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A B S T R A C T

Many social and biological networks periodically change over time with daily, weekly, and other cycles. Thus
motivated, we formulate and analyze susceptible-infectious-susceptible (SIS) epidemic models over temporal
networks with periodic schedules. More specifically, we assume that the temporal network consists of a cycle
of alternately used static networks, each with a given duration. We observe a phenomenon in which two static
networks are individually above the epidemic threshold but the alternating network composed of them renders
the dynamics below the epidemic threshold, which we refer to as a Parrondo paradox for epidemics. We find
that network structure plays an important role in shaping this phenomenon, and we study its dependence on the
connectivity between and number of subpopulations in the network. We associate such paradoxical behavior
with anti-phase oscillatory dynamics of the number of infectious individuals in different subpopulations.
1. Introduction

The connectivity of social contact networks is a main determi-
ant for how contagions, i.e., spreading of communicative diseases,
pinions, rumor, ideas, and so forth, occur in a population. Epidemic
odeling on networks has been a useful tool that can help us un-
erstand, predict, and mitigate contagious processes occurring in the
hysical world and online [1–6]. In fact, the structure of social and
ransportation networks can also dynamically change on the timescale
f disease spreading. For example, human and animal mobility is a
ain obvious reason why contact networks vary over time. Airport

ransportation networks, which consist of airports as nodes and direct
ommercial flights between two airports as edges, also alter over days,
eeks, and longer time [7,8]. Time-varying networks are collectively

alled temporal networks, and epidemic processes on temporal net-
orks have been extensively studied [3,9–17]. Ignoring variations of
 network over time may lead to wrong or inaccurate conclusions
bout dynamics on networks. For example, in the SIR process, the

number of eventually infected nodes, called the final size, tends to
be systematically different between simulations on a given temporal
network and those on a counterpart static network (i.e., the aggregated,
that is, time-averaged static network corresponding to the temporal
network) that ignores temporal nature of the original network, even
if the infection and recovery rates are assumed to be the same between

∗ Corresponding author at: Department of Mathematics, State University of New York at Buffalo, NY, 14260-2900, USA.
E-mail addresses: dane.taylor@uwyo.edu (D. Taylor), naokimas@buffalo.edu (N. Masuda).

the two sets of simulations (e.g., [12,17]). Therefore, simulations on the
static network would over-or under-estimate epidemic spread occurring
on the given temporal network.

One strategy for mathematically and computationally modeling
temporal networks and dynamical processes on them is to use periodic
temporal networks. Periodic temporal networks are useful because they
allow us to derive and analyze a mapping of the given system’s state
from one time point to one period after, reminiscent of the Poincaré
map. A useful subclass of periodic temporal networks is periodic switch-
ing temporal networks, which are defined as time-varying networks
in which one static network is used for a certain duration and then
the network switches to another network, which is used for a certain
duration, and so forth, and we come back to the first static network
after the last one to complete one period, and then repeat the same
cycle. It is common to use each static network for the same duration for
simplicity. Periodic temporal networks in discrete time are by definition
periodic switching temporal networks because each one static network
is present in each time step, which generally changes over discrete
times. Popularity of using periodic switching temporal networks is
presumably due to their analytical tractability. Periodically switching
networks have been applied to modeling, e.g., contagion processes [18–
24] evolutionary dynamics [25–33], gene regulation [34,35], network
control [36–39], and random walks [40–43].
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A phenomenon that can occur in periodically switching dynamical
systems or stochastic processes is the Parrondo paradox. Originally, the
Parrondo paradox refers to the situation in which a combination of two
losing strategies generates a winning strategy [44–46]. When a person
alternately and repetitively plays two different losing gambling games
(i.e., losing regardless of the player’s strategy), the player may still win
he game, even on average. The Parrondo paradox has also been found

in theoretically motivated dynamical systems [47–53], social dynamics
models [54–57], evolutionary dynamics on networks [58], financial in-
vestment models [59,60], chemical engineering [61], molecular trans-
port [62], dynamics of allele frequency [63–65], cancer biology [66],
cellular biology [67], and so on. This phenomenon is also known in
control theory community; a switching dynamical system composed of
lternation of unstable dynamical systems can become stable [68–74].
odels of epidemic dynamics are no exception [75–79]. For example,
heong et al. considered a model of COVID-19 outbreak [77]. In their
odel, when the community is not under lockdown, the infection rate

s higher and the hospital cost is increased for individual persons. In
ontrast, when a lockdown is implemented, the total economic costs are
ncreased despite the rate of epidemic spreading being reduced. They

argue that implementing either one of these two strategies is a losing
trategy. However, switching between the two strategies can reduce the

overall cost per day; Cheong et al. interpreted this to be a winning
trategy, thereby representing a Parrondo paradox [77]. As another

example, in [79], the authors implemented the Parrondo paradox idea
n a periodic parameter switching algorithm with the aim of controlling

the COVID-19 outbreak in their model. Thus, the literature suggests
hat the Parrondo paradox is useful for suppressing epidemic spreading.

In the present study, we exploit this idea for potentially suppressing
pidemic spreading over periodically switching networks with explicit
etwork structure to investigate the effects of such structure. Specif-
cally, we study the Parrondo paradox occurring on the susceptible-
nfectious-susceptible (SIS) dynamics over periodically switching tem-
oral networks. We first find that the Parrondo paradox often occurs for
mall networks (i.e., those with a few nodes) modeling interaction be-
ween a small number of subpopulations of individuals. We corroborate
ur results with analysis of larger networks having the same structure
f interaction between subpopulations. We characterize the observed
aradoxical dynamics by quantifying anti-phase oscillation between
he time courses of the fraction of infectious individuals in different
ubpopulations. We finally develop a perturbation theory, which also
ssists in explaining the reason for the paradoxical dynamics. Code used
n this paper is available on GitHub [80].

. Preliminaries

We first review the SIS epidemic model over static networks, defi-
ition of temporal networks, and the SIS model over periodic temporal
etworks.

.1. SIS model over static networks

In this section, we present the SIS model over static networks and
ts epidemic threshold. We consider a static weighted network on 𝑁
odes, 𝐺( , ), that may have self-loops;  = {𝑣1,… , 𝑣𝑁} is the set
f nodes, and  ⊂  ×  is the set of edges. We denote the weighted
djacency matrix by 𝐀 = (𝑎𝑖𝑗 ). By assumption, each node takes one of
he two states, i.e., susceptible (denoted by S) or infectious (denoted
y I), at any given time 𝑡 ∈ R. If node 𝑣𝑖 is susceptible and its neighbor

𝑣𝑗 is infectious, then 𝑣𝑗 infects 𝑣𝑖 at a constant rate 𝛽 𝑎𝑖𝑗 , where 𝛽 (> 0)
is the infection rate. If 𝑣𝑖 is adjacent to multiple infectious nodes, each
infectious neighbor infects 𝑣𝑖 independently of each other. In addition,
any infectious node recovers to the susceptible state at a constant
recovery rate, denoted by 𝜇 (> 0). Therefore, the SIS model is a Markov
process in continuous time with 2𝑁 states.
2 
The binary random variable, 𝑋𝑖(𝑡), encodes the state of 𝑣𝑖, i.e.,
𝑋𝑖(𝑡) = 0 and 𝑋𝑖(𝑡) = 1 if 𝑣𝑖 is susceptible or infectious, respectively. Let
𝑥𝑖(𝑡) be the probability that the node 𝑣𝑖 is infectious at time 𝑡. Because
here is no closed system of ODEs that exactly describes the evolution
f 𝑥𝑖(𝑡) (with 𝑖 ∈ {1,… , 𝑁}), a system of ODEs approximating the
volution of 𝑥𝑖(𝑡), called the individual-based-approximation (IBA), has
een studied [5]. The IBA assumes independence of {𝑥1(𝑡),… , 𝑥𝑁 (𝑡)}.
nder the IBA, the SIS dynamics is given by [81–83]

d𝑥𝑖(𝑡)
d𝑡 = 𝛽

[

1 − 𝑥𝑖(𝑡)
]

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑥𝑗 (𝑡) − 𝜇 𝑥𝑖(𝑡), 𝑖 ∈ {1,… , 𝑁}. (1)

Eq. (1) can be expressed in the succinct form as
d𝐱(𝑡)

d𝑡 =
[

𝛽𝐀 − 𝛽diag(𝑥𝑖(𝑡))𝐀 − 𝜇𝐈
]

