232

IEEE NETWORKING LETTERS, VOL. 6, NO. 4, DECEMBER 2024

Deploying On-Device AIGC Inference Services in 6G via
Optimal MEC-Device Offloading
Changshi Zhou"', Graduate Student Member, IEEE, Weiqi Liu™, Member, IEEE,

Tao Han

Abstract—From Al-assisted art creation to large language
model (LLM)-powered ChatGPT, Al-generated contents and
services are becoming a transforming force. It calls for the
telecom industry to embrace the prospects of AIGC services and
face the unique challenges posed by incorporating generative
model services into the Al-native 6G wireless network paradigm.
We propose enabling AIGC inference services on mobile devices
by optimizing MEC-device computing offloading, through which
AIGC task latency is minimized by reinforcement learning based
policy agent in a computing resource constrained and bandwidth
limited wireless environment. Simulation results are presented to
demonstrate the performance advantage.

Index Terms—LLM, AIGC, ChatGPT, MEC, on-device com-
puting, 6G, constrained reinforcement learning.

I. INTRODUCTION

HE FAR-REACHING impact of Al-generated content
(AIGC) [2] is increasingly apparent. From stable diffu-
sion based art creation to large language model (LLM)-enabled
ChatGPT, AIGC techniques and services are exploding into
different business fields and diverse application domains,
poised to be the new engine of the digital economy. The
emergence of Al-native 6G wireless networks is fostering
a convergence of computing centred 5G/6G technology and
AIGC. The wireless community is assessing the capabili-
ties that AIGC can bring to the wireless domain [3], [6].
The widespread use of interconnected devices and sensors,
powered by wireless connectivity, generates an immense
volume of data. This data can be harnessed to train AIGC
models tailored to the wireless network domain, significantly
enhancing network intelligence to better serve mobile users.
Additionally, wireless network operators can provision person-
alized and dynamic AIGC content by deploying self-trained
AIGC models or customized lightweight models derived from
large models like ChatGPT.
Despite the great potential that AIGC holds, leveraging
the power of AIGC services in mobile networks and deploy-
ing them on mobile devices poses considerable challenges.
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The quality of AIGC models relies on large-scale pre-
trained models with a large number of parameters, such as
GPT-3 with up to 175 billion parameters, and requires fine-
tuning to fit various tasks [4]. The constraints of mobile
devices including computing resources, power consumption,
and privacy concerns, must be carefully considered in the
context of training, fine-tuning, personalizing, and deploying
of AIGC models. These challenges are further complicated
by the unique demands of mobile users for AIGC services.
Furthermore, new AIGC use cases, ranging from best effort
request/response transactions to realtime ChatBot interactions
and industrial robotic manipulations, require network design
adaptations to meet AIGC specific quality of experience (QoE)
metrics, which have yet to be specified. This letter focuses
specifically on the deployment of AIGC, where pretrained
models are prepared to handle inference requests originating
from mobile users.

On-device inference has been proposed to provision AIGC
services by running AIGC models on standalone mobile device
[5]. The advantage of this approach lies in its ability to
protect privacy and provide realtime on-device full access, but
it usually requires lightweight models trained by techniques
such as model parameter pruning or low bit quantization.
This comes at the cost of degraded model accuracy and is
only feasible on devices equipped with sufficient memory
storage, battery capacity, and CPU/GPU computing power.
Another approach is to leverage Mobile Edge Computing
(MEC) [7]. MEC allows resource constrained mobile devices
to offload computing tasks to resource rich edge servers,
thereby fully utilizing the network computing resources. To
apply MEC for AIGC deployment, resource demanding AIGC
models can be hosted on edge servers, inference requests
can be served either by lightweight models preinstalled on
device or by large models hosted on edge servers with
offloading collaboration. While MEC has been extensively
studied in application domains such as IOT [1], [12], the
incorporation to support AIGC inferences—a newly emerging
issue-has yet to be investigated. Here, we propose a MEC
offloading scheme to provision AIGC in mobile networks.
We formulate an optimization problem to optimize offloading
decisions by considering factors such as traffic generation,
wireless channel conditions, and computing constraints. Our
contributions include:

e Proposing a MEC-device collaborative scheme to provi-
sion AIGC inference, in which decisions to execute the
AIGC tasks on edge servers or locally on device are
optimized.
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o Formulating the optimal decision by minimizing the
average task execution latency, considering both the
randomness of AIGC service requests and the complexity
of the wireless channels. The problem is solved using
a reinforcement learning based algorithm with a service
latency constraint.

o Demonstrating the performance of the proposed scheme
through simulations.

