
PSASlicing: Perpetual SLA-Aware Reinforcement

Learning for O-RAN Slice Management

Mingrui Yin∗, Yang Deng†, Ahan Kak†, Nakjung Choi†, Tao Han∗
∗Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ

†Nokia Bell Labs, Murray Hill, NJ

{my72, tao.han}@njit.edu; {kody.deng, ahan.kak, nakjung.choi}@nokia-bell-labs.com

AbstractÐNetwork slicing has been widely recognized as one of
the flagship use cases for Open Radio Access Network (O-RAN),
enabling the provisioning of isolated network services over a
shared physical infrastructure. Each slice is characterized by a
set of distinct service level agreements (SLAs) tailored to meet the
needs of various industries and applications. At the same time,
industry-critical applications often require strict adherence to the
SLA even in the worst-case scenarios. However, existing network
slicing strategies merely incorporate SLA violations as penalties
within the reward function, thus failing to consistently ensure per-
petual SLA compliance. To address these challenges, this paper
introduces PSASlicing, an intelligent resource allocation system
designed for RAN slice management across the access network.
More specifically, PSASlicing introduces a new reinforcement
learning algorithm for maximizing resource utilization while
perpetually guaranteeing the diverse SLA requirements across
slices. Furthermore, PSASlicing also incorporates a trace-driven
network emulator that effectively replicates the dynamic behavior
of cellular networks by integrating a transition model with real-
world data from an over-the-air 5G Standalone testbed. A com-
prehensive experimental evaluation showcases that PSASlicing
achieves an average resource savings of approximately 24.0%
when compared to the state-of-the-art, while guaranteeing no
SLA violations.

I. INTRODUCTION

As cellular networks advance towards 6G, the the Open

Radio Access Network (O-RAN) architecture has been leading

the charge on RAN programmability and intelligence [1].

Through its introduction of the RAN Intelligent Controllers

(RICs), O-RAN harbors the potential for machine learning-

driven RAN management, ultimately leading to improved

network performance and lower operational costs. One of the

flagship use cases in the O-RAN ecosystem is RAN slicing,

which allows for multiple virtual networks to be created on

the same physical infrastructure, simultaneously catering to

different service requirements and user demands [2]. Given the

diverse range of end-user applications expected to be served

by 6G, the efficient management of RAN slices is of utmost

importance, and thus forms the primary focus of this work.

To that end, we identify two significant research challenges.

First, we note that optimal management of radio resources

across multiple base stations is necessary for achieving effi-

cient resource utilization and ensuring compliance with the

diverse requirements of network slices. Second, there is also

a need for such slice management mechanisms to contin-

uously adapt to evolving network dynamics, ensuring the

continued satistfaction of service level agreements (SLAs). It

bears mentioning that recent studies have laid the groundwork

for navigating these challenges with promising results. In

particular, Wang et al. [3] have utilized Deep Q-Networks for

dynamic resource allocation in network slicing, demonstrating

a reduction in SLA violations, while Li et al. [4] have

introduced a hierarchical intelligent RAN slicing framework

that achieves differential SLA guarantees through hierarchical

decision-making. Furthermore, Zhang et al. [5] have presented

a hybrid slicing framework combining hard and soft slicing,

and employed deep reinforcement learning for resource allo-

cation to guarantee SLAs, while Gao et al. [6] have adopted

deep learning to predict network states and SLA demands.

The prior art cited above primarily leverages reinforcement

learning (RL) algorithms, such as DQN [7], DoubleDQN [8]

and DDPG [9], as part of the proposed slice management

frameworks. With a view to ensuring compliance with slice or

user SLAs, the aforementioned methods incorporate violations

of the SLA as part of the reward function as penalties. How-

ever, these approaches may still allow for a small probability

of SLA violation by design, failing to guarantee total SLA

satisfaction at all times. This follows from the fact that the

existing works focus on optimizing the expected reward while

constraining the expected cost over random dynamics. At the

same time, highlighting a significant challenge associated with

RL algorithms, we note that cost in a specific episode can still

be unsatisfactorily high [10], leading to practical limitations

of the prior art.

