
Vol:.(1234567890)

International Journal of Intelligent Robotics and Applications (2024) 8:1038–1056

https://doi.org/10.1007/s41315-024-00363-w

REGULAR PAPER

Towards real‑time embodied AI agent: a bionic visual encoding
framework for mobile robotics

Xueyu Hou1 · Yongjie Guan1 · Tao Han2 · Cong Wang2

Received: 24 April 2024 / Accepted: 26 July 2024 / Published online: 10 August 2024

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract

Embodied artificial intelligence (AI) agents, which navigate and interact with their environment using sensors and actuators,

are being applied for mobile robotic platforms with limited computing power, such as autonomous vehicles, drones, and

humanoid robots. These systems make decisions through environmental perception from deep neural network (DNN)-based

visual encoders. However, the constrained computational resources and the large amounts of visual data to be processed

can create bottlenecks, such as taking almost 300 milliseconds per decision on an embedded GPU board (Jetson Xavier).

Existing DNN acceleration methods need model retraining and can still reduce accuracy. To address these challenges, our

paper introduces a bionic visual encoder framework, Robye , to support real-time requirements of embodied AI agents. The

proposed framework complements existing DNN acceleration techniques. Specifically, we integrate motion data to identify

overlapping areas between consecutive frames, which reduces DNN workload by propagating encoding results. We bifurcate

processing into high-resolution for task-critical areas and low-resolution for less-significant regions. This dual-resolution

approach allows us to maintain task performance while lowering the overall computational demands. We evaluate Robye

across three robotic scenarios: autonomous driving, vision-and-language navigation, and drone navigation, using various

DNN models and mobile platforms. Robye outperforms baselines in speed (1.2–3.3 ×), performance (+4% to +29%), and

power consumption (−36% to −47%).

Keywords Mobile robotics · Visual encoding · Embodied AI · Computer vision

1 Introduction

Embodied AI agents are designed for interaction and navi-

gation in physical environments. They combine sensory

inputs and actuator outputs for perception and action. These

systems are deployed on mobile robotic platforms for tasks

such as autonomous navigation and object manipulation, in

which visual perception (encoding) plays a crucial role (Hu

et al. 2019; Qi et al. 2020; Schumann and Riezler 2022;

Thomason et al. 2018; Zhu et al. 2021). This visual encod-

ing enables the embodied AI agents to analyze and interpret

visual data for decision-making. As shown in Fig. 1, this

mimics human-environment interaction, aiding in informed

decision-making and appropriate environmental responses

in robots. However, the expanding capabilities of vision-

based robotic systems also require increased computational

capacity, especially in mobile robotics where the embodied

AI agents directly interact with their environment. Figure 2

demonstrates this in three major mobile robotic applica-

tions of autonomous driving, vision-and-language naviga-

tion (VLN), and drone navigation. We measure their latency

and power consumption on an embedded GPU platform,

Jetson Xavier (https:// www. nvidia. com/ en- us/ auton omous-

machi nes/ embed ded- syste ms/ jetson- agx- xavier/). For visual

encoding, we use a Mono3D object detection model (Chen

et al. 2016). We compress the model with state-of-the-art

acceleration techniques (Murti et al. 2022), which reduces

 * Xueyu Hou

 xueyu.hou@maine.edu

 Yongjie Guan

 yongjie.guan@maine.edu

 Tao Han

 tao.han@njit.edu

 Cong Wang

 cong.wang@njit.edu

1 ECE Department, University of Maine, Orono, USA

2 ECE Department, New Jersey Institute of Technology,

Newark, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-024-00363-w&domain=pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/

1039Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

latency by 44.7% with accuracy loss of 8.2% . For action gen-

eration, we implement an LSTM model with 512 hidden

units (Anderson et al. 2018). For language encoding, we

use a standard attentive encoder–decoder model (Bahdanau

et al. 2014; Zhang et al. 2020).1 We observe that, across

all the three applications, even with state-of-the-art model

acceleration techniques, visual encoding accounts for over

70–94% of the latency and power consumption, indicating

that it is critical to address the computational load imposed

by visual encoding in mobile robotic applications.

Neuroscience has advanced our understanding of human

visual encoding and its role in behavior. Key findings

include: First, the human visual system has a dichotomous

mechanism and processes retinal inputs selectively, focusing

on high-acuity focus vision in the central field and broader,

less detailed encoding in the peripheral field (Stewart et al.

2020). Second, iconic memory plays a crucial role in visual

encoding, acting as a short-term repository for visual stimuli

like shape, color, and motion, and enabling efficient integra-

tion of visual information in dynamic scenes (Becker et al.

2000; Coltheart 1980; Gegenfurtner and Sperling 1993).

Third, the human visual system combines visual inputs with

motion information of proprioceptive and vestibular signals

for a cohesive representation of the external world, enhanc-

ing spatial perception through multisensory integration in

the visual and vestibular cortexes (Beers et al. 1996; Gr and

Gr 1972).

Inspired by human visual system principles, we propose

Robye , a bionic visual encoding framework for mobile robot-

ics. As illustrated in Fig. 1, Robye integrates the mechanisms

of dichotomous processing and motion-aware iconic mem-

ory into visual encoding, to reduce computational needs.

Specifically, the framework includes: (1) Dual workflows:

Robye applies high-resolution encoding on task-related focus

areas and low-resolution encoding on the rest contents, to

concentrate computation to key areas. (2) Motion fusion:

Instead of relying on visual information only, Robye utilizes

motion data (the position, direction, and speed of the robot

and surrounding objects) of sensors on mobile robotics to

aid in matching contents across frames. (3) Encoding result

sharing: Robye caches the encoding result of the preceding

frame and shares it with the matching contents in the current

frame, which reduces computing load of deep neural net-

work (DNN) encoding. The contributions of this work are:

• Robye is an efficient visual encoding framework designed

for mobile robotics. The innovations to reduce compu-

tational costs and keep high performance include: the

dichotomous processing for environmental understanding

and the motion-based spatial geometric projection for

lightweight cross-frame content correlation.

• To localize overlapping contents between frames, we pro-

pose to employ sensor-based motion data, which utilizes

lightweight, geometric projection-based localization that

demands fewer computational resources than image pro-

cessing methods.

• To reduce DNN computation, we propose to emulate the

iconic memory mechanism from human vision, which

integrates past encoding results for current frame analy-

sis, and adaptively regulating the visual encoding process

based on inter-frame motion changes, to further reduce

computational load.

• To preserve the performance of robotic applications, we

propose a dual workflow of visual encoding, which mir-

rors human vision mechanism. It includes task-related

focus localization and high-resolution encoding, to

reduce computational cost without sacrificing perfor-

mance of mobile robotic applications.

• We evaluate Robye across three mobile robotic applica-

tions (autonomous driving, vision-and-language naviga-

tion, and drone navigation) using various deep learning

models on mobile and embedded devices of Jetson Nano,

Jetson Xavier, Google Pixel 7, and Samsung Galaxy S22.

The results show that Robye outperforms baselines in

Human Perception Workflow Proposed Robotic Perception Workflow

Visual
Encoding

Actions

Visual
Encoding

Actions

Visual
Encoding

Actions

Visual
Input

Foveated
Content

New
Content

Motion

Task Type

E
n

co
d

in
g

R

es
u

lt
s

Encoding
Results

Visual
Input

Existing Robotic Perception WorkflowExisting Robotic Perception Workflow

Human s Interaction w/ Environment Robot s Interaction w/ Environment

Visual
Input

Focus
Content

New
Content

Motion

Task Type

E
n

co
d

in
g

R

es
u

lt
s

Fig. 1 Interaction with environment: human vs robots

n
oitc

A re
p

yc
neta

L

300

0

240

180

120

60

Autonomous
Driving

VLN Drone
Navigation

P
o

w
er

 C
o

n
su

m
p

ti
o
n

3

0

2.4

1.8

1.2

0.6

Autonomous
Driving

VLN Drone
Navigation

Action GenerationAction GenerationVisual PerceptionVisual Perception Language EncodingLanguage Encoding

Unit: ms Unit: kJ

Fig. 2 Latency and power consumption (10 min) measured on Jetson

Xavier (https:// www. nvidia. com/ en- us/ auton omous- machi nes/ embed

ded- syste ms/ jetson- agx- xavier/)

1 In the cases of VLN and drone navigation, the embodied AI agent

is given only one natural language instruction at the beginning of the

navigation process.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/

1040 X. Hou et al.

terms of latency (by 1.2–3.3× speedup), performance (by

+4% to +29%), and power consumption (−36% to −47%).

2 Background

2.1 Vision‑based mobile robotic systems

Mobile robotic systems increasingly use visual encoding in

applications such as autonomous driving, vision-and-lan-

guage navigation (VLN), and drone navigation. This tech-

nology is vital for interpreting road scenes in autonomous

driving (Shao et al. 2023; Zhang et al. 2021), integrating

visual perception with natural language in VLN (Hu et al.

2019), and enabling drones to navigate and avoid obstacles

in real time (Blukis et al. 2018). Such integration enhances

the cognitive abilities of mobile robots, boosting their auton-

omy in complex environments (Gu et al. 2022). In these

systems, environmental data from sensors and cameras are

processed using deep learning, particularly convolutional

neural networks (CNNs) (Wijmans et al. 2019b; Ye et al.

2021; Wahid et al. 2021; Anderson et al. 2018), for tasks

like object detection and semantic segmentation (Gu et al.

2022). The perception outcomes are fed into the action gen-

erator, where the robot formulates action strategies. There

are different options for the action generator. Most stud-

ies adopt Recurrent Neural Networks (RNN) (Duan et al.

2022; Wijmans et al. 2019b), such as Long Short-Term

Memory (LSTM) (Wijmans et al. 2019a; Wortsman et al.

2019; Wahid et al. 2021; Anderson et al. 2018) and Gated

Recurrent Unit (GRU) (Khandelwal et al. 2022; Ye et al.

2021; Das et al. 2018), or transformers (Shao et al. 2023;

Zhu et al. 2020; Fang et al. 2019). Recent works also pro-

pose to generate actions with diffusion-based methods (Ryu

et al. 2024; Huang et al. 2023). Nevertheless, despite dif-

ferent types of action generators, they generally rely on

the perception outputs from the visual encoders to make

decisions on the actions. Thus, improving the efficiency of

the visual encoding process is critical regardless what kind

of actions generators are used in the vision-based mobile

robotic systems. To meet the need for efficient visual encod-

ing, we propose Robye , drawing inspiration from the human

visual system. By incorporating motion-awareness, iconic

memory, and a dichotomous approach, Robye enhances the

efficiency and effectiveness of visual encoding in mobile

robotic applications.

2.2 Visual encoders in robotics

In vision-based robotics, the development of visual encod-

ers is becoming one of the pivotal studies at the intersec-

tion between computer vision and robotics (Gu et al. 2022).

While it is commonly accepted that the visual encoders in

robotics are original neural network models for computer

vision tasks such as classification (Radosavovic et al. 2023;

Khandelwal et al. 2022; Ryu et al. 2024; Huang et al. 2023)

and semantic segmentation (Wijmans et al. 2019a; Li et al.

2022; Yen-Chen et al. 2020), recent works are focusing on

escalating the training methods from supervised learning to

self-supervised learning (Wang et al. 2024; Pari et al. 2021)

such as contrastive learning (Khandelwal et al. 2022; Fung

et al. 2023) and masked autoencoder (Radosavovic et al.

