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Abstract

Embodied artificial intelligence (AI) agents, which navigate and interact with their environment using sensors and actuators, 

are being applied for mobile robotic platforms with limited computing power, such as autonomous vehicles, drones, and 

humanoid robots. These systems make decisions through environmental perception from deep neural network (DNN)-based 

visual encoders. However, the constrained computational resources and the large amounts of visual data to be processed 

can create bottlenecks, such as taking almost 300 milliseconds per decision on an embedded GPU board (Jetson Xavier). 

Existing DNN acceleration methods need model retraining and can still reduce accuracy. To address these challenges, our 

paper introduces a bionic visual encoder framework, Robye , to support real-time requirements of embodied AI agents. The 

proposed framework complements existing DNN acceleration techniques. Specifically, we integrate motion data to identify 

overlapping areas between consecutive frames, which reduces DNN workload by propagating encoding results. We bifurcate 

processing into high-resolution for task-critical areas and low-resolution for less-significant regions. This dual-resolution 

approach allows us to maintain task performance while lowering the overall computational demands. We evaluate Robye 

across three robotic scenarios: autonomous driving, vision-and-language navigation, and drone navigation, using various 

DNN models and mobile platforms. Robye outperforms baselines in speed (1.2–3.3 × ), performance ( +4% to +29% ), and 

power consumption ( −36% to −47%).
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1 Introduction

Embodied AI agents are designed for interaction and navi-

gation in physical environments. They combine sensory 

inputs and actuator outputs for perception and action. These 

systems are deployed on mobile robotic platforms for tasks 

such as autonomous navigation and object manipulation, in 

which visual perception (encoding) plays a crucial role (Hu 

et al. 2019; Qi et al. 2020; Schumann and Riezler 2022; 

Thomason et al. 2018; Zhu et al. 2021). This visual encod-

ing enables the embodied AI agents to analyze and interpret 

visual data for decision-making. As shown in Fig. 1, this 

mimics human-environment interaction, aiding in informed 

decision-making and appropriate environmental responses 

in robots. However, the expanding capabilities of vision-

based robotic systems also require increased computational 

capacity, especially in mobile robotics where the embodied 

AI agents directly interact with their environment. Figure 2 

demonstrates this in three major mobile robotic applica-

tions of autonomous driving, vision-and-language naviga-

tion (VLN), and drone navigation. We measure their latency 

and power consumption on an embedded GPU platform, 

Jetson Xavier (https:// www. nvidia. com/ en- us/ auton omous- 

machi nes/ embed ded- syste ms/ jetson- agx- xavier/). For visual 

encoding, we use a Mono3D object detection model (Chen 

et al. 2016). We compress the model with state-of-the-art 

acceleration techniques (Murti et al. 2022), which reduces 
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latency by 44.7% with accuracy loss of 8.2% . For action gen-

eration, we implement an LSTM model with 512 hidden 

units (Anderson et al. 2018). For language encoding, we 

use a standard attentive encoder–decoder model (Bahdanau 

et al. 2014; Zhang et al. 2020).1 We observe that, across 

all the three applications, even with state-of-the-art model 

acceleration techniques, visual encoding accounts for over 

70–94% of the latency and power consumption, indicating 

that it is critical to address the computational load imposed 

by visual encoding in mobile robotic applications.

Neuroscience has advanced our understanding of human 

visual encoding and its role in behavior. Key findings 

include: First, the human visual system has a dichotomous 

mechanism and processes retinal inputs selectively, focusing 

on high-acuity focus vision in the central field and broader, 

less detailed encoding in the peripheral field (Stewart et al. 

2020). Second, iconic memory plays a crucial role in visual 

encoding, acting as a short-term repository for visual stimuli 

like shape, color, and motion, and enabling efficient integra-

tion of visual information in dynamic scenes (Becker et al. 

2000; Coltheart 1980; Gegenfurtner and Sperling 1993). 

Third, the human visual system combines visual inputs with 

motion information of proprioceptive and vestibular signals 

for a cohesive representation of the external world, enhanc-

ing spatial perception through multisensory integration in 

the visual and vestibular cortexes (Beers et al. 1996; Gr and 

Gr 1972).

Inspired by human visual system principles, we propose 

Robye , a bionic visual encoding framework for mobile robot-

ics. As illustrated in Fig. 1, Robye integrates the mechanisms 

of dichotomous processing and motion-aware iconic mem-

ory into visual encoding, to reduce computational needs. 