To overcome the identified challenges as well as short-

comings of the prior art, through this paper, we introduce

PSASlicing±a novel model-based RL framework tailored for

O-RAN-driven network slice management. Our proposed

framework is tailor-made for scenarios that demand strict ad-

herence to SLAs. More specifically, we provide the following

contributions.

• Novel SLA-driven RAN Slice Management Algorithm:

The PSASlicing algorithm uniquely balances the efficient

utilization of RAN resources with the assurance of diverse

SLA requirements for network slices.

• Robust Trace-driven Network Emulator: We devel-

oped a trace-driven network emulator that effectively

reproduces the dynamic behavior of cellular networks

by integrating a transition model with real-world data

from a 5G Standalone (SA) testbed, allowing for accu-

rate predictions of network performance across various

traffic scenarios and configurations. We utilize this emu-

lator to assess and optimize network parameters under

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4534

G
L

O
B

E
C

O
M

 2
0
2
4
 -

 2
0
2
4
 I

E
E

E
 G

lo
b
al

 C
o
m

m
u
n
ic

at
io

n
s

C
o
n
fe

re
n
ce

 |
9
7
9
-8

-3
5
0
3
-5

1
2
5
-5

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/G

L
O

B
E

C
O

M
5
2
9
2
3
.2

0
2
4
.1

0
9
0
1
1
5
2

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

diverse theoretical conditions, ensuring robust system

performance by predicting latency and throughput with

enhanced precision.

• Comprehensive Performance Evaluation and Valida-

tion: We benchmark the PSASlicing algorithm against

two state-of-the-art baselines, showcasing its superior

performance in enhancing SLA compliance and resource

efficiency within cellular networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Slices

O-CU-CP
O-CU-UP

O-DU 1

O-RU1 O-RU2

O-DU 2

Near-RT RIC

Core

Network

RAN Slice

Statistics

RAN Slice

Configuration

Fig. 1: System model overview.

As shown in Fig. 1, we consider an O-RAN architecture

that consists of a near-Real-Time RAN Intelligent Controller

(near-RT RIC) and several base stations (or gNodeBs) within

a given service area that are associated with that RIC. The

near-RT RIC has access to performance metrics, e.g., latency,

throughput, buffer queue status, from all gNodeBs (gNBs)

associated with it, and uses the PSASlicing xApp to perform

RAN slice management. We assume that the same set of RAN

slices is deployed across all gNBs within the service area, and

that all slices have service queues that buffer the arrival traffic

of their associated users.

The set of network slices is denoted by I = {1, 2, . . . , I}
and the set of gNBs is denoted by J = {1, 2, . . . , J}.
For the PSASlicing xApp, we consider radio resource blocks

(RBs) as the smallest resource unit available for allocation,

with the total available bandwidth being denoted by Btot
j .

Furthermore, let K = {1, 2, . . . ,K} denote the set of possible

RB assignments. Furthermore, we consider that the network

is time-slotted with T = {1, 2, . . . , T}, and the PSASlicing

xApp dynamically adjusts the resource allocation across slices

with a predefined interval t ∈ T .

Let x
(t)
i,j = [x

(t)
i,j,k|∀k ∈ K], where x

(t)
i,j,k represents k RBs

allocated to the ith slice in the jth gNB. The resource allocated

to network slices in the jth gNB cannot exceed the maximum

amount of the radio resource, i.e.,
∑

i∈I

x
(t)
i,j ≤ Btot

j , ∀j ∈ J , t ∈ T , (1)

where Btot
j = [btotj,k|∀k ∈ K] represents the total amount of

each resource in the jth gNB.

We note that the number of bytes that each RB can transmit

depends on several factors, including the modulation and

coding scheme (MCS) and channel quality (CQ). The MCS

determines the number of bits that can be transmitted within

each symbol of a RB, while, CQ affects the actual usable MCS

level, which in turn impacts the data rate per RB. Therefore,

we define a new parameter BRB to represent the number of

bytes an RB can transmit, as follows,

BRB = h(MCS,CQ). (2)

Here, h is a function whose output is the number of bytes that

can be transmitted per RB based on the current MCS and CQ.