𝐱(𝑡), (2)

where 𝐱(𝑡) = [𝑥1(𝑡),… , 𝑥𝑁 (𝑡)]⊤, the transposition is denoted by ⊤,
iag(𝑥𝑖(𝑡)) represents the diagonal matrix with diagonal entries 𝑥1(𝑡),
, 𝑥𝑁 (𝑡), and 𝐈 is the 𝑁 ×𝑁 identity matrix.
The linearized ODE for Eq. (2) under the assumption that 𝑥𝑖(𝑡) ≈ 0,

𝑖 ∈ {1,… , 𝑁}, or that the infection rate is posed such that epidemic
ynamics is near the disease-free equilibrium, is given by

d𝐱(𝑡)
d𝑡 = (𝛽𝐀 − 𝜇𝐈)𝐱(𝑡) ≡ 𝐌𝐱(𝑡). (3)

Eq. (3) leads to
𝐱(𝑡) = 𝑒𝐌𝑡𝐱(0) = 𝑒(𝛽𝐀−𝜇𝐈)𝑡𝐱(0). (4)

t is known that Eq. (4) provides an upper bound of the fraction of in-
ectious nodes in the original stochastic SIS dynamics. Specifically, the
robability that the infection persists in the network is upper-bounded
y [81,84–86]

𝑃 𝑟[𝑋(𝑡) ≠ 0] ≤
√

𝑁‖𝑋(0)‖1𝑒𝜆max(𝐌)𝑡 =
√

𝑁‖𝑋(0)‖1𝑒(𝛽 𝜆max(𝐀)−𝜇)𝑡, (5)

where 𝑋(𝑡) = (𝑋1(𝑡),… , 𝑋𝑁 (𝑡)), ‖𝑋(0)‖1 =
∑𝑁

𝑖=1 𝑋𝑖(0) represents the
umber of initially infectious nodes, and 𝜆max represents the largest

eigenvalue of a matrix in modulus. Note that the Perron–Frobenius
theorem guarantees that 𝜆max(𝐀) is real and positive; the theorem holds
rue because the entries in 𝐀 are nonnegative and 𝐀 is irreducible.

Under the IBA, the epidemic grows if and only if [81,86]

max(𝐌) > 0. (6)

Since 𝜆max(𝐌) = 𝛽 𝜆max(𝐀) − 𝜇, Eq. (6) is equivalent to 𝛽 𝜆max(𝐀) > 𝜇, or
𝛽
𝜇 > 1

𝜆max(𝐀)
. Therefore, under the IBA, the epidemic threshold, i.e., the

alue of the infection rate above which the epidemic grows, is given
by 𝛽c = 𝜇∕𝜆max(𝐀).

Another interpretation of Eqs. (1), (2), (3), (4), and (6) is that a
ode represents a subpopulation of individuals [87–89]. In this case,
he network is that of subpopulations, and 𝑥𝑖(𝑡) represents the fraction
f infectious individuals in the 𝑖th subpopulation at time 𝑡. Fig. 1

illustrates a network of individuals that are divided into two equal-sized
subpopulations (with 103 individuals each). The natural coarse graining
of this network yields a 2 × 2 matrix 𝐀, which encodes connectivity
between the two subpopulations and within each subpopulation. To
allow this interpretation, we allow the network to have self-loops
(i.e., positive diagonal entries of 𝐀).

2.2. Periodic switching temporal networks

The time-varying 𝑁 ×𝑁 weighted adjacency matrix of the temporal
network is denoted by 𝐀(𝑡) = (𝑎𝑖𝑗 (𝑡)), where 𝑎𝑖𝑗 (𝑡) represents the weight
of the edge from node 𝑣𝑖 to 𝑣𝑗 at time 𝑡 ∈ R. When 𝐀(𝑡 + 𝑇 ) = 𝐀(𝑡) for
any 𝑡, we say that the temporal network is periodic and that 𝑇 is the
period.

We consider a special case of periodic temporal networks in which
𝐀(𝑡) switches between a finite number of static adjacency matrices
according to a periodic schedule. We call such a periodic tempo-

ral network a periodic switching (temporal) network. The periodic
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Fig. 1. A network with 𝑁 = 2000 individuals organized in two subpopulations. (a) Adjacency matrix. Black dots indicate edges in the network, which are encoded by nonzero
𝐴𝑖𝑗 entries. By grouping the first 103 nodes into a subpopulation and the remaining 103 nodes into another, we obtain a network composed of two subpopulations with self-loops.
The subpopulation structure can be summarized by considering the probabilities of connection within and between subpopulations (which can be stored in a 2 × 2 matrix). (b)
Network visualization. Nodes (e.g., people) in the first and second subpopulation are colored blue and magenta, respectively.
Fig. 2. A periodically switching network with 𝑁 = 2 nodes, a period of 𝑇 = 7 days, and two sub-intervals of lengths 𝜏1 = 5, corresponding to weekdays, and 𝜏2 = 2, corresponding
o weekends.
witching network is defined by a sequence of adjacency matrices
𝐀(1),𝐀(2),… ,𝐀(𝓁)} and the duration of each 𝓁′th static network de-
oted by 𝜏𝓁′ (with 𝓁′ ∈ {1,… ,𝓁}). The periodic switching network is
efined by

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐀(1) (𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜏1),
𝐀(2) (𝑛𝑇 + 𝜏1 ≤ 𝑡 < 𝑛𝑇 + 𝜏1 + 𝜏2),
⋮ ⋮

𝐀(𝓁) (𝑛𝑇 + 𝜏1 +⋯ + 𝜏𝓁−1 ≤ 𝑡 < (𝑛 + 1)𝑇 ),

(7)

here 𝑛 ∈ Z. Note that 𝑇 =
∑𝓁

𝓁′=1 𝜏𝓁′ .
In Fig. 2, we visualize a periodic switching network with 𝓁 = 2 that

beys a weekly cycle (i.e., period 𝑇 = 7 days) and contains 𝑁 = 2
odes. In each cycle, the first adjacency matrix, 𝐀(1), is used in the
irst five days (i.e., 𝜏1 = 5 days), corresponding to the weekdays, and
hen the second adjacency matrix, 𝐀(2), is used in the next two days
i.e., 𝜏2 = 2 days), corresponding to the weekend. Each node of this

periodic switching network may represent a group of people, and there
are different disease transmission rates within and between members
of two groups, and at different times (i.e., weekday versus weekend).
3 
2.3. SIS model over periodic temporal networks

We now consider the SIS model in continuous time on periodic
temporal networks. First of all, the IBA for temporal networks in
continuous time is given by [24]
d𝑥𝑖(𝑡)

d𝑡 = 𝛽
[

1 − 𝑥𝑖(𝑡)
]

𝑁
∑

𝑗=1
𝑎𝑖𝑗 (𝑡)𝑥𝑗 (𝑡) − 𝜇 𝑥𝑖(𝑡). (8)

Around the disease-free equilibrium, i.e., 𝐱(𝑡) = 𝟎, the linearized SIS
dynamics (which assumes small 𝑥𝑖(𝑡) values) is given by
d𝐱(𝑡)

d𝑡 = [𝛽𝐀(𝑡) − 𝜇𝐈] 𝐱(𝑡) ≡ 𝐌(𝑡)𝐱(𝑡). (9)

Eq. (9) yields

𝐱(𝑇 ) = 𝑒∫
𝑇
0 𝐌(𝑡)d𝑡𝐱(0) ≡  𝐱(0). (10)

To prove that 𝜆max( ) is real and positive, we show that  is a
matrix of which all the entries are positive under the assumption that
the time-averaged network is strongly connected so that its adjacency
matrix is nonnegative and irreducible. To this end, we start with

𝑇

 = 𝑒∫0 (𝛽𝐀(𝑡)−𝜇𝐈)d𝑡 = 𝑒𝛽𝐄(𝑇 )−𝜇 𝑇 𝐈, (11)
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where 𝐄(𝑇 ) = (𝑒𝑖𝑗 (𝑇 )) = ∫ 𝑇
0 𝐀(𝑡)d𝑡. (Note that one has 𝐄(𝑇 ) =