Specifically, the framework includes: (1) Dual workflows: 

Robye applies high-resolution encoding on task-related focus 

areas and low-resolution encoding on the rest contents, to 

concentrate computation to key areas. (2) Motion fusion: 

Instead of relying on visual information only, Robye utilizes 

motion data (the position, direction, and speed of the robot 

and surrounding objects) of sensors on mobile robotics to 

aid in matching contents across frames. (3) Encoding result 

sharing: Robye caches the encoding result of the preceding 

frame and shares it with the matching contents in the current 

frame, which reduces computing load of deep neural net-

work (DNN) encoding. The contributions of this work are:

• Robye is an efficient visual encoding framework designed 

for mobile robotics. The innovations to reduce compu-

tational costs and keep high performance include: the 

dichotomous processing for environmental understanding 

and the motion-based spatial geometric projection for 

lightweight cross-frame content correlation.

• To localize overlapping contents between frames, we pro-

pose to employ sensor-based motion data, which utilizes 

lightweight, geometric projection-based localization that 

demands fewer computational resources than image pro-

cessing methods.

• To reduce DNN computation, we propose to emulate the 

iconic memory mechanism from human vision, which 

integrates past encoding results for current frame analy-

sis, and adaptively regulating the visual encoding process 

based on inter-frame motion changes, to further reduce 

computational load.

• To preserve the performance of robotic applications, we 

propose a dual workflow of visual encoding, which mir-

rors human vision mechanism. It includes task-related 

focus localization and high-resolution encoding, to 

reduce computational cost without sacrificing perfor-

mance of mobile robotic applications.

• We evaluate Robye across three mobile robotic applica-

tions (autonomous driving, vision-and-language naviga-

tion, and drone navigation) using various deep learning 

models on mobile and embedded devices of Jetson Nano, 

Jetson Xavier, Google Pixel 7, and Samsung Galaxy S22. 

The results show that Robye outperforms baselines in 
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Fig. 1  Interaction with environment: human vs robots
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1 In the cases of VLN and drone navigation, the embodied AI agent 

is given only one natural language instruction at the beginning of the 

navigation process.
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terms of latency (by 1.2–3.3× speedup), performance (by 

+4% to +29% ), and power consumption ( −36% to −47%).

2  Background

2.1  Vision‑based mobile robotic systems

Mobile robotic systems increasingly use visual encoding in 

applications such as autonomous driving, vision-and-lan-

guage navigation (VLN), and drone navigation. This tech-

nology is vital for interpreting road scenes in autonomous 

driving (Shao et al. 2023; Zhang et al. 2021), integrating 

visual perception with natural language in VLN (Hu et al. 

2019), and enabling drones to navigate and avoid obstacles 

in real time (Blukis et al. 2018). Such integration enhances 

the cognitive abilities of mobile robots, boosting their auton-

omy in complex environments (Gu et al. 2022). In these 

systems, environmental data from sensors and cameras are 

processed using deep learning, particularly convolutional 

neural networks (CNNs) (Wijmans et al. 2019b; Ye et al. 

2021; Wahid et al. 2021; Anderson et al. 2018), for tasks 

like object detection and semantic segmentation (Gu et al. 

2022). The perception outcomes are fed into the action gen-

erator, where the robot formulates action strategies. There 

are different options for the action generator. Most stud-

ies adopt Recurrent Neural Networks (RNN) (Duan et al. 

2022; Wijmans et al. 2019b), such as Long Short-Term 

Memory (LSTM) (Wijmans et al. 2019a; Wortsman et al. 

2019; Wahid et al. 2021; Anderson et al. 2018) and Gated 

Recurrent Unit (GRU) (Khandelwal et al. 2022; Ye et al. 

2021; Das et al. 2018), or transformers (Shao et al. 2023; 

Zhu et al. 2020; Fang et al. 2019). Recent works also pro-

pose to generate actions with diffusion-based methods (Ryu 

et al. 2024; Huang et al. 2023). Nevertheless, despite dif-

ferent types of action generators, they generally rely on 

the perception outputs from the visual encoders to make 

decisions on the actions. Thus, improving the efficiency of 

the visual encoding process is critical regardless what kind 

of actions generators are used in the vision-based mobile 

robotic systems. To meet the need for efficient visual encod-

ing, we propose Robye , drawing inspiration from the human 

visual system. By incorporating motion-awareness, iconic 

memory, and a dichotomous approach, Robye enhances the 

efficiency and effectiveness of visual encoding in mobile 

robotic applications.