In our system, we categorize the requirements of the SLA

into two parts, i.e., throughput and latency. In practical de-

ployments, throughput is subject to the influence of several

factors such as the capabilities of end-user device (or UE),

environmental conditions, and noise and interference from

various sources. To make our model robust and adaptable

to real-world conditions, we introduce a parameter δ, which

represents random and unpredictable variations, yet within a

certain range. We subsequently delineate a novel cost function,

Cost, that encapsulates the latency constraint, and employs

the proposed algorithm to ensure that there are no SLA viola-

tions at any given time t. We denote that SLAthroughput(i,j)

is the minimum value of throughout SLA requirement and

SLAlatency(i,j) is the maximum value of latency SLA re-

quirement for the ith slice in the jth gNB. The resource

allocated to each network slice in the jth gNB should meet the

minimum throughput requirement, while ensuring that latency

does not exceed the maximum limits defined in the SLA. The

throughput and latency constraints are defined in (3) and (4),

respectively, as follows,

x
(t)
i,j · (δmin +BRB) ≥ SLAthroughput(i, j), (3)

Cost ≤ SLAlatency(i, j) (4)

∀i ∈ I, j ∈ J , t ∈ T .

Next, the network utilization, often referred to as the occu-

pancy rate of network resources, can be determined by the

ratio of the total number of RBs allocated to all network slices

at a certain time to the total number of RBs available in the

entire network. The network utilization of each gNB at time

t can be defined as

U
(t)
i,j =

∑

i∈I

x
(t)
i,j

Btot
j

. (5)

The objective of RAN slicing is to optimize the overall

network system efficiency while guaranteeing the quality-of-

service (QoS). Hence, the network slicing problem P1 can be

defined as,

P1 : min
{xi,j≥0}

∑

t∈T

∑

j∈J

U
(t)
i,j

s.t. (1), (3), (4).
(6)

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4535
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

III. RL-BASED NETWORK SLICING ALGORITHM

The major challenges of the above problem include dynami-

cally allocating radio resources to maintain service levels in the

face of unpredictable network conditions and traffic demands,

ensuring compliance with strict throughput and latency SLAs,

and managing finite and shared radio resources efficiently. We

note that the Anytime-Competitive Markov Decision Process

(A-CMDP) framework is well-suited to address these chal-

lenges due to its quick adaptability, which ensures that the

resource allocation can keep pace with rapid changes in oper-

ating conditions and maintain SLA compliance. Furthermore,

A-CMDP can handle multiple constraints, which is critical for

balancing resource utilization and guaranteeing QoS.

A. Anytime-Competitive Markov Decision Process Definition

The Anytime-Competitive Markov Decision

Process (A-CMDP) [10] is defined by the tuple

M(S,A,F ,G, T, r, c, τ, π). In A-CMDP, each episode

consists of T rounds. The network state at each round is

denoted by st ∈ S , where t ∈ [T]. At each round of an

episode, the agent within the PSASlicing xApp selects an

action at from an action set A, which means that the agent

decides how many resources to allocate to each gNB per

slice. Through the PSASlicing xApp, the RAN then returns

a reward rt(st, at) representing network efficiency and a

cost ct(st, at) representing network latency, where rt ∈ R

and ct ∈ C. The network state dynamics are defined as

st+1 = ft(st, at), where ft ∈ F is a random transition

function sampled from an unknown distribution g(ft) with

density g ∈ G.

The agent cannot access the random function ft directly but

can observe the network state st at each round t. Additionally,

this dynamic network model can be equivalently represented

by the transition probabilities in conventional MDP models

as P(st+1|st, at) =
∑

ft
l(ft(st, at) = st+1)g(ft). A network

resource allocation policy π prescribes an action at for each

round t ∈ [T]. Under the policy π, the function V πt(s)
represents the expected cumulative reward starting from round

t for a given state s. The aim of A-CMDP is to maximize

the expected overall reward beginning from the initial round,

formulated as Es1[V
π
1 (s1)] = E

[

∑T
t=1 rt(st, at)

]

, focusing

on enhancing network system efficiency while upholding the

quality-of-service (QoS) standards.

