SEMICLASSICAL ESTIMATES FOR MEASURE POTENTIALS ON THE REAL
LINE

ANDRES LARRAIN-HUBACH AND JACOB SHAPIRO

ABSTRACT. We prove an explicit weighted estimate for the semiclassical Schrodinger operator P =
—h20%2+V (x;h) on L*(R), with V(x; h) a finite signed measure, and where h > 0 is the semiclassical
parameter. The proof is a one dimensional instance of the spherical energy method, which has been
used to prove Carleman estimates in higher dimensions and in more complicated geometries. The
novelty of our result is that the potential need not be absolutely continuous with respect to Lebesgue
measure. Two consequences of the weighted estimate are the absence of positive eigenvalues for
P, and a limiting absorption resolvent estimate with sharp h-dependence. The resolvent estimate
implies exponential time-decay of the local energy for solutions to the corresponding wave equation
with a compactly supported measure potential, provided there are no negative eigenvalues and no
zero resonance, and provided the initial data have compact support.

1. INTRODUCTION AND STATEMENT OF RESULTS

The goal of this note is to study the spectral and scattering theory for the one dimensional
semiclassical Schrodinger operator,

P = P(h) := —h?0?> + V(a;h) : L*(R) = L*(R),  h >0, (1.1)

with potential V' = V(x;h) a real, finite signed Borel measure on R, which may depend on the
semiclassical parameter h. Here and below, L?(R) is the usual Hilbert space of equivalence classes
of functions v : R — C which are measurable with respect to the Lebesgue sigma algebra on R,
and for which [ |u|?dz < oo, where dx denotes Lebesgue measure.

Self-adjointness of singular Sturm-Liouville operators encompassing (1.1) was systematically ad-
dressed in earlier works [HrMy01, HrMy12, EGNT13]. With the objective of being self contained,
we proceed in elementary fashion to specify the domain D of P as a certain dense subspace of L?(R)
which is contained in the Sobolev space H'(R). Recall each v € H'(R) has a (unique) continuous,
bounded representative, which we denote by u.. Thus, for v € H!(R), we prescribe the product of
u and V to be the complex Borel measure u.V, and define the expression

Pu = —h?0%u + u.V (1.2)

in the sense of distributions on R. Using the calculus of functions of bounded variation (which we
review in Section 2), we show in Section 3 that (for all A > 0) P is self-adjoint with respect to

D= {uc H(R): v € L®(R), and Pu € L*(R)}. (1.3)
The main result of this note, whose proof appears in Section 4, is the following weighted estimate
on L*(R):
Theorem 1.1. Fiz § > 0. For all E = E(h) > 0 (which may depend on h), € € [0,1], h > 0, and
u € D with (|z| + 1)HD/2(P — E + ie)u € L*(R),

/(|x| + 1) (Bl + b2 da

R (1.4)

< C(V,E,h, 5)/(yxy + D)I(P — E +ie)ul*de.
R
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Here,
4 2 1 V]2 2
— CO(VERS) (% | = C1(V,E,h.5)
OV, E,h,8) = e ((h2+h+—Eh2(2+2E+ )e ). (1.5)
C1(V,E, h,8) =20~ + E7Y2p7 Y|V, (1.6)
and ||V :== |V|(R), with |V| the total variation of V, defined by
Vi=V*t+Vv~,

where {VY,V~} is the Jordan decomposition of V' (see, e.g., [F099, Theorem 3.4] ).

Remark 1.2. In the case that E > 0 is fixed independent of h, and we restrict h € (0, 1], the
constant (1.5) is bounded from above by the more succinct expression

exp(C(E,0)(1+ ||[VI)/h), for some C(E, ) > 0 depending on E and 4. (1.7)

Two consequences of Theorem 1.1 are the absence of positive eigenvalues of P, and a weighted
limiting absorption resolvent bound.

Corollary 1.3. The operator P on L*(R), given by (1.2) and equipped with domain (1.3), has no
positive eigenvalues.

Corollary 1.4. Fiz § > 0. Then for all E = E(h) > 0 (which may depend on h), € € (0,1], and
h >0,

IN

(C’(V,E,h,é))l/2’ (18)

_ 146 C N— _1+6
(2] + 1)~ (P(h) — Bxie) (|2 + 1) 72 |l 2@ 2(w) z
where C(V, E,h,0) is as given in (1.5).

Remark 1.5. It is well known that V € L'(R;R) implies absence of positive eigenvalues. Further-
more, absence of positive eigenvalues was proved, by different methods, for locally H~! potentials
with L!-type decay, see [LSW22, Theorem 1.9]. This class includes finite signed measures as a spe-
cial case. Recall also the celebrated von Neumann-Wigner potential W [ReSi78, Section XIII.13],
which obeys
8sin(2|z|)
|z

W(z) = + O(\x|72), as |z| — oo,

and has an eigenvalue at £ = 1.

Remark 1.6. For E > 0 fixed and h € (0, 1], the right side of (1.8) is bounded from above by an
expression of the form (1.7). In higher dimensions, resolvent upper bounds like (1.7) are usually
proved by first establishing a Carleman estimate, which is similar to (1.4) but involves an additional
weight of the form e®/", where ¢ is a suitable phase function (see e.g., [CaVo02, Theorem 2.2] and
[Dal4, Lemma 2.2]). However, our proof of Theorem 1.1 in Section 4 shows that in one dimension
it is not necessary to use a phase.

When V is compactly supported, we prove a simpler weighted estimate away from the support
of V, which yields an improvement to (1.8) for h small.

Theorem 1.7 (exterior estimate). Fiz § > 0 and E > 0. Suppose V is supported in [— Ry, Ro]
(independent of h) for some Ry > 0. Set hg = 27167 (1 + Ry) ™. There exist C, depending only
on Ry, E, and § (see (5.5) below), so that for all e € (0,1] and h € (0, ho],

146

_1+48 D 146 C
(2] +1)772 1o, (P — E4ie) " Lop, (2] +1)7 2 |r2mor2m < 5 (1.9)

Here, 1>, denotes the characteristic function of {|x| > Ro}.
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The h-dependencies in (1.8) and (1.9) are sharp in general, and were proved previously for V €
L'(R;R) [DaSh20]. Thus the novelty of this work is that Theorem 1.1 implies optimal semiclassical
resolvent bounds for potentials in one dimension which may not be absolutely continuous with
respect to Lebesgue measure.

When V is smooth, the exponential bound (1.8) (with different constants) was first proved by
Burq [Bu98, Bu02], who also considered higher dimensions and more general operators. Further
proofs and generalizations can be found in [CaVo02, Dal4, RoTal5, DadH16, Sh19, Gal9, GaSh22b,
Ob23]. In dimension n > 1, current results require at least V' € L° (R™\ {0}), with sufficient decay
toward infinity, to obtain a semiclassical resolvent estimate. And often, only weaker versions of
(1.8) are known [KIVo19, Vo019, Vo20a, Vo20b, Vo20c, Vo21, Sh20, Vo22, GaSh22a, DGS23, Sh24],
with e/ replaced by e/ R for some ¢ > 1.

When V' is smooth, the improvement (1.9) away from the support of V' was first proved by
Cardoso and Vodev [CaVo02], refining earlier work of Burq [Bu02], and again analogous results hold
in many settings [CaVo02, Dal4, RoTal5, DadH16, Sh19, GaSh22b, Ob23]. When the dimension
n > 1, Datchev and Jin [DaJi20] showed the cutoff 14> R, may need to be replaced by 1,~r with
R > Ry, even when V € C§°(R").