2023; Majumdar et al. 2024). While these studies keep the

same neural architectures of the visual encoders as other

works, they substitute the traditional supervised learning

methods with self-supervised learning methods to train the

parameters in the encoders in the training stage. Compared

to the supervised trained encoders, the self-supervised

trained encoders guide the robots to accomplish tasks with

better performance (Khandelwal et al. 2022). Majumdar

et al. (2024) and Nair et al. (2022) also explore on whether

visual encoders trained by masked autoencoder are univer-

sal to different types of robotic tasks. It is important to note

that, as we focus on improving the efficiency of the visual

encoders in the inference stage, the changes in the training

methods do not affect the design of the proposed framework.

2.3 Video deep neural networks

Video Deep Neural Networks (DNNs) are designed to ana-

lyze sequences of frames (Jain et al. 2019; Kim et al. 2022;

Li et al. 2021; Rhee et al. 2022; Sun et al. 2022a), extending

beyond single-image inputs by creating model architectures

specifically tailored for video data (Awan and Shin 2021;

Lee et al. 2021; Rhee et al. 2022; Zhuang et al. 2020). These

models incorporate historical data from previous frames

into the current frame analysis through lateral connections,

bridging raw pixels (Kim et al. 2022; Petrovai and Nedevschi

2022; Wang et al. 2021; Woo et al. 2021; Xie et al. 2021; Ye

et al. 2022; Liu et al. 2019, 2022; Yang et al. 2022; Du et al.

2020) or DNN features (Chen et al. 2022; Li et al. 2021;

Rhee et al. 2022; Seong et al. 2021; Sun et al. 2022a; Zhou

et al. 2022; Zhuang et al. 2023) between frames. However,

such integration is resource-intensive (Kim et al. 2022; Sun

et al. 2022b; Zhuang et al. 2023; Chen et al. 2022; Rhee et al.

2022; Zhou et al. 2022). Furthermore, most video DNNs

deviate from the principles of single image-based DNNs

due to their specialized neural architectures, losing compat-

ibility (Awan and Shin 2021; Lee et al. 2021; Zhuang et al.

2020; Kim et al. 2022; Li et al. 2021; Rhee et al. 2022; Sun

et al. 2022a). While some pixel-based video DNNs comple-

ment image-based models, they are constrained to the encod-

ing type of 2D object detection (Liu et al. 2019, 2022; Yang

et al. 2022; Du et al. 2020). These models also encounter

considerable image processing challenges of identifying new

1041Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

objects and tracking, leading to significant overhead (Liu

et al. 2022; Yang et al. 2022).

Instead of relying solely on pixel information, we pro-

pose novel techniques that harness motion data from mobile

robots’ accelerometers and speed sensors, facilitating spa-

tial geometric projection to correlate content, including both

background and objects, across consecutive frames. These

methods surpass pixel-based video DNNs in speed and

sensitivity to new objects. Furthermore, we develop a com-

prehensive visual encoding framework tailored for mobile

robots. This framework is designed to be compatible with

single image-based DNNs and general to different encoding

types. This framework incorporates a dual-resolution DNN

processing approach alongside motion-conditioned encod-

ing, significantly cutting down computational demands while

enhancing the performance of tasks undertaken by mobile

robotics. These designs not only streamline data process-

ing but also boost the efficiency and effectiveness of robotic

encoding and interaction within dynamic environments.

3 Robye overview

We propose Robye , a visual semantic encoding framework

for mobile robotics, to enhance efficiency by mimicking

human vision. As shown in Fig. 3, the framework has two

workflows: low-resolution frame encoding (the ‘purple’

modules) and high-resolution focus encoding (the ‘yellow’

modules), with motion information and cached historical

result (iconic memory) to boost efficiency. Specifically, in

the frame encoding workflow, Robye aligns consecutive

frames’ background and objects using sensor-informed

geometric projection in the motion-based projection mod-

ule. The appearance-based matching module analyzes these

aligned contents to localize new objects. Robye encodes the

overlapping contents between consecutive frames by histori-

cal result propagation, and applies DNN-based visual encod-

ing only on the non-overlapping content and new objects. In

the focus encoding workflow, Robye localizes focusing areas

based on application requirements and adaptively adjusts

computational load on them conditioned by motion data.

Given the encoding result from Robye , an action generator

produces actions for mobile robotics.

4 Design of Robye

4.1 Low-resolution frame encoding

The low-resolution frame encoding in Robye emulates

human peripheral vision and keeps full-frame understand-

ing with low computational load. Specifically, it utilizes

an iconic memory mechanism to transfer visual encoding

result across frames through motion-based projection and

appearance-based matching. By aligning the overlapping

areas across frames, we propagate visual encoding result of

the matched parts across frames and only process unmatched

areas with DNN. Overall, by integrating motion-assisted

correlation, iconic memory, and dual-level encoding, this

workflow mirrors human vision efficiency to lower compu-

tational needs.

4.1.1 Motion-based projection

In the human visual system, motion plays a crucial role in

shaping perception. Humans effectively track motion, both

of themselves and objects in their surroundings, for predic-

tive estimations of upcoming visual stimuli. This capability

enables transferring information from past to future visual

processing and reduces the computational load in visual

encoding. In Robye , we mimic this process with a “motion-

based projection” module, which incorporates motion into

the visual encoding of robotic systems. To keep resource-

efficient, this module identifies overlapping areas in both

background and objects across frames, which are then

Fig. 3 Robye : a bionic visual

encoding framework for mobile

robotics

RGB Frame

Depth Frame

Motion Data

Motion-based

Projection

Motion-based

Projection

Appearance-

based Matching

Appearance-

based Matching

Focus
Localization

Historical Result
Propagation

DNN-based
Visual Encoder

Motion-Conditioned
Visual Encoder

Historical Result

Low-Resolution Frame Encoding

High-Resolution Focus Encoding

Historical Frame

+
Encoding

Result

1042 X. Hou et al.

analyzed for appearance features in the “appearance-based

matching” module.

As shown in Fig. 4, the motion-based projection is

divided into the localization for the background and for

objects. The background component, being static in the

world coordinate system, changes position between frames

due to the self movement. Conversely, object localization

accounts for both the self movement and object dynamics

within the environment. To localize object positions, we

can adopt prediction or tracking techniques to estimate their

temporal positions accurately. A plethora of options exists

for these predictive and tracking approaches. In our imple-

mentation, we employ a hybrid way. Initially, an Object-

oriented Fast Robust Binary (ORB) feature-based tracking

method (Mur-Artal and Tardós 2014)2 is used for newly

appearing objects over three frames, with their world posi-

tions stored to the iconic memory. Subsequently, we employ

a Kalman Filter (Welch et al. 1995) for predicting object

positions, utilizing historical data from the iconic memory.

Background projection: Fig. 5 shows our use of the pin-

hole camera model to estimate the overlapping background

area between consecutive frames. We record the self posi-

tion at times t and t − 1 as (xt, yt, zt) and (xt−1, yt−1, zt−1) , with

s representing the transition vector between these points.

Assuming that the z-axis is perpendicular to the camera’s

image plane, s is split into s
z
 (along the z-axis, affecting

zooming) and s
xy

 (on the xy-plane, causing parallel back-

ground shifts).

We calculate the effects of s
z
 and s

xy
 on the image plane

using the camera-background distance d, camera view

angles (�
x
, �

y
) , and focal length f, obtained from intrinsic

parameters. For estimating d, we consider the direct camera-

wall distance in indoor settings, and average depth values

from the background in outdoor scenes, using frame encod-

ing results from the previous frame at t − 1 . We approximate

d
t
 as dt−1

± |sz| , where “−” and “ + ” denote moving towards

or away from the background, respectively. This approxi-

mation, as shown in Fig. 5, helps estimate the overlapping

background area effectively.

With the orthogonal zooming vector s
z
 , the four corners of

the image plane at t − 1 , { (0, 0) , (0, ly) , (lx, ly) , (lx, 0)},3 is

z o o m e d t o { (−Δz
x
,−Δz

y
) , (−Δzx, ly + Δzy) ,

(lx + Δzx, ly + Δzy) , (lx + Δzx,−Δzy) } , w h e r e

Δzx = tan(
�x

2
) ⋅ (

dt−1

dt

− 1) ⋅ f , Δzy = tan(
�y

2
) ⋅ (

dt−1

dt

− 1) ⋅ f ,

lx = 2f ⋅ tan(
�x

2
) , and ly = 2f ⋅ tan(

�y

2
) . With the parallel moving

vector s
xy

 , each 2D point (u, v) on the image plane at t − 1 is

shifted to (u − Δs
x
, v − Δs

y
) , where Δsx =

f

dt

⋅ |sxy|x and

Δsy =
f

dt

⋅ |sxy|y . The | ⋅ |
i
 represents the signed projection of a

vector on the i-axis.

By combining the effects from the orthogonal zoom-

ing vector and the parallel moving vector, we obtain the

mapping positions at t of the four image corners at t − 1 as

{ (−Δz
x
− Δs

x
,−Δz

y
− Δs

y
) , (−Δzx − Δsx, ly + Δzy − Δsy) ,

(lx + Δzx − Δsx, ly + Δzy − Δsy) ,

(lx + Δzx − Δsx,−Δzy − Δsy) }. With the four mapping cor-

ners of the image plane from t − 1 to t, we obtain the inter-

section of union (IoU) between the two frames in frame t as:

where the first two elements represent the xy-values of the

bottom-left corner of the IoU in frame t and the last two

elements represent the xy-values of the top-right corner. By

(1)
It = {max(0,−Δzx − Δsx), max(0,−Δzy − Δsy),

min(lx, lx + Δzx − Δsx), min(ly, ly + Δzy − Δsy)}

Background Projection

Position

Angle
of View

Focal
Length

Translation

Mapping

World
Frame

Mapping

World
Frame

ResizingResizing

Parallel Moving

t-1t-1

tt

Parallel Moving

t-1

t

Zooming

t-1t-1

tt

t-1

t

Zooming

t-1

t

Translation DecompositionTranslation Decomposition

P
o

si
ti

o
n

 P
re

d
ic

to
r

/
T

ra
ck

in
g

P
o

si
ti

o
n

 P
re

d
ic

to
r

/
T

ra
ck

in
g

Iconic
Memory

stcej
b

O lacir
otsi

H
’

P
o

si
ti

o
n

s

Object Projection

Frame t-1:

O
b

je
ct

-1
O

b
je

ct
-2

...

Frame t:

t-1

t

Fig. 4 Motion-based projection

Self Position at t-1

Self Position at t

Self Translation
from t-1 to t

Image Plane at t

Image
Plane at t-1

World
Plane

f

f

Fig. 5 Background projection

2 The ORB feature-based tracking method is applied to 2D frames

and we map it to the world position based on the robot’s self posi-

tions.

3 The original point is bottom-left corner and the indexing is clock-

wise.

1043Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

mapping I
t
 to the image plane at t − 1 , we obtain the IoU

between the two frames in frame t − 1 as:

We visualize the procedure of background’s projection

between consecutive frames in Fig. 4.