The remainder of this letter is organized as follows: In
Section II, related works are reviewed. Section III presents our
proposed AIGC offloading scheme and formulates the offload-
ing optimization problem. Section IV describes the simulation
results and the performance analysis. The conclusion is made
in the final section.

II. RELATED WORKS

This section outlines related works into three categories.

AIGC to Telecom: LLM and AIGC are drawing increasing
interests in the telecom industry and academia. Recent work
by Piovesan et al. [8] conducted an evaluation of small
language model Phi-2, comparing its accuracy with LLM in its
understanding of the telecom domain and presenting problem-
solving scenarios within the telecom sector. Zhou et al. [6]
presented a comprehensive review of the potentials of LLM
to the telecom fields, describing benefits and challenges of
network edge deployment and on-device deployment.

AIGC to Device: Research in this category focuses on
enabling on-device AIGC by customizing smaller task-specific
models or by optimizing GPU usage for faster inference.
Iyer et al. [9] introduced an on-device inference solution to
sustain performance by dynamically allocating a combination
of CPU and GPU backends per model. However, these
allocations involve a trade-off between the faster execution
of GPUs and reduced physical memory, forming a Pareto
front in a multi-objective space, which is computationally non-
trivial to determine. As a scalable easy-to-share solution for
task-specific models, particularly in low-resource scenarios,
Pfeiffer et al. [10] introduced a framework for adapting trans-
formers. This framework allows the dynamic “stitching-in” of
pre-trained adapters for different tasks and languages. While
these adapters can be used for inference, they can only support
the tasks they were trained on.

MEC-device Offloading Computing: Offloading is a key
technique in collaborative MEC-device computing. To apply
MEC offloading in AIGC, Du et al. [11] proposed a collabo-
rative framework to execute diffusion-based AIGC denoising
steps across edge servers and mobile devices, demonstrating
its feasibility experimentally with several mobile devices.
However, the approach is specific to diffusion models and
faces challenges in optimally splitting the denoising process
for collaborative execution on devices with varying computing
capacities. Wang et al. [13] presented an optimization scheme
for offloading decisions, computation time, and diffusion steps
during the reverse diffusion stage. However, this solution
is also dedicated to diffusion models and its modeling is
limited to a single edge server. In addition, both designs lack
consideration of wireless channel conditions.
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Fig. 1. MEC-device AIGC service system model.

The computing limitation of mobile devices is one main
hurdle to provisioning AIGC for telecom. Works on this issue
remain scarce, which is the motivation for this letter.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a system model in the 5G/6G wireless network
setting as shown in Fig. 1, consisting of AIGC large models
deployed on a set of MEC edge servers collocated with base
stations (BSs) and lightweight AIGC models preinstalled on
user devices (UEs). For simplicity, the system is modeled
for a single AIGC service type, such as stable diffusion or
ChatGPT. A service task originated by a UE can be executed
either on-device or by the MEC server, controlled by an
AIGC service scheduler. Denote the set of servers by M =
{1,2,3,..., M} and the set of UEs by V' = {1,2,3,..., N }.
Assume each device and each server can execute ¢, and ¢,
FLOPS, respectively; the large model requires ygser FLOPS,
while the UE needs x 4., FLOPS, potentially with a degraded
model accuracy. To analyze AIGC tasks, we discretize the
task arrival process into 7 time slots 7 = {1,2,3,...,T}.
The AIGC service scheduler makes scheduling decisions on a
per-time-slot basis. At the beginning of each slot, each user
generates a new task, forming a task setf = {1,2,3,..., U}.
Each task u € U is identified by a tuple (ude?, uB t,),
corresponding to the task device, task data size, and time slot
of the task, respectively. The task data sizes are of random
lengths.