B. PSASlicing Agent Design

In line with the A-CMDP definition, we need to design a

new RL model with a customized state sapce, action space,

reward function and cost function.

State. The state represents the current network state. The

state in the jth gNB at time interval t can be expressed as,

st =
[

l
(t)
i,j , ∀i ∈ I

]

, (7)

where l
(t)
i,j is the queue length in slice i’s buffer.

Action. The action at time interval t is defined as the

resources allocated to each slice within the network as follows,

at =
[

x
(t)
i,j , ∀i ∈ I

]

. (8)

According to the constraints defined in (3), the action at

time interval t must satisfy the minimum resource allocation

requirements to uphold the throughput SLA. Specifically, each

element of the action vector at, which represents the resource

allocation to network slices, should be greater than or equal to

the quotient of the throughput SLA requirement and the sum

of δmin and BRB . For each network slice, the action at must

adhere to the following condition,

at ≥
SLAthroughput(i, j)

δmin +BRB

. (9)

This ensures that the allocated resources per time interval do

not fall below the threshold required to maintain the agreed-

upon performance metrics set forth in the SLA. In certain

extreme and exceptional scenarios where the sum of allocated

resources in the action vector at surpasses the available

total resources Btot
j at the jth gNB, as delineated by (1),

a proportional reduction strategy is implemented to ensure

adherence to the resource constraints. Under this scheme, a

scaling factor ζ ≤ 1, is computed as the ratio of the total

available resources to the aggregate requested resources with

ζ =
Btot

j
∑

i∈I
x
(t)
i,j

. Subsequently, each resource allocation x
(t)
i,j

within at is scaled down uniformly by ζ, yielding revised

allocations x
(t)
i,j ← α · x

(t)
i,j , which cumulatively do not

exceed Btot
j . This approach preserves the proportionality of

the original allocations while conforming to the total resource

capacity of the gNB.

Reward. Since the overall objective is to maximize the

long-term utility of RAN system, we define the reward at time

interval t as,
rt(st, at) =

∑

j∈J

U
(t)
i,j . (10)

Besides the reward, QoS is also crucial for the PSASlicing

agent. Different from conventional reinforcement learning, our

proposed RL algorithm necessitates the definition of a cost

function, which serves as a constraint in the model.

Cost. Within the scope of our problem, the cost is defined as

the network system’s latency, and by imposing restrictions on

the cost, we can always guarantee the SLA requirements. By

comprehensively considering the current state, MCS, channel

quality, and path loss, we can obtain the cost function of each

time interval t as,

Costt = α1 · s
2
t +

α2 · st · ϕ(MCS)

log2(1 + SNR)
· e−ηd + α3, (11)

where α1 and α2 are the factors indicating the impact of

queue size on latency. The function ϕ(MCS) denotes the effect

of the chosen MCS on latency, incorporating the modulation

strategy’s influence. The signal-to-noise ratio (SNR) reflects

channel quality, and, along with the queue size and MCS

selection, determines the efficiency of signal processing. The

exponential term e−ηd captures the effect of path loss on signal

attenuation, with costs increasing as distance grows. Finally,

α3 is a constant representing the minimum latency experienced

under ideal conditions (e.g., an empty or near-empty buffer).

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4536
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

C. Transition Function

The state st is defined as the remaining demand for each

round t and is updated as,

st =

[

Vs(st−1) +

n
∑

m=1

µt,m − (δ +BRB(t)) · at

]+

, (12)

where Vs(st−1) is a function that models the state of the

network buffer, taking into account the remaining queues in

the buffer from the previous round. The term µt,m represents

a vector corresponding to the arrival traffic from the mth user

at time t, and is dimensionally consistent with the state vector

st. The total arrival traffic at round t is given by the sum

over all m UEs, represented as
∑M

m=1 µt,m. In this case, we

can use (2) and parameter δ to represent processed workload.

The amount of workload that can be processed or served in

a given round can depend on several random factors, such as

resource availability, processing delays, network congestion,

and other stochastic elements within the RAN infrastructure.