2.2  Visual encoders in robotics

In vision-based robotics, the development of visual encod-

ers is becoming one of the pivotal studies at the intersec-

tion between computer vision and robotics (Gu et al. 2022). 

While it is commonly accepted that the visual encoders in 

robotics are original neural network models for computer 

vision tasks such as classification (Radosavovic et al. 2023; 

Khandelwal et al. 2022; Ryu et al. 2024; Huang et al. 2023) 

and semantic segmentation (Wijmans et al. 2019a; Li et al. 

2022; Yen-Chen et al. 2020), recent works are focusing on 

escalating the training methods from supervised learning to 

self-supervised learning (Wang et al. 2024; Pari et al. 2021) 

such as contrastive learning (Khandelwal et al. 2022; Fung 

et al. 2023) and masked autoencoder (Radosavovic et al. 

2023; Majumdar et al. 2024). While these studies keep the 

same neural architectures of the visual encoders as other 

works, they substitute the traditional supervised learning 

methods with self-supervised learning methods to train the 

parameters in the encoders in the training stage. Compared 

to the supervised trained encoders, the self-supervised 

trained encoders guide the robots to accomplish tasks with 

better performance (Khandelwal et al. 2022). Majumdar 

et al. (2024) and Nair et al. (2022) also explore on whether 

visual encoders trained by masked autoencoder are univer-

sal to different types of robotic tasks. It is important to note 

that, as we focus on improving the efficiency of the visual 

encoders in the inference stage, the changes in the training 

methods do not affect the design of the proposed framework.

2.3  Video deep neural networks

Video Deep Neural Networks (DNNs) are designed to ana-

lyze sequences of frames (Jain et al. 2019; Kim et al. 2022; 

Li et al. 2021; Rhee et al. 2022; Sun et al. 2022a), extending 

beyond single-image inputs by creating model architectures 

specifically tailored for video data (Awan and Shin 2021; 

Lee et al. 2021; Rhee et al. 2022; Zhuang et al. 2020). These 

models incorporate historical data from previous frames 

into the current frame analysis through lateral connections, 

bridging raw pixels (Kim et al. 2022; Petrovai and Nedevschi 

2022; Wang et al. 2021; Woo et al. 2021; Xie et al. 2021; Ye 

et al. 2022; Liu et al. 2019, 2022; Yang et al. 2022; Du et al. 

2020) or DNN features (Chen et al. 2022; Li et al. 2021; 

Rhee et al. 2022; Seong et al. 2021; Sun et al. 2022a; Zhou 

et al. 2022; Zhuang et al. 2023) between frames. However, 

such integration is resource-intensive (Kim et al. 2022; Sun 

et al. 2022b; Zhuang et al. 2023; Chen et al. 2022; Rhee et al. 

2022; Zhou et al. 2022). Furthermore, most video DNNs 

deviate from the principles of single image-based DNNs 

due to their specialized neural architectures, losing compat-

ibility (Awan and Shin 2021; Lee et al. 2021; Zhuang et al. 

2020; Kim et al. 2022; Li et al. 2021; Rhee et al. 2022; Sun 

et al. 2022a). While some pixel-based video DNNs comple-

ment image-based models, they are constrained to the encod-

ing type of 2D object detection (Liu et al. 2019, 2022; Yang 

et al. 2022; Du et al. 2020). These models also encounter 

considerable image processing challenges of identifying new 
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objects and tracking, leading to significant overhead (Liu 

et al. 2022; Yang et al. 2022).

Instead of relying solely on pixel information, we pro-

pose novel techniques that harness motion data from mobile 

robots’ accelerometers and speed sensors, facilitating spa-

tial geometric projection to correlate content, including both 

background and objects, across consecutive frames. These 

methods surpass pixel-based video DNNs in speed and 

sensitivity to new objects. Furthermore, we develop a com-

prehensive visual encoding framework tailored for mobile 

robots. This framework is designed to be compatible with 

single image-based DNNs and general to different encoding 

types. This framework incorporates a dual-resolution DNN 

processing approach alongside motion-conditioned encod-

ing, significantly cutting down computational demands while 

enhancing the performance of tasks undertaken by mobile 

robotics. These designs not only streamline data process-

ing but also boost the efficiency and effectiveness of robotic 

encoding and interaction within dynamic environments.

