. This choice is motivated by the NR fits from Giesler et al [15], which found that the
(2,2,1) mode could be ~4 times louder than the (2,2,0). For the (3,3,0) amplitude we chose a
prior that is [0,0.5] times that of the (2,2,0) mode, which is informed by the numerical simu-
lation results of binary black hole mergers in [33]. See also [9, 70] which discuss amplitudes
of the (3,43,0) modes.

When sampling the posterior for the Kerr and agnostic analysis, we numerically marginalize
the polarization angle using a discrete grid of 1000 points. The original motivation was to speed
up sampler convergence for the large number of injections analyzed here. However, we found
that doing so also led to more robust estimates of the Bayesian evidence, as the sampler was
better able to converge on the posterior. Consequently we also reanalyzed GW190521 using
the numerical marginalization of the polarization. The effect on the estimation of the Bayes
factor is discussed in more detail in appendix A.

3. Selection of simulated signals

In this paper we seek to validate the evidence for the observation of the (3,3,0) mode in
GW190521. To do so, we create two sets of simulated signals (‘injections’): one set with no
(3,3,0) mode in the ringdown (the Control set), and another set containing a (3,3,0) mode in
the ringdown (the Signal set). The Control set is used to measure the rate of false alarms—i.e.
to answer the question, how often do we get large evidence for the (3,3,0) mode when the
signal contains no (3,3,0) mode? — While the Signal set is used to validate that our pipeline
can in fact detect a (3,3,0) mode when it exists in the signal.

For the Control injections we randomly select 500 points from the NRSur7dq4 posterior
published in Nitz & Capano [57]. This posterior was similar to the posterior published in the
initial LIGO/Virgo publication on GW190521 [46]. With the exception of a secondary peak
in the posterior around m, /m; ~ 6, this NRSur7dq4 posterior favored approximately equal

8
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Table 1. Prior distributions of sampling parameters for the models used in this work: the
agnostic model with the spheroidal harmonics replaced by an arbitrary complex number
as discussed in section 4, the Kerr model described by equation (7) and discussed in
section 5, and the testing-GR model discussed in section 6.

Uniform prior
Model Parameter  Parameter description range
fass)c frequencies of regions A/B/C  [50,80]/[80,256]/[15,50] Hz
Ta/B)C decay times of regions A/B/C [0.001,0.1] s
log,(As base-10 logarithm of the [—24,19]
amplitude of region B
As/c/Ap  ratio of amplitudes between  [0,0.9]
region A/C and region B
a/8/C phases of regions A/B/C [0,27]
Agnostic w://B_/C phase of the +m and —m [0,27]
modes of the arbitrary
complex number in region
A/B/C
dp angular difference in [—7/4,7/4]
amplitudes of +m and —m
modes
M; final black hole mass in the [100500] Mg
detector frame
Xf final black hole spin [—0.99,0.99]
log,yA2o  base-10 logarithm of the [—24,—19]
amplitude of (2,2,0)
A330/220 ratio of amplitudes between  [0,0.5]
(3,3,0) and (2,2,0)
Kerr Ad1/220 ratio of amplitude between [0,5]
(2,2,1) and (2,2,0)
¢220/330/221 phase of [0, 27‘(’]
(2,2,0)/(2,2,1)/(3,3,0)
Ofni fractional deviation from GR [—0.16,0.3] with
of the (2,2,1) frequency the constraint
(14 6fan1) >
55Hz
001 fractional deviation from GR [—0.8,0.8]
of the (2,2,1) decay time
df330 fractional deviation from GR  [—0.3,0.3] with the
No hair test of the (3,3,0) frequency constraint
Sfazo(1+ dfs30) >
75 Hz
07330 fractional deviation from GR [—0.9,3]
of the (3,3,0) decay time
All models CcoStL cosinfi of inclination angle [—1,1]
P polarization angle [0,27]
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masses for the binary'’. It also yielded a merger time for GW190521 only ~6 ms before the
claimed observation time of the (3,3,0) mode in Capano et al and a relatively low final mass
estimate; see figures 1 and 2. These results contrast with the claimed observation in Capano
et al: alarge (3,3,0) amplitude is not expected for equal-mass binaries [33], and a ringdown
model consisting of only fundamental modes is not expected to be a good model for the signal
until ~10M after merger [9], which for GW190521 would be ~ 12 — 16 ms, not ~ 6ms. As
such, these injections are ideal to test the false alarm rate of our analyses.

To ensure that no (3,3,0) mode exists in the Control injections, we constrain all 500 injec-
tions to have mass ratios m,/m; > 0.5 and we turn off all but the £ =2 modes when gener-
ating the simulated waveforms. The waveforms are generated using the NRSur7dg4 approxi-
mant [59]. We use 500 injections to get a sufficient number of samples at the Bayes factor of
GW190521 (56 + 1 ); see section 5 for more details.

