
232 IEEE NETWORKING LETTERS, VOL. 6, NO. 4, DECEMBER 2024

Deploying On-Device AIGC Inference Services in 6G via

Optimal MEC-Device Offloading

Changshi Zhou , Graduate Student Member, IEEE, Weiqi Liu , Member, IEEE,

Tao Han , Senior Member, IEEE, and Nirwan Ansari

Abstract—From AI-assisted art creation to large language
model (LLM)-powered ChatGPT, AI-generated contents and
services are becoming a transforming force. It calls for the
telecom industry to embrace the prospects of AIGC services and
face the unique challenges posed by incorporating generative
model services into the AI-native 6G wireless network paradigm.
We propose enabling AIGC inference services on mobile devices
by optimizing MEC-device computing offloading, through which
AIGC task latency is minimized by reinforcement learning based
policy agent in a computing resource constrained and bandwidth
limited wireless environment. Simulation results are presented to
demonstrate the performance advantage.

Index Terms—LLM, AIGC, ChatGPT, MEC, on-device com-
puting, 6G, constrained reinforcement learning.

I. INTRODUCTION

T
HE FAR-REACHING impact of AI-generated content

(AIGC) [2] is increasingly apparent. From stable diffu-

sion based art creation to large language model (LLM)-enabled

ChatGPT, AIGC techniques and services are exploding into

different business fields and diverse application domains,

poised to be the new engine of the digital economy. The

emergence of AI-native 6G wireless networks is fostering

a convergence of computing centred 5G/6G technology and

AIGC. The wireless community is assessing the capabili-

ties that AIGC can bring to the wireless domain [3], [6].

The widespread use of interconnected devices and sensors,

powered by wireless connectivity, generates an immense

volume of data. This data can be harnessed to train AIGC

models tailored to the wireless network domain, significantly

enhancing network intelligence to better serve mobile users.

Additionally, wireless network operators can provision person-

alized and dynamic AIGC content by deploying self-trained

AIGC models or customized lightweight models derived from

large models like ChatGPT.

Despite the great potential that AIGC holds, leveraging

the power of AIGC services in mobile networks and deploy-

ing them on mobile devices poses considerable challenges.

Received 6 September 2024; revised 14 October 2024; accepted 30
October 2024. Date of publication 4 November 2024; date of current version
30 January 2025. The associate editor coordinating the review of this article
and approving it for publication was H. Chergui. (Corresponding author:

Changshi Zhou.)

Changshi Zhou, Tao Han, and Nirwan Ansari are with the Department of
Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102 USA (e-mail: czhou@njit.edu; tao.han@njit.edu;
ansari@njit.edu).

Weiqi Liu is with the Department of Computer Science and Computer
Information Systems, Auburn University at Montgomery, Montgomery, AL
36117 USA (e-mail: wliu4@aum.edu).

Digital Object Identifier 10.1109/LNET.2024.3490954

The quality of AIGC models relies on large-scale pre-

trained models with a large number of parameters, such as

GPT-3 with up to 175 billion parameters, and requires fine-

tuning to fit various tasks [4]. The constraints of mobile

devices including computing resources, power consumption,

and privacy concerns, must be carefully considered in the

context of training, fine-tuning, personalizing, and deploying

of AIGC models. These challenges are further complicated

by the unique demands of mobile users for AIGC services.

Furthermore, new AIGC use cases, ranging from best effort

request/response transactions to realtime ChatBot interactions

and industrial robotic manipulations, require network design

adaptations to meet AIGC specific quality of experience (QoE)

metrics, which have yet to be specified. This letter focuses

specifically on the deployment of AIGC, where pretrained

models are prepared to handle inference requests originating

from mobile users.

On-device inference has been proposed to provision AIGC

services by running AIGC models on standalone mobile device

[5]. The advantage of this approach lies in its ability to

protect privacy and provide realtime on-device full access, but

it usually requires lightweight models trained by techniques

such as model parameter pruning or low bit quantization.

This comes at the cost of degraded model accuracy and is

only feasible on devices equipped with sufficient memory

storage, battery capacity, and CPU/GPU computing power.

