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Abstract—Network slicing has been widely recognized as one of
the flagship use cases for Open Radio Access Network (O-RAN),
enabling the provisioning of isolated network services over a
shared physical infrastructure. Each slice is characterized by a
set of distinct service level agreements (SLAs) tailored to meet the
needs of various industries and applications. At the same time,
industry-critical applications often require strict adherence to the
SLA even in the worst-case scenarios. However, existing network
slicing strategies merely incorporate SLA violations as penalties
within the reward function, thus failing to consistently ensure per-
petual SLA compliance. To address these challenges, this paper
introduces PSASlicing, an intelligent resource allocation system
designed for RAN slice management across the access network.
More specifically, PSASlicing introduces a new reinforcement
learning algorithm for maximizing resource utilization while
perpetually guaranteeing the diverse SLA requirements across
slices. Furthermore, PSASlicing also incorporates a trace-driven
network emulator that effectively replicates the dynamic behavior
of cellular networks by integrating a transition model with real-
world data from an over-the-air 5G Standalone testbed. A com-
prehensive experimental evaluation showcases that PSASlicing
achieves an average resource savings of approximately 24.0%
when compared to the state-of-the-art, while guaranteeing no
SLA violations.

I. INTRODUCTION

As cellular networks advance towards 6G, the the Open
Radio Access Network (O-RAN) architecture has been leading
the charge on RAN programmability and intelligence [1].
Through its introduction of the RAN Intelligent Controllers
(RICs), O-RAN harbors the potential for machine learning-
driven RAN management, ultimately leading to improved
network performance and lower operational costs. One of the
flagship use cases in the O-RAN ecosystem is RAN slicing,
which allows for multiple virtual networks to be created on
the same physical infrastructure, simultaneously catering to
different service requirements and user demands [2]. Given the
diverse range of end-user applications expected to be served
by 6G, the efficient management of RAN slices is of utmost
importance, and thus forms the primary focus of this work.

To that end, we identify two significant research challenges.
First, we note that optimal management of radio resources
across multiple base stations is necessary for achieving effi-
cient resource utilization and ensuring compliance with the
diverse requirements of network slices. Second, there is also
a need for such slice management mechanisms to contin-
uously adapt to evolving network dynamics, ensuring the
continued satistfaction of service level agreements (SLAs). It
bears mentioning that recent studies have laid the groundwork

for navigating these challenges with promising results. In
particular, Wang et al. [3] have utilized Deep Q-Networks for
dynamic resource allocation in network slicing, demonstrating
a reduction in SLA violations, while Li et al. [4] have
introduced a hierarchical intelligent RAN slicing framework
that achieves differential SLA guarantees through hierarchical
decision-making. Furthermore, Zhang et al. [5] have presented
a hybrid slicing framework combining hard and soft slicing,
and employed deep reinforcement learning for resource allo-
cation to guarantee SLAs, while Gao ef al. [6] have adopted
deep learning to predict network states and SLA demands.

The prior art cited above primarily leverages reinforcement
learning (RL) algorithms, such as DQN [7], DoubleDQN [8]
and DDPG [9], as part of the proposed slice management
frameworks. With a view to ensuring compliance with slice or
user SLAs, the aforementioned methods incorporate violations
of the SLA as part of the reward function as penalties. How-
ever, these approaches may still allow for a small probability
of SLA violation by design, failing to guarantee total SLA
satisfaction at all times. This follows from the fact that the
existing works focus on optimizing the expected reward while
constraining the expected cost over random dynamics. At the
same time, highlighting a significant challenge associated with
RL algorithms, we note that cost in a specific episode can still
be unsatisfactorily high [10], leading to practical limitations
of the prior art.