To produce the Signal injections we draw random samples from the posterior published
in Estelles et al [58]. This analysis used the IMRPhenomTPHM approximant to analyze
GW190521. As with the results presented in Nitz & Capano [57], Estelles et al found a bimodal
posterior in the component masses for GW190521: one mode favoring nearly equal masses,
and one mode favoring mass ratios of ~4:1. Intriguingly, as shown in figures 1 and 2, the
second mode yielded a mass and spin estimate for the final black hole that is consistent with
the estimate from the ringdown analysis in Capano et al. The estimated merger time for this
second mode was also ~5-10ms earlier than the NRSur7dq4 estimate, which is consistent
with the peak in the (2,2, 1) Bayes factor found in Capano et al and ~10 M before the peak in
the (3,3,0) Bayes factor. The IMRPhenomTPHM waveforms are therefore ideal for our Signal
injection set, particularly those from the more asymmetric mass ratio part of the posterior.

Note that we do not assume this specific waveform model to be an exact representation
of GR. For example, IMRPhenomTPHM is calibrated to aligned-spin simulations, relying on
a ‘twisting-up’ procedure that may be less reliable late in the inspiral [58]. We validate that
when higher order mode content is injected from waveform models with parameters which
give the best available fit to GW 190521, the presence or lack of higher order modes in these
injections can be determined using our analysis framework. We assume that the waveforms
are sufficiently accurate to be useful for this purpose.

To try to ensure that the Signal injections have an observable (3, 3,0) mode after the merger,
we draw 100 injections from the IMRPhenomTPHM posterior published in Estelles et al and
keep only those that have an estimated (¢,m,n) = (3,3,0) amplitude > 0.2 after merger. We
also require that the signal-to-noise ratio (SNR) of the (3,3,0) mode be at least 4 (the SNR
estimated for the (3,3,0) mode in GW 190521 in Capano et al) at some point after merger. To
estimate the (3,3,0) SNR we filter each injection in noise with a template consisting only of
the (¢,m) = (3,3) mode, and we gate both the template and signal to remove pre-merger times.
Note that here, (¢, m) refer to spherical harmonics, which is the basis used for inspiral-merger-
ringdown (IMR) models, not the spheroidal harmonics used for QNMs. Many of the posterior
samples have large precession. Precession mixes the m modes with the same £ in the observer
frame. Consequently, an (¢,m) = (3,3) mode for a IMRPhenomTPHM waveform may consist
of a combination of (¢,m,n) QNM modes, and not necessarily just the (3,3,0) mode. As such,
the estimated SNR may be considered an upper bound on the underlying (3,3,0) QNM.

10 Tn Nitz & Capano a prior uniform in m; /my € [1,6] was used in the NRSur7dq4 analysis. If a prior uniform in
my/my is used (which is approximately the same as a prior uniform in component masses, as done in the LIGO/Virgo
analysis), the second mode in the posterior at m; /m» ~ 6 is down-weighted, giving further support to the equal-mass
portion of the posterior. Here, we draw from the original posterior published in Nitz & Capano, which used a prior
uniform in m; /m;.
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Applying the SNR cut to the initial 100 draws yields 45 Signal injections. We do not try to
generate more Signal injections as they are only used to check that the analysis can recover
signals with a (3,3,0) mode and not to estimate small false alarm rates, as we do with the
Control injections. We use IMRPhenomTPHM to generate the waveform for the Signal set.
Due to the differences between spherical and spheroidal modes, and to try to simulate a realistic
signal, we use all available modes in IMRPhenomTPHM when generating the Signal set.

Both sets of injections are added to detector data at random times surrounding the estimated
merger time of GW190521. Specifically, an offset time Z,fser is drawn uniformly in +[4,20]s
and added to the coalescence time 7, that is drawn from the relevant posterior for each injection.
The gap of +4s around GW 190521 is to prevent contamination of the data from GW190521.
As described below, we perform ringdown analyses on a grid of times surrounding each injec-
tion. The widest grid—used in the validation of the Kerr Bayes factor (see section 5) — is
[—9,24] ms. We therefore draw the f,fpe: such that they are at least 33 ms apart, to ensure that
no two analyses analyze exactly the same detector data. -

As with the analysis of GW190521 in Capano er al we use a reference time 7.+ for each
injection, around which we construct the grid of times used in the ringdown analyses. For each
injection we set the reference time to be fiof = fref + lofset, Where fref = 1242442967.445 GPS
seconds is the estimated geocentric merger time of GW190521, as determined by the maximum
likelihood parameters taken from the NRSur7dq4 analysis in Nitz & Capano [57]. This is the

same ff used in Capano er al. Note that 7.+ is not the injection’s coalescence time 7¢"; instead,
inj inj

fe’ — t.¢ follow the same distribution as 7. — frer (see figure 2). We do this because our goal
is to replicate the GW190521 analysis performed in Capano et al including all uncertainties,
so that our derived statistics are robust. Basing grid times on ;" instead of 7 would mean
assuming information we did not know for the real signal. In the case of IMRPhenomTPHM,
this means that some of our Signal injections merge as much as 20ms before the reference

time, well before the grid times used for the analysis.