3  Robye overview

We propose Robye , a visual semantic encoding framework 

for mobile robotics, to enhance efficiency by mimicking 

human vision. As shown in Fig. 3, the framework has two 

workflows: low-resolution frame encoding (the ‘purple’ 

modules) and high-resolution focus encoding (the ‘yellow’ 

modules), with motion information and cached historical 

result (iconic memory) to boost efficiency. Specifically, in 

the frame encoding workflow, Robye aligns consecutive 

frames’ background and objects using sensor-informed 

geometric projection in the motion-based projection mod-

ule. The appearance-based matching module analyzes these 

aligned contents to localize new objects. Robye encodes the 

overlapping contents between consecutive frames by histori-

cal result propagation, and applies DNN-based visual encod-

ing only on the non-overlapping content and new objects. In 

the focus encoding workflow, Robye localizes focusing areas 

based on application requirements and adaptively adjusts 

computational load on them conditioned by motion data. 

Given the encoding result from Robye , an action generator 

produces actions for mobile robotics.

4  Design of Robye

4.1  Low-resolution frame encoding

The low-resolution frame encoding in Robye emulates 

human peripheral vision and keeps full-frame understand-

ing with low computational load. Specifically, it utilizes 

an iconic memory mechanism to transfer visual encoding 

result across frames through motion-based projection and 

appearance-based matching. By aligning the overlapping 

areas across frames, we propagate visual encoding result of 

the matched parts across frames and only process unmatched 

areas with DNN. Overall, by integrating motion-assisted 

correlation, iconic memory, and dual-level encoding, this 

workflow mirrors human vision efficiency to lower compu-

tational needs.

4.1.1  Motion-based projection

In the human visual system, motion plays a crucial role in 

shaping perception. Humans effectively track motion, both 

of themselves and objects in their surroundings, for predic-

tive estimations of upcoming visual stimuli. This capability 

enables transferring information from past to future visual 

processing and reduces the computational load in visual 

encoding. In Robye , we mimic this process with a “motion-

based projection” module, which incorporates motion into 

the visual encoding of robotic systems. To keep resource-

efficient, this module identifies overlapping areas in both 

background and objects across frames, which are then 

Fig. 3  Robye : a bionic visual 

encoding framework for mobile 

robotics
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analyzed for appearance features in the “appearance-based 

matching” module.

As shown in Fig.  4, the motion-based projection is 

divided into the localization for the background and for 

objects. The background component, being static in the 

world coordinate system, changes position between frames 

due to the self movement. Conversely, object localization 

accounts for both the self movement and object dynamics 

within the environment. To localize object positions, we 

can adopt prediction or tracking techniques to estimate their 

temporal positions accurately. A plethora of options exists 

for these predictive and tracking approaches. In our imple-

mentation, we employ a hybrid way. Initially, an Object-

oriented Fast Robust Binary (ORB) feature-based tracking 

method (Mur-Artal and Tardós 2014)2 is used for newly 

appearing objects over three frames, with their world posi-

tions stored to the iconic memory. Subsequently, we employ 

a Kalman Filter (Welch et al. 1995) for predicting object 

positions, utilizing historical data from the iconic memory.

Background projection: Fig. 5 shows our use of the pin-

hole camera model to estimate the overlapping background 

area between consecutive frames. We record the self posi-

tion at times t and t − 1 as (xt, yt, zt) and (xt−1, yt−1, zt−1) , with 

s representing the transition vector between these points. 

Assuming that the z-axis is perpendicular to the camera’s 

image plane, s is split into s
z
 (along the z-axis, affecting 

zooming) and s
xy

 (on the xy-plane, causing parallel back-

ground shifts).

We calculate the effects of s
z
 and s

xy
 on the image plane 

using the camera-background distance d, camera view 

angles (�
x
, �

y
) , and focal length f, obtained from intrinsic 

parameters. For estimating d, we consider the direct camera-

wall distance in indoor settings, and average depth values 

from the background in outdoor scenes, using frame encod-

ing results from the previous frame at t − 1 . We approximate 

d
t
 as dt−1

± |sz| , where “−” and “ + ” denote moving towards 

or away from the background, respectively. This approxi-

mation, as shown in Fig. 5, helps estimate the overlapping 

background area effectively.