Object projection: Objects in frames experience spatial

changes due to the self movement and their own motion. We

track or predict their world positions, denoted as (xt
j
, yt

j
, zt

j
)

for object j at time t. Combined with the robot’s position

(xt, yt, zt) and camera focal length f, we project the object’s

position in frame t as (
f

(zt
j
−zt)

⋅ xt
j
,

f

(zt
j
−zt)

⋅ yt
j
) , assuming the

z-axis aligns with the camera’s facing direction. We deter-

mine an object’s area in frame t using the previous frame’s

visual encoding result, taking either the bounding box from

object detection or the minimum box covering the semantic

segmentation mask at t − 1 , mapping 3D bounding boxes to

2D planes for 3D detection. In this way, we obtain the size

of the object j at t − 1 , denoted as (Xt−1

j
, Y t−1

j
) . We scale the

size by the distance change from t to t − 1 , i.e.,

Xt
j
= dt

j
∕dt−1

j
⋅ Xt−1

j
 and Y t

j
= dt

j
∕dt−1

j
⋅ Y t−1

j
 , where dt

j
 and dt−1

j

are the distance between the robot and the object j at t and

t − 1 , respectively. We take the (Xt
j
, Y t

j
) bounding box center-

ing at (
f

(zt
j
−zt)

⋅ xt
j
,

f

(zt
j
−zt)

⋅ yt
j
) as the memonic part of object j

in frame t. We visualize the procedure of objects’ projection

between consecutive frames in Fig. 4.

It is important to note that the motion-based projection in

Robye are not designed for exact overlapping region identi-

fication between frames. Instead, we aim to cost-effectively

identify potential overlapping areas considering self-motion

and object motion patterns. These candidate overlapping

parts are then further examined by the appearance-based

matching module to determine if they require DNN-based

visual encoding.

4.1.2 Appearance-based matching

The appearance-based matching module receives as input

the potential overlapping parts identified by the motion-

based projection module. As shown in Fig. 6, we design

individual comparative analysis for background and object

matching, respectively.

Background matching: For background matching,

we scale and align the background part from the previous

frame, Xt−1

B
 , with the motion-based overlapping area Xt

B
 in

the current frame, as depicted in Fig. 6’s “Grid Background

Matching”. We divide both Xt−1

B
 and Xt

B
 into an N × M grid,

(2)

It−1 = dt∕dt−1 ⋅ {max(0,−Δzx − Δsx) + Δsx,

max(0,−Δzy − Δsy) + Δsy,

min(lx, lx + Δzx − Δsx) + Δsx,

min(ly, ly + Δzy − Δsy) + Δsy}

calculating element-wise differences between correspond-

ing grid cells. A predefined threshold on this difference

determines a match; for example, non-matching cells are

highlighted in blue in Fig. 6. When computing average dif-

ferences, (potential) object parts are nullified by setting their

differences to zero.

Object matching: For object matching, we use Singu-

lar Value Decomposition (SVD) for assessing object cor-

respondence between time steps t − 1 and t. Our empirical

evaluations suggest that SVD yields superior performance

in measuring object similarity compared to element-wise

difference with trivial computational overhead. We represent

object j at time t − 1 as Xt−1

j
 and at time t as Xt

j
 , decomposing

them into Ut − 1Σt − 1V
T

t−1
 and U

t
Σ

t
V

T

t
 . The singular values

in Σ
∗
 reflect the importance of basis vectors in representing

X
t−1

j
 and Xt

j
 . We calculate the Frobenius norm4 of the differ-

ence between Σt − 1 and Σt − 1 , with a smaller value indicat-

ing higher similarity. We set a threshold to decide whether

the objects of t − 1 and t match.

4.1.3 Historical result propagation

For the matched regions within the background and objects,

we derive their visual encoding result by employing a process

of translation and scaling, which is executed in accordance

with the motion-based projection module. This procedure

involves the transformation of the relevant result from the

previous frame to align with the current frame’s context,

which enables the direct generation of visual encoding result.

Object Matching

Frame t-1:Frame t-1:

Frame t:Frame t:

Frame t-1:Frame t-1:

Frame t:Frame t:

Frame t:Frame t:

Frame t-1:Frame t-1:
Motion-based Overlapping

Frame t:

Frame t-1:
Motion-based Overlapping Grid Background Matching

Non-overlapping Areas

Not overlapped background

Not matched object

Not matched background

Fig. 6 Appearance-based matching

4 The Frobenius norm is defined as the square root of the sum of

squares of all singular values within Σ
∗
.

1044 X. Hou et al.

4.1.4 DNN-based visual encoder

Non-overlapping areas in Robye fall into three types: (1)

areas not projected by the motion-based projection module,

(2) background parts that do not match in the appearance-

based matching module, and (3) object parts that also remain

unmatched in the appearance-based matching module. Fig-

ure 6 visualizes examples of non-overlapping areas in blue.

Notably, new objects appearing in each frame are effectively

captured as non-overlapping areas through our grid back-

ground matching method. For these non-overlapping areas,

Robye utilizes a DNN to obtain visual encoding results. As a

general framework for robotic visual encoding, Robye allows

for the integration of various DNN within its DNN-based

visual encoder.

Our low-resolution frame encoding workflow has two

distinct sources for the final results: (1) Overlapping part

results from the historical result propagation module, and

(2) Non-overlapping part results via the DNN-based visual

encoder module. The complete encoding result for a frame

comes from merging these two. Since there is no overlap

between the parts, their combination is based on their spatial

positions.

4.2 High-resolution focus encoding

The focus visual encoding workflow in Robye involves two

steps. First, it uses a cost-effective model to localize focus-

ing regions with bounding boxes. Second, the workflow

adaptively adjusts computational load for DNN-based vis-

ual encoding based on motion change magnitude, to reflect

how position changes affect feature variation over time. As

motion changes increase, the computational cost rises, while

the influence of historical features decreases.

4.2.1 Focus localization

In mobile robotics, such as autonomous driving, under-

standing the spatial relationships between the robot, nearby

objects, and the background is key to identifying focusing

regions. Objects closer to an autonomous vehicle are more

crucial for immediate decisions, while distant objects can

still be significant in vision and language navigation. Con-

sequently, focus localization is split into two types: distance-

relevant, focusing on proximate objects, and distance-irrel-

evant. Figure 7 demonstrates this, categorizing vehicles and

pedestrians as distance-relevant and traffic signals and signs

as distance-irrelevant.

In mobile robotics, human experts play an important role

in creating ground-truth annotations for training datasets,

especially for tasks resembling human activities. We involve

human experts to define ground-truth focusing regions for

training our focus localization model. However, unlike

labor-intensive dataset labeling, we only require experts

to identify object categories for focusing regions and set

distance thresholds. Using an object detection model, we

automate the annotation of ground-truth bounding boxes in

the dataset, by omitting semantic class labels and retain-

ing only the coordinates. This process yields two sets of

ground-truth bounding boxes, one for each localization type.

These bounding boxes, termed “binary masks,” lack seman-

tic labels, dividing image content into focusing regions and

the rest.

To design the focusing region localization model, we

modify the output layer of an object detection model, by

removing neurons for semantic labels and keeping those

for bounding box coordinates. The model is trained using

a bounding box regression loss function, expressed as

L = (b1 − b1,gt)
2 + (b2 − b2,gt)

2 + (b3 − b3,gt)
2 + (b4 − b4,gt)

2 , where

b1, b2, b3, b4 denote the four coordinate values defining the

bounding box, and b
∗,gt represents their corresponding

ground truth counterparts. The removal of semantic recog-

nition allows for model compression with minimal IoU loss.

For example, we compress the Tiny-YOLO model by about

63.7% in operations, with only a minor IoU reduction of less

than 7.5% . This demonstrates the efficiency of our binary-

masking focus localization model.

4.2.2 Motion-conditioned visual encoder

Mirroring the human visual system’s foveation acuity, we feed

high-resolution focusing regions into our motion-conditioned

visual encoder module. Using motion data from the motion-

based projection module, we integrate historical features of

focusing regions into the encoding process. This integration

adapts to motion change magnitudes in the environment, as

shown in Fig. 8. If a focusing region includes an object from

the previous frame, we use its historical features. These fea-

tures, termed “historical features” and denoted by X
p
 , are

Depth FrameDepth FrameDepth Frame

RGB FrameRGB FrameRGB Frame

Nearby ContentsNearby ContentsNearby Contents Depth-
Relevant Focuses

Depth-
Relevant Focuses

Depth-
Irrelevant Focuses

Depth-
Irrelevant Focuses

All FocusesAll Focuses

Fig. 7 A focus localization example

1045Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

directly accessible based on the motion-based projection and

appearance-based matching modules.

In Robye , we offer the flexibility to employ any DNN model

within the motion-conditioned visual encoder module. To cur-

tail computational overhead, we employ compression tech-

niques (He et al. 2017a) at the first K layers of the DNN model,

where K is a hyper-parameter. The degree of compression is

governed by the compression ratio c, evenly ranging from

c
0
(> 0) to 1 with C levels. C is a hyper-parameter that defines

the number of optional compression ratios. For example, the

adjustment of the number of channels in each convolutional

layer of the K layers of the DNN model follows the formula

⌈c ⋅ D⌉ , where D is the original number of channels in the

layer. The adaptation of the compression ratio c is contingent

upon the magnitude of observed motion changes, referred to

as the “motion-conditioned compression ratio”. Specifically,

we select the compression ratio based on a motion index M

defined as:

where mt is the vector from the self-position (xt, yt, zt) to the

focusing object’s position (xt
j
, yt

j
, zt

j
) at time t, mt−1 is the vec-

tor at time t − 1 , | ⋅ |
i
 represents the signed projection of a

vector on the i-axis, | ⋅ | represents the length of the vector,

and ‖ ⋅ ‖ represents the absolute value. The term
‖
‖
‖
‖

|mt|x

|mt|y
−

|mt−1|x

|mt−1|y

‖
‖
‖
‖
 indicates alterations in the view angle of the

self-robot in relation to the focusing object from t − 1 to t,

while the term ‖�mt� − �mt−1�‖ characterizes changes in the

viewing distance between the self-robot and the focusing

object from t − 1 to t. The compression ratio is one of the C

compression levels from c
0
 to 1 that is nearest to

c0 + max{�1 ⋅ M, 1 − c0}:

(3)M =

�
�
�
�
�

�mt�x

�mt�y
−

�mt−1�x

�mt−1�y

�
�
�
�
�

⋅ ‖�mt� − �mt−1�‖

(4)c = arg min
d

{c0 + max{�1 ⋅ M, 1 − c0} − c
d
}

d∈[0,C],

where �
1
 is a hyper-parameter to control the effect of motion

on the compression ratio c. Our empirical observations show

that both terms in M lead to variations in feature representa-

tions. Thus, they generate an augmented computational cost

(higher c
0
), in cases where these changes are significant in

their magnitudes.

In the DNN model, we insert an feature integration layer

between its original K-th layer and (K + 1)-th layer, as shown

in Fig. 8. The output of the integration layer X
I
 equals to:

where �
2
 is the impact factor to control the effect of

motion on the integration of the historical feature X
p
 , and

X
K

 denotes the output from the first K layers in the DNN

model. It is noteworthy that X
K

 is affected by the motion-

conditioned compression ratio c in Eq. (4). Although a

direct integration of X
p
 into X

K
 by setting F(Xp, XK) = Xp

is feasible, our empirical observations reveal its subopti-

mal performance. Instead, we employ a cross-attention

layer to construct F(Xp, XK) , a strategy that demonstrates

enhanced performance gains without incurring substantial

computational overhead. It is worth emphasizing that we

have aligned the dimensions between X
p
 and X

K
 by bicubic

interpolation. In F(Xp, XK) , XK
 is the “Query” for informa-

tion retrieval, and X
p
 acts as both “Key” and “Value” for

reference and aggregation. The output merges X
p
 and X

K

features with contextually relevant elements from X
K

.