4. Statistical significance of the agnostic analysis

Two ringdown analyses of GW190521 were presented in Capano et al [44]: an ‘agnostic’
analysis and a ‘Kerr’ analysis. In the former, the data were analyzed using three QNMs with
no assumption made about the relationship between the frequency and damping times of each
mode. To prevent all three modes from locking on to the single dominant mode, each mode
was assigned a separate frequency range: 50—-80 Hz (range ‘A’), 80-256 Hz (range ‘B’), and
15-50Hz (range ‘C’). Range A covered the dominant mode, which was clearly visible in the
data. This implicitly assumes that there is only one single mode in each range. The analysis
was repeated in intervals of 6 ms, between f.f + [0,24] ms.

A signal with a well-defined posterior was found in Range A, having frequency ~63 Hz
and damping time ~26 ms (see figure 1 of Capano ef al). No signal was found in Range C. A
second putative mode was found in Range B. This signal was most pronounced at t..f + 6 ms,
at which point it has a frequency of ~98 Hz and damping time ~40 ms. As shown in figure 3,
these frequencies and damping times were where one would expect the (3,3,0) would be
assuming the remnant of GW190521 is a Kerr black hole, with the signal in Range A being
the (2,2,0) mode.

Initially, the agnostic analysis was presented as qualitative evidence for the presence of
the (3,3,0) mode. Here, we repeat the analysis on our two sets of injections and use them to
develop a statistic to quantify the statistical significance of the agnostic result. Our aim is to
find a statistic that can separate the Control injections from the Signal injections.

1
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Figure 3. Left: Marginal posterior of the frequency and damping time in frequency
range B from the agnostic analysis of GW 190521 at #,.f + 6 ms (same as the heat map in
figure 1 of Capano et al). Right: the expected distribution of the (3,3,0) mode assuming
the mode observed in frequency range A is the dominant, (2,2,0) mode (same as the
blue contour in figure 1 of Capano et al) of a Kerr black hole. Darker regions indicate
higher probability. The expected distribution is more concentrated due to the larger SNR
of the dominant mode. We quantify the agreement between the measured and expected
by multiplying the two distributions together and integrating (¢). The figure and ¢ values
are produced using 100 bins each in frequency and damping time.

If an observable (3,3,0) mode is truly present in the signal, and it is the only observable
mode in Range B, then the measured posterior distribution should peak at the same values as the
expected distribution. We expect the measured distribution to be more diffuse than the expected
distribution. This is because the expected distribution is derived from the observed dominant
mode, which is more accurately measured due to its larger SNR. With these considerations
in mind, we quantify the agreement between the measured distribution pmeas(f5,75) and the
expected distribution p33(f5, 75) using:

(= /pmeas (f5:T8) P330 (f3,7B) dfpdTB- 9)

This is effectively an inner product between the measured and expected distributions. To eval-
uate this we construct 2D histograms in Range B using 200 bins in frequency and 20 bins in
damping time. This is done at each time step; we then maximize ¢ over all the time steps.

We calculate ¢ for the Control injections. Since these injections have no (3,3,0) mode by
construction, the resulting ¢ values represent the distribution of false positives. The cumulative
distribution of the maximized ¢ is shown by the black line in figure 4. We also calculate ¢
for the Signal injections that have post-merger SNR > 4. The cumulative distribution of the
maximized ( is also shown in figure 4 as a blue line. As evident in the figure, we find good
separation between the signal and control injections.

Calculating ¢ for GW190521, we find that it is at a maximum at f..f + 6 ms, with a value of
1.27. This is consistent with our initial qualitative assessment that the observed mode is most
consistent with the expected (3,3,0) mode at 6 ms. As shown in figure 4, only two of the 500
Control injections have a ( larger than GW190521. We therefore conclude that the probability
of obtaining a { greater than or equal that of GW 190521 by chance from noise is 0.004. Note
that this statistic does not indicate whether there is a second mode in range B, but whether the
mode in range B is consistent with the mode in range A, given Kerr assumptions.

12
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Figure 4. Cumulative distribution of ¢ values for the Control injections (black dot-
s/line) and the Signal injections (blue dots/line). The orange vertical line shows ( for
GW190521. We use the cumulative distribution of Control injections to estimate a p-
value for the ¢ of GW190521. Since two of the 500 Control injections have a ¢ larger
than GW 190521, we estimate the p-value of the agnostic result to be 0.004.

5. Statistical significance of the Kerr analysis

In the Kerr analysis we assume the final black hole is described by the Kerr metric. In this
case, the frequencies and damping times of all post-merger QNMs are given uniquely by the
mass and spin of the black hole. Each additional mode therefore adds two additional degrees
of freedom: one for the amplitude and one for the phase of the mode. The relative amplitudes
and phases of the modes can in principle be determined by the pre-merger component masses,
their spins, and their relative orientation at merger.

Knowing what amplitude and phase to use for each mode requires detailed knowledge of the
pre-merger conditions, which are not easily discernible for events like GW 190521 in which the
pre-merger signal is short and difficult to observe. Furthermore, models mapping pre-merger
properties to post-merger QNMs are limited for highly precessing systems, particularly those
with large (2> 2) mass ratios. For these reasons, even when assuming a Kerr model for the post-
merger signal, we use uniform priors on the phases and relative amplitudes of the sub-dominant
modes with respect to the dominant mode.