Another approach is to leverage Mobile Edge Computing

(MEC) [7]. MEC allows resource constrained mobile devices

to offload computing tasks to resource rich edge servers,

thereby fully utilizing the network computing resources. To

apply MEC for AIGC deployment, resource demanding AIGC

models can be hosted on edge servers, inference requests

can be served either by lightweight models preinstalled on

device or by large models hosted on edge servers with

offloading collaboration. While MEC has been extensively

studied in application domains such as IOT [1], [12], the

incorporation to support AIGC inferences–a newly emerging

issue–has yet to be investigated. Here, we propose a MEC

offloading scheme to provision AIGC in mobile networks.

We formulate an optimization problem to optimize offloading

decisions by considering factors such as traffic generation,

wireless channel conditions, and computing constraints. Our

contributions include:

• Proposing a MEC-device collaborative scheme to provi-

sion AIGC inference, in which decisions to execute the

AIGC tasks on edge servers or locally on device are

optimized.

U.S. Government work not protected by U.S. copyright.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:09:22 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DEPLOYING ON-DEVICE AIGC INFERENCE SERVICES IN 6G VIA OPTIMAL MEC-DEVICE OFFLOADING 233

• Formulating the optimal decision by minimizing the

average task execution latency, considering both the

randomness of AIGC service requests and the complexity

of the wireless channels. The problem is solved using

a reinforcement learning based algorithm with a service

latency constraint.

• Demonstrating the performance of the proposed scheme

through simulations.

The remainder of this letter is organized as follows: In

Section II, related works are reviewed. Section III presents our

proposed AIGC offloading scheme and formulates the offload-

ing optimization problem. Section IV describes the simulation

results and the performance analysis. The conclusion is made

in the final section.

II. RELATED WORKS

This section outlines related works into three categories.

AIGC to Telecom: LLM and AIGC are drawing increasing

interests in the telecom industry and academia. Recent work

by Piovesan et al. [8] conducted an evaluation of small

language model Phi-2, comparing its accuracy with LLM in its

understanding of the telecom domain and presenting problem-

solving scenarios within the telecom sector. Zhou et al. [6]

presented a comprehensive review of the potentials of LLM

to the telecom fields, describing benefits and challenges of

network edge deployment and on-device deployment.

AIGC to Device: Research in this category focuses on

enabling on-device AIGC by customizing smaller task-specific

models or by optimizing GPU usage for faster inference.

Iyer et al. [9] introduced an on-device inference solution to

sustain performance by dynamically allocating a combination

of CPU and GPU backends per model. However, these

allocations involve a trade-off between the faster execution

of GPUs and reduced physical memory, forming a Pareto

front in a multi-objective space, which is computationally non-

trivial to determine. As a scalable easy-to-share solution for

task-specific models, particularly in low-resource scenarios,

Pfeiffer et al. [10] introduced a framework for adapting trans-

formers. This framework allows the dynamic “stitching-in” of

pre-trained adapters for different tasks and languages. While

these adapters can be used for inference, they can only support

the tasks they were trained on.

MEC-device Offloading Computing: Offloading is a key

technique in collaborative MEC-device computing. To apply

MEC offloading in AIGC, Du et al. [11] proposed a collabo-

rative framework to execute diffusion-based AIGC denoising

steps across edge servers and mobile devices, demonstrating

its feasibility experimentally with several mobile devices.

However, the approach is specific to diffusion models and

faces challenges in optimally splitting the denoising process

for collaborative execution on devices with varying computing

capacities. Wang et al. [13] presented an optimization scheme

for offloading decisions, computation time, and diffusion steps

during the reverse diffusion stage. However, this solution

is also dedicated to diffusion models and its modeling is

limited to a single edge server. In addition, both designs lack

consideration of wireless channel conditions.

Fig. 1. MEC-device AIGC service system model.