We train the cross-attention layer parameters and fine-

tune the compressed parameters of the DNN’s first K lay-

ers end-to-end with the same loss function as the original

visual encoding task. Parameters beyond the K layers are

frozen, with loss gradients computed only for the first K

layers and cross-attention layer during backpropagation. We

also offer parameter sharing across different compression

levels (Fang et al. 2018). Training data is divided into C

groups by motion-conditioned compression ratios, and the

first K layers’ parameters are incrementally trained from c
0
 to

1 across C steps. Each step freezes parameters from previous

iterations and fine-tunes current step parameters, to keep the

total parameter count in the first K layers unchanged. Train-

ing data is prepared from consecutive frames of the original

dataset, with object detection localizing focusing regions.

Historical feature extraction from these regions in low-res-

olution preceding frames is derived directly from features in

the low-resolution frame encoding workflow.

(5)c
d
= c

0
+

d

C
⋅ (1 − c

0
).

(6)XI = XK + �2 ⋅
1

M
F(Xp, XK)

Historical Feature of the Focus

Impact FactorCompression Ratio

Focus

Historical Feature

Cross-frame OverlappingCross-frame Overlapping

Focus Encoding

Pedestrian-1
Pedestrian-2

Road

Sidewalk
House
Bushes

Fig. 8 Motion-conditioned visual encoder

1046 X. Hou et al.

5 Implementation

Applications: We evaluate Robye on three popular mobile

robotic applications: (1) Autonomous Driving: We test on

CARLA public leaderboard (https:// leade rboard. carla. org/).

We also build the autonomous driving on a real vehicle.

The inputs of visual encoding include three cameras facing

front, left, and right and a LiDAR sensor. The original RGB

resolution is 800 × 600 . (2) Vision-and-Language Naviga-

tion (VLN): We test on R2R dataset (Anderson et al. 2018).

The original RGB resolution is 640 × 480 . (3) Path Planning

of Drone: We test on LANI (Misra et al. 2018). The original

RGB resolution is 256 × 144 . We also build a drone with

path planning for real-world test.

Types of visual encoding: We include six types of visual

encoding: (1) 2D Object Detection: We evaluate on YOLO-

v5, EfficientDet (Tan et al. 2020), and Faster-RCNN (Gir-

shick 2015). (2) 3D Object Detection: We evaluate on Frus-

tumPointNet (Qi et al. 2018), Mono3D (Chen et al. 2016),

and MLCVNet (Xie et al. 2020). (3) 2D Instance Segmenta-

tion: We evaluate on Mask-RCNN (He et al. 2017b), SOLO-

v2 (Wang et al. 2020), and YOLACT (Bolya et al. 2019). (4)

3D Instance Segmentation: We evaluate on Mask-RCNN

3D (He et al. 2017b), PointNet-Seg (Qi et al. 2017), and

3D-BoNet (Yang et al. 2019). (5) Semantic Segmentation:

We evaluate on FCN (Long et al. 2015), SegNet (Badri-

narayanan et al. 2017), and DeepLab-v3 (Chen et al. 2019).

(6) Backbone5: We evaluate on ResNet-101 (He et al. 2016),

ResNet-50 (He et al. 2016), and VGG (Simonyan and Zis-

serman 2014). It is important to note that Robye applies

to both 2D image data and 3D sensing data (e.g., LiDAR

data). In the motion-based projection module, the overlap-

ping parts of 3D sensing data in background and objects

can be directly obtained based on self translation. In the

high-resolution focus encoding workflow, we map the focus-

ing regions on the 2D image from the focus localization

module to the 3D sensing data based on the camera’s angle

of view and focal length. We accelerate all the models with

TensorRT (NVIDIA TensorRT 2024).

Action generation model: The inputs into the action gen-

eration model include both frame and focus encoding results.

LSTM directly takes the output vector(s) from the encoding

workflows as the input. The LSTM is with two hidden lay-

ers and each layer has 512 hidden units. We have 32 action

embedding. For VLN and drone path planning, we have 256

word embedding. We train the action generation models fol-

lowing their typical training scheme (Anderson et al. 2018).

Embedded edge/mobile devices: We evaluate on four

embedded GPU devices: NVIDIA Jetson Nano, Jetson TX2,

Jetson Xavier, and Jetson Orin. We also evaluate on two

mobile devices: Samsung Galaxy S22 (https:// www. samsu

ng. com/ us/ smart phones/ galaxy- s22/) and Google Pixel

7 (https:// store. google. com/ produ ct/ pixel_7? hl= en- US).

Edge-assist setup: We evaluate with two options on the

device: NVIDIA Jetson Nano and Google Pixel 7. The edge

server is equipped with NVIDIA 1080 Ti. We evaluate with

two options on the wireless network: WiFi 5 and 5 G. In this

setup, we offload the DNN-based visual encoding modules

to the edge server and keep the other modules on the device.

Metrics: For object detection and instance segmentation,

the metric is mAP. For semantic segmentation, the metric is

mIoU. For autonomous driving, the metric is driving score,

which is the product of route completion ratio and infrac-

tion score (Shao et al. 2023). For vision-and-language navi-

gation, the metric is success rate weighted by path length

(SPL) (Anderson et al. 2018). For drone navigation, the

metric is success rate (Blukis et al. 2018).

Low-resolution settings: For autonomous driving, the

resolution is scaled down to 240 × 240 . For VLN, the resolu-

tion is scaled down to 224 × 224 . For drone navigation, the

resolution is scaled down to 72 × 72.

Settings in appearance-based matching: We set

N = M = 4 for the grid background matching. We set the

difference threshold as 17 for background matching and as

2.4 for object matching.

Settings in motion-conditioned visual encoding: For

autonomous driving, the focusing regions are cropped

from the 520 × 520 frame resolution. For VLN, the focus-

ing regions are cropped from the 400 × 400 frame resolu-

tion. For drone navigation, the focusing regions are cropped

from the 144 × 144 frame resolution. For each model, we

compress the first 70% layers into 5 compression levels and

c
0
= 0.3 . We set �

1
= 0.4 and �

2
= 0.5.

Baselines: We selected two leading works in efficient

object detection to serve as baselines against our low-res-

olution frame encoding workflow inside Robye . The first

baseline, FlexPatch (Yang et al. 2022), focuses on on-device

object detection. However, unlike Robye , it lacks integration

of physical motion awareness and relies on a combination of

image processing techniques and a decision tree classifier for

object localization across frames. While FlexPatch employs

a cropping strategy to reduce detection latency, it incurs

large overhead for object localization and its edge-intensity-

based object discovery method falls short in robustness.

The second baseline, AdaMask (Liu et al. 2022), focuses

on object detection offloading but does not incorporate new

object discovery, opting instead for periodic full-frame off-

loading, which results in diminished accuracy. Addition-

ally, lacking geometric projection informed by physical

motion, AdaMask arbitrarily increases the crop size based on

5 For memonic part localization, we add a lightweight 2D object

localization head with three additional layers upon the output from

the backbone to generate proposals of objects’ locations without

semantic recognition.

https://leaderboard.carla.org/
https://www.samsung.com/us/smartphones/galaxy-s22/
https://www.samsung.com/us/smartphones/galaxy-s22/
https://store.google.com/product/pixel_7?hl=en-US

1047Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

tracking distance, leading to further latency increases. For

autonomous driving and VLN, we set the input resolution to

320 × 320 for all baselines. For drone navigation scenarios,

the resolution is 100 × 100.

6 Evaluation

6.1 Performance on autonomous driving

The performance of autonomous driving on the CARLA

public leaderboard (https:// leade rboard. carla. org/) is

shown in Fig. 9 for 2D visual encoding models and Fig. 10

for 3D models. Note that in Fig. 10i–k, the visual encoder

employs a ResNet-18 (Shao et al. 2023) to extract LiDAR

Bird’s Eye View (BEV) features in addition to 2D visual

features. Thus, we categorize it under 3D visual encoding

models.

2D Visual encoding: As shown in Fig. 9, we measure

the average latency per action decision, frame accuracy,

and driving score with three types of 2D visual encod-

ing on four mobile and embedded devices. For 2D object

detection, we present results using YOLO-v5, EfficientDet,

and Faster-RCNN in Fig. 9a–g. Figure 9h–n show the per-

formance with 2D instance segmentation models including

Mask-RCNN, SOLO-v2, and YOLACT. We evaluate the

performance with semantic segmentation, utilizing models

of FCN, SegNet, and DeepLab, as shown in Fig. 9o–u. It

is important to note that for each action, we process three

RGB frames from the front, left, and right camera angles

through the visual encoding model.

Robye enhances driving scores by +3% to +11% and

achieves 1.5 to 2.6× faster latency than the model-only

baseline, due to its motion-aware cross-frame map-

ping, dualistic frame and focus encoding workflows, and

motion-conditioned focus encoding. The reasons for Robye

’s superior performance are:

(1) Motion-based projection: Robye leverages motion-

based cross-frame content correlation for efficient spatial

projection, processing only non-overlapping areas with

DNN. As the non-overlapping parts are often a small por-

tion of a frame, the computing latency of the non-overlap-

ping encoding is significantly lower than processing the

whole frame, as shown in Fig. 9.

(2) Dual-level encoding: Different from the single-

level 320 × 320 resolution encoding of the baseline

model, Robye adopts a two-tier approach: low-resolution

(240 × 240) holistic and high-resolution focus encoding

(crops from 520 × 520). While the overall frame accuracy

of Robye may be lower than the baseline, its focus accu-

racy excels due to higher resolution (Fig. 9g, n, u). This

dual encoding finally contributes to Robye ’s improved

driving scores.

(3) Motion-conditioned focus encoding: The focusing

regions in Robye , despite being high-resolution, are small

crops from the entire frame, making the input size rela-

tively small. For example, a 75 × 75 focusing region from

a 520 × 520 frame is just 5.5% of a 320 × 320 frame’s size.

Moreover, Robye ’s DNN computational cost in the focus

encoding is dynamically adjusted based on motion change

magnitude, which further enhances efficiency.

Robye surpasses the FlexPatch baseline with a +16%

to +25% improvement in driving scores and a 1.3 to 2.2×

speedup in latency. This is achieved through its Dual-Level

Encoding and Motion-Conditioned Focus Encoding as ana-

lyzed above. Additionally, our Motion-based Projection

also contributes to the higher performance of Robye over

FlexPatch. Specifically, as FlexPatch uses image process-

ing methods including edge intensity, optical flow, and a

decision tree classifier trained on image analysis, together

for tracking objects across frames, it suffers from high

latency overhead and limited new object detection capa-

bilities. It also lacks application to semantic segmentation

(Fig. 9o–u) as FlexPatch is designed for object detection in

camera surveillance and intrinsically ignores background.

In contrast, Robye employs geometric relationships and

motion data for cost-effective cross-frame content correla-

tion, applying image-based comparisons only to geometri-

cally correlated areas. This method detects new objects

and backgrounds using comparisons of element-wise dif-

ferences and SVD. Robye ’s use of a 240 × 240 resolution

for frame encoding, compared to FlexPatch’s 320 × 320 ,

partially contributes to its latency advantage. However,

FlexPatch’s limitations in new object discovery and track-

ing accuracy result in lower overall performance, even

with the higher input resolution. When using the same

resolution, Robye still outperforms FlexPatch with a 1.2 to

1.7× speedup and an even greater driving score improve-

ment of +18% to +29%.

3D visual encoding: As shown in Fig. 10, we measure

the average latency per action decision, encoding accuracy,

and driving score with three types of 3D visual encoding

on two mobile/embedded devices and two edge-assisted

setups. For 3D object detection, we present results using

FrustumPointNet, Mono3D, and MLCVNet in Fig. 10a–d.