With the orthogonal zooming vector s
z
 , the four corners of 

the image plane at t − 1 , { (0, 0) , (0, ly) , (lx, ly) , (lx, 0)},3 is 

z o o m e d  t o  {  (−Δz
x
,−Δz

y
)  ,  (−Δzx, ly + Δzy)  , 

(lx + Δzx, ly + Δzy)  ,  (lx + Δzx,−Δzy)  } ,  w h e r e 

Δzx = tan(
�x

2
) ⋅ (

dt−1

dt

− 1) ⋅ f  ,  Δzy = tan(
�y

2
) ⋅ (

dt−1

dt

− 1) ⋅ f  , 

lx = 2f ⋅ tan(
�x

2
) , and ly = 2f ⋅ tan(

�y

2
) . With the parallel moving 

vector s
xy

 , each 2D point (u, v) on the image plane at t − 1 is 

shifted to (u − Δs
x
, v − Δs

y
) , where Δsx =

f

dt

⋅ |sxy|x and 

Δsy =
f

dt

⋅ |sxy|y . The | ⋅ |
i
 represents the signed projection of a 

vector on the i-axis.

By combining the effects from the orthogonal zoom-

ing vector and the parallel moving vector, we obtain the 

mapping positions at t of the four image corners at t − 1 as 

{ (−Δz
x
− Δs

x
,−Δz

y
− Δs

y
) , (−Δzx − Δsx, ly + Δzy − Δsy) , 

(lx + Δzx − Δsx, ly + Δzy − Δsy)  , 

(lx + Δzx − Δsx,−Δzy − Δsy) }. With the four mapping cor-

ners of the image plane from t − 1 to t, we obtain the inter-

section of union (IoU) between the two frames in frame t as:

where the first two elements represent the xy-values of the 

bottom-left corner of the IoU in frame t and the last two 

elements represent the xy-values of the top-right corner. By 

(1)
It = {max(0,−Δzx − Δsx), max(0,−Δzy − Δsy),

min(lx, lx + Δzx − Δsx), min(ly, ly + Δzy − Δsy)}
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mapping I
t
 to the image plane at t − 1 , we obtain the IoU 

between the two frames in frame t − 1 as:

We visualize the procedure of background’s projection 

between consecutive frames in Fig. 4.

Object projection: Objects in frames experience spatial 

changes due to the self movement and their own motion. We 

track or predict their world positions, denoted as (xt
j
, yt

j
, zt

j
) 

for object j at time t. Combined with the robot’s position 

(xt, yt, zt) and camera focal length f, we project the object’s 

position in frame t as (
f

(zt
j
−zt)

⋅ xt
j
,

f

(zt
j
−zt)

⋅ yt
j
) , assuming the 

z-axis aligns with the camera’s facing direction. We deter-

mine an object’s area in frame t using the previous frame’s 

visual encoding result, taking either the bounding box from 

object detection or the minimum box covering the semantic 

segmentation mask at t − 1 , mapping 3D bounding boxes to 

2D planes for 3D detection. In this way, we obtain the size 

of the object j at t − 1 , denoted as (Xt−1

j
, Y t−1

j
) . We scale the 

size by the distance change from t to t − 1 , i.e., 

Xt
j
= dt

j
∕dt−1

j
⋅ Xt−1

j
 and Y t

j
= dt

j
∕dt−1

j
⋅ Y t−1

j
 , where dt

j
 and dt−1

j
 

are the distance between the robot and the object j at t and 

t − 1 , respectively. We take the (Xt
j
, Y t

j
) bounding box center-

ing at (
f

(zt
j
−zt)

⋅ xt
j
,

f

(zt
j
−zt)

⋅ yt
j
) as the memonic part of object j 

in frame t. We visualize the procedure of objects’ projection 

between consecutive frames in Fig. 4.

It is important to note that the motion-based projection in 

Robye are not designed for exact overlapping region identi-

fication between frames. Instead, we aim to cost-effectively 

identify potential overlapping areas considering self-motion 

and object motion patterns. These candidate overlapping 

parts are then further examined by the appearance-based 

matching module to determine if they require DNN-based 

visual encoding.

4.1.2  Appearance-based matching

The appearance-based matching module receives as input 

the potential overlapping parts identified by the motion-

based projection module. As shown in Fig. 6, we design 

individual comparative analysis for background and object 

matching, respectively.