The computing limitation of mobile devices is one main

hurdle to provisioning AIGC for telecom. Works on this issue

remain scarce, which is the motivation for this letter.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system model in the 5G/6G wireless network

setting as shown in Fig. 1, consisting of AIGC large models

deployed on a set of MEC edge servers collocated with base

stations (BSs) and lightweight AIGC models preinstalled on

user devices (UEs). For simplicity, the system is modeled

for a single AIGC service type, such as stable diffusion or

ChatGPT. A service task originated by a UE can be executed

either on-device or by the MEC server, controlled by an

AIGC service scheduler. Denote the set of servers by M =
{1, 2, 3, . . . ,M } and the set of UEs by N = {1, 2, 3, . . . ,N }.

Assume each device and each server can execute cm and cn
FLOPS, respectively; the large model requires χser FLOPS,

while the UE needs χdev FLOPS, potentially with a degraded

model accuracy. To analyze AIGC tasks, we discretize the

task arrival process into T time slots T = {1, 2, 3, . . . ,T}.

The AIGC service scheduler makes scheduling decisions on a

per-time-slot basis. At the beginning of each slot, each user

generates a new task, forming a task set U = {1, 2, 3, . . . ,U }.

Each task u ∈ U is identified by a tuple (µdevu , µ
pkt
u , tu),

corresponding to the task device, task data size, and time slot

of the task, respectively. The task data sizes are of random

lengths.

B. Communication Channel Model.

The wireless channel path loss between UE n and MEC

server m can be expressed as:

ψn,m = pl0 + γ log
(

dis
(

ldevn , lserm

))

where pl0 and γ are the path loss and path exponent,

respectively; dis(ldevn , lserm) denotes the distance between UE

n and server m. Then, the signal to noise and interference ratio

(SINR) from UE n to server m can be derived as:

en,m =
Pn10

−ψn,m

10

σ2 +
∑

j∈M,j �=m

∑

i∈N ,i �=n Pi10
−ψi,j

10

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:09:22 UTC from IEEE Xplore. Restrictions apply.

234 IEEE NETWORKING LETTERS, VOL. 6, NO. 4, DECEMBER 2024

where Pn denotes the transmission power of UE n, and σ2

denotes the Gaussian white noise power. The denominator is

the interference plus white noise. Then, the data rate from UE

n to server m is

rn,m = ηn,mB log2
(

1 + en,m
)

where B is the total available spectrum bandwidth, and ηn,m
denotes the percentage of spectrum allocated to UE n.

C. Computing Model

We use yun ∈ {0, 1} to indicate whether AIGC task u is

executed locally, i.e., if the task is computed locally, yun = 1;

otherwise, it is offloaded to the edge server. In the case that

the task is offloaded, zun,m ∈ {0, 1} indicates if it is executed

on server m (zun,m = 1 if true, and zero otherwise). The

computing time to process a task u locally is given as:

τ localu =

N
∑

n=1

yun ·
χdev

cn

The computing time to process a task on the server can be

calculated as:

τ serveru =

M
∑

m=1

N
∑

n=1

zun,m ·
χser

cum

and the communication link latency for an offloaded task can

be calculated as:

τcomm
u =

M
∑

m=1

N
∑

n=1

zun,m ·
µ
pkt
u

rn,m

D. Problem Formulation

The optimal offloading decision, whether to execute each

service task on-device locally or offload it to a server, is

formulated by minimizing the average AIGC task execution

latency:

min
yu
n ,z

u
n,m ,ηn,m ,cum

1

U

∑

u∈U

[

τ localu + τ serveru + τcomm
u

]

s .t .: C1 :

N
∑

n=1

yun +

N
∑

n=1

M
∑

m=1

zun,m = 1

C2 :

N
∑

n=1

ηn,mB ≤ B

C3 :
U
∑

u=1

N
∑

n=1

zun,mcum ≤ cm

C4 :
[

τ localu + τ serveru + τcomm
u ≤ Tu

]

(1)

where U is the number of task requests, and the optimization

variables represent a collective set of decisions for all tasks

(i.e., ∀u ∈ U , ∀n ∈ N , ∀m ∈ M). Among the constraints:

C1 imposes the exclusiveness of task execution; C2 and C3

ensure the channel bandwidth B and computing capacity of

the edge servers, respectively; C4 defines a hard time limit Tu

within which the execution latency of each task is bounded.