Figure 10e–h show the performance with 3D instance seg-

mentation models including Mask-RCNN 3D, PointNet-Seg,

and 3D-BoNet. We evaluate the performance with 2D/3D

backbone, utilizing models of ResNet-101, ResNet-50, and

VGG, as shown in Fig. 10i–l. These 3D encoding models

use inputs in formats like RGB, depth, or point cloud. For

RGB and/or depth based models, we have inputs from three

cameras, while we have a single environmental point cloud

for point cloud based models.

On mobile/embedded devices, with Motion-based

Cross-Frame Projection, Dual-Level Encoding, and

https://leaderboard.carla.org/

1048 X. Hou et al.

YOLO
-v5

Efficient
Det

Faster-
RCNN

250

0

200

150

100

50

D
e
v
ic
e
:

Je
ts

o
n
 N

an
o

(a) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

250

0

200

150

100

50

D
e
v
ic
e
:

Je
ts

o
n
 N

an
o

(a) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

0

64

48

32

16

D
e
v
ic
e
:

Je
ts

o
n

 X
av

ie
r

(c) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

0

64

48

32

16

D
e
v
ic
e
:

Je
ts

o
n

 X
av

ie
r

(c) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

150

0

120

90

60

30

D
e
v
ic
e
:

G
o
o
g
le

 P
ix

el
 7

(e) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

150

0

120

90

60

30

D
e
v
ic
e
:

G
o
o
g
le

 P
ix

el
 7

(e) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

0

64

48

32

16

D
e
v
ic
e
:

g

n
us

ma
S

S
2
2

(f) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

0

64

48

32

16

D
e
v
ic
e
:

g

n
us

ma
S

S
2
2

(f) Latency per Action

Unit: ms

er
oc

S
g

ni
vir

D

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

40

72

64

56

48

m
A

P

60

35

55

50

45

40

(g) Driving Score and Accuracy

er
oc

S
g

ni
vir

D

YOLO
-v5

Efficient
Det

Faster-
RCNN

80

40

72

64

56

48

m
A

P

60

35

55

50

45

40

(g) Driving Score and Accuracy

700

0

560

420

280

140

FCN SegNet Deep
Lab

(o) Latency per Action

Unit: ms

700

0

560

420

280

140

FCN SegNet Deep
Lab

(o) Latency per Action

Unit: ms

300

0

240

180

120

60

FCN SegNet Deep
Lab

(q) Latency per Action

Unit: ms

300

0

240

180

120

60

FCN SegNet Deep
Lab

(q) Latency per Action

Unit: ms

600

0

480

360

240

120

FCN SegNet Deep
Lab

(s) Latency per Action

Unit: ms

600

0

480

360

240

120

FCN SegNet Deep
Lab

(s) Latency per Action

Unit: ms

300

0

240

180

120

60

FCN SegNet Deep
Lab

(t) Latency per Action

Unit: ms

300

0

240

180

120

60

FCN SegNet Deep
Lab

(t) Latency per Action

Unit: ms

80

40

72

64

56

48

m
Io

U

90

70

86

82

78

74

FCN SegNet Deep
Lab

(u) Driving Score and Accuracy

80

40

72

64

56

48

m
Io

U

90

70

86

82

78

74

FCN SegNet Deep
Lab

(u) Driving Score and Accuracy

80

40

72

64

56

48

60

35

55

50

45

40

Mask-
RCNN

SOLO
-v2

YOL
ACT

(n) Driving Score and Accuracy

80

40

72

64

56

48

60

35

55

50

45

40

Mask-
RCNN

SOLO
-v2

YOL
ACT

(n) Driving Score and Accuracy

120

0

96

72

48

24

Mask-
RCNN

SOLO
-v2

YOL
ACT

(m) Latency per Action

Unit: ms120

0

96

72

48

24

Mask-
RCNN

SOLO
-v2

YOL
ACT

(m) Latency per Action

Unit: ms

250

0

200

150

100

50

Mask-
RCNN

SOLO
-v2

YOL
ACT

(l) Latency per Action

Unit: ms250

0

200

150

100

50

Mask-
RCNN

SOLO
-v2

YOL
ACT

(l) Latency per Action

Unit: ms

120

0

96

72

48

24

Mask-
RCNN

SOLO
-v2

YOL
ACT

(j) Latency per Action

Unit: ms120

0

96

72

48

24

Mask-
RCNN

SOLO
-v2

YOL
ACT

(j) Latency per Action

Unit: ms

350

0

280

210

140

70

Mask-
RCNN

SOLO
-v2

YOL
ACT

(h) Latency per Action

Unit: ms350

0

280

210

140

70

Mask-
RCNN

SOLO
-v2

YOL
ACT

(h) Latency per Action

Unit: ms

2D Object Detection 2D Instance Segmentation 2D Semantic Segmentation

Robeye:

FlexPatch:

Model Only:

Action GenerationAction Generation

Driving ScoreDriving Score

projection & matchprojection & match

DNN encoding DNN encoding

focus encoding focus encoding

frame accuracyframe accuracy

+focus accuracy+focus accuracy

frame encoding frame encoding

patch generationpatch generation

patch encoding patch encoding

frame accuracyframe accuracy

Robeye:

FlexPatch:

Model Only:

Action Generation

Driving Score

projection & match

DNN encoding

focus encoding

frame accuracy

+focus accuracy

frame encoding

patch generation

patch encoding

frame accuracy

YOLO
-v5

Efficient
Det

Faster-
RCNN

200

0

160

120

80

40:e
ci

ve
D

2

X
T

n
osteJ

(b) Latency per Action

Unit: ms

650

0

520

390

260

130

FCN SegNet Deep
Lab

(p) Latency per Action

Unit: ms

270

0

216

162

108

54

Mask-
RCNN

SOLO
-v2

YOL
ACT

(i) Latency per Action

Unit: ms

YOLO
-v5

Efficient
Det

Faster-
RCNN

30

0

24

18

12

6:e
ci

ve
D

nir

O
n

osteJ

(d) Latency per Action

Unit: ms

100

0

80

60

40

20

FCN SegNet Deep
Lab

(r) Latency per Action

Unit: ms

45

0

36

27

18

9

Mask-
RCNN

SOLO
-v2

YOL
ACT

(k) Latency per Action

Unit: ms

Fig. 9 Performance of autonomous driving with 2D visual encoding

1049Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

Motion-Conditioned Focus Encoding, Robye achieves nota-

ble performance enhancements. Compared to the model-

only baseline, Robye improves driving scores by +3% to

+10% and reduces latency by 2 to 3.3× . Compared to the

FlexPatch baseline, it boosts driving scores by +12% to

+26% and achieves 1.3 to 1.9× faster latency. The reasons

for Robye ’s superior performance are the same as those in

2D visual encoding.

In edge-assisted setups, with Motion-based Cross-Frame

Projection, Dual-Level Encoding, and Motion-Conditioned

Focus Encoding, Robye outperforms baselines. Specifically,

it achieves 1.6–2.8× faster latency compared to the model-

only baseline and improves driving scores by +17% to +36%

while also achieving 1.4–1.6× faster latency than the AdaM-

ask baseline. AdaMask’s limitations include: (1) Lack of

New Object Localization Capability: AdaMask periodically

offloads full-frame data for encoding, increasing latency.

This approach often misses new objects, impacting accu-

racy due to its periodic nature. (2) Cropping Area Expan-

sion: AdaMask expands cropping areas based on the position

difference from the last detected result on the image plane,

which often including more background content. These

larger, unnecessary cropped areas further increase trans-

mission and computing latency. These drawbacks explain

why Robye , with its motion-based cross-Frame projection,

surpasses AdaMask in performance on edge-assisted setups.

6.2 Performance on VLN and drone navigation

In our evaluation of Robye on Vision-and-Language Naviga-

tion (VLN) and drone navigation (Figs. 11 and 12), we test

3D object detection and semantic segmentation models on

a Jetson Xavier embedded GPU and an edge-assisted setup

with Google Pixel 7 and 1080 Ti. For 3D object detection,

Robye surpasses the model-only baseline with a 1.4–2.7×

latency speedup and a +3% to +6% performance increase. It

improves latency by 1.5 to 1.9× speedup and performance

by +6% to +9% over the AdaMask baseline, and shows a

1.7 to 2.2× latency speedup and +7% to +8% performance

enhancement compared to the FlexPatch baseline. With

80

40

72

64

56

48

ReNet-
101

ResNet-
50

VGG

(l) Driving Score

80

40

72

64

56

48

ReNet-
101

ResNet-
50

VGG

(l) Driving Score

er
oc

S
g

ni
vir

D

80

40

72

64

56

48

3
D

 Io
U

60

45

57

54

51

48

Frustum

PointNet
Mono3D MLCV

Net

(d) Driving Score and Accuracy

400

0

320

240

160

80

Frustum
PointNet

Mono3D MLCV
Net

600

0

480

360

240

120

Mask-

RCNN 3D

PointNet

-Seg
3D-

BoNet

200

0

160

120

80

40

ReNet-
101

ResNet-
50

VGG

D
e
v
ic
e
:

)
G

5(
i

T
0

8
0

1
+

7
le

xi
P

(b) Latency per Action (f) Latency per Action (j) Latency per Action

Unit: ms Unit: ms Unit: ms

1.0

0

0.8

0.6

0.4

0.2

Frustum
PointNet

Mono3D MLCV
Net

2.0

0

1.6

1.2

0.8

0.4

Mask-
RCNN 3D

PointNet
-Seg

3D-
BoNet

140

0

112

84

56

28

ReNet-
101

ResNet-
50

VGG

:
e
ci
v
e
D

n
osteJ

rei
va

X

(c) Latency per Action (g) Latency per Action (k) Latency per Action

Unit: s Unit: s Unit: ms

(a) Latency per Action

350

0

280

210

140

70

Frustum
PointNet

Mono3D MLCV
Net

500

0

400

300

200

100

Mask-
RCNN 3D

PointNet
-Seg

3D-
BoNet

150

0

120

90

60

30

ReNet-

101
ResNet-

50
VGG

D
ev

ic
e:

)
5

i
Fi

W(
i

T
0

8
0

1
+

o
na

N

(e) Latency per Action (i) Latency per Action

Unit: ms
Unit: ms Unit: ms

3D Object Detection 3D Instance Segmentation Backbone

Robeye:

AdaMask:

FlexPatch:

Model Only:

Driving ScoreDriving Score

Action Generation

projection & match

transmission

DNN encoding

focus encoding

frame accuracy

+focus accuracy+focus accuracy

mask generationmask generation

transmission
mask/frame
encoding
mask/frame
encoding

frame accuracyframe accuracy

patch generationpatch generation

patch encoding

frame accuracyframe accuracy

transmissiontransmission

frame encoding

80

40

72

64

56

48

3
D

 m
A

P

70

50

66

62

58

54

Mask-
RCNN 3D

PointNet
-Seg

3D-
BoNet

(h) Driving Score and Accuracy

80

40

72

64

56

48

3
D

 m
A

P

70

50

66

62

58

54

Mask-
RCNN 3D

PointNet
-Seg

3D-
BoNet

(h) Driving Score and Accuracy

Fig. 10 Performance of autonomous driving with 3D visual encoding

1050 X. Hou et al.

semantic segmentation models, Robye outperforms the

model-only baseline with a 1.3–2× latency speedup and a

+4% to +7% performance increase. Besides the reasons dis-

cussed in Sect. 6.1, FlexPatch’s reliance on edge intensity for

new object discovery leads to excessive patch generation in

indoor environments, further resulting in speed and perfor-

mance losses in VLN scenarios.