Background matching: For background matching, 

we scale and align the background part from the previous 

frame, Xt−1

B
 , with the motion-based overlapping area Xt

B
 in 

the current frame, as depicted in Fig. 6’s “Grid Background 

Matching”. We divide both Xt−1

B
 and Xt

B
 into an N × M grid, 

(2)

It−1 = dt∕dt−1 ⋅ {max(0,−Δzx − Δsx) + Δsx,

max(0,−Δzy − Δsy) + Δsy,

min(lx, lx + Δzx − Δsx) + Δsx,

min(ly, ly + Δzy − Δsy) + Δsy}

calculating element-wise differences between correspond-

ing grid cells. A predefined threshold on this difference 

determines a match; for example, non-matching cells are 

highlighted in blue in Fig. 6. When computing average dif-

ferences, (potential) object parts are nullified by setting their 

differences to zero.

Object matching: For object matching, we use Singu-

lar Value Decomposition (SVD) for assessing object cor-

respondence between time steps t − 1 and t. Our empirical 

evaluations suggest that SVD yields superior performance 

in measuring object similarity compared to element-wise 

difference with trivial computational overhead. We represent 

object j at time t − 1 as Xt−1

j
 and at time t as Xt

j
 , decomposing 

them into Ut − 1Σt − 1V
T

t−1
 and U

t
Σ

t
V

T

t
 . The singular values 

in Σ
∗
 reflect the importance of basis vectors in representing 

X
t−1

j
 and Xt

j
 . We calculate the Frobenius norm4 of the differ-

ence between Σt − 1 and Σt − 1 , with a smaller value indicat-

ing higher similarity. We set a threshold to decide whether 

the objects of t − 1 and t match.

4.1.3  Historical result propagation

For the matched regions within the background and objects, 

we derive their visual encoding result by employing a process 

of translation and scaling, which is executed in accordance 

with the motion-based projection module. This procedure 

involves the transformation of the relevant result from the 

previous frame to align with the current frame’s context, 

which enables the direct generation of visual encoding result.

Object Matching

Frame t-1:Frame t-1:

Frame t:Frame t:

Frame t-1:Frame t-1:

Frame t:Frame t:

Frame t:Frame t:

Frame t-1:Frame t-1:
Motion-based Overlapping

Frame t:

Frame t-1:
Motion-based Overlapping Grid Background Matching

Non-overlapping Areas

Not overlapped background

Not matched object

Not matched background

Fig. 6  Appearance-based matching

4 The Frobenius norm is defined as the square root of the sum of 

squares of all singular values within Σ
∗
.
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4.1.4  DNN-based visual encoder

Non-overlapping areas in Robye fall into three types: (1) 

areas not projected by the motion-based projection module, 

(2) background parts that do not match in the appearance-

based matching module, and (3) object parts that also remain 

unmatched in the appearance-based matching module. Fig-

ure 6 visualizes examples of non-overlapping areas in blue. 

Notably, new objects appearing in each frame are effectively 

captured as non-overlapping areas through our grid back-

ground matching method. For these non-overlapping areas, 

Robye utilizes a DNN to obtain visual encoding results. As a 

general framework for robotic visual encoding, Robye allows 

for the integration of various DNN within its DNN-based 

visual encoder.

Our low-resolution frame encoding workflow has two 

distinct sources for the final results: (1) Overlapping part 

results from the historical result propagation module, and 

(2) Non-overlapping part results via the DNN-based visual 

encoder module. The complete encoding result for a frame 

comes from merging these two. Since there is no overlap 

between the parts, their combination is based on their spatial 

positions.

4.2  High-resolution focus encoding

The focus visual encoding workflow in Robye involves two 

steps. First, it uses a cost-effective model to localize focus-

ing regions with bounding boxes. Second, the workflow 

adaptively adjusts computational load for DNN-based vis-

ual encoding based on motion change magnitude, to reflect 

how position changes affect feature variation over time. As 

motion changes increase, the computational cost rises, while 

the influence of historical features decreases.

4.2.1  Focus localization

In mobile robotics, such as autonomous driving, under-

standing the spatial relationships between the robot, nearby 

objects, and the background is key to identifying focusing 

regions. Objects closer to an autonomous vehicle are more 

crucial for immediate decisions, while distant objects can 

still be significant in vision and language navigation. Con-

sequently, focus localization is split into two types: distance-

relevant, focusing on proximate objects, and distance-irrel-

evant. Figure 7 demonstrates this, categorizing vehicles and 

pedestrians as distance-relevant and traffic signals and signs 

as distance-irrelevant.