∑𝓁
𝓁′=1 𝜏𝓁′𝐀

(𝓁′) for a periodic switching network.) Because the identity
matrix commutes with any matrix, 𝐄(𝑇 ) commutes with the identity
matrix. Therefore, we obtain [90]

 = 𝑒𝛽𝐄(𝑇 ) × 𝑒−𝜇 𝑇 𝐈 = 𝑒𝛽𝐄(𝑇 ) × 𝑒−𝜇 𝑇 𝐈 = 𝑒𝛽𝐄(𝑇 ) × 𝑒−𝜇 𝑇 . (12)

Because 𝛽 > 0 and all the entries in 𝐀(𝑡) are nonnegative, all the entries
of 𝐄(𝑇 ) are nonnegative. Let us assume that 𝐄(𝑇 ) is an irreducible
matrix (i.e., [𝐄(𝑇 )𝑘]𝑖𝑗 > 0 ∀𝑖, 𝑗 for some integer 𝑘). This condition
is equivalent to assuming that the time-averaged network is strongly
connected. The irreducibility and nonnegativity of 𝐄(𝑇 ) implies that
𝑒𝛽𝐄(𝑇 ) is a strictly positive matrix (i.e., [𝑒𝛽𝐄(𝑇 )]𝑖𝑗 > 0 ∀𝑖, 𝑗) [90,91].
We show the proof in Appendix A. This observation, combined with
Eq. (12) and 𝑒−𝜇 𝑇 > 0, guarantees that  a strictly positive matrix.
Therefore, 𝜆max( ) is real and positive owing to the Perron–Frobenius
theorem.

The epidemic threshold is given by the value of 𝛽 at which 𝜆max( ) =
1. Eigenvalue 𝜆max( ) is equivalent to the largest Floquet multiplier in
Floquet theory (see Appendix B for a brief review of a Floquet theory for
periodic linear dynamical systems). We also define 𝜆F ≡ 𝑇 −1 ln 𝜆max( ),
which gives the average growth rate of the infection. Under the IBA,
the epidemic grows on a periodic temporal network if and only if
𝜆F > 0, (13)

thereby generalizing Eq. (6) for the temporal network case. Note that
𝜆F > 0 is equivalent to 𝜆max( ) > 1 and vice versa. Because 𝜆F is the
largest of the Floquet exponents in Floquet theory (see Appendix B),
we refer to 𝜆F as the largest Floquet exponent in the following text.

In the case of periodic switching networks, Eq. (8) is reduced to
[20,92]

d𝑥𝑖(𝑡)
d𝑡 = 𝛽(1 − 𝑥𝑖(𝑡))

𝑁
∑

𝑗=1
𝑎(𝓁

′)
𝑖𝑗 𝑥𝑗 (𝑡) − 𝜇 𝑥𝑖(𝑡), (14)

where 𝑎(𝓁
′)

𝑖𝑗 is the (𝑖, 𝑗) entry of 𝐀(𝓁′), and 𝓁′ ∈ {1,… ,𝓁} is the unique
alue satisfying 𝑡 ∈ [𝑛𝑇 +𝜏1+⋯+𝜏𝓁′−1, 𝑛𝑇 +𝜏1+⋯+𝜏𝓁′−1+𝜏𝓁′ ), ∃𝑛 ∈ Z.
inearization of Eq. (14) around the disease-free equilibrium yields

d𝐱(𝑡)
d𝑡 = (𝛽𝐀(𝓁′) − 𝜇𝐈)𝐱(𝑡) (15)

with the same value of 𝓁′ as that in Eq. (14). Eq. (15) gives Eq. (10)
with

 = 𝑒(𝛽𝐀
(𝓁)−𝜇 𝐼)𝜏𝓁 ⋯ 𝑒(𝛽𝐀

(1)−𝜇 𝐼)𝜏1 . (16)

Note that  = 𝑒𝛽𝐀(𝓁)𝜏𝓁 ⋯ 𝑒𝛽𝐀(1)𝜏1𝑒−𝜇 𝑇 because any 𝑒−𝜇 𝐼 𝜏𝓁′ (= 𝑒−𝜇 𝜏𝓁′ 𝐼)
ommutes with any matrix.

. Results

In this section, we investigate the Parrondo paradox for the SIS
ynamics over periodic switching networks. Specifically, epidemics
n a temporal network can be sub-critical (i.e., the number of infec-
ious nodes exponentially decays over time) over periods even if the

SIS dynamics at any point of time is super-critical (i.e., the number
of infectious nodes exponentially grows over time if the momentary
static network is used forever). In Section 3.1, we showcase the Par-
rondo paradox on a two-node periodic switching network. Section 3.2
shows the relationship between the amount of interaction and epi-
demic spreading. Section 3.3 illustrates the generality of the Parrondo
paradox. We show relationships between the Parrondo paradox and
anti-phase oscillation in Section 3.4. Section 3.5 presents a perturbation

theory for the largest Floquet exponent.

4 
3.1. Parrondo paradox for a periodic switching network with two nodes

We start by studying the SIS dynamics on a minimal periodic
switching network with two nodes and 𝓁 = 2 static networks to be
switched between. We say that the Parrondo paradox occurs if the
largest eigenvalues of 𝐌(1) ≡ 𝛽𝐀(1) − 𝜇𝐈 and that of 𝐌(2) ≡ 𝛽𝐀(2) − 𝜇𝐈,
i.e., 𝜆max(𝐌(1)) and 𝜆max(𝐌(2)), are both positive and the largest Floquet
exponent, 𝜆F, is negative. In this case, the SIS dynamics at any point of
time is above the epidemic threshold such that the fraction of infectious
nodes exponentially grows over time if either 𝐀(1) or 𝐀(2) is permanently
used, whereas the epidemic exponentially decays over time on the
periodic switching network. Generalizing this definition to the case of
𝓁 > 2 is straightforward. We only study the case of 𝓁 = 2 in this article.

We show an example of the Parrondo paradox in Fig. 3, where we
set 𝜇 = 0.5. Fig. 3(a) shows 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)) as a function
of 𝛽 for the periodic switching network shown in Fig. 2, i.e., the one

with 𝓁 = 2, 𝑇 = 7, 𝜏1 = 5, 𝐀(1) =
(

17 5
5 0

)

, and 𝐀(2) =
(

0 5
5 15

)

. As

expected, 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)) increase as the infection rate,
𝛽, increases. For static networks with adjacency matrices 𝐀(1) and 𝐀(2),
the epidemic threshold, which is the value of 𝛽 at which 𝜆max(𝐌(1)) or
𝜆max(𝐌(2)) is equal to 0, denoted by 𝛽∗1 and 𝛽∗2 , respectively, is 𝛽∗1 ≈
0.0272 and 𝛽∗2 ≈ 0.0303, where ≈ represents ‘‘approximately equal to’’.
However, the epidemic threshold for the periodic switching network,
denoted by 𝛽∗F , is larger than both of these values, i.e., 𝛽∗F ≈ 0.0335.

The shaded region in Fig. 3(a) represents the range of 𝛽 for which
we have super-critical (i.e., above the epidemic threshold) dynamics
on the static networks (i.e., 𝜆max(𝐌(1)), 𝜆max(𝐌(2)) > 0) and sub-critical
dynamics on the periodic switching network (i.e., 𝜆F < 0). In this
situation, the Parrondo paradox is occurring such that the disease-free
equilibrium is the unique stable equilibrium for Eq. (15), whereas, if
the network were static then the disease-free equilibrium would be
unstable and the number of infectious nodes would exponentially grow
over time. Now we further explore the SIS dynamics at the 𝛽 values
indicated by the circles in Fig. 3(a). In Fig. 3(b), (c), (d), and (e),
we show 𝑥1(𝑡) and 𝑥2(𝑡) for 𝛽 = 0.01, 𝛽 = 0.028, 𝛽 = 0.032, and
𝛽 = 0.04 respectively. We selected these four values of 𝛽 because each
of them represents a qualitatively different situation regarding whether
𝜆F, 𝜆max(𝐌(1)), or 𝜆max(𝐌(2)) is positive or negative. In Fig. 3(b), 𝑥1(𝑡)
and 𝑥2(𝑡) exponentially decay at any instantaneous time and in a long
term. This result is expected because the growth rates of infection,
𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)), are all negative at this value of 𝛽. The
time courses of 𝑥1(𝑡) and 𝑥2(𝑡) show anti-phase behavior when 𝛽 is
poised near (see Fig. 3(c)) or within (see Fig. 3(d)) the region in
which the Parrondo paradox is present. In Fig. 3(e), both 𝑥1(𝑡) and
𝑥2(𝑡) exponentially grow over time in the long term. This last result is
expected because 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)) are all positive at this
value of 𝛽.