To overcome the identified challenges as well as short-
comings of the prior art, through this paper, we introduce
PSASlicing—a novel model-based RL framework tailored for
O-RAN-driven network slice management. Our proposed
framework is tailor-made for scenarios that demand strict ad-
herence to SLAs. More specifically, we provide the following
contributions.

o Novel SLA-driven RAN Slice Management Algorithm:
The PSASlicing algorithm uniquely balances the efficient
utilization of RAN resources with the assurance of diverse
SLA requirements for network slices.

e Robust Trace-driven Network Emulator: We devel-
oped a trace-driven network emulator that effectively
reproduces the dynamic behavior of cellular networks
by integrating a transition model with real-world data
from a 5G Standalone (SA) testbed, allowing for accu-
rate predictions of network performance across various
traffic scenarios and configurations. We utilize this emu-
lator to assess and optimize network parameters under
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diverse theoretical conditions, ensuring robust system
performance by predicting latency and throughput with
enhanced precision.

o Comprehensive Performance Evaluation and Valida-
tion: We benchmark the PSASlicing algorithm against
two state-of-the-art baselines, showcasing its superior
performance in enhancing SLA compliance and resource
efficiency within cellular networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION
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Fig. 1: System model overview.

As shown in Fig. 1, we consider an O-RAN architecture
that consists of a near-Real-Time RAN Intelligent Controller
(near-RT RIC) and several base stations (or gNodeBs) within
a given service area that are associated with that RIC. The
near-RT RIC has access to performance metrics, e.g., latency,
throughput, buffer queue status, from all gNodeBs (gNBs)
associated with it, and uses the PSASlicing xApp to perform
RAN slice management. We assume that the same set of RAN
slices is deployed across all gNBs within the service area, and
that all slices have service queues that buffer the arrival traffic
of their associated users.

The set of network slices is denoted by Z = {1,2,...,1}
and the set of gNBs is denoted by J = {1,2,...,J}
For the PSASlicing xApp, we consider radio resource blocks
(RBs) as the smallest resource unit available for allocation,
with the total available bandwidth being denoted by B
Furthermore, let £ = {1,2,..., K} denote the set of possible
RB assignments. Furthermore, we consider that the network
is time-slotted with 7 = {1,2,...,T}, and the PSASlicing
xApp dynamically adjusts the resource allocation across slices
with a predeﬁned interval ¢t € T

Let x(t) = [ i k|Vk € K], where x( )k, represents k& RBs
allocated to the ith slice in the jth gNB. The resource allocated
to network slices in the jth gNB cannot exceed the maximum
amount of the radio resource, i.e.,

where B = [b!%[|Vk € K] represents the total amount of
each resource in the jth gNB.

We note that the number of bytes that each RB can transmit
depends on several factors, including the modulation and
coding scheme (MCS) and channel quality (CQ). The MCS
determines the number of bits that can be transmitted within
each symbol of a RB, while, CQ affects the actual usable MCS
level, which in turn impacts the data rate per RB. Therefore,
we define a new parameter Brp to represent the number of
bytes an RB can transmit, as follows,

Brp = h(MCS, CQ). )

Here, h is a function whose output is the number of bytes that
can be transmitted per RB based on the current MCS and CQ.

In our system, we categorize the requirements of the SLA
into two parts, i.e., throughput and latency. In practical de-
ployments, throughput is subject to the influence of several
factors such as the capabilities of end-user device (or UE),
environmental conditions, and noise and interference from
various sources. To make our model robust and adaptable
to real-world conditions, we introduce a parameter §, which
represents random and unpredictable variations, yet within a
certain range. We subsequently delineate a novel cost function,
Cost, that encapsulates the latency constraint, and employs
the proposed algorithm to ensure that there are no SLA viola-
tions at any given time ¢. We denote that SLA;proughput(i,j)
is the minimum value of throughout SLA requirement and
SLAjatency(i,j) 18 the maximum value of latency SLA re-
quirement for the 4th slice in the jth gNB. The resource
allocated to each network slice in the jth gNB should meet the
minimum throughput requirement, while ensuring that latency
does not exceed the maximum limits defined in the SLA. The
throughput and latency constraints are defined in (3) and (4),
respectively, as follows,

Etg) * (0min + Bre) = SLAwroughput (7, 1), 3
Cost < SLAlatency(iaj) )
VieLjeJ,teT.