To prove Theorem 1.1, we employ a positive commutator-style argument in the context of the
so-called spherical energy method. This strategy has long been used to prove Carleman and related
estimates [CaVo02, Dal4, KIVol9, DaSh20, GaSh22b, Ob23]. In fact, as we work in one dimension,

it suffices to use the pointwise energy
F(z) = Felul(z) = | (2)* + Elu(z)|?,

1.10
u € D such that (Jz| + 1) /2(P(h) — E £ ie)u € L*(R). (1.10)

The goal is to construct a suitable weight w(x) having locally bounded variation, so that, roughly
speaking, the distributional derivative of wF' is bounded from above by a term involving
2wRe((P — E + ie)uw’), and bounded from below by w(E|u|? + |hu'|?) (see (4.6) for the precise
estimate). To attain the upper bound, V needs to be reintroduced after differentiation of wF', at
the cost of a perturbation term (see (4.4), and note V' does not appear in F' in the first place because
its distributional derivative may be irregular). This perturbation can be controlled, yielding the
desired the lower bound, by designing w appropriately. In particular, since V may have discrete
part Vy (i.e., countably many point masses which are absolutely summable), we use a family of
weights wy, (x) depending on a parameter n > 0. Each w,, controls a certain Gaussian approximation
of |Vy| (see (4.2)). We then show that the needed estimates hold uniformly as n — 0%.

When V is compactly supported, it is well known that Corollary 1.4 is related to the distribution
of scattering resonances for the operator —92 + V. As in [SjZw91], we define the resonances of
—92 4+ V as the poles of the cutoff resolvent

x(=02+V =Xy : L*(R) — D, x € C°(R;[0,1]),x =1 on suppV, (1.11)

which continues meromorphically from Im A > 1 to the complex plane. In Section 6, we combine
(1.8) with a resolvent identity argument of Vodev [Vol4, Theorem 1.5] to show

Theorem 1.8. Suppose V' is a finite signed Borel measure on R, which is supported in [— Ry, Ro]
for some Ry > 0. Fiz x € C§°(R;[0,1]) such that x = 1 near [—Ro, Ro|, and fit \o > 0. There
exist Cyeg > 0 so that for all |Re A| > Ao, and |Im A| < g,

(=02 +V =A%) !Xl 2w < CIReA Y, k=0, 1(H = L*(R)), (1.12)

and
Ix(=02 +V = X)Xl 2sp < C(|ReA| + 1), (1.13)

where D is equipped with the graph norm ||lulp = (|[(—02 + V)ul|2, + [Jul|2,)1/2.
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The existence of resonance free regions below the real axis is a long-studied problem: [Ha82,
Zw87, Hi99] treat the cases V € L35, (R), V € L{,,(R), and V exponentially decaying, re-
spectively. More recent articles [Sal6, DMW22, DaMa22| describe the distribution of resonances
for thin barriers in the semiclassical regime. To the authors’ knowledge, Theorem 1.8 is the first
demonstration of a resonance free strip for a class of potentials in one dimension that can have
singularly continuous part.

Estimates such as (1.12) and (1.13) yield regularity and decay results for operators involving
the measure V. As an illustration, in Section 7 we show how (1.12) implies an exponential local
energy decay rate, modulo negative eigenvalues and a possible zero-resonance, for the associated
wave equation,

(0?2 — 92 +V(z)w(z,t) =0, (x,t) € R x (0,00),
w(z,0) = wo(x),

Jyw(x,0) = wi(x),

supp wy, suppw; C (—R, R), R>0.

(1.14)

See Theorem 7.1 for a precise statement. Similar wave decay was previously established for
V € Ly, (R;R) ([TaZw] and [DyZw19, Theorem 2.9]). We also mention that exterior estimates
like (1.9) have application to integrated wave decay [DaJi20, Lemma 5].

There is an extensive literature on second order operators whose coefficients are singular. Thus,
we will not attempt to give a comprehensive review here. For the one dimensional case, we point the
reader to [SaSh99, HrMy01, AmRe05, HrMy12, EcTel3, EGNT13, EKMT14], which develop the
Sturm-Liouville theory for such operators, and investigate topics including boundary conditions,
self-adjoint extensions, and inverse spectral theory. The research monograph [AGHHO05] gives a
comprehensive treatment of point interactions in three and fewer dimensions. Higher dimensional

studies include [BEKS92, Gall9].

2. REVIEW OF BV

To keep the notation concise, for the rest of the article, we use “prime” notation to denote
differentiation with respect to z, e.g., v’ := 0, u.

In Section 2, we review the basics of functions of bounded variation (BV), and collect four
well-known Propositions concerning their calculus. This material is relied upon frequently in later
Sections. We give the proof of Proposition 2.2, while proofs of Propostions 2.1, 2.3, and 2.4 may
be found in [DaSh23, Appendix B].

Let f : R — C be a function of locally bounded variation. For all x € R, put

fr@)s=lim fz=0),  fRz)s= lim fx+0),  fA)= (@) + fF2)/2, (21)
6—0t §—0t
where the limits exist because both the real and imaginary parts of f are a difference of two
increasing functions. Recall that f is differentiable Lebesgue almost everywhere, so f(x) = f¥(z) =
fB(z) = fA(x) for almost all z € R.
We may decompose f as

f= fn—&- - fr,— + i(fl',—i— - fi,—)7 (2-2)
where the f; 1, o € {r,i}, are increasing functions on R. Each (fi uniquely determines a regular
Borel measure ji,,+ on R satisfying pig+ (1, z2] = fEi(22) — fEL(21), see [F099, Theorem 1.16].
We put

df = pir4 — pir,— +i(pi+ — fi-), (2.3)

which is a complex measure when restricted to any bounded Borel subset. For any a < b,
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/ af = FR(b) — 7(a),
(@t (2.4)

/ df = 1(b) — R(a).
(a,b)

Proposition 2.1 (integration by parts). Let f : R — C have locally BV. For any a < b, and any
continuous @ with ¢’ piecewise continuous,

/’¢#+/ o fdz = FRb)p(b) - R (a)p(a). (2.5)
(a,b] (a,b]

Proposition 2.2 (funadmental theorem of calculus). Let iy +, 0 € {r, i} be positive Borel measures
on R which are finite on all bounded Borel subsets of R. Suppose u € D'(R) has distributional
deriwative equal to p = fiy 4+ — pr— + i(pi+ — pi—). (For example, this will hold for u € D, with
p=u.V + gdx for some g € L>(R).) Then u is a function of locally BV; For any a € R, u differs
by a constant from the right continuous, locally BV function

f[ ] du T > a,
= @ 2.6
fﬂ(‘r) {_ f(l‘,a) dﬂ T < a. ( )

Proof. We need to show that the function (2.6) has distributional derivative u. First, it is straight-
forward to check that f,(x2) — fu(x1) = p(x1, 2] for all 21 < xo. Hence df, = p. Then (2.5)
implies

—/@ﬂm:/@w, o € C(R), (2.7)
R R

where all boundary terms vanish, and the right side of (2.7) is finite, due to the the compact
support of .
O

Proposition 2.3 (product rule). Let f, g : R — C be functions of locally bounded variation. Then
d(fg) = fdg + g™df (2.8)

as measures on a bounded Borel subset of R.

Proposition 2.4 (chain rule). Let f : R — R be continuous and have locally bounded variation.
Then, as measures on a bounded Borel set of R,

d(el) = el df. (2.9)

3. SELF-ADJOINTNESS FOR V' A MEASURE

The goal of this section is to use the tools of Section 2 to show (P, D) is self-adjoint on L?(R),
where D is given by (1.3). This strategy sets the stage for several steps in the proof of Theorem 1.1
in Section 4. We demonstrate that (P, D) is merely the self-adjoint operator naturally associated
to the quadratic form

q(u,v) = /hQU'U'd:L‘ + /uCUCV, u, v e HY(R). (3.1)

As mentioned in Section 1, self-adjointness was addressed in greater generality elsewhere [HrMy01,
HrMyl12, EGNT13].

Lemma 3.1. Let V =V (z;h) be a real, finite signed Borel measure on R. Then D specified by (1.3)
is dense in L?(R). The operator P : L>(R) — L%(R) given by (1.2) with domain D is self-adjoint.
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Proof. Throughout the proof, we work with u € L?(R) that have locally integrable distributional
derivative u’. Such u have a (unique, locally absolutely) continuous representative wu., hence we
can define the product u.V as a distribution on R, since it is a complex measure when restricted
to bounded Borel subsets of R.