To show that the Parrondo paradox can also be present in agent-
based SIS dynamics, we simulated the stochastic, agent-based SIS model
by the direct method of the Gillespie algorithm (e.g., [93]). To this
end, we generated a network with 𝑁 = 2000 nodes and two equally
sized communities using a stochastic block model (SBM) [94,95]. See
Appendix C for the network generation. We used the entries of 𝐀(1) and
𝐀(2) to inform the edge probabilities for the periodic switching SBM
and ran SIS simulations for the four values of 𝛽 used in Fig. 3(b)–(e).
We assumed that there are initially 100 infectious nodes out of the
1000 nodes, which we selected uniformly at random, in each block,
or community. The results shown in Appendix C indicate the presence
of the Parrondo paradox in these stochastic simulations although the
paradox’s outcome is less eminent than in the case of ODE simulations
presented in this section. This discrepancy is partly due to the nonlin-
earity of the SIS dynamics, which is also present in the deterministic

SIS dynamics, i.e., the IBA before the linearization (see Eq. (14)).
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Fig. 3. Parrondo paradox for the periodic switching network with two nodes shown in Fig. 2. We set 𝜇 = 0.5 and vary 𝛽. (a) Largest Floquet exponent, 𝜆F (black line), largest
eigenvalue of 𝐌(1) (blue line), and that of 𝐌(2) (magenta line) as a function of 𝛽. The shaded region shows the range of 𝛽 in which the Parrondo paradox occurs. (b)–(e) Time
courses of 𝑥1(𝑡) and 𝑥2(𝑡), which represent the infection probabilities in two nodes, for the four values of 𝛽 indicated in (a): (b) 𝛽 = 0.01, (c) 𝛽 = 0.028, (d) 𝛽 = 0.032, and (e)
= 0.04.
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.2. Relationships between the amount of interaction and epidemic spread-
ng

We propose that an advantage of the Parrondo paradox, or us-
ng periodic switching networks showing it, is to have comparably
ess epidemic spreading for the given total amount of interaction be-
ween individuals. To examine this point, we define the total amount
f interaction between individuals in the case of static networks by
he sum of all the entries of the adjacency matrix. In the case of

undirected networks, this definition double counts the off-diagonal
entries but provides a correctly normalized total amount of interaction.
Imagine a static SBM with two blocks in which each block has 𝑁∕2
individuals and the edge exists between two individuals in the first
subpopulation with probability 𝑎11∕𝑁 , for example. Then, the expected
number of edges, which is equivalent to the amount of interaction
in the case of static networks, within the first subpopulation is 𝑎11

𝑁 ×
1
2 × 𝑁

2

(

𝑁
2 − 1

)]

≈ 𝑁 𝑎11
8 . The expected number of edges between

the two subpopulations is 𝑎12
𝑁 ×

(

𝑁
2

)2
= 𝑁 𝑎12

4 , justifying the double
counting. For periodic switching networks, we further take the time
average over one cycle of the total amount of interaction. The total
amount of interaction for periodic switching networks is equal to
∑𝓁

𝓁′=1 𝜏𝓁′
∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑎
(𝓁′)
𝑖𝑗 ∕𝑇 .

For the periodic switching network used in Fig. 3, we show in
Fig. 4 the leading eigenvalues (i.e., 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2))) as a
unction of the total amount of interaction multiplied by the infection
ate, 𝛽; this product represents the total infection potential in the
opulation. Fig. 4 indicates that the two static networks yield larger
eading eigenvalues than the periodic switching network with the same
otal amount of interaction, supporting our proposal.

.3. Generality of the Parrondo paradox

Next we examine the generality of the Parrondo paradox with
espect to the connection strength between and within subpopulations,
he number of subpopulations up to 𝑁 = 5, and larger networks of
ndividuals (as opposed to networks of subpopulations) with distinct
wo subpopulations. First, we analyze some other two-node periodic
witching networks. We use the same switching schedule (i.e., 𝓁 = 2
lternating static networks, period 𝑇 = 7, the duration of the first
tatic network 𝜏1 = 5, and hence 𝜏2 = 𝑇 − 𝜏1 = 2) in the remainder
f this paper including here. We consider three one-parameter families
f two-node periodic switching networks and calculated the epidemic
5 
Fig. 4. Leading eigenvalues as a function of the total amount of interaction for a
two-node periodic switching network and the constituent static networks. The value
f 𝜇 (= 0.5), 𝐀(1), 𝐀(2), and the switching schedule (i.e., 𝓁 = 2, 𝑇 = 7, and 𝜏1 = 5,
nd hence 𝜏2 = 𝑇 − 𝜏1 = 2) are the same as those used in Fig. 3. The shaded region
epresents the region of ‘‘𝛽 × (amount of interaction)’’ in which the Parrondo paradox
ccurs.

hreshold for each periodic switching network. We show in Fig. 5(a)–
c) the epidemic threshold for the periodic switching network (i.e., 𝛽∗F ),
irst static network (i.e., 𝛽∗1 ), and second static network (i.e., 𝛽∗2 ). We set
(1) =

(

𝛾 5
5 0

)

and 𝐀(2) =
(

0 5
5 15

)

in Fig. 5(a), 𝐀(1) =
(

17 5
5 𝛾

)

and

𝐀(2) =
(

𝛾 5
5 15

)

in Fig. 5(b), and 𝐀(1)
(

17 𝛾
𝛾 0

)

and 𝐀(2) =
(

0 𝛾
𝛾 15

)

in Fig. 5(c). The shaded regions in the figure are the ranges of 𝛾 and 𝛽
for which the Parrondo paradox occurs, i.e., where 𝜆F < 0, 𝜆max(𝐌(1)) >
0, and 𝜆max(𝐌(2)) > 0 are simultaneously satisfied. We find that the
paradox occurs for some ranges of 𝛾.

To verify that the Parrondo paradox can also be present in large
networks, we similarly calculated the leading eigenvalues for networks

ith 𝑁 = 2000 nodes generated by an SBM that creates large networks
ith community structure as discussed in Appendix C. We define

he SBMs to have two communities, each with 𝑁∕2 = 1000 nodes,
and obtain their edge probabilities using the entries in the adjacency
matrices of the three families of 2 × 2 periodic switching networks used
in Fig. 5(a)–(c). Summing the entries across SBM blocks recovers the
original 2 × 2 matrices, in expectation. We show in Fig. 5(d)–(f) the
epidemic thresholds and the region of pairs of 𝛾 and 𝛽 in which the
Parrondo paradox is present for the networks with 𝑁 = 2000 nodes
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Fig. 5. Parrondo paradox over other periodically switching networks with two nodes. We show the epidemic threshold for the periodic switching network (i.e., 𝛽∗F ; black lines),
(1) (i.e., 𝛽∗1 ; blue lines), and 𝐀(2) (i.e., 𝛽∗2 ; magenta lines). The shaded region shows the values of 𝛾 and 𝛽 for which the paradox occurs. (a)–(c): Two-node networks. (d)–(f):

Networks with 𝑁 = 2000 nodes and two communities generated by the SBM. Panels (a) and (d) use the same adjacency matrices 𝐀(1) and 𝐀(2), indicated below (d). Same for (b)
nd (e), and for (c) and (f).
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generated by the SBM. The results for the SBM are close to those for
the corresponding two-node networks shown in Fig. 5(a)–(c).

Next we conduct an experiment with random networks to study the
fraction of periodic switching networks for which the paradox occurs.
To this end, we assume that the adjacency matrices 𝐀(1) and 𝐀(2) are

ymmetric and parameterize them as 𝐀(1) =
(

𝛾1 𝛾2
𝛾2 𝛾3

)

and 𝐀(2) =

𝛾4 𝛾5
𝛾5 𝛾6

)

. Without loss of generality, we set 𝛾1 = 1; multiplying 𝛾1,

, 𝛾6 by a factor of 𝑐 (> 0) is equivalent to using the original values
f 𝛾1, …, 𝛾6 and changing 𝛽 to 𝑐 𝛽. Then, we independently draw 𝛾2, 𝛾3,
4, 𝛾5, and 𝛾6 from the uniform density on [0, 5]. For each pair of 𝐀(1)

and 𝐀(2), we computed 𝛽∗F , 𝛽∗1 , and 𝛽∗2 as the values of 𝛽 at which 𝜆F,
max(𝐌(1)), or 𝜆max(𝐌(2)) is equal to 0, respectively.