Fig. 2. Actor-Critic based DRL design.

Algorithm 1 Actor-Critic Offloading Algorithm

INPUT: policy πθ(a|s , θ), state-value ∨(s , θ′)
OUTPUT: RL policy πθ
INITIALIZE: RL network weight θ, θ′, learning rate λθ,λθ

′

For each episode e=1 to E do

Initialize s (first state of e)

For training step t=1 to Ttrain do

a ← πθ(a|s , θ)
take action a, observe s ′,R

δ ← R + ∨(s ′, θ′)− ∨(s , θ′)
θ ← θ + λθδ∇ ln(πθ(a|s , θ))
θ′ ← θ′ + λθ

′

δ∇∨ (s , θ′)
s ← s ′

Return πθ

E. DRL Algorithm

This problem is a mixed-integer nonlinear programming

(MINLP) due to the interference, resource allocation, and

offloading decisions, making it NP-hard. Given the complexity

of characterizing AIGC tasks, deriving a tractable solution is

generally challenging. Therefore, we resort to deep reinforce-

ment learning (DRL) to solve this problem [14].

In this actor-critic based approach as illustrated in Fig. 2, the

DRL agent runs on the AIGC resource scheduler. It takes task

requests of each time slot t and the available network resource

(channel bandwidth, computing capacity, path info. between

UE and BS) as input state s(t) to the DRL policy network

a ∼ πθ(a|θ, s). The DRL agent outputs the offloading actions

a(t), where the integers in a(t) represent the task assignment.

With action a(t) taken, the DRL agent receives a reward,

and the input state to the DRL agent transitions to the next

state. Successive tasks in different time slots are treated as

independent. The reward function is designed as:

R(t) = −
1

U

∑

u∈U ,tu=t

(

τ localu + τ serveru + τcomm
u

)

The actor-critic based algorithm to train the DRL policy

network is summarized in Algorithm 1. Note that θ param-

eterizes the policy network (the actor), and θ′ parameterizes

the state-value function network (the critic). Each scheduling

time slot corresponds to one training episode, during which

the actor updates the policy to improve the action reward,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:09:22 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DEPLOYING ON-DEVICE AIGC INFERENCE SERVICES IN 6G VIA OPTIMAL MEC-DEVICE OFFLOADING 235

TABLE I
SIMULATION PARAMETERS

Fig. 3. AIGC latency: Proposed vs. Greedy vs. Random Offloading.

and the critic also updates to better estimate the state-value

function V(s); these updates are based on the evaluation of

the temporal difference (TD) error δ, which measures the

difference between the predicted and actual values of the

state-value function. Through iterations, the DRL training

maximizes the policy rewards.

IV. PERFORMANCE EVALUATIONS

To evaluate the proposed MEC-device AIGC task

offloading, simulations were conducted to demonstrate its

performances. The simulation setup as illustrated in Fig. 1

consists of a number of mobile UEs randomly located within

a RF coverage area with a radial distance of 1km, served by

multiple MECs for AIGC service under the offloading policy.

Table I defines the simulation parameters for our system

model.

For the performance evaluation, we first compared the

proposed offloading scheme with the greedy algorithm and the

random offloading scheme. In the random offloading scheme,

tasks originated by each UE are randomly assigned to an edge

server or processed locally. In contrast, the greedy algorithm

makes decisions based on known information about local

processing capability, channel conditions, and edge server

computing capabilities. The result is presented in Fig. 3. The

plot shows that, for a given set of tasks generated by a fixed

number of UEs, as the number of UEs in the set increases from

10 to 40, the processing time increases for all the offloading

schemes, but the proposed scheme consistently demonstrates

a clear advantage in taking the least time to execute the tasks.

We further examined the effect of the latency bound applied

in the DRL policy training. Fig. 4 presents the test result

when the latency constraint is set to be 15 ms and 20 ms,

respectively. The plot shows that as the number of UEs

increases from 10 to 40, few UEs violate the latency bound due

Fig. 4. Number of UEs meeting the latency bound.

Fig. 5. DRL training convergence.

to increased contention for computing resources. In addition,

to evaluate the training convergence, we plotted the average

reward of each epoch as the DRL training advances, as shown

in Fig. 5.