Let Diax 2 D be the set of all u € L*(R) such that v’ € L] (R) and Pu := —h*u"+u.V € L*(R).
By Proposition 2.2, for any u € Dyax, we may fix a representative u;, for v that has locally bounded
variation. If necessary, we redefine uf  on a set of Lebesgue measure zero so that ul (z) = (u})*(z)
for all 2 € R (this updated uj, still has locally BV).

In the computations to follow, we always work with the representatives u. and uy,, but we
drop subscripts to keep notation concise. This convention ensures that expressions like u'V are
well defined as complex Borel measures (on bounded Borel subsets), since locally BV functions are
Borel measurable. It also simplifies some calculations that involve (2.4) or (2.8).

Our first step is to prove Dpax € D. Since the reverse containment is trivial, we will conclude
Dmax = D. Indeed, for u € Dyax and any a > 0,

/ |u/|*dx = / u'd()
(—a,a) (—a,a)

= /(a,a) d(u'u) — ud(u')

= (v'u)(a) — (u't)(—a) + h2/ uPudx — h2/ uuV
(—a,a) (—a,a)

<2 sup || sup |u| +h7?|VI| sup |ul® +h77|| Pul|g2|ul 2,

(—a,a) (—a,a) (—a,a)

where ||V := |V|(R), with |V| the total variation of V. The second line of (3.2) follows from (2.8)
and v = u?, v = («)?; the third line follows from the fact that —h2d(u’') = Pu — uV as Borel
measures, which is a consequence of (2.7).

Since u is locally absolutely continuous,

@ 1/2
sup |u*> = sup (!u(O)\Z—i-QRe/O u'ﬂdw) < |u(0)2+2(/( |u’|2da:> llullgz.  (3.3)

(—a,a) v€(—a,a) a)
Furthermore, if 2 € (0,a), then by (2.4), (2.8) and «’ = (u/)4,
(u'T')(x)
= (u'@')(0) +/ d(u'a")

(0,2]

:\u’]Q(O)—QhQRe(/(O ]u’Pudx—/(O ]u'uV>

12 -2 / -2 12 1/2
< [w'[7(0) + 2h72|| V|| sup |u| sup |u'| +2h77|[Pul| 2 [w'*dx)
(7(17‘1)

(—a,a) (—a,a)
while if z € (—a,0), we similarly find
(W) ()
~ @) - [ dww)
(z,0]

12 —2 / -2 12 1/2
< WP + 22V sup ful sup (o] +20 2 Pulpa( [ o)
—a,a)

(—a,a) (—a,a)
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We thus arrive at a system of inequalities of the form z? < 2yz + Ay®> + B, y?> < C + Dz,
2?2 < E + Fyz + Gz, where z = (f(*tw) |u'|2dx)'/?, y = SUD(_q,) |ul, and z = sup(_, q) [v/[.
After using the second inequality to eliminate y, we obtain a system in x and z with quadratic left
hand sides and subquadratic right hand sides. Hence z, y, and z are each bounded in terms of
A,B,...,G. Letting a — oo, we conclude that u' € L*(R) and u, v’ € L>®(R). Hence Dyjax C D
as desired.

Next, we equip P with the domain Dy,,x = D, and show that P is symmetric. Let u,v € D, and
take {¢r 72, C C°(R) converging to v in H!(R). Using the distributional definition of Pu,

(Pu,v)r2 = lim (Pu, @) 12
k—o0

= lim u(—hQQO%)dx—i-/ugokV

k—o0

= lim hzu/np;Cd:cﬂ—/ugokV

k—o00

= / R dx + / wV,

where the last equal sign follows since |V| is finite and ||w||3 e < ||w]|z2]|w']|z2 for any w € HY(R).
Approximating u € H!(R) by C§°(R)-functions, we similarly have (u, Pv)p. = [ h?u'v'dz+ [wvV.
Thus P is symmetric.

The last step is to establish that (P, D) is densely defined and P* C P. For this, define on H'(R)
the quadratic form (3.1). Since, for any v > 0,

/ww

< IVIllullze

< IVl 21 .2 (3.5)
< IV (Flule + F')2:)

setting v = h?/||V|| yields

_ vy
2h7

2 V12 2
lul22 + 2w/ 122 < q(uyu) < W0 u)2, + 322 |1/ |2 (3.6)

We thus conclude g is semibounded and closed.
By Friedrichs’ result [Tel4, Theorem 2.14], there is a unique (densely defined) self-adjoint oper-
ator (A, D;) with

Dy = {u € H'(R) : there exists 4 € L* with q(u,v) = (@, v) 2 for all v € H'(R)},
Au = 1.
Revisiting the calculation (3.4), we see that for any u € Dy, @ = —h?*u” + uV in the distributional
sense. Thus (A,D;) C (P,Dmax), so0 P* C A* = A C P. Since we already showed P C P*

(symmetricity), we conclude P* = P as desired.
]

4. WEIGHTED ESTIMATE

The purpose of this Section is to prove Theorem 1.1. As discussed in Section 1, we do so by
means of a positive commutator argument that leverages the energy method.

Proof of Theorem 1.1. Our starting point is the pointwise energy F' given by (1.10). As in the
proof of Lemma 3.1, we fix with a continuous representative of u € D, and fix a representative of
u' € L2(R) N L>®(R) that has locally bounded variation and (u/)4 = u’ (thus F4 = F).
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Since the measure V' = V(z;h) is finite, it can have only countably many point masses {z;};,
and moreover » . [Vj| < oo, where V; := V({z;}). Let us decompose

V=Vet+ Ve, Va=) Vjbu,
J

into its discrete and continuous parts. Here, d,; denotes the dirac measure concentrated at z;. A
key technical feature of the ensuing calculations is our use of the weight function

r 1 1 _1-
w = wy(x) = exp(/_oo [m\vc’—i—(mvdm(x/)—i-(]wq—l-l) ! 6)]d$/), n>0, (4.1)

where |V,| denotes the total variation of V,, and

V() = 7271 |yylem(@me/m?, (4.2)
J

The exponent of w is a continuous function, thus we may compute dw using (2.9). Nearing the end
of the argument, we manage to control a term involving |V;| by sending n — 0T, essentially using

that 7= 1/2p~1 > ]Vj|e_((x_”3j)/77)2 — >_;|Vjldz; in the distribution sense. We note also that

sup [y (@)] < O (VERD), (4.3)
R

with C1(V, E, h, ) given by (1.6).
From (2.8) and u” = u, (u/)4 = «/, we find, in the sense of measures on R,

dF = 2h* Re(@d(u)) + 2E Re (u)
= —2Re(((P — E +ie)u)d) F 2¢ Im (ut’) + 2Re(ut'V),
where, to get the second line, we used that —h?d(u') = Pu — uV as Borel measures. Using (2.8)
again, this time to expand d(wF),
d(wF) = Fdw + wdF

= |h/ Pdw + Elul*dw

—2wRe(((P — E +ie)u)u’) F 2ew Im (vu') + 2Re w(uw'V)

> —2wRe(((P — E +ie)u)u’) F 2ew Im (uar')

+ (b P + Blu)dw — b~ w (B [uf® + E7V2hd! P)(Vel + ) 1Vj16s,)-

j

By (2.9) and (4.1),
dwy = h™ wy (B7V2Ve| + B=V20 V23 Ve @20/ g 4 h(|x] +1) 71 0dz).  (4.5)

J
Plugging (4.5) into the fifth line of (4.4) implies,
d(wF) > —2wRe(((P — E +ie)u)u’) F 2ewIm (uu')
+w(lz] + 1) (Eluf® + b P)de
+ Z h_lw(E1/2\u\2 + E_1/2]hu'\2)H/j\(n_lﬂ_l/Qe_((x_xj)/n)2d$ _ 5:8])
J

(4.6)

Next, we note there exist sequences {a;}°2, tending to +oo, along which F(af) = FE(a}) =

FX(af) — 0. This is because F(z) € L'(R) and is continuous off of a countable set. So, we
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integrate both sides of (4.6) over (a,,, a,'] and send n — oco. By (2.4), the left side of (4.6) becomes
zero. Hence, from (4.3) and w > 1,

[+ )75l + P

+ Z h_lﬂ/}‘ /w(E1/2|u|2 + E—1/2‘hul|2)(77—171_—1/26—((33—%')/77)2d$ _ 5%)
j 1 (4.7)
< 6cl<v,EM>(/ W(m + )P — B tie)ul® + y(|z] + 1)

+ 25/ lud|da) v, h > 0.