We defined the Parrondo paradox as a situation in which 𝜆F < 0,
max(𝐌(1)) > 0, and 𝜆max(𝐌(2)) > 0 simultaneously hold true. Because
hese leading eigenvalues monotonically increase as 𝛽 increases, a pe-
iodic switching network shows the Parrondo paradox for some values
f 𝛽 if and only if 𝛽∗F > max{𝛽∗1 , 𝛽∗2 }, as shown by the shaded regions
n Figs. 3 and 5. We generated 104 independent pairs of 𝐀(1) and 𝐀(2)

o find that the paradox is present in 28.7% of the periodic switching
etworks. Therefore, we conclude that the Parrondo paradox is not a
are phenomenon, at least for 2 × 2 adjacency matrices. We did not find
ny periodic switching network that showed the opposite paradoxical
ehavior, i.e., 𝛽∗F < min{𝛽∗1 , 𝛽∗2 }.

As our final set of experiments to investigate the generality of
he Parrondo paradox, we study how it is affected by the number
f node. We first examine the possibility of the paradox with 3 × 3
6 
eriodic switching networks. Let us consider arbitrarily selected one-
arameter families of three-node periodic switching networks. The
pidemic thresholds for the periodic switching network (i.e., 𝛽∗F ) and
hose for the static networks (i.e., 𝛽∗1 , 𝛽∗2 ) are shown in Fig. 6(a) for

(1) =
⎛

⎜

⎜

⎝

𝛾 5 5
5 0 5
5 5 15

⎞

⎟

⎟

⎠

and 𝐀(2) =
⎛

⎜

⎜

⎝

14 5 5
5 0 5
5 5 𝛾

⎞

⎟

⎟

⎠

and Fig. 6(b) for 𝐀(1) =

⎛

⎜

⎜

⎝

24 𝛾 5
5 0 𝛾
𝛾 5 15

⎞

⎟

⎟

⎠

and 𝐀(2) =
⎛

⎜

⎜

⎝

14 𝛾 5
5 0 𝛾
𝛾 5 24

⎞

⎟

⎟

⎠

. The shaded regions represent

the region of 𝛾 and 𝛽 values in which the Parrondo paradox occurs.
We observe that the paradox occurs for a range of 𝛾 in both families of
periodic switching networks. For the periodic switching network shown
n Fig. 6(a), the ranges of 𝛾 for which the paradox occurs are disjoint;
he paradox occurs for small and large 𝛾 values, but not for intermediate
values.

To further assess the generality of the Parrondo paradox for periodic
witching networks with three nodes, we retain the same switching
chedule for simplicity and generate symmetric adjacency matrices

arameterized as 𝐀(1) =
⎛

⎜

⎜

⎝

𝛾1 𝛾2 𝛾3
𝛾2 𝛾4 𝛾5
𝛾3 𝛾5 𝛾6

⎞

⎟

⎟

⎠

and 𝐀(2) =
⎛

⎜

⎜

⎝

𝛾7 𝛾8 𝛾9
𝛾8 𝛾10 𝛾11
𝛾9 𝛾11 𝛾12

⎞

⎟

⎟

⎠

. We

set 𝛾1 = 1 without loss of generality. Then, we independently draw
𝛾2, …, 𝛾12 from the uniform density on [0, 5]. We find that, among
104 pairs of the generated 𝐀(1) and 𝐀(2), the paradox is present, with
𝛽∗F > max{𝛽∗1 , 𝛽∗2 }, in 12.0% of the periodic switching networks, and
that there is no case with 𝛽∗F < min{𝛽∗1 , 𝛽∗2 }.

We similarly analyzed randomly generated periodic switching net-
4
works with four and five nodes. We found that among 10 pairs of



M.I. Sejunti et al.

r
a
n
𝛽
p

3
t

c
v
b
a
s
(
F
t
F

o
t
[
t
S
(
2
t
o
(
𝑞
f
f
T
d
n
n

b
𝛽
𝑞
p

Mathematical Biosciences 378 (2024) 109336 
Fig. 6. Epidemic thresholds for periodic switching networks and static networks with three nodes. See the caption of Fig. 5 for the legends. The shaded regions represent the
values of 𝛾 and 𝛽 for which the Parrondo paradox occurs. In (b), the blue line is not visible because it is almost completely hidden behind the magenta line.
a
andomly generated 𝐀(1) and 𝐀(2), the paradox is present in 5.21%
nd 1.20% of the periodic switching networks with four and five
odes, respectively. There was no periodic switching network showing
∗
F < min{𝛽∗1 , 𝛽∗2 }. These results are qualitatively the same as those for
eriodic switching networks with fewer (i.e., two or three) nodes.

.4. Relationships between the Parrondo paradox and anti-phase oscilla-
ions

To better understand mechanisms of the Parrondo paradox, we
arried out additional experiments motivated by the following obser-
ation. Fig. 3 suggests that the Parrondo paradox may be characterized
y an anti-phase oscillation between 𝑥1(𝑡) and 𝑥2(𝑡). However, this
ssociation is not straightforward already with Fig. 3 because the figure
hows anti-phase oscillations for a 𝛽 value at which the paradox occurs
see Fig. 3(d)) as well as for a 𝛽 value at which it does not (see
ig. 3(c)). Nevertheless, the anti-phase oscillation is absent for 𝛽 values
hat are far from where the paradox is present (see Fig. 3(b) and
ig. 3(e)).

We measure the extent of anti-phase oscillation by the fraction
f time, 𝑞, during one period in which d𝑥1(𝑡)∕d𝑡 and d𝑥2(𝑡)∕d𝑡 have
he opposite sign. We measure 𝑞 in the fifth cycle, i.e., using 𝑡 ∈
28, 35], and use the initial condition (𝑥1(0), 𝑥2(0)) = (0.1, 0.1). Consider
he 104 periodic switching networks with two communities used in
ection 3.3. We recall that 28.7% of the periodic switching networks
i.e., 2870 networks) show the Parrondo paradox. For each of these
870 networks, we select the middle value of the range of 𝛽 in which
he paradox occurs and compute 𝑞 at the selected 𝛽 value. At this value
f 𝛽, perfect anti-phase synchronization, i.e., 𝑞 = 1, occurs for 2867
99.9%) of the 2870 networks. For comparison, we have also computed
for the rest of the networks (i.e., 7130 out of the 104 networks). We

ind that the maximum, minimum, mean and standard deviation of 𝑞
or these 7130 networks is 0.974, 0, 0.366, and 0.305, respectively.
herefore, although some networks show strong anti-phase oscillation
espite the lack of the Parrondo paradox behavior, most networks
ot showing the paradox have substantially smaller 𝑞 values than the
etworks showing the paradox.

We show examples of anti-phase dynamics in Appendix D. It should
e noted that 𝑞 = 1 holds true for both inside and outside the range of
in which the paradox is present for some networks. In our examples,
is much larger for the periodic switching networks showing the

aradox than those not showing the paradox. We also observe some
 

7 
nti-phase behavior in the four periodic switching networks that do not
show the Parrondo paradox for any value of 𝛽, but to a limited extent
(i.e., 𝑞 ≤ 0.7). These results are consistent with the population results
with 104 networks described above. In sum, we conclude that anti-
phase oscillation occurs more frequently in the presence or approximate
presence of the Parrondo paradox than otherwise.

3.5. Perturbation theory for the largest Floquet exponent

Regardless of the presence or absence of the Parrondo paradox as
one varies 𝛽, Fig. 3 suggests that the relationship between the largest
Floquet exponent (i.e., 𝜆F) and 𝛽 is apparently close to linear for an
extended range of 𝛽. Therefore, we derive the first-order approximation
of 𝜆F in terms of 𝛽 and assess its accuracy in this section.