B. Communication Channel Model.

The wireless channel path loss between UE n and MEC
server m can be expressed as:

Yn.m = plo + vlog(dis (l,ff@”, l;f’"))

where ply and ~ are the path loss and path exponent,
respectively; dis(12¢Y, 15¢7) denotes the distance between UE
n and server m. Then, the signal to noise and interference ratio
(SINR) from UE n to server m can be derived as:

—%n,m
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where P, denotes the transmission power of UE n, and o2
denotes the Gaussian white noise power. The denominator is
the interference plus white noise. Then, the data rate from UE
n to server m is

Tn,m = nn,mB 10g2(1 + 6n,m)

where B is the total available spectrum bandwidth, and 7, m
denotes the percentage of spectrum allocated to UE n.

C. Computing Model

We use y* € {0,1} to indicate whether AIGC task u is
executed locally, i.e., if the task is computed locally, y = 1;
otherwise, it is offloaded to the edge server. In the case that
the task is offloaded, 2 ,, € {0,1} indicates if it is executed
on server m (2 ,, = 1 if true, and zero otherwise). The
computing time to process a task u locally is given as:

N
X
7_lltocal _ Z y;_LL . ;iev
n

n=1
The computing time to process a task on the server can be
calculated as:

M N
server __ u  Xser
Tu = Zn,m cu
m=1n=1 m

and the communication link latency for an offloaded task can
be calculated as:

M N ’upkt
comm U u
DD I -

m=1n=1 1

D. Problem Formulation

The optimal offloading decision, whether to execute each
service task on-device locally or offload it to a server, is
formulated by minimizing the average AIGC task execution
latency:

min i 7_QlLocal + Tierver + pcomm
yﬁ,zz# mﬂ?n,mycﬁz, U
’ uelU
N N M
s.t.. C1 Z Yy + Z Z Zptm =1
n=1 n=1m=1
N
2 Z Nn.mB < B
n=1
U N
C3: 33 et < en
u=1n=1

(D

where U is the number of task requests, and the optimization
variables represent a collective set of decisions for all tasks
(i.e., Yu € U, Vn € N, Ym € M). Among the constraints:
C1 imposes the exclusiveness of task execution; C2 and C3
ensure the channel bandwidth B and computing capacity of
the edge servers, respectively; C4 defines a hard time limit 7%
within which the execution latency of each task is bounded.

C4 - |:T1iocal +Tierver +T§omm < U
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Fig. 2. Actor-Critic based DRL design.

Algorithm 1 Actor-Critic Offloading Algorithm

INPUT: policy mg(als,8), state-value V(s,6")
OuTPUT: RL policy my
INITIALIZE: RL network weight 6, 6, learning rate A
For each episode e=1 to E do
Initialize s (first state of e)
For training step t=1 to Tyuin do
a < mg(als,0)
take action a, observe s ,R
§+— R+V(s,0)—V(s,0)
0 < 0+ N6V In(my(als, 0))
0 0 + 26V V (s,0)
s s
Return 7y

E. DRL Algorithm

This problem is a mixed-integer nonlinear programming
(MINLP) due to the interference, resource allocation, and
offloading decisions, making it NP-hard. Given the complexity
of characterizing AIGC tasks, deriving a tractable solution is
generally challenging. Therefore, we resort to deep reinforce-
ment learning (DRL) to solve this problem [14].