Furthermore, the state of the network buffer can be influenced

by random events like packet losses, re-transmissions, and

other unpredictable factors that affect the remaining workload

from the previous round. As a result, Vs is modeled as

random functions because the network behavior and workload

processing tend to have random or stochastic elements that

are difficult to predict precisely using deterministic formulae

or models.

D. The PSASlicing Algorithm

To solve the problem P1, we propose an RL-based net-

work slicing algorithm. We define an augmented state xt

which includes the original state st, the allowed deviation

Dt ∈ D, and historical information {cl}
t−1
l=1 . The augmented

state reflects the deviation between the policy provided by the

PSASlicing agent and the safest prior policy, which represents

the network system without latency deviation. This deviation

can be controlled by two parameters (λ, b), thereby regulating

the system’s current latency to always remain below the SLA

requirements. The transition of st is defined in (12) and needs

to be learned, while the transition of Dt is defined in (13) and

is known to the PSASlicing agent as,

Dt = max{Dt−1 + λe+ b− Γt−1,t−1dt−1, Rt−1 + λe+ b},
(13)

where Rt−1 =
∑t−1

l=1

(

(1 + λ)c+l − cl − Γl,tdl
)

and the

weight Γl,tdl indicates the total impact of the action deviation

at round l on the sum of the cost differences from rounds

t through T . The (λ, b)±anytime competitive constraints are

satisfied if it holds at each round t that ∥at − πt(xt)∥ ≤ Dt.

A baseline ML policy π̃ gives the output ãt and the selected

action is the projected action at = PAt
(Dt)(ãt). The prior

policy is considered the safest policy for our purposes. Hence,

in our problem, we define the set of prior policies as,

π̃ =
st +

∑M
m=1 µt,m

BRB

. (14)

Ideally, the network resources allocated at each step t are suffi-

cient to process all waiting queues in the buffer, thereby elim-

inating any latency. This constitutes a sufficient condition that

is guaranteed to satisfy the SLAs. Then, the network generates

a reward rt(xt, PAt
(Dt)(ãt)) and a cost ct(xt, PAt

(Dt)(ãt)).
Thus, the value function corresponding to the ML policy π̃

can be expressed as V π̃
t (xt) = E

[

∑H
l=t rl(xl, PAl

(Dl)(ãl))
]

with ãt being the output of the ML policy π̃.

Given an estimation of the transition distribution gn at

episode n, we perform value iteration to update Q̂ functions

for t = 1, . . . , T as,

Q̂n(xt, at) = rt(st, at) + max
g̃∈Gn

Eg̃

[

V n
t+1(xt+1)|xt, at

]

, (15)

V̂ n(xt) = max
a∈A

Q̂n(xt, a), (16)

Eg

[

V n
t+1(xt+1)|xt, at

]

=
∑

f∈F

Ṽ n
t+1(xt+1)g(f), (17)

where at = PAt
(Dt)(ãt), Q̂n+1,t(s, a) = 0, V n+1,t(s) =

0, Gn is the confidence set based on the estimation of the

transition model g̃. The transition model g̃ is estimated as,

g̃
n = argmin

g̃∈G

n−1
∑

l=1

T
∑

t=1

(

Eg̃

[

V
l
t+1(xt+1)|xt, at

]

− V̂
l
t+1(xt+1)

)2

.

(18)

Based on the transition estimation, we can calculate the

confidence set as

Gn =

{

g̃ ∈ G

∣

∣

∣

∣

n−1
∑

l=1

T
∑

t=1

(

Eg̃

[

V l
t+1(xt+1) | xt, at

]

− Eg̃n

[

V l
t+1(xt+1) | xt, at

]

)2

≤ βn

}

.

(19)

E. Model Training

Algorithm 1 Model Training

1: Initialization: Transition model set G1 = {g1}.
2: for each episode n = 1, . . . , N do

3: Observe the initial state xn
1 .

4: Select gn = argmaxg∈Gn
Eg [V1(x

n
1)].

5: Perform value iteration in Eqn.(15),(16),(17) and up-

date Q̃ functions Q̃n
1 . . . , Q̃

n
T .