Using such broad priors on amplitude and phase makes the analysis susceptible to over-
fitting. In principle, all modes are present in the signal. However, the vast majority of these
modes are negligible compared to the dominant mode. For the types of signals detectable by the
current generation of detectors, we expect only a few fundamental modes to have amplitudes
that are at most O(10%) of the dominant mode’s [31, 32, 61]. A signal model that contains
more than a few modes that have broad amplitude priors is effectively unphysical (assuming
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the signal is sufficiently close to GR), and would yield lower Bayes factors due to Occam’s
razor. To give meaningful results, the signal model should only include the observable modes,
not the possible ones.

As with the agnostic analysis, the Kerr analysis also needs to determine when the observ-
able modes are present. Before the merger the QNM model is not valid—there is not a single
perturbed black hole at this point. During the merger there may be non-linear components to
the signal and/or significant contributions from overtones. Too late after the merger, and the
signal will have damped away too much to make anything but the dominant mode observable.

We address both challenges through the use of Bayes factors. Given a signal model with
observable modes X = {(2,2,0),...} at a given time ¢ — ¢, we calculate the evidence that the
data contain those modes at that time,

Zx () = /'p<s\ it} 1) p (st} 1) dx. (10)

Taking the ratio of this evidence to the evidence for the (2,2,0)-only model (Zxy0) at the same
time gives the relative odds (or Bayes factor) that the data favor that model as compared to the
(2,2,0)-only model.

As discussed above, we do not normalize the likelihood function in our analysis. This means
that evidence values at different times cannot be directly compared to each other. However,
the likelihood function’s normalization factor cancels in the Bayes factor since the normaliz-
ation only depends on the noise properties and not the signal model. It is therefore possible to
compare Bayes factors at different times.

Taking the point that Zx /Zy0 is at a maximum yields the time that the model with modes
X is the best fit to the data relative to the (2,2,0) model. However, the (2,2,0)-only model is
known not to be a good model for the signal at merger [15]. As a result, if we find Zx /Z»; to
be large at some time, it is not clear if this is because modes X are a good model for the signal,
or if the (2,2,0)-only model is just a very bad model at that time. Put another way, Zx /Z2
only tells us whether the X modes are a better fit for the data than just the (2,2, 0), not whether
the X-modes are truly observable. This problem becomes particularly acute as we get close to
merger.

To account for this, we make use of the observation in [15] that including overtones of the
dominant mode better fit the signal close to (or even at) merger than the (2,2,0)-mode only.
We modify the Bayes factor to be

Zx (1)
max {Z0, Zx0+221 }

B(X,1)

(11)

for all models X # (2,2,0) 4 (2,2, 1) (for the (2,2,0) 4+ (2,2,1) model we simply use B =
Z220+221/ Z220)- This allows us to both identify the most likely observable modes and the time
at which they are most observable.

When applying this method to GW 190521 we find B (220 + 330) to peak at tref + 6 ms with
a value of 56 + 1 . This means that the (2,2,0) 4 (3,3,0) model is 56 times more likely to
be true than the (2,2,0)-only model, qualifying it as ‘strong’ evidence for the (3,3,0) model
relative to the (2,2,0)-only model. In other words, if the signal did not have an observable
(3,3,0) mode, then we should expect to get a B3 as large as this from noise only 1 in 56 times.

To test the validity of this observation, we repeat the Kerr analysis on our Control injections.
As with GW 190521, we repeat the analysis on a grid of times spanning 7.t + [—9,24] ms,

ref
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Figure 5. Left: Cumulative fraction of Control injections (i.e. ones without a (3,3,0)
mode in the ringdown) versus (3,3,0) Bayes factor maximized over time. Since these
injections have no (3,3,0) mode in the ringdown, we expect the cumulative distribu-
tion of Bayes factors 2> 2 when calculated after the merger to follow the black-dashed
line. Shaded yellow regions show the 1-30 deviation regions. The dark blue marker-
s/line show the cumulative distribution of Bayes factors for the Control injections when
maximized over time steps > f,. For all injections ¢ > £, was after the merger. This
line follows the expected distribution. Light blue markers/lines show the distribution of
Bayes factors when maximized over all times, including before merger. We get an elev-
ated set of Bayes factors in this case, since the ringdown model is no longer valid before
merger. The red vertical line shows the maximized Bayes factor for GW 190521 (56 £+
1 ), which occurred at .. + 6 ms. On average, we expect 8.9 out of the 500 injections to
have a Bayes factor greater than this; we find 10 when maximized over tlr:{ > 0. Based
on this, we conclude that the quoted Bayes factor for GW190521 is statistically sound.
Right: Equivalent plot for Signal injections that have an £,m = (3,3) post-merger SNR
of at least 4. Contrary to the Control injections, we find the Bayes factors of this set of
45 injections to stay substantially above the noise background. When maximized over
t > 1, 22 of the 45 injections have a Bayes factor greater than GW190521. This indic-
ates that our pipeline is capable of detecting large Bayes factors when a (3,3,0) mode
is present.

although to reduce computational cost for the large number of analyses involved, we sample in
intervals of 3 ms instead of the 1 ms interval used in Capano et al. Since our Control injections
contain no (3,3,0) mode by construction, any large B observed with them is a false alarm. If
our analysis assumptions are correct—that the real data is Gaussian and that we are after the
merger—then on average we expect to get a B > 56 from 8.9 of the 500 injections.