Next, the network utilization, often referred to as the occu-
pancy rate of network resources, can be determined by the
ratio of the total number of RBs allocated to all network slices
at a certain time to the total number of RBs available in the
entire network. The network utilization of each gNB at time
t can be defined as

S 20
%57
t i€l
U = " 5)
J

The objective of RAN slicing is to optimize the overall
network system efficiency while guaranteeing the quality-of-
service (QoS). Hence, the network slicing problem &?; can be
defined as,

ngt; < B;Ot, VieJ,teT, (1 P {x?,_lgo} %:T]éU (6)
€1 s.t. (1),(3), (4).
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III. RL-BASED NETWORK SLICING ALGORITHM

The major challenges of the above problem include dynami-
cally allocating radio resources to maintain service levels in the
face of unpredictable network conditions and traffic demands,
ensuring compliance with strict throughput and latency SLAs,
and managing finite and shared radio resources efficiently. We
note that the Anytime-Competitive Markov Decision Process
(A-CMDP) framework is well-suited to address these chal-
lenges due to its quick adaptability, which ensures that the
resource allocation can keep pace with rapid changes in oper-
ating conditions and maintain SLA compliance. Furthermore,
A-CMDP can handle multiple constraints, which is critical for
balancing resource utilization and guaranteeing QoS.

A. Anytime-Competitive Markov Decision Process Definition

The Anytime-Competitive Markov Decision
Process (A-CMDP) [10] is defined by the tuple
M(S, A, F,G,T,r,c,7,m). In A-CMDP, each episode

consists of 7' rounds. The network state at each round is
denoted by s; € S, where t € [T]. At each round of an
episode, the agent within the PSASlicing xApp selects an
action a; from an action set A, which means that the agent
decides how many resources to allocate to each gNB per
slice. Through the PSASlicing xApp, the RAN then returns
a reward 7(s¢,a;) representing network efficiency and a
cost ¢i(s¢,at) representing network latency, where r; € R
and ¢; € C. The network state dynamics are defined as
St+1 = fi(sg,ar), where f; € F is a random transition
function sampled from an unknown distribution g(f;) with
density g € G.

The agent cannot access the random function f; directly but
can observe the network state s; at each round ¢. Additionally,
this dynamic network model can be equivalently represented
by the transition probabilities in conventional MDP models
as P(sipalse, ar) = 325 1(fe(se, ar) = se41)g(fi). A network
resource allocation policy m prescribes an action a; for each
round ¢t € [T]. Under the policy , the function V7¢(s)
represents the expected cumulative reward starting from round
t for a given state s. The aim of A-CMDP is to maximize
the expected overall reward beginning from the initial round,
formulated as E'si[V{"(s1)] = F [Zthl rt(st,at)l, focusing
on enhancing network system efficiency while upholding the
quality-of-service (QoS) standards.

B. PSASlicing Agent Design

In line with the A-CMDP definition, we need to design a
new RL model with a customized state sapce, action space,
reward function and cost function.

State. The state represents the current network state. The
state in the jth gNB at time interval ¢ can be expressed as,

S, = [lgfj?,w c I} , )
where lgt])- is the queue length in slice ¢’s buffer.

Action. The action at time interval ¢ is defined as the
resources allocated to each slice within the network as follows,

a, = [ng},w e I] . (8)
According to the constraints defined in (3), the action at
time interval ¢ must satisfy the minimum resource allocation
requirements to uphold the throughput SLA. Specifically, each
element of the action vector a;, which represents the resource
allocation to network slices, should be greater than or equal to
the quotient of the throughput SLA requirement and the sum
of dmin and Brpg. For each network slice, the action a; must
adhere to the following condition,
SLAthroughput(iv J)
5min + BRB .
This ensures that the allocated resources per time interval do
not fall below the threshold required to maintain the agreed-
upon performance metrics set forth in the SLA. In certain
extreme and exceptional scenarios where the sum of allocated
resources in the action vector a; surpasses the available
total resources B;Ot at the jth gNB, as delineated by (1),
a proportional reduction strategy is implemented to ensure
adherence to the resource constraints. Under this scheme, a
scaling factor ( < 1, is computed as the ratio of the total
available resources to the aggregate requested resources with

B! .
¢ = ﬁ Subsequently, each resource allocation 2t
x

a; > &)

i,
within af Iishécaled down uniformly by (, yielding revised
allocations xft) — - scgtj) , which cumulatively do not
exceed B;Ot. This approach preserves the proportionality of
the original allocations while conforming to the total resource
capacity of the gNB.

Reward. Since the overall objective is to maximize the

long-term utility of RAN system, we define the reward at time

interval ¢ as, ry(50, 01) = Z U;,?

JET
Besides the reward, QoS is also crucial for the PSASlicing
agent. Different from conventional reinforcement learning, our
proposed RL algorithm necessitates the definition of a cost
function, which serves as a constraint in the model.