In mobile robotics, human experts play an important role 

in creating ground-truth annotations for training datasets, 

especially for tasks resembling human activities. We involve 

human experts to define ground-truth focusing regions for 

training our focus localization model. However, unlike 

labor-intensive dataset labeling, we only require experts 

to identify object categories for focusing regions and set 

distance thresholds. Using an object detection model, we 

automate the annotation of ground-truth bounding boxes in 

the dataset, by omitting semantic class labels and retain-

ing only the coordinates. This process yields two sets of 

ground-truth bounding boxes, one for each localization type. 

These bounding boxes, termed “binary masks,” lack seman-

tic labels, dividing image content into focusing regions and 

the rest.

To design the focusing region localization model, we 

modify the output layer of an object detection model, by 

removing neurons for semantic labels and keeping those 

for bounding box coordinates. The model is trained using 

a bounding box regression loss function, expressed as 

L = (b1 − b1,gt)
2 + (b2 − b2,gt)

2 + (b3 − b3,gt)
2 + (b4 − b4,gt)

2 , where 

b1, b2, b3, b4 denote the four coordinate values defining the 

bounding box, and b
∗,gt represents their corresponding 

ground truth counterparts. The removal of semantic recog-

nition allows for model compression with minimal IoU loss. 

For example, we compress the Tiny-YOLO model by about 

63.7% in operations, with only a minor IoU reduction of less 

than 7.5% . This demonstrates the efficiency of our binary-

masking focus localization model.

4.2.2  Motion-conditioned visual encoder

Mirroring the human visual system’s foveation acuity, we feed 

high-resolution focusing regions into our motion-conditioned 

visual encoder module. Using motion data from the motion-

based projection module, we integrate historical features of 

focusing regions into the encoding process. This integration 

adapts to motion change magnitudes in the environment, as 

shown in Fig. 8. If a focusing region includes an object from 

the previous frame, we use its historical features. These fea-

tures, termed “historical features” and denoted by X
p
 , are 

Depth FrameDepth FrameDepth Frame

RGB FrameRGB FrameRGB Frame

Nearby ContentsNearby ContentsNearby Contents Depth-
Relevant Focuses

Depth-
Relevant Focuses

Depth-
Irrelevant Focuses

Depth-
Irrelevant Focuses

All FocusesAll Focuses

Fig. 7  A focus localization example
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directly accessible based on the motion-based projection and 

appearance-based matching modules.

In Robye , we offer the flexibility to employ any DNN model 

within the motion-conditioned visual encoder module. To cur-

tail computational overhead, we employ compression tech-

niques (He et al. 2017a) at the first K layers of the DNN model, 

where K is a hyper-parameter. The degree of compression is 

governed by the compression ratio c, evenly ranging from 

c
0
(> 0) to 1 with C levels. C is a hyper-parameter that defines 

the number of optional compression ratios. For example, the 

adjustment of the number of channels in each convolutional 

layer of the K layers of the DNN model follows the formula 

⌈c ⋅ D⌉ , where D is the original number of channels in the 

layer. The adaptation of the compression ratio c is contingent 

upon the magnitude of observed motion changes, referred to 

as the “motion-conditioned compression ratio”. Specifically, 

we select the compression ratio based on a motion index M 

defined as:

where mt is the vector from the self-position (xt, yt, zt) to the 

focusing object’s position (xt
j
, yt

j
, zt

j
) at time t, mt−1 is the vec-

tor at time t − 1 , | ⋅ |
i
 represents the signed projection of a 

vector on the i-axis, | ⋅ | represents the length of the vector, 

and ‖ ⋅ ‖ represents the absolute value. The term 
‖
‖
‖
‖

|mt|x

|mt|y
−

|mt−1|x

|mt−1|y

‖
‖
‖
‖
 indicates alterations in the view angle of the 

self-robot in relation to the focusing object from t − 1 to t, 

while the term ‖�mt� − �mt−1�‖ characterizes changes in the 

viewing distance between the self-robot and the focusing 

object from t − 1 to t. The compression ratio is one of the C 

compression levels from c
0
 to 1 that is nearest to 

c0 + max{�1 ⋅ M, 1 − c0}:

(3)M =

�
�
�
�
�

�mt�x

�mt�y
−

�mt−1�x

�mt−1�y

�
�
�
�
�

⋅ ‖�mt� − �mt−1�‖

(4)c = arg min
d

{c0 + max{�1 ⋅ M, 1 − c0} − c
d
}

d∈[0,C],

where �
1
 is a hyper-parameter to control the effect of motion 

on the compression ratio c. Our empirical observations show 

that both terms in M lead to variations in feature representa-

tions. Thus, they generate an augmented computational cost 

(higher c
0
 ), in cases where these changes are significant in 

their magnitudes.