Figure 5(left) shows the cumulative fraction of Control injections that yield Bayes factors
larger than the value given on the x-axis. For larger B, we expect the distribution to fol-
low the line 1/x. We show two results: one in which we maximize B over all times tested,
t — o € [—9,24] ms and one in which we maximize over times 7 — 7ot € [0,24] ms. When max-
imizing over all times, we find that the injected distribution does not follow the expected distri-
bution of 1/x; more injections yield large Bayes factors than expected from noise. At the Bayes
factor found for GW 190521 (56 + 1), 16 of the injections yield larger Bayes factor, whereas
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we expect ~9''. However, when maximizing over times  — £t >0, the injections show
remarkable agreement with the expected distribution. Indeed, we find 10 Control injections
yielda B > 56 + 1.

Maximizing over all grid times yields an excess of large Bayes factors because the negative
times include times before merger for all of the injections (note the distribution of merger
times for the NRSur7dq4 results in figure 2). As stated above, before merger the signal is
not a superposition of QNMs. This breaks one of our assumptions above. Put another way—
anything not modeled by our signal model is ‘noise’; in the pre-merger regime the ‘noise’ is
not Gaussian, and so larger Bayes factors can be obtained than otherwise expected. N

However, this only happens if we sample before the merger. By maximizing over ¢ — £t €
[0,24] ms we are in the post-merger regime for 174 of the 500 the injections. In this case, we
get good agreement with the expectations. We find similarly good agreement if we use our
knowledge of the injections’ coalescence time to only maximize over grid points that occur
after #.". Doing so introduces complications due to the fact that a different number of grid
points is maximized over for each injection; see appendix B for more details.

In order for the larger-than-expected false alarm rate to apply to GW190521, the time at
which the maximum Bayes factor occurred (t.f + 6 ms) would have to have been before the
merger. Of the 500 Control injections only 15 had coalescence times after #,.f + 6 ms. We there-
fore conclude this scenario to be unlikely, and use the result when maximizing over 7t > 0.
Given the excellent agreement between expectations and measurement, we conclude that our
measured (3,3,0) Bayes factor for GW190521 is valid.

To check that our code can recover large Bayes factors when a signal actually has a
(3,3,0) mode, we repeat this analysis on the Signal injections. The result is summarized in
figure 5(right). As expected, the cumulative distribution of Bayes factors for Signal injections
does not follow the distribution expected from noise. We also find there to be little difference
between maximizing over ¢ — fi € [—9,24]ms and ¢ > £,y Of the 45 Signal injections, 22
have Bayes factors larger than GW 190521 when maximized over ¢ > /o
Bayes factors when maximized over all times.

Figure 6 shows the distribution of times at which the maximum Bayes factor occurs for the
Control (left) and Signal (right) injections. In the case of the Control injections, no particular
time is favored, as would be expected from noise. There is an excess in the distribution near the
boundaries, but this is expected since the Bayes factor is not independent between consecutive
time steps. If the Bayes factor is large at a given time, it is more likely to be elevated at sur-
rounding times, due to the autocorrelation length of the template signal. In noise the maximum
Bayes factor is therefore more likely to occur close to the boundary.

Conversely, for the Signal injections the distribution in time is peaked at ~10M after mer-
ger. This is consistent with expectations. Numerical simulations have shown that a QNM
description of the signal using only fundamental modes becomes valid between 10 and 20M
after merger [9, 71, 72]. That the pipeline recovers large Bayes factors when the signal is
present and recovers those Bayes factors at ~10M after merger validates its ability to recover
the (3,3,0) mode from a signal if it is present. As mentioned earlier, strictly speaking, this
demonstrates the validity of our analysis when applied to the specific waveform models chosen,
which are of course only approximations to exact GR; within these uncertainties, alternate

while 23 have larger

1 When maximizing over all time, we use 497 injections instead of 500. This is because one time point failed to
converge for three of the injections. For all three injections, this time point was before t'r'gjf, which is why we are able

to use all 500 injections when maximizing over ¢ > 7}
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Figure 6. Left: Distribution of times at which the maximum Bayes factor
Zpo0+330/ max{Z20,Zr0+221} occurred for the Control injections. Times are

quoted in units of mass M after #."

the entire time period sampled (light blue) and when it is done over just tfgjf > 0 (dark
blue). The prior is also shown (dotted lines). The distribution is consistent with noise,
as it largely uniform with peaks only near the boundaries. These peaks are due to the
Bayes factors not being completely independent in time. Right: Equivalent plot for the
Signal injections. Here, the Bayes factors tend to peak at ~10M after merger. This is
consistent with expectations for when a QNM description of the post-merger signal
that includes only fundamental modes becomes valid [9, 71, 72].