The goal of the following calculations is to show that the second line of (4.7) is nonnegative in
the limit as n — 07. First notice that as n — 0T,

z; - (xj—¢)/n (a2 1
/_OOVd,n(':El)dw/:ﬂ- 1/2Z|W|/_OO e ( )dx‘/—> §|V3|+ Z |W|,

we<z;
/Ijmvd,n( de' == Yde' = 1/2\V]/ Pda' + 3 |il.
> z<Tj
This implies
wy(xj) — el (Bhi) exp (2£|?‘1/J/|2h>
wy(z; + 1) — " Bhd) exp ((ﬂ_gjl‘/% /; e*(m/)Qdaz’),
where
D = exp (e 3 Vil + | TV + a1+ 071 0)a)).
Tp<z;
Therefore,
W BVl + B b )6,
= b Vilwn(a)) (B ?Ju(a) P + BV b (25)]%),
S VM2 uCe) + B2 () P)e" P exp (1),
while

W P [ (B B P e

= hilwfl/2]‘/j| /wn(:cj + n:c)(El/ lu(z; + 773:)|2 + Eil/Q\hu’(xj + nx)|2)e*x2dx,
— (B2|u(z;)|* + B2 bt () |?) el E)

L Vil [T e N
-h i 1/2|Vj|/exp((WE)JI/%/_Ooe ( )dx’)e dx

_ l/2 1)2 2 —1/2 2\ T(E,h,j Vil
= EYV2(BY lu(z;)|“+ E /|hu’(xj)| )el J)(exp<E1/2h>—1).
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In summary, we have shown that the second line of (4.7), upon sending n — 0", converges to

N2 102y (B ) vily Vil Vil
> (Blu(ay)P + |l (2)))e (exp(E1/2h> 1 El/QheXp<2E1/2h)) >0, (4.8)
J

The nonnegativity follows from the fact that e® — 1 — ze®/2 > 0 for all z > 0.
Returning to (4.7), we fix v = 2~ te=C1(V:ER0) 56 that we may absorb the first term in line three
into the left side, and invoke (4.8), implying

/(m + 1) (Bl + Ll P da

9eC1(V,E,h0)

< eCI(V’E’h"S)( /(|x! + D)I)(P — E +ie)ul’dz + 2&7/ |uu’\dac>, h > 0.

n2
(4.9)
For the term in (4.9) having the factor of e:
/ 1 2 1 12
2 [ |ud|dx < 7 |u|“dx + 7 |hu'|*d, h >0, (4.10)
and
/ (ot P = Re/((P B+ ie)u)uds + E/ luf2dz + / 2V
1 1
<5 [P~ ExiuPde+ (5 +B) [ ud+ |Vlulzlo 1
(4.11)
1
<= /\P E + ig)ul dx+(2 2||/‘Y/h‘|)/\u|2dx
+ §HV|| / |ha|?di, v, h > 0.
Fixing v = ||[V||~! in (4.11), implies
2 2 HVW
|ho/|*de < | (P — E tie)ul|*dx 4+ (1 +2F + lu|*dz, h > 0. (4.12)

Now, replace [|hu/|*dz in (4.10) by the right side of (4.12). From this, we get a bound for
2 [ Jun/|dz, which we insert into the in the last line of (4.9). We conclude

/(yx| + 1) (Bl + Ll ?)da
V,E,h5)

C1(V,E,h,5) 2601( 1 146
< eCiV:ER, (( + ) [ (al + D|(P - Eic)uPds (413)

2
+h(2~|—2E+ ” /||d ec0,1], h>0.

We absorb the last term of (4.13) into the left side by estimating

ellul|2s = :FIm<(P—E:t7L5)u u)r2 (41
< 2 (la] + 1) F (P = Bt ie)ulFs + (2] + D)7 F ul3a,
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and then choosing v = Eh~1(2 + 2E + h2||V||?)~Le~C1(V:E0)  We then have

/ (o] + 1)~ 3 (Epuf? + Ll 12)da
92 C1(V,E,h,5) 1 1 2
TR LR S Kl ) B CE

. /(|x| + )P — E +ie)ul?’de, e€[0,1], h>0.

< C1(V.E,h0) (

which implies (1.4).

5. EXTERIOR ESTIMATE

Proof of Theorem 1.7. We again start from (1.10), considering the case € € (0, 1] and putting
fi=(P(h) — E£ie) ' (|z] + 1)~ 1+0/2y,

This time, we pair F' with a much simpler weight w. In particular we take w to be the continuous,

odd function vanishing on [— Ry, Ry, and obeying

(1 + R0)6
(1+2z)0

Note that the same w was used in the proof of [DaSh20, Theorem 2]. Since wV = 0, we find,

proceeding as in (4.4),

w(z) =1-— >Ry = dw=w'(z) =6(1+ Ro)°(1+ |z|) 1 1sp,.

d(wF) = 2w Re(((P — E + ie)u)uw’) T 2ew” Im (vu') + \h! [Pdw + E|u|?dw, (5.1)
and thus
5(1 4 Ro)’ / (o] + 1) (Bluf® + [hed?)
R\[—Ro,Ro]
1
<1 FIEE / (ol + )02 (5.2
’Yhz R\[—Ro,Ro] R\[—Ro,Ro ( )

+ 25/ wluu| v, h > 0.
R\[=Ro,Ro]

Taking v = 2715(1 + Ry)®, we absorb the second term on the right side of (5.2) into the left side.
To handle the term involving e, we proceed to find

1 1
2/ wlu| < / u|? + / w?|h'|?, h >0, (5.3)
R\[— Ro,Ro] h Jr\[~ Ro, Ro) h Jr\[- Ro, Ro)

and

/ w?|ha/|* = 2h2 Re/ ww'u'u + Re/ w?(—h*u")a
R\[—Ro,Ro] R\[=Ro, o] R\[=Ro,Ro]

<o+ Ro)'h [ (Iul? + w?l )
R\[—Ro,Ro]
—|—Re/ WX(P - E + ie)u)i+ B uf? (5.4)
R\[—Ro,Ro] R\[—Ro,Ro]

1 1
< / |f|2+(+E+5(1+RO)5h)/ |u|?

2 JR\[= Ro,Ro] 2 R\ [~ Ro, Ro]
+ (1 + Ro)°h w?hd 2, h>0.

R\[~Ro,Ro]
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Putting hg := 271671 (14+Rp) % and restricting h € (0, ho] in (5.4) allows us to bound fR\[_RO Ro w?|hu'|?
in (5.3) by twice the fourth line of (5.4). Inserting the resulting estimate for 2fR\[—RO Ro] wlud'|
into the right side of (5.2) yields, for ¢ € (0,1] and h € (0, h],

/ (] + 1)~ ul?
R\[—Ro,Ro]

< (2 + ms ) | 1P+ e | ul2.
B 52E(1 + R0)25h2 E(S(l + Ro)ah R\ [~ Ro,Ro] E5(1 + Ro)éh R\ [~ Ro,Ro]

The last term in line two of (5.5) may be estimated in manner similar (4.14), leading to (1.9).

(5.5)

0

6. UNIFORM RESOLVENT ESTIMATE AND RESONANCE FREE STRIPS

In this Section, we prove Theorem 1.8 as an application of Corollary 1.4. We are concerned with

the self-adjoint operator
H:=-0:4+V:D— L*R), (6.1)
where V' remains a finite signed Borel measure, and has support in [—Rg, Rp] for some Ry > 0.

In this situation, H is a black box Hamiltonian in the sense of Sjostrand and Zworski [SjZw91], as
defined in [DyZw19, Definition 4.1]. More precisely, in our setting this means the following. First,
if u € D, then ulr\ (g, R, € H?(R\ [~Ry, Ro]). Second, for any u € D, we have (Hu)|r\[=Ro,Ro] =
—(ulr\[(— Ry, o))"~ Third, any u € H?(R) which vanishes on a neighborhood of [—Rq, Ro] is also
in D. Fourth, 1_p, gy (H + i)~! is compact on H; this last condition follows from the fact that
D C HY(R).