Cost. Within the scope of our problem, the cost is defined as
the network system’s latency, and by imposing restrictions on
the cost, we can always guarantee the SLA requirements. By
comprehensively considering the current state, MCS, channel
quality, and path loss, we can obtain the cost function of each
time interval ¢ as,

(10)

5 Qg8 9p(MCS)

Coste = a1 -8+ = T+ SNR) (n
where «; and «g are the factors indicating the impact of
queue size on latency. The function ¢(MCS) denotes the effect
of the chosen MCS on latency, incorporating the modulation
strategy’s influence. The signal-to-noise ratio (SNR) reflects
channel quality, and, along with the queue size and MCS
selection, determines the efficiency of signal processing. The
exponential term e~ " captures the effect of path loss on signal
attenuation, with costs increasing as distance grows. Finally,
a3 1s a constant representing the minimum latency experienced
under ideal conditions (e.g., an empty or near-empty buffer).

cem M+ ag,
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C. Transition Function

The state s; is defined as the remaining demand for each
round ¢ and is updated as,

(st—1 +Z,utm

where Vi(s;—1) is a functlon that models the state of the
network buffer, taking into account the remaining queues in
the buffer from the previous round. The term pi; ., represents
a vector corresponding to the arrival traffic from the mth user
at time ¢, and is dimensionally consistent with the state vector
s¢. The total arrival traffic at round ¢ is given by the sum
over all m UEs, represented as Zi\,{:l te,m. In this case, we
can use (2) and parameter § to represent processed workload.
The amount of workload that can be processed or served in
a given round can depend on several random factors, such as
resource availability, processing delays, network congestion,
and other stochastic elements within the RAN infrastructure.
Furthermore, the state of the network buffer can be influenced
by random events like packet losses, re-transmissions, and
other unpredictable factors that affect the remaining workload
from the previous round. As a result, Vs is modeled as
random functions because the network behavior and workload
processing tend to have random or stochastic elements that
are difficult to predict precisely using deterministic formulae
or models.

D. The PSASlicing Algorithm

To solve the problem £7;, we propose an RL-based net-
work slicing algorithm. We define an augmented state z;
which includes the original state s;, the allowed deviation
D, € D, and historical information {¢;}{_;. The augmented
state reflects the deviation between the policy provided by the
PSASlicing agent and the safest prior policy, which represents
the network system without latency deviation. This deviation
can be controlled by two parameters (\, b), thereby regulating
the system’s current latency to always remain below the SLA
requirements. The transition of s, is defined in (12) and needs
to be learned, while the transition of D; is defined in (13) and
is known to the PSASlicing agent as,

D; = maX{Dt,1 +Xe+b— thl)tfldtfl, Ri_1 + e+ b},

(13)
where R;_1 = t:ll ((1 + )\)cl+ —c — Fl,tdl) and the
weight I'; ,d; indicates the total impact of the action deviation
at round ! on the sum of the cost differences from rounds
t through 7. The (\,b)-anytime competitive constraints are
satisfied if it holds at each round ¢ that |la; — 7! (z;)|| < D.

A baseline ML policy 7 gives the output a; and the selected
action is the projected action a; = P4, (D;)(a:). The prior
policy is considered the safest policy for our purposes. Hence,
in our problem, we define the set of prior policies as,

M
Fo S Lmmt Pm (14)
Brp
Ideally, the network resources allocated at each step ¢ are suffi-
cient to process all waiting queues in the buffer, thereby elim-

inating any latency. This constitutes a sufficient condition that

+

5+BRB( )) at s (12)

St =

is guaranteed to satisfy the SLAs. Then, the network generates
a reward r(x¢, P4, (D:)(at)) and a cost ¢t (x¢, Pa, (Dy)(at)).
Thus, the value function corresponding to the ML policy 7
can be expressed as V7 (z;) = E [Z{it ri(z1, Pa, (Dl)(&l))}
with a; being the output of the ML policy 7.