6: for each round t = 1, . . . , T do

7: Initialize an allowed deviation: Dt = λe+ b.

8: Obtain the output of the ML policy π̃ as ãt.

9: Select the action at by projecting ãt into the safe

action set At(Dt).
10: Update the allowed deviation Dt+1 by Eqn.(13).

11: Observe state xn
t+1 and store values V n

t+1.

12: end for

13: Update transition model gn+1 using Eqn.(18) and

calculate confidence set Gn+1.

14: end for

The training workflow of the model is summarised in Alg. 1.

We initialize the transition model set as G1 = {g1}. With a

learned ML policy π̃k at each episode k, the policy used for

action selection is the policy πk. For state st at round t, πk

selects actions as πk(st) = PAt(Dt)(π̃
k(xt)).

For each round t, We first initialize an allowed deviation as

D1 = λe+b. When the output ãt of the ML model is obtained

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4537
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

at each round t, it is projected pnto a safe action set At(Dt)
depending on the allowed deviation Dt, i.e. at = PAt(Dt)(ãt)
where PAt(Dt) is the projection onto the set defined by Dt,

and at is the action chosen to minimize the deviation from

the output ãt, formally at = argmina∈At(Dt) ∥a − ãt∥. The

allowed deviation Dt is then updated based on (13), allowing

for greater or lesser flexibility in action selection based on

the history of deviations {dl}
t−1
l=1 and the resultant cumulative

adjustments Rt−1. At the end of each episode, the transition

model is refined to g∗n+1 using (18) and the confidence set

Gn+1 is updated. This process iteratively enhances the policy

and model with each episode, continuously seeking a balance

between optimizing rewards and respecting constraints.

IV. PERFORMANCE VALIDATION AND EVALUATION

A. Experimental Environment

Polynomial

 Regression Model

5G testbed

Dataset

Estimate

Throughput

Performance

MCS

Channel Quality

Configurations

Throughput

Latency

State: remaining

queues in buffer

B_RB Function

Generated

Incoming Traffic Difference

Slice # 2

Slice # 1

Slice # n

P
S

A
S

li
c

in
g

 A
g

e
n

t

Network Simulator

Reward Function Cost Function

Fig. 2: The PSASlicing RAN emulator.

With a view to conducting a practical performance evalua-

tion, we developed a trace-driven RAN emulator. The emulator

is constructed upon the transition model in (12) that incorpo-

rates the BRB function and a polynomial regression model,

both derived from real RAN performance measurements ob-

tained from a lab-grade 5G SA testbed. This integration of the

transition model with the testbed data ensures an accurate rep-

resentation of the dynamic cellular network environment. The

PSASlicing agents are trained offline by using this emulator,

as shown in Fig. 2.

In the emulation process, each network slice i is initially

configured with specific parameters such as the MCS and

channel quality. Traffic within each slice is generated follow-

ing a Poisson distribution to reflect the stochastic nature of

real-world network demands. The BRB function is derived

from empirical analysis of the 5G testbed data and governs the

estimation of throughput. This function dynamically calculates

throughput based on the allocation of RBs as determined by

the agent’s actions at and the prevailing network conditions.

In an endeavor to encapsulate the inherent variability of net-

work environments, a random fluctuation dataset, symbolized

by δ in (12), is integrated into the model, thereby introducing

a degree of randomness reflective of in-field scenarios. The

emulator juxtaposes this estimated throughput with actual

traffic inflow to compute the residual queues in the buffer,

which, in turn, is instrumental in predicting network latency.