Then, by the analytic Fredholm theorem (see [DyZw19, Theorem 4.4]), we have the following.
In Im A > 0, the resolvent (H — A?)~! is meromorphic L?(R) — D; X is a pole of (H — \?)~1, if and
only if A2 < 0 is an eigenvalue of H. Furthermore, for xy € C§°(R; [0, 1]) with x = 1 near [— Ry, Ry,
the cutoff resolvent x(H — A?)~!y continues meromorphically L?(R) — D from Im A > 0 to C. The
poles of the continuation are known as its resonances.

Proof of Theorem 1.8. Throughout the proof, we use C(||V||,\o) to denote a positive constant
which may depend on ||V and A\, and whose value may change from line to line, but is always
independent of A.

We first show (1.12) for k =0, Im A > 0, and | Re A\| > Ag. In this case, let us expand

X(H =Xty
= x(02+V — (ReN)? + (ImA)? —i2Re X -Tm \) "Ly (6.2)
= (ReA) 2x((Re A\) 7202 + (Re N) 2V — 1 + (Im N)?(Re A) ™2 —i2(Re \) " Im A) ~'x.
If Im A > |Re A|/2, then by the spectral theorem for self-adjoint operators,
IX(H = 2) " xllzemre < TReA2 <A ReA ™, TmA>|ReA|/2, [ReAl > Ao (6.3)

If ImA < |Re)|/2, we apply (1.8) to (6.2) (the notational correspondence is 6 = 1, E = 1 —
(ImA\)2(ReX)™2 > 3/4, e =2|ReA| 1 Im X € (0,1], h = |Re \| ™}, and V(z, h) = h2V). Therefore,

IX(H = X)X r2m2 < CUIV, M) | ReA™,  TmA >0, |[Re )| > Ao. (6.4)
Next, we adapt the proof of [BGT04, Proposition 2.5] to show
IXCH = X3 Yl < CIVILA), 0<TImA <1, [ReA| > Ao (6.5)

We employ the notation,
(H-=X)u=xf, 0<ImA<I,|Re) >N\, feL?R),ueD, (6.6)
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and make use of additional cutoffs
X1, x2 € Cg°(R; [0,1]), x1=1o0n suppx, x2=1on suppxi. (6.7)

Observe

IXCH = A)""xf e < lxullze + [Ocw)'llz < Cllxeullze + x|l z2),
where here and below, C' is a positive constant, which may depend on ||V|| and the derivatives of
the cutoffs, and which may change between lines, but stays independent of A. So, by (6.4) it suffices
to show

Ixiv'[I72 < C((IRe Al + 12 xaullz2 + [x2f1172)- (6.8)
Multiplying (6.6) by x?u and integrating gives

/Xfxfudzvz /X%|u’|2d$—|—2/xlluxlu'dm+/X%u|2V—)\2/X%|u|2d$,
where (3.4) was used, and consequently
/X?W!Qd% < /\X%XfUIdiUﬂL?/lX'W’XludWr VIl 2]l Ocw) |l 2

+ (|Re A + 1)2/X§|uy2dx (6.9)

1
< C(lhef I + (ReX + 17 aulfs) + 5 [ e

Absorbing the last term on the right side into the left side confirms (6.8).
With (6.4) and (6.5), for 0 < Im A < 1, |[Re \| > )\o, and f € L?(R),

IX(H = X) "5 fllo < I (H = X)X llzz + 1HX(H = X) " xSl e
< I (H = X)X llzz + =02, x)xa (H — X)X [l 2
+ X ((H = X%) + X)(H = X)X fll 2
< IX(H = X) 7" fllzz + (1 £l 2
+ =02, XIxa (H = X)X fllz2 + (|Re Al + 12X (H — X)X fl 2
< O(IVI, A0)(| Re Al + 1)]| £ 2

This implies (1.13) for 0 < Im A < 1, |Re A| > )¢, and that continued resolvent L?(R) — D has no
poles in R\ {0} (since \g > 0 is arbitrary).

Now, we turn to showing (1.13) in strips in the lower half plane. For this, we use a resolvent
identity argument due to Vodev [Vol4, Theorem 1.5], adapted to the non-semiclassical case. It
yields holomorphicity of x(H — A?)~ty : L?(R) — D in |Re\| > A, —g0 < Im\ < 0 (g9 > 0
sufficiently small), with bounds in these strips of the form (1.12) and (1.13).

Fix x € C§°(R;[0,1]) such that x = 1 near [—Rp, Ry] and x = 1 near supp x. We are going to
develop several resolvent identities, and let us work initially with A, i such that Im A, Imu > 0,
|ReA|, |[Reu| > Ao (before sending these parameters into the the lower half plane). By the first
resolvent identity,

(H = A2)71 = (H — g™ = (2 = p2)(H = X)) (H — )"
=\ =) (H = X) 7X@ - ) H - @)™
+ (N = ) (H = X)L = )P (H = p?) 7
As operators on H?(R),
(1= X007 =) = (H =) (1-x) = [-0;.x] =
(H =211 =%) = (1= 0)(=07 = M) 7" = (H = N) =05, (=07 =A%) 7,
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while as operators on D,
(=02 = 1)1 =% — (1= X)(H — p*) = [0, X] =
(L= X)H —p*) " = (=07 =) (1= X) = (=07 — ) O X (H — ).
Using x = 1 on supp x and the three previous calculations,
X(H =) = x(H = )" = (W = @)x(H = N) 7w (2 = 0 (H — 1®) " x

+ (N = )X (1= X) (=07 = N*) 7+ (H = M) =07, X1 (=07 =A%) ™)

(=07 = 1®) 7ML = X) + (=07 = 1) THOL XI(H — 1) )x

= (A = p?)x(H = M) 7'xx(2 = Ox(H — p?) ' x (6.10)

+ (1= x = x(H = A)"'x[07,X])

(X(=07 = X)X = x (=02 = )"

(1= X+ (02, XIX(H — )"
To get the equality sign in line four of (6.10), we expanded the terms appearing in lines two and
three, and repeatedly applied the first resolvent identity to (A2 — p?)(—=02 — A\2)~1(-92 — u?)~ L.

Before proceeding to use (6.10) to estimate || x(H — A\2)~!x||z2_,p in the lower half plane, we

quote a well known estimate for the difference of continued free resolvents (see [Vol4, Section 5] or
[Sh18, Section 3.2]):

(=02 = N*) " x = x (=02 = 1) " Xl ks soprve < CQ0)IA = p| sup [X[F2mRt,
NElxu (6.11)
ki€ {01}, kpe{0,1,2}, |ReA, |Repu|> Ao, ImAImp> -1,
where Iy , denotes the line segment connecting A and pu.
The identity (6.10) continues to hold after meromorphically continuing both sides (L? — D) to

A, 1€ C. Now, fix p € R with |u| > Ao; Assume A in the lower half plane is not a pole of the
continued cutoff resolvent, and obeys |A — u| < min(1, A\g/2, ), for suitable 0 < v < 1 to be chosen.