Theorem 1 (Perturbation of Simple Eigenvalues [96]).
Let 𝐌̂ be a symmetric 𝑁 ×𝑁 matrix with the left eigenvector {𝐮(𝑖)} and

right eigenvector {𝐯(𝑖)} associated with eigenvalue 𝜆𝑖, which is assumed to
be simple (with 𝑖 ∈ {1,… , 𝑁}). Without loss of generality, the Euclidean
norm of each eigenvector is equal to 1. Consider a perturbation of 𝐌̂ given
by 𝐌̂(𝛽) = 𝐌̂ + 𝛽 𝛥𝐌̂. The eigenvalues of 𝐌̂(𝛽) when |𝛽| ≪ 1 satisfy

𝜆𝑖(𝛽) = 𝜆𝑖 + 𝛽 𝜆′𝑖(0) + (𝛽2), (17)

where

𝜆′𝑖(0) =
[𝐮(𝑖)]⊤𝛥𝐌̂𝐯(𝑖)

[𝐮(𝑖)]⊤𝐯(𝑖)
. (18)

Lemma 1 (First-order Approximation of Matrix  ). The first-order pertur-
bation of matrix  (defined in Eq. (16)) is given by
 (𝛽) =  (0) + 𝛽 𝛥 (0) + (𝛽2)

=
(

𝐈 + 𝛽 𝑇𝐀
)

𝑒−𝑇 𝜇𝐈 + (𝛽2).
(19)

where

𝐀 ≡ 1
𝑇

𝓁
∑

𝓁′=1
𝜏𝓁′𝐀(𝓁′) (20)

is the time-averaged adjacency matrix.

Proof. Using Eq. (16), we obtain
𝛽 𝜏 𝐀(𝓁) 𝛽 𝜏 𝐀(𝓁−1) 𝛽 𝜏 𝐀(1) −𝜇 𝑇 𝐈
(𝛽) = 𝑒 𝓁 𝑒 𝓁−1 ⋯ 𝑒 1 𝑒 , (21)
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which leads to
 (0) = 𝑒−𝜇 𝑇 𝐈 (22)

and

𝛥 (0) = d (𝛽)
d𝛽

|

|

|

|𝛽=0

= 𝜏𝓁𝐀(𝓁)𝑒𝛽 𝜏𝓁𝐀(𝓁)
𝑒𝛽 𝜏𝓁−1𝐀(𝓁−1)

⋯ 𝑒𝛽 𝜏1𝐀(1)
𝑒−𝜇 𝑇 𝐈

+ 𝑒𝛽 𝜏𝓁𝐀(𝓁)
𝜏𝓁−1𝐀(𝓁−1)𝑒𝛽 𝜏𝓁−1𝐀(𝓁−1)

⋯ 𝑒𝛽 𝜏1𝐀(1)
𝑒−𝜇 𝑇 𝐈 +⋯

+ 𝑒𝛽 𝜏𝓁𝐀(𝓁)
𝑒𝛽 𝜏𝓁−1𝐀(𝓁−1)

⋯ 𝜏1𝐀(1)𝑒𝛽 𝜏1𝐀(1)
𝑒−𝜇 𝑇 𝐈

|

|

|

|

|𝛽=0

=
(

𝜏𝓁𝐀(𝓁) + 𝜏𝓁−1𝐀(𝓁−1) +⋯ + 𝜏1𝐀(1)) 𝑒−𝜇 𝑇 𝐈
= 𝑇 𝑒−𝜇 𝑇 𝐈𝐀.

(23)

Eqs. (22) and (23) imply (19). □

Lemma 2 (First-order Approximation of the Largest Eigenvalue of  ). For
|𝛽| ≪ 1, we obtain
𝜆max( )(𝛽) = 𝑒−𝑇 𝜇 + 𝛽 𝜆max(𝐀)𝑇 𝑒−𝑇 𝜇 + (𝛽2). (24)

Proof. Eq. (22) implies that

max( )(0) = 𝑒−𝑇 𝜇 . (25)

Let 𝐮 and 𝐯 be the dominant left and right eigenvectors of 𝐀, respec-
tively. By combining Eqs. (18) and (23), we obtain

𝜆′max( )(0) = 𝐮⊤(𝑇 𝑒−𝑇 𝜇𝐀)𝐯
𝐮⊤𝐯

= 𝜆max(𝐀)𝑇 𝑒−𝑇 𝜇 .
(26)

By substituting Eqs. (25) and (26) in Eq. (17), we obtain Eq. (24). □

Lemma 3 (First-order Approximation of 𝜆F). For |𝛽| ≪ 1, we obtain
𝜆F(𝛽) = 𝜆F(0) + 𝛽 𝜆′F(0) + (𝛽2) = −𝜇 + 𝛽 𝜆max(𝐀) + (𝛽2). (27)

Proof. By definition, we obtain 𝜆F(𝛽) = ln 𝜆max( )(𝛽)
𝑇 . Using this, Eq. (25),

and Eq. (26), we obtain

𝜆F(0) =
ln 𝜆max( )(0)

𝑇
= −𝜇 (28)

and

𝜆′F(0) =
𝑑 𝜆F
𝑑 𝛽

|

|

|

|𝛽=0
=

𝜕 𝜆F
𝜕 𝜆max( )

𝜕 𝜆max( )
𝜕 𝛽

|

|

|

|𝛽=0

= 1
𝑇 𝜆max( )(0)

⋅ 𝜆max(𝐀)𝑇 𝑒−𝑇 𝜇 = 𝜆max(𝐀). (29)

Eqs. (28) and (29) imply Eq. (27). □

Eq. (27) implies the following corollary.

Corollary 1. The epidemic threshold for the periodic switching network
under the first-order approximation is given by
𝛽∗F =

𝜇

𝜆max(𝐀)
. (30)

Now we validate our first-order approximation for 2 × 2 periodic
switching networks with 𝓁 = 2. We compare 𝜆F between the exact value
nd linear approximation in Fig. 7 for eight arbitrarily selected two-

node periodic switching networks. Figs. 7(a)–(d) are for four networks
howing the Parrondo paradox. We find that the first-order approxima-
ion is sufficiently accurate for a range of 𝛽 including the range in which
he paradox occurs. The first-order approximation is also accurate for
our periodic switching networks in which the paradox is absent in the

entire range of 𝛽 (see Fig. 7(e)–(h)). Fig. 7 suggests that the first-order
approximation tends to be more accurate when the paradox is absent
see Fig. 7(e)–(h)) than present (see Fig. 7(a)–(d)).
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As an application of the first-order approximation of 𝜆F, we examine
the fraction of randomly generated periodic switching networks for
which the Parrondo paradox occurs, as we did in Section 3.3. Note
that the epidemic threshold is given in the form of 𝜇∕𝜆max for the
eriodic switching network under the first-order approximation as well
s for the static networks. Therefore, if the first-order approximation

is accurate, the Parrondo paradox happens if 𝜆max(𝐀) is larger than
both 𝜆max(𝐀(1)) and 𝜆max(𝐀(2)) or smaller than both of them. In the same
manner as that in Section 3.3, we generated 104 pairs of 𝐀(1) and 𝐀(2)

and computed 𝜆max(𝐀), 𝜆max(𝐀(1)), and 𝜆max(𝐀(2)). We found that 𝜆max(𝐀)
is smaller than both 𝜆max(𝐀(1)) and 𝜆max(𝐀(2)) for 31.7% pairs of 𝐀(1)

and 𝐀(2). There was no case in which 𝜆max(𝐀) is larger than 𝜆max(𝐀(1))
and 𝜆max(𝐀(2)). These results are similar to those obtained for 𝜆F (see
Section 3.3).

4. Discussion

We showed a Parrondo paradox in the SIS dynamics on periodically
switching temporal networks in which an epidemic decays over a long
time while the dynamics is super-critical (i.e., above the epidemic
threshold) for the momentary static network at any point of time. We
primarily showed the paradox in simple cases involving a periodic
alternation of two 2 × 2 adjacency matrices. Larger networks (with
𝑁 = 2000 nodes) with two subpopulations generated by the SBM also
showed the paradox, even for a single run of stochastic SIS dynamics.
We further verified that the paradox occurred with adjacency matrices
of larger sizes, up to five nodes. However, we found that the fraction
of random networks that show the Parrondo paradox decreased as
the number of nodes increases. This is an important limitation of the
present study. Further investigating the generality of the Parrondo
paradox in terms of the number of nodes or subpopulations, the number
of static networks constituting a periodic switching network, different
epidemic process models, and different network models such as the
metapopulation model and hypergraphs, warrants future work.