6.3 Performance on real robotic platforms

To evaluate the performance of Robye , we test them on

two real hardware platforms: (1) In the car setup (shown in

Fig. 13a, b), we utilize three Intel Realsense L515 (https://

www. intel reals ense. com/ lidar- camera- l515/) as the captur-

ing device, all these cameras connect to the Jetson AGX

Fig. 11 Performance of vision-

and-language navigation

n
oitc

A re
p

yc
neta

L

800

0

640

480

320

160

Mono3D

Unit: ms

Frustum
PointNet

MLCV
Net

Device: Jetson Xavier

n
oitc

A re
p

yc
neta

L Mono3D

Unit: ms

Frustum
PointNet

MLCV
Net

Device: Pixel 7 + 1080 Ti (5G)

(a)

(c)

(e)

300

0

240

180

120

60

S
P

L

63

48

60

57

54

51

Mono3DFrustum
PointNet

MLCV
Net

100

0

80

60

40

20

SegNet

Unit: ms

FCN Deep
Lab

Device: Jetson Xavier

Unit: ms

Device: Pixel 7 + 1080 Ti (5G)

(b)

(d)

(f)

60

0

48

36

24

12

63

48

60

57

54

51

SegNetFCN Deep
Lab

SegNetFCN Deep
Lab

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Driving Score

FlexPatch:

patch encoding

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Driving Score

FlexPatch:

patch encoding

L
at

en
cy

 p
er

 A
ct

io
n

L
at

en
cy

 p
er

 A
ct

io
n

S
P

L

Fig. 12 Performance of drone

navigation

n
oitc

A
re

p
yc

neta
L

400

0

320

240

160

80

Mono3D

Unit: ms

Frustum
PointNet

MLCV
Net

Device: Jetson Xavier

n
oitc

A
re

p
yc

neta
L Mono3D

Unit: ms

Frustum
PointNet

MLCV
Net

Device: Pixel 7 + 1080 Ti (5G)

(a)

(c)

(e)

150

0

120

90

60

30

eta
R

ssecc
u

S

85

60

80

75

70

65

Mono3DFrustum
PointNet

MLCV
Net

70

0

56

42

28

14

SegNet

Unit: ms

FCN Deep
Lab

Device: Jetson Xavier

Unit: ms

Device: Pixel 7 + 1080 Ti (5G)

(b)

(d)

(f)

40

0

32

24

16

8

85

60

80

75

70

65

SegNetFCN Deep
Lab

SegNetFCN Deep
Lab

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Driving Score

FlexPatch:

patch encoding

Language Encoding

projection & match

transmission

DNN encoding

focus encoding

Robeye:

mask generation

transmission

mask/frame encoding

AdaMask:

patch generation

transmission
Model Only:

frame encoding

+focus accuracy

frame accuracy

frame accuracy

frame accuracy

Action Generation

Driving Score

FlexPatch:

patch encoding

L
at

en
cy

 p
er

 A
ct

io
n

L
at

en
cy

 p
er

 A
ct

io
n

S
u
cc

es
s

R
at

e

https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/

1051Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

Orin (https:// www. nvidia. com/ en- il/ auton omous- machi nes/

embed ded- syste ms/ jetson- orin/) through USB 3.1 cables.

We take 3D-BoNet as the visual encoder. The Inertial Meas-

urement Unit (IMU), and GPS sensor are also attached to

this system. During the road test, we collect the actions from

the human driver and Robye for action matching rate cal-

culation. (2) In the drone setup (shown in Fig. 14a, b), we

design and build a Hexacopter as the testing platform for

drone navigation. The Hexacopter is equipped with six 4006

motors and a Pixhawk (https:// pixha wk. org/) flight control-

ler. The capturing device Intel Realsense L515 is connected

to an on-board Jetson TX2. We take Mono3D as the visual

encoder. The Jetson TX2 communicates with Pixhawk flight

controller through I2C protocol. We evaluate Robye and the

baselines on performance in Figs. 13c, d and 14c, d. Over-

all, Robye outperforms the baselines by 9% to 18% higher

matching rate, 2.2 to 2.7× latency speedup, and 36% to 47%

power consumption reduction (20 min).

6.4 Ablation study

We investigate the individual contributions of key modules

within Robye to its overall performance enhancement. We

selectively remove each module and observe the result-

ant impact on performance, as detailed in Table 1, on the

autonomous driving application using Mono3D (Chen et al.

2016). Based on the observations, we analyze the contribu-

tions of each module as follows:

Motion-based projection: The module identifies over-

lapping areas between consecutive frames based on the

robot’s movement. Instead of running a DNN model to

encode these areas, Robye directly propagates the encod-

ing results from the previous frame. By reducing the DNN

model’s input size, we lower the computation required.

On average, the number of operations in the DNN encoder

decreases from 19.2 to 13.7 GFLOPs per frame in the low-

resolution encoding workflow with the motion-based pro-

jection module. This reduction in computation translates to

a decrease in latency per action from 113.9 to 85 ms. Fur-

thermore, this reduction in computation has only a minimal

negative impact on accuracy (3D IoU) and driving score,

as we approximate the encoding results of the overlapping

areas rather than ignoring them.

Appearance-base matching: The module further refines

the overlapping areas identified by the motion-based projec-

tion module using image comparison. It is designed to detect

areas with new content within the overlapping regions, i.e.,

false positives. Without the appearance-based matching

module, the overlapping areas are larger, including these

false positives, which results in reduced DNN computation.

On average, the number of operations in the DNN encoder

increases from 12.8 to 13.7 GFLOPs per frame in the low-

resolution encoding workflow when using the appearance-

based matching module. However, identifying new content

is crucial for maintaining a high driving score as ignoring

objects can lead to infractions and route completion failures.

Based on our observation, without the appearance-based

matching module, the driving score drops from 69 to 48

due to missed obstacles and objects. Thus, the appearance-

based matching module plays an important role in improving

the driving score with trivial increase of computation and

latency.

Motion-conditioned encoder: The module adaptively

adjusts the DNN computation for processing the focusing

regions based on position changes between consecutive

frames. By reducing computation for small movements of

the robot, the average number of operations in the DNN

encoder decreases from 21.3 to 15.1 GFLOPs per frame

Intel RealSense Camera

Jetson

AGX Orin

IMU and GPS

(a) Car Test System (b) On-car Setup

Robeye

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

500

0

400

300

200

100

L
aten

cy
 p

er A
ctio

n

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

500

0

400

300

200

100

L
aten

cy
 p

er A
ctio

n

P
o
w

er
 C

o
n
su

m
p
ti

o
n 10

0

8

6

4

2

Model Only FlexPatch

Unit: ms Unit: kJ

(c) Performance Evaluation (d) Power Consumption Evaluation

Fig. 13 Real car test on autonomous driving

Intel RealSense

Camera Jetson

TX2

(a) Drone Test System (b) Drone Navigation Test

Robeye

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

700

200

600

500

400

300

L
aten

cy
 p

er A
ctio

n

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

700

200

600

500

400

300

L
aten

cy
 p

er A
ctio

n

P
o

w
er

 C
o

n
su

m
p

ti
o

n 10

0

8

6

4

2

Model Only FlexPatch

Unit: ms Unit: kJ

(c) Performance Evaluation (d) Power Consumption Evaluation

Flight Control

System

Fig. 14 Real drone test for navigation

https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://pixhawk.org/

1052 X. Hou et al.

in the high-resolution encoding workflow when using the

motion-conditioned encoder. This reduction in computation

leads to a decrease in latency per action from 109.6 to 85

ms. The motion-conditioned encoder shows a slight decrease

in accuracy (3D IoU) from 56.4 to 56 and a drop in driving

score from 71.1 to 69.

7 Discussion

Robye for different robotic applications: The development

of a universally applicable visual foundation DNN model for

robotic applications remains a challenging task (Xu et al.

2024; Majumdar et al. 2024). The performance improvement

of Robye primarily comes from two designs: (1) reducing

computation on overlapping areas across frames, and (2)

high-resolution encoding on focus regions only. In low-

speed applications such as indoor and downtown navigation,

overlapping areas between frames are large, which leads to

more computation reduction. In contrast, high-speed appli-

cations such as highway driving have smaller overlapping

areas, which leads to less computation reduction. Similarly,

applications with more focusing regions consume more

computing resources. Thus, to keep fast response for differ-

ent applications, we need to adaptively adjust the available

computing resources for them. For example, by profiling the

relationship between the DNN-based encoder’s computing

latency and input size offline, we can prepare more com-

puting resources to high-speed applications and those with

more focus regions.

Robye for different DNN architectures: The design of

Robye is orthogonal to DNN-based embodied AI systems

and is adaptable to visual encoders of different DNN archi-

tectures, including CNNs and Vision Transformers (ViT).

Using a pre-trained DNN-based visual encoder (Radosavo-

vic et al. 2023; Khandelwal et al. 2022; Ryu et al. 2024;

Huang et al. 2023; Wijmans et al. 2019a; Li et al. 2022;

Yen-Chen et al. 2020), we directly take it as the DNN-based

visual encoder in the low-resolution frame encoding work-

flow. We prepare a dynamic version of the encoder with mul-

tiple compression levels following (He et al. 2017a). There

is no need to modify the other modules of motion-based

projection, appearance-based matching, and focus localiza-

tion in Robye.

Limitations of Robye : We discuss the potential limita-

tions of the components in Robye and provide suggestions

on their improvement as follows:

(1) Motion-based projection: The performance of posi-

tion prediction and tracking affects the accuracy of object

projection. For lightweight position prediction and tracking

algorithms such as the Kalman Filter (Welch et al. 1995),

ORB (Mur-Artal and Tardós 2014), and Optical Flow (Kale

et al. 2015), their prediction and tracking accuracies tend to

decrease in more dynamic environments. For example, in

high-density crowds, an object may not appear in consecu-

tive frames but rather intermittently. In high-speed driving,

motion blur requires additional correction in pixel-based

tracking. To adapt the motion-based projection to different

environments, an environment-type detection module can be

incorporated to switch the object projection schemes accord-

ingly. For example, in high-density crowds, tracking can be

extended from two consecutive frames to multiple frames.

In high-speed driving scenarios, motion blur in RGB frames

can be corrected using deblurring methods (Cho and Lee

2009; Shan et al. 2008; Nayar and Ben-Ezra 2004).

(2) Appearance-based matching: The robustness of

appearance-based matching depends on the relative dis-

placement between the self robot and other objects and the

background, especially for pixel-value comparisons. A large

relative displacement can cause a drastic change in the view

of the same object, such as shifting from a front view to a

side view. In such cases, appearance-based matching fails

and the unmatched parts are processed by the DNN-based

visual encoder, which results in redundant computation. One

potential solution to address these issues is the adoption of

Siamese Neural Networks to improve the robustness of

appearance-based matching by capturing the semantic mean-

ing (Chicco 2021; Melekhov et al. 2016). When integrating

such neural networks into the appearance-based matching,

it is important to consider the computational overhead to

ensure efficiency.