Given an estimation of the transition distribution g™ at
episode n, we perform value iteration to update Q functions
fort=1,...,T as,

Qn(l’tvat) = T't(St,CLt) + gré%X Eg [Vtﬁl(xﬂ_l)\xt, at] s (15)

V() = max Q" (wy, a), (16)

By (Vi (o) e a] =Y Vi (mg)g(f), (A7)
feF

where a; = P4, (Dy)(a), Q" (s,a) = 0, Vibi(s) =

0, G,, is the confidence set based on the estimation of the

transition model g. The transition model g is estimated as,
n—1 T

= argn mm Z Z ( [Vz+1 Tit1)|ze, at:| - ‘A/tl+1(mt+1))2 .

(18)
Based on the transition estimation, we can calculate the
confidence set as

n—1 T

Z Z (Eé [th+1(33t+1) | xt7at]

=1 t=1
- ]Egn [V;ﬁrl(xwl) | T, Gt]) < ﬁn}

E. Model Training

19)

Algorithm 1 Model Training

Initialization: Transition model set G1 = {g'}.
for each episode n =1,..., N do

Observe the initial state x’f.

Select g™ = argmaxgeq,, Eq [Vi(2])].

Perform value iteration in Eqn (15),(16),(17) and up-
date Q functions Q1 ey QT

EANE -

6: for each round t =1,...,7 do

7: Initialize an allowed deviation: D; = A\e + b.

8: Obtain the output of the ML policy 7 as a;.

9: Select the action a; by projecting a; into the safe
action set Ay (Dy).

10: Update the allowed deviation D;,; by Eqn.(13).

11: Observe state %, ; and store values V/} ;.

12: end for

13: Update transition model ¢"*! using Eqn.(18) and
calculate confidence set G 41.

14: end for

The training workflow of the model is summarised in Alg. 1.
We initialize the transition model set as G; = {g'}. With a
learned ML policy 7% at each episode k, the policy used for
action selection is the policy 7*. For state s, at round ¢, 7
selects actions as 7 (sy) = Pa,(p,) (7" (z)).

For each round ¢, We first initialize an allowed deviation as
Dy = Ae+b. When the output a; of the ML model is obtained
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at each round ¢, it is projected pnto a safe action set A;(D;)
depending on the allowed deviation Dy, i.e. a; = Pa,(p,)(at)
where Py, (p,) is the projection onto the set defined by Dy,
and a; is the action chosen to minimize the deviation from
the output a;, formally a; = argmingc,(p,) ||@ — @||. The
allowed deviation D, is then updated based on (13), allowing
for greater or lesser flexibility in action selection based on
the history of deviations {dl}f;% and the resultant cumulative
adjustments [?;_;. At the end of each episode, the transition
model is refined to ¢*"*! using (18) and the confidence set
Gp+1 1s updated. This process iteratively enhances the policy
and model with each episode, continuously seeking a balance
between optimizing rewards and respecting constraints.

IV. PERFORMANCE VALIDATION AND EVALUATION

A. Experimental Environment
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Fig. 2: The PSASlicing RAN emulator.

With a view to conducting a practical performance evalua-
tion, we developed a trace-driven RAN emulator. The emulator
is constructed upon the transition model in (12) that incorpo-
rates the Brp function and a polynomial regression model,
both derived from real RAN performance measurements ob-
tained from a lab-grade 5G SA testbed. This integration of the
transition model with the testbed data ensures an accurate rep-
resentation of the dynamic cellular network environment. The
PSASlicing agents are trained offline by using this emulator,
as shown in Fig. 2.

In the emulation process, each network slice ¢ is initially
configured with specific parameters such as the MCS and
channel quality. Traffic within each slice is generated follow-
ing a Poisson distribution to reflect the stochastic nature of
real-world network demands. The Bgrp function is derived
from empirical analysis of the 5G testbed data and governs the
estimation of throughput. This function dynamically calculates
throughput based on the allocation of RBs as determined by
the agent’s actions a; and the prevailing network conditions.

In an endeavor to encapsulate the inherent variability of net-
work environments, a random fluctuation dataset, symbolized
by § in (12), is integrated into the model, thereby introducing
a degree of randomness reflective of in-field scenarios. The
emulator juxtaposes this estimated throughput with actual
traffic inflow to compute the residual queues in the buffer,
which, in turn, is instrumental in predicting network latency.