We pointed out the relationship between the growth rate of the
epidemics (including the epidemic threshold, at which the growth rate
is equal to 0) and the Floquet exponent. Leveraging Floquet theory to
characterize and intervene into epidemic processes on periodic tempo-
ral networks may be fruitful. For example, the periodic matrix obtained
by the Floquet decomposition (i.e., matrix 𝐏(𝑡) in Appendix B) may help
us to quantify the amplitude of antiphase oscillation between 𝑥𝑖(𝑡) and
𝑥𝑗 (𝑡) (with 𝑗 ≠ 𝑖) or change it through manipulation of 𝐏(𝑡).

In the context of COVID-19, effects on mitigating spread of infection
were numerically simulated on physical proximity and face-to-face
contact data and compared between ‘‘rotating’’ and ‘‘on-off’’ strategies
with two-day or biweekly periodic schedules [97]. The rotating strategy
by definition imposes that half the population is allowed to go out in
odd days or odd weeks, and the other half is allowed to go out in
even days or even weeks. In contrast, the on-off strategy allows the
entire population to go for work in one day (or one week) and not
on the next day (or week), and such a two-day or biweekly pattern
is repeated. As expected, any of these four strategies helped towards
decreasing the basic reproduction number below 1. Other studies also
investigated effects of different on-off strategies on suppressing epi-
demics [98,99]. Additionally, it was shown in Ref. [97] that among the
four strategies, the best and worst strategies were the rotating strategy
with the biweekly cycle and the on-off strategy with two-day cycle,
respectively. Superiority of a rotating strategy to an on-off strategy
was also shown in a different study [100]. These comparative results
suggest that different quarantine or curfew strategies based on periodic
switching networks are feasible and that their efficiency depends on
the periodic switching network. Investigating the possibility of the
Parrondo paradox and its possible roles in suppressing population-wide
infection in these and other practical disease spreading models warrants
future study. In particular, both these previous studies and the present
work suggest that eliciting anti-phase oscillations between different
communities might be a key to suppressing infection while keeping the
overall activity level of individuals relatively high.
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Fig. 7. First-order approximation to the largest Floquet exponent for eight two-node periodic switching networks with 𝑘 = 2, 𝑇 = 7, and 𝜏1 = 5. We set 𝜇 = 0.5. We show the
argest Floquet exponent (i.e., 𝜆𝐹 ) in black, largest eigenvalue of 𝐌(1) in blue, that of 𝐌(2) in magenta, and the first-order approximation of 𝜆𝐹 in red.
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Appendix A. Proof that all the entries of 𝒆𝜷𝐄(𝑻 ) are positive

Here, we show that each entry of the matrix exponential of the
time-aggregated adjacency matrix 𝐄(𝑇 ) = ∫ 𝑇

0 𝐀(𝑡)d𝑡 is positive under
the assumption that 𝐄(𝑇 ) is nonnegative and irreducible (i.e., which
corresponds to when it is associated with a strongly connected graph
9 
with positive edge weights). Recall that the matrix exponential is
defined by 𝑒𝛽𝐄(𝑇 ) =

∑∞
𝑘=0

1
𝑘! [𝛽𝐄(𝑇 )]

𝑘, which has entries

[𝑒𝛽𝐄(𝑇 )]𝑖𝑗 =
∞
∑

𝑘=0

1
𝑘!

[𝛽𝐄(𝑇 )]𝑘𝑖𝑗 =
∞
∑

𝑘=0

1
𝑘!

𝛽𝑘[𝐄(𝑇 )𝑘]𝑖𝑗 . (A.1)

Because 𝐄(𝑇 ) is nonnegative and irreducible, for any (𝑖, 𝑗) ∈ {1,… , 𝑁} ×
1,… , 𝑁}, there exists a 𝑘 such that 1

𝑘! 𝛽
𝑘[𝐄(𝑇 )𝑘]𝑖𝑗 > 0. Specifically,

1
𝑘! 𝛽

𝑘[𝐄(𝑇 )𝑘]𝑖𝑗 is strictly positive if there is at least one path from 𝑖
o 𝑗 having length 𝑘. Notably, [𝐄(𝑇 )𝑘]𝑖𝑗 equals the product of edge
eights along such a path, which is summed across all possible paths.
et 𝑘 denote such a 𝑘 value. Then, we note that 1

𝑘! 𝛽
𝑘[𝐄(𝑇 )𝑘]𝑖𝑗 must be

onnegative for any 𝑘 ≠ 𝑘, since 𝐄(𝑇 ) has nonnegative entries and the
roduct and summation of nonnegative numbers remain nonnegative.

Thus, for any 𝑖, 𝑗, the right-hand side of Eq. (A.1) is a positive number
(i.e., the term with 𝑘 = 𝑘) plus the sum of nonnegative numbers
i.e., the terms with 𝑘 ≠ 𝑘), which is a positive number.

Appendix B. Floquet theory

In this section, we give a brief review of Floquet theory for periodic
inear dynamical systems in continuous time.

efinition B.1 (Periodic System). Consider a non-autonomous
ontinuous-time dynamical system given by
′(𝑡) = 𝑀(𝑡, 𝑥(𝑡)). (B.1)

ynamical system (B.1) is called a 𝑇 -periodic system with period 𝑇
> 0) if 𝑀(𝑡 + 𝑇 , 𝑥) = 𝑀(𝑡, 𝑥) ∀𝑡.

We present Floquet theory for linear 𝑇 -periodic dynamical systems
n continuous time given by
d𝐱(𝑡)

d𝑡 = 𝐌(𝑡)𝐱(𝑡), (B.2)

where 𝐌(𝑡) ∈ 𝑁×𝑁 is a 𝑇 -periodic matrix, and 𝐱(𝑡) ∈ 𝑁 represents
the system’s state. Let 𝐗(𝑡) ∈ 𝑁×𝑁 be the fundamental matrix of
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Fig. C.8. Agent-based simulations of the SIS model on periodic switching networks. (a)–(d) Results for a single run. (e)–(h) Comparison between the results of the agent-based
imulations, linear IBA, and nonlinear IBA. The value of 𝜇 (= 0.5), 𝐀(1), 𝐀(2), and the switching schedule (i.e., 𝓁 = 2, 𝑇 = 7, and 𝜏1 = 5) are the same as those used in Fig. 3.

(a) and (e): 𝛽 = 0.01. (b) and (f): 𝛽 = 0.028. (c) and (g): 𝛽 = 0.032. (d) and (h): 𝛽 = 0.04. In (e)–(h), the lines and error bars for the agent-based simulations represent the
ean and standard deviation on the basis of 100 simulations with the same initial condition. In all panels, we initially infected 10% of nodes in each of the two communities,

i.e., (𝑥1(0), 𝑥2(0)) = (0.1, 0.1).
b

𝐌

s

A
e

o
h
m
[
s

ystem (B.2). By definition of the fundamental matrix, the columns of
he fundamental matrix are linearly independent solutions of Eq. (B.2).

heorem B.2 (Floquet’s Theorem for Continuous-Time Linear Periodic
ystems [101]). For system (B.2) that has a fundamental matrix, there
xists a nonsingular 𝑇 -periodic matrix, 𝐏(𝑡) ∈ R𝑁×𝑁 , and a constant
atrix, 𝐁 ∈ C𝑁×𝑁 , such that
(𝑡) = 𝐏(𝑡)𝑒𝐁𝑡. (B.3)

q. (B.3) is known as the Floquet normal form for 𝐗(𝑡).

emark B.1. Floquet theory guarantees that there exists a nonsingular
onstant matrix 𝐌̃ ∈ 𝑁×𝑁 such that 𝐗(𝑡+𝑇 ) = 𝐗(𝑡)𝐌̃ for all 𝑡 ∈  and
𝐌̃ = 𝐗−1(0)𝐗(𝑇 ) [101,102]. Matrix 𝐌̃ is called the monodromy matrix.

Remark B.2. If 𝐗(0) = 𝐼 , then 𝐌̃ = 𝐗(𝑇 ).

Remark B.3. Because 𝐌̃ is non-singular, we obtain 𝐌̃ = 𝑒𝐁𝑇 , or
equivalently, 𝐁 = ln(𝐌̃)∕𝑇 .