As detailed above, we train the emulator using data from

an over-the-air 5G SA testbed. The testbed represents an end-

to-end 5G SA O-RAN network that leverages the HexRAN

1

2

3

COTS UEs

n78
(3.7GHz, 106 RBs)

Access Infrastructure

RAN Terminal

COTS
UEs

X310
SDR

AMD
5600X

Edge Cloud

Kubernetes Cluster

HexRIC (Near-RT RIC)

Core

HexRAN
CU-CP

HexRAN
CU-UP

HexRAN
DU

3GPP Interface O-RAN Interface

Access Infra
Access Infra

Fig. 3: Testbed setup for data collection.

project [11], as shown in Fig. 3. As shown in the figure, the

testbed consists of a dissaggregated HexRAN gNB comprising

the CU-CP, CU-UP, DU, and RU components. The gNB

broadcasts a single 40 MHz n78 (3.7 GHz) carrier, and is con-

nected to a 5G core network from the Open5GS project [12],

along with a near-RT RIC from the HexRIC project [13]. The

network hosts three slices having one user each, with varying

traffic patterns. The DU is deployed on an AMD 5900X server

attached to a USRP X310 SDR, while all other components

are deployed on a Kubernetes cluster. Furthermore, we deploy

the RANSight xApp [14] on HexRIC to assist with telemetry

collection for the purpose of generating the training dataset

for the emulator.

B. Performance Evaluation

Fig. 4: Algorithm convergence. Fig. 5: Per-slice throughput.

The experimental setup involves three user equipments

(UEs), each assigned to a different network slice, with in-

coming traffic following a Poisson distribution ± UE1 in Slice

1 at 51 Mbps, UE2 in Slice 2 at 42 Mbps, and UE3 in Slice 3

at 28 Mbps. The time interval t is 50 ms and the time period

T is composed of 20 time intervals. For RL training, we use

a policy neural network with two hidden layers of 40 neurons

each, initialized with a Gaussian distribution, trained across

2000 reinforcement learning episodes, with updates every 50
episodes using a 10−3 learning rate, and leveraging the Adam

optimizer for weight adjustments. We select λ = 2 and b = 4
as our constraint parameters.

The relationship between training loss and epochs is il-

lustrated in Fig. 4. The loss decreases significantly as the

number of epochs increases, indicating that the proposed

algorithm is capable of swift improvements in early training

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4538
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

stages. Notably, the proposed algorithm exhibits signs of

convergence within the initial 100 epochs. This substantiates

the effectiveness of the convergence of the proposed algorithm

in learning the optimal policy. Post-convergence, the training

loss stabilizes, displaying fluctuations that can be attributed to

the exploration inherent in the learning process, rather than

significant learning strides. Fig. 5 illustrates that PSASlicing

is capable of meeting distinct SLA throughput criteria for

different slices, with Slice 1 exceeding 45 Mbps, Slice 2

exceeding 35 Mbps, and Slice 3 exceeding 25 Mbps.

Slice 1

Slice 2

Slice 3

Fig. 6: Per-slice latency performance and resource allocations.

We set distinct SLA latency thresholds for each network

slice in our evaluation ± 30 ms for Slice 1, 50 ms for Slice

2, and 100 ms for Slice 3. We tested the capability of the

PSASlicing (PSA) algorithm to allocate resources across slices

with varying configurations and SLA standards, aiming to min-

imize the consumption of network resources while ensuring

adherence to the SLA benchmarks. When compared with two

baselines in Fig. 6, EdgeSlicing (ESL) [15] and SafeSlicing

(SSL) [16], we found that both PSASlicing and SafeSlicing

methods consistently stayed within the SLA latency thresh-

olds.

For Slices 1, 2, and 3, SafeSlicing consumed approxi-

mately 23.40%, 16.67%, and 31.82% more network resources

respectively. This follows from the fact that SafeSlicing

utilizes the Lagrangian primal-dual method to incorporate

SLA constraints into the reward system using multipliers.

However, there exists a gap between the policy obtained

from the dual function and the optimal solution. PSASlicing

and EdgeSlicing exhibited similar resource usage, however,

EdgeSlicing incorporated SLA considerations as part of the RL

reward function, wherein SLA violations were treated merely

as penalties. Consequently, it experienced SLA violations

with probabilities of 3.7% for Slice 1, 2.6% for Slice 2,

and 0.5% for Slice 3. Conversely, PSASlicing uses a cost

function to individually represent network latency. Under the

proposed algorithm mechanism, it can ensure compliance with

the SLA constraint at every moment. Therefore, PSASlicing

maintains no SLA violations across all slices and demonstrates

exceptional performance in terms of resource efficiency.