As detailed above, we train the emulator using data from
an over-the-air 5G SA testbed. The testbed represents an end-
to-end 5G SA O-RAN network that leverages the HexRAN

COTS UEs jmmmm e ~+ HexRIC (Near-RT RIC)
[ —
E (3.7GHz, 106 RBs) H :

o o] [T G |
([ ===] DU H
Access Infra m

o+—e 3GPP Interface *---+ 0-RAN Interface
Access Infrastructure

RAN Terminal

'\ Kubernetes Cluster

N TS

Fig. 3: Testbed setup for data collection.

project [11], as shown in Fig. 3. As shown in the figure, the
testbed consists of a dissaggregated HexRAN gNB comprising
the CU-CP, CU-UP, DU, and RU components. The gNB
broadcasts a single 40 MHz n78 (3.7 GHz) carrier, and is con-
nected to a 5G core network from the Open5GS project [12],
along with a near-RT RIC from the HexRIC project [13]. The
network hosts three slices having one user each, with varying
traffic patterns. The DU is deployed on an AMD 5900X server
attached to a USRP X310 SDR, while all other components
are deployed on a Kubernetes cluster. Furthermore, we deploy
the RANSight xApp [14] on HexRIC to assist with telemetry
collection for the purpose of generating the training dataset
for the emulator.

B. Performance Evaluation
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Fig. 4: Algorithm convergence. Fig. 5: Per-slice throughput.

The experimental setup involves three user equipments
(UEs), each assigned to a different network slice, with in-
coming traffic following a Poisson distribution — UEI in Slice
1 at 51 Mbps, UE2 in Slice 2 at 42 Mbps, and UE3 in Slice 3
at 28 Mbps. The time interval ¢ is 50 ms and the time period
T is composed of 20 time intervals. For RL training, we use
a policy neural network with two hidden layers of 40 neurons
each, initialized with a Gaussian distribution, trained across
2000 reinforcement learning episodes, with updates every 50
episodes using a 10~2 learning rate, and leveraging the Adam
optimizer for weight adjustments. We select A =2 and b =4
as our constraint parameters.

The relationship between training loss and epochs is il-
lustrated in Fig. 4. The loss decreases significantly as the
number of epochs increases, indicating that the proposed
algorithm is capable of swift improvements in early training
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stages. Notably, the proposed algorithm exhibits signs of
convergence within the initial 100 epochs. This substantiates
the effectiveness of the convergence of the proposed algorithm
in learning the optimal policy. Post-convergence, the training
loss stabilizes, displaying fluctuations that can be attributed to
the exploration inherent in the learning process, rather than
significant learning strides. Fig. 5 illustrates that PSASlicing
is capable of meeting distinct SLA throughput criteria for
different slices, with Slice 1 exceeding 45 Mbps, Slice 2
exceeding 35 Mbps, and Slice 3 exceeding 25 Mbps.
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Fig. 6: Per-slice latency performance and resource allocations.

We set distinct SLA latency thresholds for each network
slice in our evaluation — 30 ms for Slice 1, 50 ms for Slice
2, and 100 ms for Slice 3. We tested the capability of the
PSASlicing (PSA) algorithm to allocate resources across slices
with varying configurations and SLA standards, aiming to min-
imize the consumption of network resources while ensuring
adherence to the SLA benchmarks. When compared with two
baselines in Fig. 6, EdgeSlicing (ESL) [15] and SafeSlicing
(SSL) [16], we found that both PSASlicing and SafeSlicing
methods consistently stayed within the SLA latency thresh-
olds.

For Slices 1, 2, and 3, SafeSlicing consumed approxi-
mately 23.40%, 16.67%, and 31.82% more network resources
respectively. This follows from the fact that SafeSlicing
utilizes the Lagrangian primal-dual method to incorporate
SLA constraints into the reward system using multipliers.

maintains no SLA violations across all slices and demonstrates
exceptional performance in terms of resource efficiency.

V. CONCLUSION

In this paper, we have proposed a novel RL algorithm for
network resource allocation that consistently ensures SLAs
while optimizing network resource utilization. We developed
a trace-driven network emulator that integrates a transition
model with data from an over-the-air 5G Standalone testbed,
allowing for precise simulations of network behavior across
diverse traffic scenarios. In our experimental evaluations, we
compared our algorithm with two advanced baseline algo-
rithms. We showcased that our proposed method consistently
matched or surpassed the performance of both baselines,
achieving an outstanding balance across all tested metrics.
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