Theorem B.2 implies that the solution of (B.2) is represented as

(𝑡) = 𝐗(𝑡)𝐱(0) = 𝐏(𝑡)𝑒𝐁𝑡𝐱(0), (B.4)

here 𝐱(0) is the initial state.
Each eigenvalue 𝜆𝑖 of the monodromy matrix is known as the

loquet or characteristic multiplier. The eigenvalues of 𝐁 are known
s Floquet or characteristic exponents, and they are equal to ln(𝜆𝑖)∕𝑇 .

We define the largest Floquet exponent by

𝜆F =
ln |
|

𝜆max
|

|

𝑇
, (B.5)

where 𝜆max is the Floquet multiplier with the largest modulus. The
argest Floquet exponent gives the average growth rate along the domi-
ant eigenvector direction over one period. The equilibrium 𝐱(𝑡) = 0 of
he dynamical system given by Eq. (B.2), corresponding to the disease-
ree equilibrium in our context, is asymptotically stable if and only if

F < 0.
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We are interested in 𝑇 -periodic and switching 𝐌(𝑡), that is, 𝐌(𝑡)
is constant for some duration, then it discontinuously switches to a
different matrix that is used for another duration of time, and so on.
In this case, the Floquet theory is simplified as follows.

Theorem B.3 (Floquet’s Theorem for Linear Dynamical Systems with
Switching Matrices [102]). Let𝐌(𝑡) be a switching 𝑇 -periodic matrix given
y

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌(1) 0 ≤ 𝑡 < 𝜏1,
𝐌(2) 𝜏1 ≤ 𝑡 < 𝜏1 + 𝜏2,
⋮ ⋮

𝐌(𝓁) 𝜏1 +⋯ + 𝜏𝓁−1 ≤ 𝑡 < 𝑇 .

(B.6)

Then, the monodromy matrix is represented as
𝐌̃ = 𝑒𝜏𝓁𝐌

(𝓁)
𝑒𝜏𝓁−1𝐌

(𝓁−1)
⋯ 𝑒𝜏1𝐌

(1)
. (B.7)

Remark B.4. Matrix 𝐌̃ for the deterministic SIS model on periodic
witching networks is the same as  given by Eq. (16).

ppendix C. Simulations of the stochastic SIS model and nonlin-
ar IBA

We used SBMs to generate the networks with two blocks, each
f which represents a community and nodes within the same block
ave statistically the same connectivity patterns [94,95]. Each com-
unity has 𝑁∕2 = 1000 nodes. Each edge (𝑖, 𝑗) exists with probability

𝐀(1)]𝑐𝑖𝑐𝑗 ∕𝑁 for the first duration of one cycle and [𝐀(2)]𝑐𝑖𝑐𝑗 ∕𝑁 for the
econd duration, where 𝑐𝑖 ∈ {1, 2} is the block to which the 𝑖th node

belongs. The 2 × 2 matrix informing the SBM is the one used in Fig. 3.
In this manner, we obtain 2000 × 2000 adjacency matrices 𝐀(1) and
𝐀(2), and hence 𝐌̂.

We show in Fig. C.8(a)–(d) the time course of 𝑥1(𝑡) and 𝑥2(𝑡) in
a single run of stochastic SIS dynamics simulated using the Gillespie
algorithm. We employed the four values of 𝛽 used in Fig. 3(b)–(e).
The fluctuations in 𝑥 (𝑡) and 𝑥 (𝑡) are large because the results shown
1 2
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Fig. C.9. A single run of stochastic SIS simulation over the two static networks with 𝑁 = 2000 nodes generated by the SBM. The block adjacency matrices 𝐀(1) and 𝐀(2) are the
same as those used in Fig. C.8. We set 𝛽 = 0.032, corresponding to Fig. C.8(c) and (g), and 𝜇 = 0.5. (a) 𝐀(1). (b) 𝐀(2).
Fig. D.10. Fraction of the time showing anti-phase behavior, 𝑞, in eight two-node periodic switching networks with 𝓁 = 2, 𝑇 = 7, and 𝜏1 = 5. The eight networks used are the
ame as those used in Fig. 7. We recall that the Parrondo paradox behavior occurs for the first four networks in a range of 𝛽 values, i.e., shaded regions, and it does not occur

for the last four networks. We compare 𝑞 with 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)) as a function of the infection rate, 𝛽, for each periodic switching network. We set 𝜇 = 0.5. The lines
or 𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)) are the same as those shown in Fig. 7. Observe that there is a strong association between the Parrondo paradox behavior and the appearance of

large 𝑞 values.
are from a single run of stochastic SIS dynamics. However, there is
some indication of the Parrondo paradox and anti-phase oscillation
in Fig. C.8(b) and (c). For a value of 𝛽 at which the paradox oc-
curs according to our theoretical analysis (i.e., 𝛽 = 0.032; shown in
ig. C.8(c)), we further carried out a single run of stochastic simulation
n each of the two static networks with 𝑁 = 2000 nodes constituting

the periodic switching network used in Fig. C.8. Fig. C.9(a) and (b)
represents an example time course of 𝑥1(𝑡) and 𝑥2(𝑡) on the first and
second static network, respectively. We find that 𝑥1(𝑡) and 𝑥2(𝑡) do
not decay exponentially over time in each static network in this run.
Therefore, although not all the runs show this behavior, the Parrondo

paradox can occur in a single run of stochastic simulation.

11 
We then simulate the same stochastic SIS dynamics 100 times for
each value of 𝛽 and average 𝑥1(𝑡) and 𝑥2(𝑡) over the 100 runs. We show
the results, together with the standard deviation of 𝑥1(𝑡) and 𝑥2(𝑡), in
Fig. C.8(e)–(h). We find a consistent tendency of the Parrondo paradox
and anti-phase oscillation in the averaged time course of 𝑥1(𝑡) and 𝑥2(𝑡)
(see Fig. C.8(f) and (g)).

For comparison, we also show numerically simulated solutions of
the nonlinear IBA, Eq. (2), and its linearized variant, Eq. (3), for the
2 × 2 periodic switching network in the same figure. The time courses
of 𝑥1(𝑡) and 𝑥2(𝑡) for the linearized IBA shown in Fig. C.8(e)–(h) are the
same as those shown in Fig. 3(b)–(e). We observe that the nonlinear IBA
shows a less pronounced Parrondo paradox and that the average time
courses of the stochastic simulations when the paradox occurs are close
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to those for the nonlinear IBA (see Fig. C.8(f) and (g)). We conclude that
stochastic agent-based simulations also show the Parrondo paradox,
albeit to a lesser extent than the linearized IBA with a small number
of communities shown in the main text.

Appendix D. Anti-phase oscillatory behavior with examples

We measure 𝑞, i.e., the extent of the anti-phase oscillation defined
in Section 3.4, for the eight two-node periodic switching networks that
we used in Fig. 7. The upper subpanel in each of Fig. D.10(a)–(h) shows
𝜆F, 𝜆max(𝐌(1)), and 𝜆max(𝐌(2)), and the range of 𝛽 in which the paradox
occurs, similar to Fig. 3. We find that the first four networks showing
the Parrondo paradox (i.e., Fig. D.10(a)–(d)) produce large 𝑞 values
(i.e., above approximately 0.8) when 𝛽 is close to the epidemic thresh-
ld. The largest 𝑞 value attained in these four networks is 1, indicating
erfect anti-phase dynamics between 𝑥1(𝑡) and 𝑥2(𝑡). The range of 𝛽
n which 𝑞 = 1 roughly coincides with where the Parrondo paradox
ccurs. However, in one of the four periodic switching networks, shown
n Fig. D.10(c), the range of 𝛽 in which 𝑞 = 1 extends to larger values of

far beyond where the paradox occurs. In contrast, for the other four
etworks that do not show the paradox (Fig. D.10(e)–(h)), the largest

𝑞 value is substantially smaller than for the first four networks, while 𝑞
values are peaked near the epidemic thresholds for each momentarily
static network, except in Fig. D.10(g). Note that 𝑞 = 0.5 implies that
the anti-phase behavior exists only half of the time so one cannot really
regard this as anti-phase behavior. In Fig. D.10(g), we find 𝑞 = 0, which
is the complete absence of anti-phase dynamics, for all values of 𝛽.

Data availability

Code used in this paper is available on GitHub.
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