The simulation results demonstrate the advantage of the

proposed AIGC offloading scheme as well as its effectiveness

in the latency bound. However, it is worth noting that the

AIGC task traffic model is simplified for the convenience of

analysis. While it serves the purpose of exploring a solution to

support AIGC service in wireless networks, characterizing the

AIGC service, defining QoE metrics and seeking an optimal

solution remains complex and demands further work.

V. CONCLUSION

We have proposed a MEC-device collaborative scheme

aimed at optimizing the utilization of computing resources

across edge servers and mobile devices to support on-device

AIGC inference services in emerging 6G wireless networks.

A MEC-device offloading optimization problem is formulated

to minimize service latency which includes channel com-

munication latency and computing latency, constrained by

wireless channel bandwidth, server computing capacity, and

desired service completion time. The problem is solved using

a deep reinforcement learning-based method. Simulations

were conducted, and the performance results demonstrate the

advantage of the proposed scheme over other approaches

such as greedy offloading or random offloading. While this

study, with its simplified models, highlights the benefits of

leveraging offloading to enable AIGC in wireless networks,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:09:22 UTC from IEEE Xplore. Restrictions apply.

236 IEEE NETWORKING LETTERS, VOL. 6, NO. 4, DECEMBER 2024

further research is needed to address the uniqueness and

complexity of serving AIGC services.

REFERENCES

[1] L. Zhang and N. Ansari, “Latency-aware IoT service provisioning in
UAV-aided mobile-edge computing networks,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 10573–10580, Oct. 2020.

[2] Y. Cao et al., “A comprehensive survey of AI-generated content
(AIGC): A history of generative AI from GAN to ChatGPT,” 2023,
arXiv:2303.04226.

[3] L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large
generative AI models for telecom: The next big thing?” IEEE Commun.

Mag., early access, Jan. 8, 2024, doi: 10.1109/MCOM.001.2300364.
[4] T. B. Brown et al., “Language models are few-shot learners,” in Proc.

34th Int. Conf. Neural Inf. Process. Syst., 2020, pp. 1877–1901.
[5] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, and M. Shah “A

survey of on-device machine learning: An algorithms and learning theory
perspective,” ACM Trans. Internet Things, vol. 2, no. 15, pp. 1–49,
2021.

[6] H. Zhou et al., “Large language model (LLM) for telecommunications: A
comprehensive survey on principles, key techniques, and opportunities,”
2024, arXiv:2405.10825.

[7] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5G mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun.

Surveys Tuts., vol. 23, no. 2, pp. 1160–1192, 2nd Quart., 2021.
[8] N. Piovesan, A. De Domenico, and F. Ayed, “Telecom language models:

Must they be large?” 2024, arXiv:2403.04666.
[9] V. Iyer, S. Lee, S. Lee, J. J. Kim, H. Kim, and Y. Shin, “Automated

backend allocation for multi-model, on-device AI inference,” Proc. ACM

Meas. Anal. Comput. Syst., vol. 7, no. 3, pp. 1–33, 2023.
[10] J. Pfeiffer et al., “Adapterhub: A framework for adapting transform-

ers,” in Proc. Conf. Empir. Methods Nat. Lang. Process. (EMNLP),
Oct. 2020, pp. 46–54.

[11] H. Du et al., “Exploring collaborative distributed diffusion-based
AI-generated content in wireless networks,” IEEE Netw., vol. 38, no. 3,
pp. 178–186, May 2024.

[12] X. Hou, Y. Guan, T. Han, and N. Zhang, “DistrEdge: Speeding up convo-
lutional neural network inference on distributed edge devices,” in Proc.

IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), Lyon, France, 2022,
pp. 1097–1107.

[13] X. Wang, C. Liu, and J. Zhao, “Offloading and quality control
for AI generated content services in 6G mobile edge computing
networks,” in Proc. IEEE 99th Veh. Technol. Conf., 2024, pp. 1–7.

[14] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 06,2025 at 15:09:22 UTC from IEEE Xplore. Restrictions apply.