(3) Focus localization: Although human experts only

need to specify the object types to focus on, the training

of the focus localization module still relies on a supervised

approach using pre-trained object detection models. This

dependency on human input limits the generality of the

focus localization. One potential improvement is to train the

focus localization module in an unsupervised manner. For

Table 1 Ablation study: Robye

w/ a module vs Robye w/o a

module (GLOPs and 3D IoU

are compared in low-resolution

and high-resolution encoding

workflows)

Robye GFLOPs

(low-r, high-r)

IoU (low-r, high-r) Latency (ms) Driving Score

Original Robye 13.7, 15.1 53, 56 85 69

w/o Motion-based projection 19.2, 15.1 53.5, 56 113.9 69.5

w/o Appearance-based matching 12.8, 15.1 47, 52.8 82.7 48.0

w/o Motion-conditioned encoder 13.7, 21.3 53, 56.4 109.6 71.1

1053Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

example, we can randomly initialize the types of objects to

focus and adjust them adaptively based on the application’s

metrics (e.g., driving score and SPL). Specifically, if the

metric improves when a particular type of object is included,

it indicates that the object requires focus, and vice versa.

(4) Motion-conditioned visual encoder: The training of

the motion-conditioned visual encoder involves the typical

retraining process used for compressed DNN models (He

et al. 2017a). While it is common to retrain or fine-tune

DNN models after compression, it adds extra work to pre-

pare the motion-conditioned visual encoder for a robotic

application. Given the trend towards developing foundation

models that are generally applicable across different applica-

tions (Xu et al. 2024), it is also crucial, in the future work, to

explore methods for preparing a foundation motion-condi-

tioned visual encoder that can be utilized in various applica-

tions, which avoids the need for retraining from scratch as

required by other model compression techniques.

8 Conclusion

This paper proposes Robye , a bionic visual encoding frame-

work to tackle the challenge of efficient visual encoding in

mobile robotic applications. Drawing inspiration from the

human visual system, Robye incorporates focus processing

and motion-aware content correlation mechanisms into the

mobile robotic encoding domain. The dual workflows in our

framework include high-resolution focus processing, lower-

resolution frame analysis, motion-based projection for cross-

frame correlation, and a motion-conditioned adaptive DNN

execution strategy. These designs collaboratively lead to a

reduction in computational costs associated with encoding

tasks. Specifically, our evaluation across robotic scenarios of

autonomous driving, vision-language navigation, and drone

navigation, demonstrates its capabilities. Specifically, Robye

outperforms baselines in speed (ranging from 1.2 to 3.3×

faster), performance (showing a 4% to 29% increase), and

power consumption (−36% to −47%).

Author contributions Xueyu Hou wrote the main manuscript text and

prepared Figs. 1, 2,3, 4, 5, 6, 7, and 8. Xueyu Hou and Yongjie Guan

prepared figures 9, 10, 11, 12, 13, and 14 and Table 1. All authors

reviewed the manuscript.

Data availability No datasets were generated or analysed during the

current study.

Declarations

Conflict of interest The authors declare no competing interests.

References

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf,

N., Reid, I., Gould, S., Van Den Hengel, A.: Vision-and-language

navigation: interpreting visually-grounded navigation instructions

in real environments. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3674–3683 (2018)

Awan, M., Shin, J.: Semantic video segmentation with dynamic key-

frame selection and distortion-aware feature rectification. Image

Vis. Comput. 110, 104184 (2021)

Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolu-

tional encoder-decoder architecture for image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv: 1409.

0473 (2014)

Becker, M.W., Pashler, H., Anstis, S.M.: The role of iconic memory in

change-detection tasks. Perception 29(3), 273–286 (2000)

Beers, R.J., Sittig, A.C., Gon Denier, J.J.: How humans combine simul-

taneous proprioceptive and visual position information. Exp.

Brain Res. 111, 253–261 (1996)

Blukis, V., Brukhim, N., Bennett, A., Knepper, R.A., Artzi, Y.: Follow-

ing high-level navigation instructions on a simulated quadcopter

with imitation learning. arXiv preprint arXiv: 1806. 00047 (2018)

Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance

segmentation. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 9157–9166 (2019)

Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.:

Monocular 3d object detection for autonomous driving. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2147–2156 (2016)

Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous

convolution for semantic image segmentation. arxiv 2017. arXiv

preprint arXiv: 1706. 05587 (2019)

Chen, Z., Hu, P., Zhang, L., Lu, H., He, Y., Wang, S., Zhang, X., Hu,

M., Li, T.: Video object segmentation via structural feature recon-

figuration. In: ACCV (2022)

Chicco, D.: Siamese neural networks: an overview. Artif. Neural Netw.

2190, 73–94 (2021)

Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia

2009 Papers, pp. 1–8 (2009)

Coltheart, M.: Iconic memory and visible persistence. Percept. Psy-

chophys. 27, 183–228 (1980)

Das, A., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Neural modu-

lar control for embodied question answering. In: Conference on

Robot Learning, pp. 53–62. PMLR (2018)

Du, K., Pervaiz, A., Yuan, X., Chowdhery, A., Zhang, Q., Hoffmann,

H., Jiang, J.: Server-driven video streaming for deep learning

inference. In: Proceedings of the Annual Conference of the ACM

Special Interest Group on Data Communication on the Applica-

tions, Technologies, Architectures, and Protocols for Computer

Communication, pp. 557–570 (2020)

Duan, J., Yu, S., Tan, H.L., Zhu, H., Tan, C.: A survey of embodied

AI: from simulators to research tasks. IEEE Trans. Emerg. Top.

Comput. Intell. 6(2), 230–244 (2022)

Fang, K., Toshev, A., Fei-Fei, L., Savarese, S.: Scene memory trans-

former for embodied agents in long-horizon tasks. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 538–547 (2019)

Fang, B., Zeng, X., Zhang, M.: Nestdnn: resource-aware multi-tenant

on-device deep learning for continuous mobile vision. In: Pro-

ceedings of the 24th Annual International Conference on Mobile

Computing and Networking, pp. 115–127 (2018)

Fung, A., Benhabib, B., Nejat, G.: Robots autonomously detecting

people: a multimodal deep contrastive learning method robust to

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1806.00047
http://arxiv.org/abs/1706.05587

1054 X. Hou et al.

intraclass variations. IEEE Robot. Automat. Lett. 8(6), 3550–3557

(2023)

Gegenfurtner, K.R., Sperling, G.: Information transfer in iconic mem-

ory experiments. J. Exp. Psychol. Hum. Percept. Perform. 19(4),

845 (1993)

Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International

Conference on Computer Vision, pp. 1440–1448 (2015)

Google: Google Pixel 7. https:// store. google. com/ produ ct/ pixel_7? hl=

en- US. Accessed 24 Oct 2023

Gr, O.-J., Gr, U., et al.: Interaction of vestibular and visual inputs in the

visual system. Prog. Brain Res. 37, 573–583 (1972)

Gu, J., Stefani, E., Wu, Q., Thomason, J., Wang, X.E.: Vision-and-

language navigation: A survey of tasks, methods, and future direc-

tions. arXiv preprint arXiv: 2203. 12667 (2022)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image

recognition. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 770–778 (2016)

He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep

neural networks. In: Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 1389–1397 (2017a)

He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV

(2017b)

Hu, R., Fried, D., Rohrbach, A., Klein, D., Darrell, T., Saenko, K.:

Are you looking? Grounding to multiple modalities in vision-

and-language navigation. arXiv preprint arXiv: 1906. 00347 (2019)

Huang, S., Wang, Z., Li, P., Jia, B., Liu, T., Zhu, Y., Liang, W., Zhu,

S.-C.: Diffusion-based generation, optimization, and planning in

3d scenes. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 16750–16761 (2023)

Intel: RealSense LiDAR Camera L515. https:// www. intel reals ense.

com/ lidar- camera- l515/. Accessed 24 Oct 2023

Jain, S., Wang, X., Gonzalez, J.E.: Accel: a corrective fusion network

for efficient semantic segmentation on video. In: ICCV (2019)

Kale, K., Pawar, S., Dhulekar, P.: Moving object tracking using optical

flow and motion vector estimation. In: 2015 4th International Con-

ference on Reliability, Infocom Technologies and Optimization

(ICRITO)(trends and Future Directions), pp. 1–6. IEEE (2015)

Khandelwal, A., Weihs, L., Mottaghi, R., Kembhavi, A.: Simple but

effective: Clip embeddings for embodied AI. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Rec-

ognition, pp. 14829–14838 (2022)

Kim, D., Woo, S., Lee, J.-Y., Kweon, I.S.: Dense pixel-level interpreta-

tion of dynamic scenes with video panoptic segmentation. IEEE

Trans. Image Process. 31, 5383–5395 (2022)

Lee, S.-P., Chen, S.-C., Peng, W.-H.: Gsvnet: guided spatially-varying

convolution for fast semantic segmentation on video. In: ICME

(2021)

Li, J., Wang, W., Chen, J., Niu, L., Si, J., Qian, C., Zhang, L.: Video

semantic segmentation via sparse temporal transformer. In: MM

(2021)

Li, J., Tan, H., Bansal, M.: Envedit: Environment editing for vision-

and-language navigation. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp.

15407–15417 (2022)

Liu, L., Li, H., Gruteser, M.: Edge assisted real-time object detection

for mobile augmented reality. In: MobiCom (2019)

Liu, S., Wang, T., Li, J., Sun, D., Srivastava, M., Abdelzaher, T.:

Adamask: Enabling machine-centric video streaming with adap-

tive frame masking for dnn inference offloading. In: Proceedings

of the 30th ACM International Conference on Multimedia, pp.

3035–3044 (2022)

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for

semantic segmentation. In: CVPR (2015)

Majumdar, A., Yadav, K., Arnaud, S., Ma, J., Chen, C., Silwal, S., Jain,

A., Berges, V.-P., Wu, T., Vakil, J., et al.: Where are we in the

search for an artificial visual cortex for embodied intelligence?

Adv. Neural Inf. Process. Syst. 36, 655–677 (2024)

Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for

image matching. In: 2016 23rd International Conference on Pat-

tern Recognition (ICPR), pp. 378–383. IEEE (2016)

Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin, M., Artzi,

Y.: Mapping instructions to actions in 3d environments with visual

goal prediction. arXiv preprint arXiv: 1809. 00786 (2018)

Mur-Artal, R., Tardós, J.D.: Orb-slam: tracking and mapping recog-

nizable. In: Proceedings of the Workshop on Multi View Geom-

etry in Robotics (MVIGRO)-RSS (2014)

Murti, C., Narshana, T., Bhattacharyya, C.: Tvsprune-pruning non-

discriminative filters via total variation separability of inter-

mediate representations without fine tuning. In: The Eleventh

International Conference on Learning Representations (2022)

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., Gupta, A.: R3m: a

universal visual representation for robot manipulation. arXiv

preprint arXiv: 2203. 12601 (2022)

Nayar, S.K., Ben-Ezra, M.: Motion-based motion deblurring. IEEE

Trans. Pattern Anal. Mach. Intell. 26(6), 689–698 (2004)

NVIDIA TensorRT. NVIDIA Developer Documentation (2024)

NVIDIA: Jetson AGX Orin. https:// www. nvidia. com/ en- il/ auton

omous- machi nes/ embed ded- syste ms/ jetson- orin/. Accessed 24

Oct 2023

NVIDIA: Jetson AGX Xavier. https:// www. nvidia. com/ en- us/

auton omous- machi nes/ embed ded- syste ms/ jetson- agx- xavier/.

Accessed 24 Oct 2023

Pari, J., Shafiullah, N.M., Arunachalam, S.P., Pinto, L.: The surpris-

ing effectiveness of representation learning for visual imitation.

arXiv preprint arXiv: 2112. 01511 (2021)

Petrovai, A., Nedevschi, S.: Time–space transformers for video pano-

ptic segmentation. In: ICCV (2022)

Pixhawk Flight Controllor. https:// pixha wk. org/. Accessed 24 Oct

2023

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical

feature learning on point sets in a metric space. Adv. Neural Inf.