. Shown are when the maximization is done over

explanations of GW190521 are not ruled out. A detailed study quantifying such waveform
uncertainties is beyond the scope of this work.

Figure 7 illustrates the ability of the (2,2,0)+(3,3,0) model to recover the Signal injec-
tions’ final mass My and spin x; when the Bayes factor equation (11) is maximized over time.
The figure shows 1D and 2D marginal distributions on the fractional error in recovered final
mass dM; and the absolute error in final spin Ax,. We find that, on average, the model reas-
onably recovers the mass and spin: zero is within 1o of the mean for both M, and Ax; (left
plot). The 50% credible region of the average 2D marginal posterior also contains zero (right
plot).

6. Tests of the no-hair theorem

With more than one ringdown mode, a non-trivial test of the black hole no-hair theorem can be
performed [8]. Here we parameterize this test through the deviations &fy,, d7T¢m, associated
with the measured frequency and damping time of the sub-dominant mode.

The deviation parameters are defined by fyu, = (1 4 6fomn )fomn(My, Xy) and equivalently for
Tymn- The mappings fyun (My, xs) and Ty, (Mj, Xy) to the black hole’s final mass and spin My, xy
assume Kerr and are calculated using the pykerr package [73]. We fix the dominant mode’s
frequency and damping time to their Kerr values when doing this test, as has become com-
mon [46, 74], while varying the final mass and spin. We then have four additional free para-
meters for each harmonic that is varied in the test, the deviation parameters fpu,, dTemn, and
the mode’s phase ¢y, and amplitude Ay,,,.
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Figure 7. Left: Marginalized fractional error in the recovered final mass My and mar-
ginalized absolute error in the final spin Ay of each Signal injections using the
(2,2,0)+(3,3,0), as a function of maximized Bayes factor max, (330, ¢) [as defined
by equation (11)]. The gray horizontal line and shaded region shows the mean dM; and
Axy= 1o, averaged over posterior samples from all of the Signal injections. Right: The
2D marginal distribution on both parameters, averaged over all of the Signal injections.
This is obtained by adding together all of the injection’s 2D marginal distributions on
dM; and Axy. Zero error in both parameters (represented by the green lines) is within
the 50% credible region.

In Capano et al we used GW 190521 to apply this test to both the (¢,m,n) = (3,3,0) mode
and the (2,2,1) overtone of the dominant mode. Since these modes were best measured
at different times, we did not test these modes simultaneously. Instead, the (2,2,1) over-
tone deviation analysis was done when the Bayes factor for the overtone model was at a
maximum, at f.f — 7ms, while the (3,3,0) deviation analysis was done at tr + 6 ms. Since
the (2,2,0) +(2,2,1) and (2,2,0) + (3,3,0) models were the most favored models at these
respective times, we did not include any other modes when doing these tests. In other words, the
intrinsic parameters for the (3,3,0) test were {My, xy, 9f330 07330 A220, $220,A330/A220, D330 }
and likewise for the (2,2, 1) test. See table 1 for the complete list of parameters and priors
used.

The results of these tests on GW 190521 yielded excellent constraints on f339, with df339 =

1+8 % (90% credible interval). The damping time was only weakly constrained, with 07339 =

60 38 %. Previously, sub-20% constraints on any sub-dominant fundamental mode were not

expected until at least the next generation of detectors [31, 32]. This is because observa-
tions of binary black hole mergers prior to GW190521 had smaller total masses and were
primarily equal mass ratio. The constraint on f339 was also substantially better than has been
obtained on the (2,2, 1) overtone with other events. The best single-event constraint on df2;;
as reported by the LVC was ~ +50% [75]. Combining results over 21 observations yiel-
ded dfan1 = 1+27 % [76], still a factor of ~3 larger than the constraint on df33p obtained from
GW190521 alone.

Here, we repeat our no-hair test on the Signal injections to check whether the constraints we
obtained on the (3,3,0) mode are reasonable at the signal strength of GW190521. Since the
simulations satisfy GR (up to the modelling systematics of the waveforms we use) the results
from these tests indicate what constraints can be obtained given the type of signal observed

18
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Figure 8. Kerr deviation parameters df330 and 07339 evaluated at the time of maximum
(2,2,0)+(3,3,0) Bayes factor of the Signal injections. Left: Marginalized distribution
of the parameters as a function of Bayes factor for individual injections. Markers indicate
the median value; errorbars show the 90% credible range. For comparison, results from
GW190521 are also plotted. Right: The 2D marginal distribution on df33 and d7330
averaged over all the injections. This is obtained by adding together all of the injections’
2D marginal distributions. Dashed green contours show 50% and 90% credible region
from GW190521. On average, df33 is concentrated close to zero (the expected Kerr
value), and it approaches zero as the Bayes factor increases; damping time is not well
measured. The constraints obtained on both parameters from GW190521 are consistent
with the injections.

and the quality of the data around that time. For this test we use 44 of the Signal injections'?,

generated with IMRPhenomTPHM including all its available modes. Each injection is ana-
lyzed at its time of maximum (2,2,0) + (3,3,0) Bayes factor. This replicates what was done
with GW190521 in Capano et al.