Then |x(H — )" Xl 2o < CUIV I, 20)|ul* & =0, 1, [IX(H = 1) xllz2p < CIVI] Ao) el
(6.10), and (6.11) imply
IX(H =) "Xl 20 < C(IIVH,Ao)(Iul + A2 = [l HIX(H = X)X e
HI( =) (R0 = X)) = (=02 — 1*) DXl 2o
2092 2\—1 2 2\—1 2\—1

+ Ix((=P70; =A%) = (=07 — 1) )Xz [IX(H = A7) " X251 (6.12)

+ulIX((=h%0% = A7 = (=02 — 1) D )xll s 2 X (H — )‘2)_1XHL2—>D)

< CV I 20) (11l + 7IxCH = 3) ¥l 5p)-

Fixing y small enough (depending on \g) allows us to absorb the term involving ||x (H—A?)"'x||2p
on the right side of (6.12) into the left side. This precludes resonances in the region Im A < 0,
A — | < min(1,A\g/2,7), and in this region we have ||x(H — M) "'x||r2sp < C|V |, Xo)|pel-
Starting from (6.10), we use the same strategy to show (1.12) in strips in the lower half plane.
Thanks to (6.4), (6.5), and (6.11), more negative powers of |u| appear while making an estimate
similar to (6.12), since now we need only use operator norms L?(R) — L?(R) or L?(R) — H(R).
(|

To conclude this section, we consider the two by two matrix operator

G =i (_(}I é) Do LA(R) - L*(R) @ L(R),
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which arises naturally from rewriting (1.14) as a first order system. A short computation yields
_ “AMH - M)t —i(H - )t
1 _
G+ = <z’)\2(H —A)h i —AH - AT
The following Corollary of Theorem 1.8 is essentially well-known, and is an important input to
the proof of Theorem 7.1 in Section 7.

) when Im A > 0 and (H —\?) lexists. (6.13)

Corollary 6.1. Let x € C§°(R; [0, 1]) be identically one near [—Ro, Ro|. The operator
X(GHN) I =

A 2 XD —ix(H = A1) 6.14
(iVX(AI:T( (fI A2)Al)x +X7;x2 —Ai((g —Av))l@ : *(R) @ L*(R), —» D & L*(R) (6.14)

continues meromorphically from Im X > 0 to C, without poles on R\ {0}. For any Ao > 0, there
exist C, Ao, €9 > 0 so that
IX(G + X)X @erz®—m®erz®) < C; |Re Al > Ao, [Im A[ < &o. (6.15)
If x(G 4+ N)~Yx has a pole at A\ = 0, it is a simple pole. More precisely, if wg € H'(R) and
wy € L*(R), then

) 1 f(wo\ _ (—ilimy_0 Ax(H — A?) "Iy ~({xuo, wi) r2xuo
)1\11)1}) (G +N)""x (w1> = < 0 = 0 . (6.16)

(R\ [—~Ro, Ro]) with Hug = 0 in the sense of distributions.

Proof. By the blackbox formalism (see [DyZw19, Definition 4.1 and Theorem 4.4]) and Theorem
1.8, x(H — ) 2)"1x : L?(R) — D continues meromorphically from Im A > 0 to C, and has no poles in
R\ {0}. This implies that each entry of (6.14) continues meromorphically as an operator between
the appropriate spaces, again without poles in R\ {0}.

With (1.12) already in hand, to establish (6.15), we need to show for any Ay > 0, there exist
C, g9 > 0 so that

INX(H = X)X+ e = IXH(H = X)X 52 < O, (6.17)
IMN(H =) g m < C, (6.18)

for |[Re A| > Ag and | Im \| < g¢. First, we first prove (6.17) for |[Re A\| > Ag and 0 < Im A < g¢, and
then handle the remaining cases.
Let us use the notation

u=(H-N)"xfeD, fecH'(R), |Re) >\ and ImA > 0. (6.19)

Let x1 € C§°(R) with x1 = 1 near supp x. As we showed in the proof of Lemma 3.1, the form domain
of (H, D) is H*(R), so there exists a sequence fj, € D converging to f in H'(R), and corresponding
functions uy == (H — A\?) "1y fx converging to u in (D, | - ||p). Since Huy = (H — X\2) " x1 Hx fx,

(R)N HE

for some real valued uy € H} b

loc

IxHullzz = lim [[xHug[z2 < T flxa(H = N~ Hxfall e (6.20)
—00 k—o0
Furthermore, by (3.4), there exists C(||V]|) > 0 depending on ||V|| so that for any v € L?(R),
|0 (H = X)X Hx fis ) 2] = [(HX iy X1 (H = (=2)*) " xav) 2
< CUIVIDI el xa (H = (=2)*) " xao] -

Since (1.12) gives ||x1(H — (=A)?)"txqvllgr < CUIV |, Xo)|lv]lz2 (provided Im X is small), we con-
clude ||x1(H — X2)"YxaHxfellzz < CUIVI, Mo)llxfell g1 - Returning to (6.20), we now find

IxHullz2 < C(IVI] Ao) lim [xfellar < CUVIL M) fllar,  [ReAl = Ao, 0 <ImA < 0.
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In turn,
INX(H = X)Xl sz = IXHH = X)) "' = XPllmse < C(IVIL Ao,
|ReA| > Ag and 0 < Im \ < &p.

which is (6.17) for |[Re \| > Ag and 0 < Im X < ¢.
Next, with u as in (6.19), we slightly modify the method of estimation in (6.9), this time finding

(6.21)

/X?W!de < C(IVIL20) (IRe Al + 1) 2 xa flI72 + (| Re A + 1)?[[x2ull72),

and where we recall from (6.7) that xyo = 1 on supp x1. Combining this with (6.21) establishes
(6.18) when |Re A| > Ap and 0 < Im A < gg

To show (6.18) and (6.17) hold for |[ReA| > Ao and —gp < Im A < 0, we revisit (6.10) and
multiply by the appropriate power of A\. We then perform an estimate similar to (6.12). As needed,
we invoke (6.11) and [|*x(H — 1®) "X\ g2y |ax(H = 12) "Xl g < C (w € R, [u] > Xo).

Finally, to show (6.16), we proceed as in the proof of [DyZw19, Theorem 2.7]. We omit the
details, but take care to note that this argument does require that for each zg € R\ [ Ry, Rp] and
a,b € C, there is a unique solution f to Hf = 0 satisfying f(z¢) = a and f'(z) = b; Even though
V is only a measure in our setting, such well-posedness still holds for the initial value problem, see
[EcTel3, Theorem 3.1]. (In general it is not necessary to prescribe the initial conditions outside
the support of the measure, but this is sufficient for our purpose). The result is that near A = 0,

_ 1
x(H — X)) tyw; = X<Xu07w1>L2Xu0 + A(N)wy, wy € L3(R),

where A(\) : L%(R) — D is holomorphic near zero, and for some ug € Hl (R)NHZ (R\ [-Ro, Ro))
with Hup = 0 in the sense of distributions. Hence we have (6.16).

O

7. WAVE DECAY

In this Section, we combine Corollary 6.1 with an argument similar to those appearing in [V099,
Section 3] and [DaSh23, Section 4]. We establish exponential local energy decay, modulo negative
eigenvalues and a possible zero resonance, for solutions of the wave equation (1.14).

First, we represent the solution to (1.14) via the spectral theorem of for self-adjoint operators.
Additionally, we use that the proof of Lemma 3.1 shows the form domain of (H,D) (i.e., the
domain of |H|'/?) is H'(R). Thus, given initial conditions wg € D, w; € H'(R), the unique
function w € C?((0,00),H) with w(0) = wg, dw(0) = wy, w(t) € D(H) for all t > 0, and
O?w(t) + Hw(t) = 0, is

w(t) =w(-,t) =1so(H)w(-,t) + 1eo(H)w(-, 1),
sin(t|H|'/?)

_ 1/2
1>o(H)w(-,t) = 19(H)(cos(t|H| ) wy + VI wi), (7.1)
. sin(it| H|'/?
1oo(H)w(-t) = 1<0(H)(cos(zt\H]1/2)wo + Wu}l .

Theorem 7.1. Suppose wg € D, w; € H'(R), and supp wo, suppw; C (=R, R) for some R > 0.
Let w(t) be given by (7.1). For any Ry > 0, there exist C,c > 0 so that
1120(H)w(:,t) = woo (2)| 11 (~ Ry, ry) + 010 (H)w (-, 8) || 12(— Ry, Ry)

e (7.2)
< Ce([lwoll i (ry + llwill2my), >0
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Furthermore, if x € C§°(R; [0, 1]) is identically one near [—Ry, R1] U [—Ry, Ro] U [-R, R], then the
function ws(x) may be written as

Weo(z) = x(2)u0(2) / Yo, (73)

R
for some real valued vy € HL_(R) N HZ (R\ [~Ro, Ro]) with Hug = 0 in the sense of distributions

(and if the continued operator (6.14) does not have a pole at A = 0, we may take uy = 0.)