Process. Syst. 30, 5099–5108 (2017)

Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets

for 3d object detection from rgb-d data. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 918–927 (2018)

Qi, Y., Pan, Z., Zhang, S., Hengel, A., Wu, Q.: Object-and-action

aware model for visual language navigation. In: European Con-

ference on Computer Vision, pp. 303–317. Springer (2020)

Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., Darrell,

T.: Real-world robot learning with masked visual pre-training.

In: Conference on Robot Learning, pp. 416–426. PMLR (2023)

Rhee, H., Min, D., Hwang, S., Andreis, B., Hwang, S.J.: Distortion-

aware network pruning and feature reuse for real-time video

segmentation. arXiv (2022)

Ryu, H., Kim, J., An, H., Chang, J., Seo, J., Kim, T., Kim, Y., Hwang,

C., Choi, J., Horowitz, R.: Diffusion-edfs: bi-equivariant denois-

ing generative modeling on se (3) for visual robotic manipula-

tion. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 18007–18018 (2024)

Samsung: Samsung Galaxy S22. https:// www. samsu ng. com/ us/ smart

phones/ galaxy- s22/. Accessed 24 Oct 2023

Schumann, R., Riezler, S.: Analyzing generalization of vision and

language navigation to unseen outdoor areas. arXiv preprint

arXiv: 2203. 13838 (2022)

Seong, H., Oh, S.W., Lee, J.-Y., Lee, S., Lee, S., Kim, E.: Hierarchi-

cal memory matching network for video object segmentation.

In: ICCV (2021)

Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from

a single image. ACM Trans. Graph. (TOG) 27(3), 1–10 (2008)

https://store.google.com/product/pixel_7?hl=en-US
https://store.google.com/product/pixel_7?hl=en-US
http://arxiv.org/abs/2203.12667
http://arxiv.org/abs/1906.00347
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
http://arxiv.org/abs/1809.00786
http://arxiv.org/abs/2203.12601
https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
http://arxiv.org/abs/2112.01511
https://pixhawk.org/
https://www.samsung.com/us/smartphones/galaxy-s22/
https://www.samsung.com/us/smartphones/galaxy-s22/
http://arxiv.org/abs/2203.13838

1055Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics

Shao, H., Wang, L., Chen, R., Li, H., Liu, Y.: Safety-enhanced auton-

omous driving using interpretable sensor fusion transformer.

In: Conference on Robot Learning, pp. 726–737. PMLR (2023)

Simonyan, K., Zisserman, A.: Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv: 1409.

1556 (2014)

Stewart, E.E., Valsecchi, M., Schütz, A.C.: A review of interactions

between peripheral and foveal vision. J. Vis. 20(12), 2–2 (2020)

Sun, G., Liu, Y., Ding, H., Probst, T., Van Gool, L.: Coarse-to-fine

feature mining for video semantic segmentation. In: ICCV

(2022a)

Sun, G., Liu, Y., Tang, H., Chhatkuli, A., Zhang, L., Van Gool, L.:

Mining relations among cross-frame affinities for video semantic

segmentation. In: ECCV (2022b)

Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object

detection. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 10781–10790 (2020)

Team, C.: CARLA Autonomous Driving Leaderboard. https:// leade

rboard. carla. org/. Accessed 5 Nov 2023

Thomason, J., Gordon, D., Bisk, Y.: Shifting the baseline: Single

modality performance on visual navigation & qa. arXiv preprint

arXiv: 1811. 00613 (2018)

Wahid, A., Stone, A., Chen, K., Ichter, B., Toshev, A.: Learning object-

conditioned exploration using distributed soft actor critic. In: Con-

ference on Robot Learning, pp. 1684–1695. PMLR (2021)

Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: Solov2: dynamic and

fast instance segmentation. Adv. Neural. Inf. Process. Syst. 33,

17721–17732 (2020)

Wang, H., Jiang, X., Ren, H., Hu, Y., Bai, S.: Swiftnet: Real-time video

object segmentation. In: ICCV (2021)

Wang, H., Tan, A.H., Nejat, G.: Navformer: a transformer architecture

for robot target-driven navigation in unknown and dynamic envi-

ronments. IEEE Robot. Automat. Lett. (2024). https:// doi. org/ 10.

1109/ LRA. 2024. 34126 38

Welch, G., Bishop, G., et al.: An introduction to the Kalman filter

(1995)

Wijmans, E., Datta, S., Maksymets, O., Das, A., Gkioxari, G., Lee,

S., Essa, I., Parikh, D., Batra, D.: Embodied question answering

in photorealistic environments with point cloud perception. In:

Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 6659–6668 (2019a)

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D.,

Savva, M., Batra, D.: Dd-ppo: Learning near-perfect pointgoal

navigators from 2.5 billion frames. arXiv preprint arXiv: 1911.

00357 (2019b)

Woo, S., Kim, D., Lee, J.-Y., Kweon, I.S.: Learning to associate every

segment for video panoptic segmentation. In: ICCV (2021)

Wortsman, M., Ehsani, K., Rastegari, M., Farhadi, A., Mottaghi, R.:

Learning to learn how to learn: Self-adaptive visual navigation

using meta-learning. In: Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 6750–6759

(2019)

Xie, Q., Lai, Y.-K., Wu, J., Wang, Z., Zhang, Y., Xu, K., Wang, J.:

Mlcvnet: Multi-level context votenet for 3d object detection. In:

Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 10447–10456 (2020)

Xie, H., Yao, H., Zhou, S., Zhang, S., Sun, W.: Efficient regional

memory network for video object segmentation. In: ICCV (2021)

Xu, Z., Wu, K., Wen, J., Li, J., Liu, N., Che, Z., Tang, J.: A survey

on robotics with foundation models: toward embodied AI. arXiv

preprint arXiv: 2402. 02385 (2024)

Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni,

N.: Learning object bounding boxes for 3d instance segmentation

on point clouds. Adv. Neural Inf. Process. Syst. 32 (2019)

Yang, K., Yi, J., Lee, K., Lee, Y.: Flexpatch: fast and accurate object

detection for on-device high-resolution live video analytics. In:

IEEE INFOCOM 2022-IEEE Conference on Computer Commu-

nications, pp. 1898–1907. IEEE (2022)

Ye, J., Batra, D., Wijmans, E., Das, A.: Auxiliary tasks speed up learn-

ing point goal navigation. In: Conference on Robot Learning, pp.

498–516. PMLR (2021)

Ye, W., Lan, X., Su, G., Bao, H., Cui, Z., Zhang, G.: Hybrid tracker

with pixel and instance for video panoptic segmentation. arXiv

(2022)

Yen-Chen, L., Zeng, A., Song, S., Isola, P., Lin, T.-Y.: Learning to see

before learning to act: Visual pre-training for manipulation. In:

2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 7286–7293. IEEE (2020)

Zhang, Y., Tan, H., Bansal, M.: Diagnosing the environment bias in

vision-and-language navigation. arXiv preprint arXiv: 2005. 03086

(2020)

Zhang, Z., Liniger, A., Dai, D., Yu, F., Van Gool, L.: End-to-end urban

driving by imitating a reinforcement learning coach. In: Proceed-

ings of the IEEE/CVF International Conference on Computer

Vision, pp. 15222–15232 (2021)

Zhou, Y., Zhang, H., Lee, H., Sun, S., Li, P., Zhu, Y., Yoo, B., Qi, X.,

Han, J.-J.: Slot-vps: Object-centric representation learning for

video panoptic segmentation. In: ICCV (2022)

Zhu, Y., Zhu, F., Zhan, Z., Lin, B., Jiao, J., Chang, X., Liang, X.:

Vision-dialog navigation by exploring cross-modal memory. In:

Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 10730–10739 (2020)

Zhu, W., Qi, Y., Narayana, P., Sone, K., Basu, S., Wang, X.E., Wu,

Q., Eckstein, M., Wang, W.Y.: Diagnosing vision-and-language

navigation: What really matters. arXiv preprint arXiv: 2103. 16561

(2021)

Zhuang, J., Wang, Z., Wang, B.: Video semantic segmentation with

distortion-aware feature correction. IEEE Trans. Circuits Syst.

Video Technol. 31(8), 3128–3139 (2020)

Zhuang, J., Wang, Z., Li, J.: Video semantic segmentation with inter-

frame feature fusion and inner-frame feature refinement. arXiv

(2023)

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed by the terms of

such publishing agreement and applicable law.

Xueyu Hou is an Assistant Profes-

sor in the Department of Electri-

cal and Computer Engineering at

University of Maine. She

received her Ph.D. degree in the

Electrical and Computer Engi-

neering Department at the New

Jersey Institute of Technology

(NJIT). Before coming to NJIT,

she obtained her B.S. and M.S.

degree in Electrical Engineering

from Xi’an Jiaotong University.

She was also a student in the

Special Class of Gifted Young in

Xi’an Jiaotong University. Dr.

Hou is the recipient of the NJIT

Hashimoto Prize 2024. Her current research interests include efficient

artificial intelligence, humancentered computing, mobile edge comput-

ing, and sustainable computing.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://leaderboard.carla.org/
https://leaderboard.carla.org/
http://arxiv.org/abs/1811.00613
https://doi.org/10.1109/LRA.2024.3412638
https://doi.org/10.1109/LRA.2024.3412638
http://arxiv.org/abs/1911.00357
http://arxiv.org/abs/1911.00357
http://arxiv.org/abs/2402.02385
http://arxiv.org/abs/2005.03086
http://arxiv.org/abs/2103.16561

1056 X. Hou et al.

Yongjie Guan is an Assistant

Professor in the Department of

Electrical and Computer Engi-

neering at University of Maine.

He received his Ph.D. and Mas-

ter degree in the Electrical and

Computer Engineering Depart-

ment at the New Jersey Institute

of Technology (NJIT). Before

coming to NJIT, he obtained his

B.S. degree in Electrical Engi-

neering from University of Elec-

tronic Science and Technology

of China. His current research

interests include mobile X reality

System, mobile edge computing,

unmanned aircraft systems, and humancentered computing.

Tao Han is an Associate Profes-

sor in the Department of Electri-

cal and Computer Engineering at

New Jersey Institute of Technol-

ogy (NJIT) and an IEEE Senior

Member. Before joining NJIT,

Dr. Han was an Assistant Profes-

sor in the Department of Electri-

cal and Computer Engineering at

the University of North Carolina

at Charlotte. Dr. Han received

his Ph.D. in Electrical Engineer-

ing from NJIT in 2015 and is the

recipient of the NSF CAREER

Award 2021, the Newark College

of Engineering Outstanding Dis-

sertation Award 2016, the NJIT Hashimoto Prize 2015, and the New

Jersey Inventors Hall of Fame Graduate Student Award 2014. His

papers win the IEEE International Conference on Communications

(ICC) Best Paper Award 2019 and IEEE Communications Society’s

Transmission, Access, and Optical Systems (TAOS) Best Paper Award

2019. His research interests include mobile edge computing, machine

learning, mobile X reality, 5G system, Internet of Things, and smart

grid.

Cong Wang is currently an Asso-

ciate Professor in the ECE

department at New Jersey Insti-

tute of Technology. Before join-

ing NJIT in 2015, Dr. Wang was

a Lecturer and Research Engi-

neer at University of California,

Berkeley. He obtained his PhD

degree in the area of Controls

and Dynamics from UC Berke-

ley in 2014, before which he

attended Tsinghua University

and obtained his master's degree

in Automotive Engineering and

bachelor's degree in Manufactur-

ing Engineering and Automation

in 2010 and 2008 respectively.