Results for df330 and d733¢ using the Signal injection set are summarized in figure 8. Shown
are 1D marginal results for each injection. We also show the 2D marginal distribution on these
parameters, averaged over all the injections. Results from GW 190521 are also plotted for com-
parison. On average, the injections’ (3,3,0) deviation parameters df339 and 7339 are centered
near zero, and f339 becomes better constrained as the Bayes factor increases. The constraints
derived from GW190521 are consistent with these results. This indicates that at the signal
strength of GW190521, a constraint on df330 ~ 10% is reasonable for GR signals even though
only two QNM modes are included in the model at the time of the analysis.

Note that the (2,2,0)+(3,3,0) model is not a complete description of the signal, even at
10 M after merger. Other modes are present in these signals; as the SNR of signals increases it
will be necessary to include additional modes in the model. However, our results indicate that
at the signal strength of GW190521, the (2,2,0)+(3,3,0) model is sufficient to describe the
signal and to constrain the deviations on the (3,3,0) mode at the ~ 10% level, as we obtained
with GW190521.

12 In total, there were 45 injections. We show results for 44 of these as the sampler was unable to converge for one of
the injections.
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7. Conclusions

The Bayes factor for two Kerr ringdown modes over just one mode was estimated to be 56 & 1
for GW190521 in Capano et al [44]. Here, we find that of 500 simulated signals with higher
ringdown modes explicitly turned off, only 10 are recovered with a Bayes factor higher than
56. Thus a statistic at least as significant as GW 190521 occurs once in 50 times. We have in
addition demonstrated that the analysis can detect a (3,3,0) mode when it is present in the
data.

We also developed a statistic ¢ to quantify the agnostic analysis. This involves comparing
the consistency of the two-dimensional frequency and damping-time posterior of the second
mode with that predicted by the frequency and damping-time posterior from the first mode,
assuming that they are the (2,2,0) and (3,3,0) modes of a Kerr black hole. We showed that
this statistic was able to separate simulations with an observable (3,3,0) mode from those
without. Applying this to GW190521, we find that the probability of getting a ¢ as large as
that of GW 190521 by chance from simulations that do not have a (3,3,0) mode is 0.004.

Our results for the no-hair theorem test in section 6 show that the constraints on the (3,3,0)
mode observed for GW190521 in Capano et al are consistent with what is obtained using
simulated GR signals. It may be possible to use a QNM model at merger to constrain deviations
from GR if enough overtones are included in the model. Determining the appropriate number
of observable overtones without overfitting the data is a delicate question however, beyond the
scope of this study. Our results here indicate that performing the no-hair test on fundamental
modes, later in the signal, largely sidesteps such questions (at least at currently observable
SNR), yielding much tighter and more reliable constraints'3.

Our simulation campaign supports the conclusion that a two mode model is observationally
distinguishable from a single mode model in the ringdown of GW 190521, and that the second
mode is consistent with GR.
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Appendix A. Effect of polarization marginalization on the Bayes factor

In the initial analysis in Capano et al [44] we used dynesty to sample over all parameters
for the Kerr analysis listed in table 1. We found a maximum Bayes factor of 44Jj§ in favor of
the (2,2,0) + (3,3,0) model at #.r + 7ms. However, this method proved time-consuming as
the sampler struggled to converge for some mode combinations. The difficulty largely arises
from the combination of the phases of the modes and the polarization angle. In particular,
for GW190521 the phase of the dominant mode and the polarization are degenerate, as the
polarization is not measured well due to the low SNR in the Virgo detector. This results in
a banding pattern in the marginal likelihood between these parameters that is a challenge to
sample.

Sampling over all parameters would have been unfeasible for the large number of injec-
tions we analyzed here. We therefore introduced a modified gating-and-in-painting model that
numerically marginalized over the polarization using 1000 grid points. This marginalization
technique was employed in the 3-OGC [79] and 4-OGC analyses [54], where it was found to
speed convergence for full IMR templates with sub-dominant modes. We are able to apply
the same technique here because the dependence on the polarization is approximately con-
stant over time for a short-duration event like GW190521, and so can be separated from the
gating-and-in-painting procedure.

In implementing the polarization marginalization, we discovered that we obtained a larger
Bayes factor for GW 190521 one ms earlier, at t.f + 6 ms. To verify this, we repeated the +6ms
and +7ms analysis 10 times using different starting seeds. We also repeated each analysis once
with double the number of live points. We found consistently larger values at +6 ms. Averaging
the Bayes factors over the runs we obtained 56 + 1 at +-6ms and 45 & 1 at +7ms, where the
uncertainty is reported with 1o. We further verified these Bayes factors by using the Savage-
Dickey ratio on the (3,3,0) amplitude posterior to estimate the Bayes factor, and obtained
similar results as reported by dynesty’s estimate.

The Bayes factor at 7ms was consistent with our initial result in Capano et a/ but the result
at 6ms was substantially higher. Our initial estimate for the Bayes factor at +6ms (without
marginalization) was 40‘3. Evidently, without marginalization, the sampler had not fully con-
verged at 6ms, yielding an underestimate of the Bayes factor. Marginalization also affected
our (2,2, 1) results: we found the Bayes factor for the (2,2, 1) mode peaked slightly earlier, at
tef — 7ms instead of the f.f — 5 ms that we initially estimated.