Proof. Choose x € C§°(R;[0,1]) such that x = 1 near [—Ry, R1] U [-R, R] U [Ro, Ro] (where as
before supp V' C [— Ry, Rp]). From Corollary 6.1, for any \g > 0, there exist C, g9 > 0 such that
IX(G + M) 'xfIl < O£, (7.4)

whenever |Re A| > A\p and |Im A| < g, where here and for the rest of this Section, all norms are
H'(R) @ L?(R) unless otherwise specified.
We have

1so(H)w(t) = 150(H)( cos(t|H|Y*)wo + sin(t|H|Y2)| H| "/ ?wy),
O lso(H)w(t) = 150(H)( — sin(t|H[V?)|[H|Y?wo + cos(t|H|Y?)wy),
07 1>0(H)w(t) = —H1x0(H)w(1).
Consequently, after defining

p= () vwr= (o).

OO <A+ DI UM =iGUE)f,  U@U(s)f =Ut+s)f, (7.5

for all real ¢ and s, and for some C > 0 independent of ¢t and f.
Take ¢ € C*(R; [0, 1]) which is 0 near (—oo, 1] and 1 near [2,00) and put

we have

W) f = o(U()f = IO AN, T = / G () fds, &> 0.
Im A=¢ 2r Jr
We compute oW (t)f = ¢/ (t)U(t)f +iGW (t)f, and therefore find
W(t)f = e NG+ NP UL (N dN, > 0. (7.6)
Im A=¢

Since wy, wy and V' have compact support, finite propagation speeds holds for the solution (7.1).
Therefore, increasing R > 0 if necessary, we have that, x — U(¢)f is supported in (—R, R) for all
t € [0,2]. By continuity of integration, the same is true of = — (i¢/Uf)"(\) for every A. Hence
A= (i¢'Uf)"(X) is entire and rapidly decaying as | Re A| — oo with | Im A| remaining bounded and
further (i'Uf)"(N) = x(i@'U f)"(N).

By (7.4), there exists € > 0 small enough so that, within the strip | Im A\| < 2¢, either x(G+\) "1y
has no poles, or just a pole at A = 0. Deforming the contour in (7.6), by the residue theorem, we
find

XW)f
= —2mi Res \—o(e "X (G + N\) " Ix (iU f)"(N)) + / e N (G + NI (iU £) (V) dA.

Im A=—¢

= lim Ax(G + )" x /R FOUE) fds+ [ NG+ NPT (A

ImA=—¢

To simplify this, use (6.16) and put

W) f = /_ T NG A — i) U S) (A — de) dA,
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to obtain

(g = (X0 de fy X

©'(8)0sw(s, x)dsdx) e TS

To simplify the first term, we integrate by parts in s, using ¢’ = —(1 — ¢)’, to obtain

// '(s)0sw(s, ) dsdx—/xuoler// ©())0?w(s, z) ds dx.

Now observe that 02w = —Hw, xug € D, so
(xuop, Hw(s))r2 = (Hxuo,w(s))r2 = (([H, x] + H)ug,w(s))r2 =0, for s € [0, 2],
the last equality following from y = 1 near [—R, R] and suppw(s) C (=R, R) for s € [0,2]). Thus

XW(t)f —_ <<XUO, w8>L2XUO> + efatvv1 (t)f

It now suffices to show that
WA (t)f]| < Ce* 2| £

To prove this, we first use Plancherel’s theorem, along with the fact that by (7.5), the operator
norm [|U(#)[| g (rye 2 (R)— o (R)@£2(R) i uniformly bounded for all ¢ € R, as well as the fact that by

Corollary 6.1, the operator norm || x(G+ X — ’L-8)_1X||HI(R)@LQ(R)HHl(]R)@LQ(R) is uniformly bounded
for all A € R, to obtain

/ W@ f]2 dt = C / IX(G + A — i) X (PUF) (A — ie) |2 dA
<c. / I(GUL) (A — )| dA (7.7)

— . [ uaPa < e
Next, let x € C5°(R;[0,1]) with ¥ =1 on supp x. Observe that
GX(G+ N 'x =[G xXIX(G + A +ie) ' = AX(G + ) I+ X (7.8)

holds initially for Im A > 1 by (6.13), and continues meromorphically to C by (6.14). In particular,
decreasing ¢ if necessary, (6.15) implies that (7.8) holds for everywhere in |Im\| < 2e, except
possibly at A = 0. Therefore, setting,

Wi (t)f = / TG + A — i) R GPT L) (A — i) dA,
we have
(& — iGYWA(L) f = —i[G AW (E)f + Wi (t) ] — / N (iU £ (A — i) dA = Wa(t) .

Integrating both sides of

Ou(U(t — $)Wi(s)f) = —iGU(t — Wi (s)f + U(t — s) (iGW1(s) f + Wa(s)f)
— Ut — s)Wa(s)f

from s =0 to s =t gives

Wi(t)f = U®)W(0)f + U(t)/o U (—s)Wa(s)f ds.
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Thus

W@ fll < Ca+a)(lf] +/0 (1+ 5)[[W2(s) fllds)

t3 / ¢ 1/2
<c+0(il+ GG+ +0"( [ W ras) ).

Now check that, since ||[G, X]Wi(t)f| < C|Wi(t)f]|, calculating as in (7.7), we obtain
[ IWa(s)f||? ds < C| f||*, and hence

IWa@)fll < C+ )1

as desired.
O

ACKNOWLEDGEMENTS: It is a pleasure to thank Kiril Datchev for helpful discussions. We also
wish to thank the anonymous referees, whose valuable comments helped improve this article.

DECLARATIONS, FUNDING AND/OR CONFLICTS OF INTERESTS/ COMPETING INTERESTS: JS grate-
fully acknowledges support from ARC DP180100589, NSEF DMS 2204322, and from a 2023 Fulbright
Future Scholarship funded by the Kinghorn Foundation and hosted by University of Melbourne.
On behalf of all authors, the corresponding author states that there is no conflict of interest.

DATA AVAILABILITY STATEMENT: Data sharing not applicable to this article as no datasets were
generated or analyzed in this study.

REFERENCES

[AmRe05] B. Amor and C. Remling. Direct and inverse spectral theory of one-dimensional Schrodinger operators
with measures. Integral Equations Operator Theory 52(3) (2005), 395-417 4

[AGHHO05] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden. Solvable models in quantum mechanics, 2nd ed.
AMS Chelsea Publishing, Providence, RI (2005) 4

[BEKS92] J. Brasche, P. Exner, A. Kuperin, P. Seba. Schrédinger operators with singular interactions. J. Math.
Anal. Appl. 184(1) (1994), 112-139 4

[Bu98] N. Burg. Décroissance de 1’énergie locale de I’équation des ondes pour le probléme extérieur et absence de
résonance au voisinage du réel. Acta Math. 180(1) (1998), 1-29 3

[Bu02] N. Burq, Lower bounds for shape resonances widths of long range Schrodinger operators. Amer. J. Math.,
124(4) (2002), 677-735 3

[BGT04] N. Burq, P. Gérard, N. Tzvetkov. On nonlinear Schrodinger equations in exterior domains. Ann. Inst. H.
Poincareé Anal. Non Linéaire 21(3) (2004), 295-318 12

[CaVo02] F. Cardoso and G. Vodev. Uniform Estimates of the Resolvent of the Laplace-Beltrami Operator on Infinite
Volume Riemannian Manifolds. II. Ann. Henri Poincaré 4(3) (2002), 673-691 2, 3

[Dal4] K. Datchev. Quantitative limiting absorption principle in the semiclassical limit. Geom. Func. Anal. 24(3)
(2014), 740-747 2, 3

[DGS23] K. Datchev, J. Galkowksi, and J. Shapiro. Semiclassical resolvent bounds for compactly supported radial
potentials. J. Funct. Anal. 284(7), paper no. 109835 (2023), 28pp. 3

[DadH16] K. Datchev and M. V. de Hoop. Iterative reconstruction of the wavespeed for the wave equation with
bounded frequency boundary data. Inverse Problems 32(2) (2016), 025008, 21 pp. 3