In this actor-critic based approach as illustrated in Fig. 2, the
DRL agent runs on the AIGC resource scheduler. It takes task
requests of each time slot ¢ and the available network resource
(channel bandwidth, computing capacity, path info. between
UE and BS) as input state s(f) to the DRL policy network
a ~ mg(ald, s). The DRL agent outputs the offloading actions
a(t), where the integers in a(f) represent the task assignment.
With action a(r) taken, the DRL agent receives a reward,
and the input state to the DRL agent transitions to the next
state. Successive tasks in different time slots are treated as
independent. The reward function is designed as:

1 local
R(t) _ 7? Z (Tuoca + Tierver + 7_ﬁomm)
u€eU,t, =t

The actor-critic based algorithm to train the DRL policy
network is summarized in Algorithm 1. Note that § param-
eterizes the policy network (the actor), and #' parameterizes
the state-value function network (the critic). Each scheduling
time slot corresponds to one training episode, during which
the actor updates the policy to improve the action reward,
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Xser 200MFLOPS Xdev SOMFLOPS
N [10, 15,...,40] M 5
Cn, 300MFLOPS Cm 15GFLOPS
Tx PWR 20 dbm 52 -100 dbm
Threshold T [10 20] ms Packet Size uﬁkt [100,200] KB
Channel BW 20 MHz
16— :
[ Proposed
14 | Greedy
[ Random offloading |

Total task processing time (s)

10 15 20 25 30 35 40
Number of UEs

Fig. 3. AIGC latency: Proposed vs. Greedy vs. Random Offloading.

and the critic also updates to better estimate the state-value
function V(s); these updates are based on the evaluation of
the temporal difference (TD) error 4, which measures the
difference between the predicted and actual values of the
state-value function. Through iterations, the DRL training
maximizes the policy rewards.

IV. PERFORMANCE EVALUATIONS

To evaluate the proposed MEC-device AIGC task
offloading, simulations were conducted to demonstrate its
performances. The simulation setup as illustrated in Fig. 1
consists of a number of mobile UEs randomly located within
a RF coverage area with a radial distance of 1km, served by
multiple MECs for AIGC service under the offloading policy.
Table I defines the simulation parameters for our system
model.

For the performance evaluation, we first compared the
proposed offloading scheme with the greedy algorithm and the
random offloading scheme. In the random offloading scheme,
tasks originated by each UE are randomly assigned to an edge
server or processed locally. In contrast, the greedy algorithm
makes decisions based on known information about local
processing capability, channel conditions, and edge server
computing capabilities. The result is presented in Fig. 3. The
plot shows that, for a given set of tasks generated by a fixed
number of UEs, as the number of UEs in the set increases from
10 to 40, the processing time increases for all the offloading
schemes, but the proposed scheme consistently demonstrates
a clear advantage in taking the least time to execute the tasks.

We further examined the effect of the latency bound applied
in the DRL policy training. Fig. 4 presents the test result
when the latency constraint is set to be 15 ms and 20 ms,
respectively. The plot shows that as the number of UEs
increases from 10 to 40, few UEs violate the latency bound due
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Fig. 4. Number of UEs meeting the latency bound.
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Fig. 5. DRL training convergence.

to increased contention for computing resources. In addition,
to evaluate the training convergence, we plotted the average
reward of each epoch as the DRL training advances, as shown
in Fig. 5.

The simulation results demonstrate the advantage of the
proposed AIGC offloading scheme as well as its effectiveness
in the latency bound. However, it is worth noting that the
AIGC task traffic model is simplified for the convenience of
analysis. While it serves the purpose of exploring a solution to
support AIGC service in wireless networks, characterizing the
AIGC service, defining QoE metrics and seeking an optimal
solution remains complex and demands further work.

V. CONCLUSION

We have proposed a MEC-device collaborative scheme
aimed at optimizing the utilization of computing resources
across edge servers and mobile devices to support on-device
AIGC inference services in emerging 6G wireless networks.
A MEC-device offloading optimization problem is formulated
to minimize service latency which includes channel com-
munication latency and computing latency, constrained by
wireless channel bandwidth, server computing capacity, and
desired service completion time. The problem is solved using
a deep reinforcement learning-based method. Simulations
were conducted, and the performance results demonstrate the
advantage of the proposed scheme over other approaches
such as greedy offloading or random offloading. While this
study, with its simplified models, highlights the benefits of
leveraging offloading to enable AIGC in wireless networks,
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further research is needed to address the uniqueness and
complexity of serving AIGC services.
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