V. CONCLUSION

In this paper, we have proposed a novel RL algorithm for

network resource allocation that consistently ensures SLAs

while optimizing network resource utilization. We developed

a trace-driven network emulator that integrates a transition

model with data from an over-the-air 5G Standalone testbed,

allowing for precise simulations of network behavior across

diverse traffic scenarios. In our experimental evaluations, we

compared our algorithm with two advanced baseline algo-

rithms. We showcased that our proposed method consistently

matched or surpassed the performance of both baselines,

achieving an outstanding balance across all tested metrics.

ACKNOWLEDGEMENT

This work was partially supported by the U.S. NSF under

Grants 2147623 and 2147624

REFERENCES

[1] M. Polese et al., ªUnderstanding O-RAN: Architecture, Interfaces,
Algorithms, Security, and Research Challenges,º IEEE Communications

Surveys & Tutorials, vol. 25, no. 2, pp. 1376±1411, 2023.
[2] A. Kaloxylos, ªA Survey and an Analysis of Network Slicing in 5G

Networks,º IEEE Communications Standards Magazine, vol. 2, no. 1,
pp. 60±65, 2018.

[3] X. Wang and T. Zhang, ªReinforcement Learning Based Resource
Allocation for Network Slicing in 5G C-RAN,º in 2019 Computing,

Communications and IoT Applications (ComComAp), 2019, pp. 106±
111.

[4] J. Li et al., ªHierarchical Intelligent Radio Access Network Slicing for
Differential Service Level Agreement Guaranteeing,º IEEE Transactions

on Industrial Informatics, vol. 20, no. 3, pp. 4124±4136, 2024.
[5] H. Zhang et al., ªA Hard and Soft Hybrid Slicing Framework for Service

Level Agreement Guarantee via Deep Reinforcement Learning,º in 2022

IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022,
pp. 1±5.

[6] S. Gao et al., ªPrediction-based Resource Slicing for Service Level
Agreement Guarantee: A Deep Learning Approach,º in 2022 31st

Wireless and Optical Communications Conference (WOCC), 2022, pp.
68±73.

[7] V. Mnih et al., ªHuman-level Control Through Deep Reinforcement
Learning,º Nature, vol. 518, pp. 529±33, 02 2015.

[8] H. van Hasselt et al., ªDeep Reinforcement Learning with Double Q-
learning,º CoRR, vol. abs/1509.06461, 2015.

[9] T. P. Lillicrap et al., ªContinuous Control with Deep Reinforcement
Learning,º in ICLR, 2016.

[10] J. o. Yang, ªAnytime-Competitive Reinforcement Learning with Policy
Prior,º in Advances in Neural Information Processing Systems, vol. 36,
2023, pp. 77 852±77 866.

[11] A. Kak et al., ªHexRAN: A Programmable Multi-RAT Platform for
Network Slicing in the Open RAN Ecosystem,º 2023.

[12] Open5GS Project, ªOpen5GS: 5G Core and EPC,º
https://open5gs.org/open5gs/, 2023.

[13] V.-Q. Pham et al., ªHexRIC: Building a Better near-Real Time Network
Controller for the Open RAN Ecosystem,º in Proceedings of the 24th

International Workshop on Mobile Computing Systems and Applications,
ser. HotMobile ’23, 2023, p. 15±21.

[14] A. Kak et al., ªRANSight: Programmable Telemetry for Next-
Generation Open Radio Access Networks,º in GLOBECOM 2023 - 2023

IEEE Global Communications Conference, 2023, pp. 5391±5396.
[15] Q. Liu et al., ªEdgeSlice: Slicing Wireless Edge Computing Network

with Decentralized Deep Reinforcement Learning,º in 2020 IEEE 40th

International Conference on Distributed Computing Systems (ICDCS),
2020, pp. 234±244.

[16] ÐÐ, ªConstraint-Aware Deep Reinforcement Learning for End-to-
End Resource Orchestration in Mobile Networks,º in 2021 IEEE 29th

International Conference on Network Protocols (ICNP), 2021, pp. 1±11.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

4539
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:06:43 UTC from IEEE Xplore. Restrictions apply.