[DaJi20] K. Datchev and L. Jin. Exponential lower resolvent bounds far away from trapped sets. J. Spectr. Theory
10(2) (2020), 617-649 3, 4

[DaMa22] K. Datchev and N. Malawo. Semiclassical resonance asymptotics for the delta potential on the half line.
Proc. Amer. Math. Soc. 150(11) (2022), 4909-4921 4

[DMW22] K. Datchev, J. Marzuola, and J. Wunsch. Newton polygons and resonances of multiple delta-potentials.
arXiv 2208.07901 4

[DaSh20] K. Datchev and J. Shapiro. Semiclassical Estimates for Scattering on the Real Line. Comm. Math. Phys.
376(3) (2020), 2301-2308 3, 11

[DaSh23] K. Datchev and J. Shapiro. Exponential time decay for a one dimensional wave equation with coefficients
of bounded variation. Math. Nachr. 296(11) (2023), 4978-4994 4, 16



20 ANDRES LARRAIN-HUBACH AND JACOB SHAPIRO

[DyZw19] S. Dyatlov and M. Zworski. Mathematical Theory of Scattering Resonances. Graduate Studies in Mathe-
matics 200. American Mathematical Society, Providence, RI (2019) 4, 12, 15, 16

[EGNT13] J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl. Weyl-Titchmarsh theory for Sturm-Liouville operators
with distributional potentials. Opuscula Math. 33(3) (2013), 467-563 1, 4, 5

[EKMT14] J. Eckhardt, A. Kostenko, M. Malamud, and G. Teschl. One-dimensional Schrédinger operators with
§’-interactions on Cantor-type sets. J. Differential Equations 257(2) (2014), 415-449 4

[EcTel3] J. Eckhardt and G. Teschl. Sturm-Liouville operators with measure-valued coefficients. J. Anal. Math. 120
(2013), 151-224 4, 16

[Fo99] G. Folland. Real analysis: modern techniques and their applications, 2nd ed. Wiley, New York (1999) 2, 4

[GaSh22] J. Galkowski and J. Shapiro. Semiclassical resolvent bounds for long range Lipschitz potentials Int. Math.
Res. Not. IMRN 2022 (18) (2022), 14134-14150 3

[Gall9] J. Galkowski. Distribution of resonances in scattering by thing barriers. Mem. Amer. Math. Soc. 259(1248)
(2019), ix+152pp. 4

[Gal9] O. Gannot. Resolvent estimates for spacetimes bounded by Killing horizons. Anal. PDE. 12(2) (2019), 537—
560. 3

[Ha82] E. Harrell II. General Lower Bounds for Resonances in One Dimension. Commun. Math. Phys. 86(2) (1982),
221-225 4

[Hi99] M. Hitrik. Bounds on Scattering Poles in One Dimension. Commun. Math. Phys. 208(2) (1999), 381-411 4

[HrMy01] R. Hryniv and Y. Mykytyuk. 1-D Schrodinger operators with periodic singular potentials. Methods Funct.
Anal. Topology 7(4) (2001), 31-42 1, 4, 5

[HrMy12] R. Hryniv and Y. Mykytyuk. Self-adjointness of Schréodinger operators with singular potentials. Methods
Funct. Anal. Topology 18(2) (2012), 152-159 1, 4, 5

[GaSh22a] J. Galkowski and J. Shapiro. Semiclassical resolvent bounds for weakly decaying potentials. Math. Res.
Lett. 29(2) (2022), 373-398 3

[GaSh22b] J. Galkowski and J. Shapiro. Semiclassical resolvent bounds for long range Lipschitz potentials. Int. Math.
Res. Not. IMRN 2022(18) (2022), 14134-14150 3

[KIVo19] F. Klopp and M. Vogel. Semiclassical resolvent estimates for bounded potentials. Pure Appl. Anal. 1(1)
(2019), 1-25 3

[LSW22] M. Lukié¢, S. Sukhtaeiv, and X. Wang. Spectral properties of Schrodinger operators with locally H~*
potentials. arXiv 2206.07079 2

[Ob23] D. Obovu. Resolvent bounds for Lipschitz potentials in dimension two and higher with singularities at the
origin. arXiv:2301.13129 3

[RoTal5] I. Rodnianski and T. Tao. Effective Limiting Absorption Principles, and Applications. Commun. Math.
Phys. 333(1) (2015), 1-95 3

[ReSi78] Michael Reed and Barry Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators. Aca-
demic Press, Inc., 1978. 2

[Sal6] A. Sacchetti. Quantum resonances and time decay for a double-barrier model. J. Phys. A: Math. Theor. 49(17)
(2016), 17501, 20pp 4

[SaSh99] A. Savchuk and A. Shkalikov. Sturm-Liouville operators with singular potentials. Mat. Zameki 66(6) (1999),
897-912 (Russian); English transl. Math. Notes 66(5-6) (1999), 741-753 4

[Sh18] J. Shapiro. Local energy decay for Lipschitz wavespeeds. Comm. Partial Differential Equations 43(5) (2018),
839-858 14

[Sh19] J. Shapiro. Semiclassical resolvent bounds in dimension two. Proc. Amer. Math. Soc. 147(5) (2019), 1999-2008
3

[Sh20] J. Shapiro. Semiclassical resolvent bound for compactly supported L° potentials. J. Spectr. Theory. 10(2)
(2020), 651-672 3

[Sh24] J. Shapiro. Semiclassical resolvent bounds for short range L®° potentials with singularities at the origin.
Asymptot. Anal. 136(3-4) (2024), 157-180 3

[SjZw91] J. Sjostrand and M. Zworski. Complex Scaling and the Distribution of Scattering Poles. J. Amer. Math.
Soc. 4(4) (1991), 729-769 3, 12

[TaZw] S.-H. Tang and M. Zworski. Potential Scattering on the Real Line. Notes available at
https://math.berkeley.edu/~zworski/tz1.pdf 4

[Teld] G. Teschl. Mathematical methods in quantum mechanics, with applications to Schrédinger operators, 2nd ed.
Graduate Studies in Mathematics 200. American Mathematical Society, Providence, RI (2014) 7

[Vo99] G. Vodev. On the uniform decay of the local energy. Serdica Math. J. 25(3) (1999), 191-206 16

[Vol4] G. Vodev. Semi-classical resolvent estimates and regions free of resonances. Math. Nach. 287(7) (2014), 825-
835 3, 13, 14

[Vo19] G. Vodev. Semiclassical resolvent estimates for short-range L potentials. Pure Appl. Anal. 1(2) (2019),
207-214 3


https://math.berkeley.edu/~zworski/tz1.pdf

MEASURE POTENTIALS ON THE LINE 21

[Vo20a] G. Vodev. Semiclassical resolvents estimates for L® potentials on Riemannian manifolds. Ann. Henri
Poincaré. 21(2) (2020), 437-459 3

[Vo20b] G. Vodev. Semiclassical resolvent estimates for short-range L potentials. II. Asymptot. Anal. 118(4) (2020),
297-312 3

[Vo20c] G. Vodev. Semiclassical resolvent estimates for Holder potentials. Pure Appl. Anal. 2(4) (2020), 841-860 3

[Vo21] G. Vodev. Improved resolvent bounds for radial potentials, Lett. Math. Phys. 111(1) (2020), 21pp 3

[Vo22] G. Vodev, Improved resolvent bounds for radial potentials. II. Arch. Math. 119(4) (2022), 427-438 3

[Zw87] M. Zworski. Distribution of Poles for Scattering on the Real Line. J. Func. Anal., 73(2) (1987), 277-296. 4

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DAYTON, DAyTON, OH 45469-2316, USA
Email address: alarrainhubachi@udayton.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DAYTON, DAYTON, OH 45469-2316, USA
Email address: jshapirol@udayton.edu



	1. Introduction and statement of results
	2. Review of BV
	3. Self-adjointness for V a measure
	4. Weighted estimate
	5. Exterior estimate
	6. Uniform resolvent estimate and resonance free strips
	7. wave decay
	References