Given the robustness of the new results under polarization marginalization, we quote the
updated Bayes factor at f.ef + 6 ms here for GW190521. We also updated Capano et al to reflect
these changes.
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Figure 9. Left: Same as figure 5(left), but with the maximization interval based on the

injections’ coalescence time #¢" (dark blue line). We find excellent agreement with the
expected background distribution at large Bayes factors, but a ~ 30 downward devi-
ation in the measured distribution at Bayes factors < 20. This deviation is due to the
different maximization range for each injection. Right: Renormalized version of the
left plot. Here, we have accounted for variations in maximization interval across the
Control injections by multiplying their Bayes factor by (max Neriq) /Neria, Where Negriq is
the number of time points maximized over. We find good agreement with the expected
background at both large and small Bayes factors in this case.

Appendix B. Maximizing the Kerr Bayes factor after merger

As discussed in section 5, we obtain good agreement between the expected distribution of
Bayes factors and the measured distribution if we restrict the maximization interval to be
strictly after the Control injections’ coalescence time .. The result is shown in the left plot
of figure 9. Above Bayes factors of ~ 20 we find excellent agreement with the background.
Indeed, we find that 9 of the 500 injections have a Bayes factor larger than GW190521, exactly
the amount expected by chance.

However, for Bayes factors < 20 there is a nearly 30 downward deviation in the measured
background. This deviation is due to the fact that differing numbers of grid points are maxim-
ized over when using the injection’s coalescence time. For example, the maximization interval
spans nine grid points (spanning 7, + [0,24] ms) for injections that have a t¢" ~ 7y, whereas
the interval is only two grid points for injections with 7¢” & 71 + 21 ms. Although grid points
are not independent of each other—if a large Bayes factor exists at a particular point in time,
there is a higher probability that its neighbors will also have larger Bayes factors—they are
not entirely dependent either. Due to the stochastic nature of the noise, there are random fluc-
tuations in Bayes factors across time. Consequently, if a maximization interval covers fewer
grid points, there are fewer opportunities to obtain larger Bayes factors.

Large Bayes factors are not strongly affected by differences in maximization interval, since
there is a low probability that a noise fluctuation could produce a larger Bayes factor. This is
evident in the left plot of figure 9. Conversely, smaller Bayes factors will be affected by this,
hence the deviation at lower Bayes factors in that plot.
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This issue can be corrected for by multiplying the Bayes factors of each injection by
(maxNgrjd) / Ngrig, Where Ngig is the number of grid points maximized over for the given injec-
tion and max Ngq is the largest number of grid points maximized over in the set. Renormalizing
the Bayes factors yields the result shown in the right plot of figure 9. Now we find good agree-
ment with the expected background and measured distribution at all Bayes factors. With this
we find 10 Control injections to have a larger Bayes factor when we expect 9.

Note that the normalization factor implicitly assumes that each grid point is independent of
the others. As stated above, this is not the case. Since using this factor tends to overestimate
the contribution, this is a conservative error.

~ Due to these complications we present in the main text the simpler maximization over
ot > 0.

ref =

Appendix C. (2,2,0)+(3,3,0)/(2,2,0)+(2,2,1) Bayes factors
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Figure 10. Same as figure 5 but for a Bayes factor comparing the 220+330 model to
just the 2204221 model. The results are largely the same: the distribution of Control
injections matches the expected background whereas the distribution of Signal injec-
tions do not, as expected. The maximum Bayes factor for GW 190521 (indicated by the
vertical red line) is larger in this case, with a value of 74 instead of 56.

As stated in the main text, we compare the (2,2,0) + (3,3,0) model to both the (2,2,0) +
(2,2,1) and (2,2,0)-only models in both this and our original GW190521 study [44], taking
the minimum of the Bayes factor factors between them. This was chosen in order to evaluate
the evidence for just a single additional fundamental mode being present, while also account-
ing for the (2,2,0)-only model’s decreasing reliability close to merger. However, the Bayes
factor that compares the evidence between (2,2,0) + (3,3,0) model and the (2,2,0) + (2,2,1)
model, Zx041330/Z220+221, yields similar results as what we find for the minimum factor
Zn0+330/ Max(Zx042215Za20)- This is illustrated in figure 10, which shows the cumulative
fraction of Control (left) and Signal (right) injections as a function of Z01330/Z2204221-

As with Zzzo+330/max(2220+221,2220), the distribution of Zzzo+330/2220+221 for Control
injections follows the expected background when maximized over .} > Oms, while the Signal

ref =
injections show an obvious deviation. The only notable difference is that the maximum Bayes

23



Class. Quantum Grav. 41 (2024) 245009 C D Capano et al

factor for GW190521 (indicated by the vertical red line in the plots) is now 74 instead of 56
(although it still occurs at tr + 6ms). This further illustrates the conservative nature of the
Zn20+330/ max(Zpo1221, Zooo) statistic we used when analyzing GW190521.
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