In the DNN model, we insert an feature integration layer 

between its original K-th layer and (K + 1)-th layer, as shown 

in Fig. 8. The output of the integration layer X
I
 equals to:

where �
2
 is the impact factor to control the effect of 

motion on the integration of the historical feature X
p
 , and 

X
K

 denotes the output from the first K layers in the DNN 

model. It is noteworthy that X
K

 is affected by the motion-

conditioned compression ratio c in Eq.  (4). Although a 

direct integration of X
p
 into X

K
 by setting F(Xp, XK) = Xp 

is feasible, our empirical observations reveal its subopti-

mal performance. Instead, we employ a cross-attention 

layer to construct F(Xp, XK) , a strategy that demonstrates 

enhanced performance gains without incurring substantial 

computational overhead. It is worth emphasizing that we 

have aligned the dimensions between X
p
 and X

K
 by bicubic 

interpolation. In F(Xp, XK) , XK
 is the “Query” for informa-

tion retrieval, and X
p
 acts as both “Key” and “Value” for 

reference and aggregation. The output merges X
p
 and X

K
 

features with contextually relevant elements from X
K

.

We train the cross-attention layer parameters and fine-

tune the compressed parameters of the DNN’s first K lay-

ers end-to-end with the same loss function as the original 

visual encoding task. Parameters beyond the K layers are 

frozen, with loss gradients computed only for the first K 

layers and cross-attention layer during backpropagation. We 

also offer parameter sharing across different compression 

levels (Fang et al. 2018). Training data is divided into C 

groups by motion-conditioned compression ratios, and the 

first K layers’ parameters are incrementally trained from c
0
 to 

1 across C steps. Each step freezes parameters from previous 

iterations and fine-tunes current step parameters, to keep the 

total parameter count in the first K layers unchanged. Train-

ing data is prepared from consecutive frames of the original 

dataset, with object detection localizing focusing regions. 

Historical feature extraction from these regions in low-res-

olution preceding frames is derived directly from features in 

the low-resolution frame encoding workflow.

(5)c
d
= c

0
+

d

C
⋅ (1 − c

0
).

(6)XI = XK + �2 ⋅
1

M
F(Xp, XK)

Historical Feature of the Focus 

Impact FactorCompression Ratio

Focus

Historical Feature

Cross-frame OverlappingCross-frame Overlapping

Focus Encoding

Pedestrian-1
Pedestrian-2

Road

Sidewalk
House
Bushes

Fig. 8  Motion-conditioned visual encoder
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5  Implementation

Applications: We evaluate Robye on three popular mobile 

robotic applications: (1) Autonomous Driving: We test on 

CARLA public leaderboard (https:// leade rboard. carla. org/). 

We also build the autonomous driving on a real vehicle. 

The inputs of visual encoding include three cameras facing 

front, left, and right and a LiDAR sensor. The original RGB 

resolution is 800 × 600 . (2) Vision-and-Language Naviga-

tion (VLN): We test on R2R dataset (Anderson et al. 2018). 

The original RGB resolution is 640 × 480 . (3) Path Planning 

of Drone: We test on LANI (Misra et al. 2018). The original 

RGB resolution is 256 × 144 . We also build a drone with 

path planning for real-world test.

Types of visual encoding: We include six types of visual 

encoding: (1) 2D Object Detection: We evaluate on YOLO-

v5, EfficientDet (Tan et al. 2020), and Faster-RCNN (Gir-

shick 2015). (2) 3D Object Detection: We evaluate on Frus-

tumPointNet (Qi et al. 2018), Mono3D (Chen et al. 2016), 

and MLCVNet (Xie et al. 2020). (3) 2D Instance Segmenta-

tion: We evaluate on Mask-RCNN (He et al. 2017b), SOLO-

v2 (Wang et al. 2020), and YOLACT (Bolya et al. 2019). (4) 

3D Instance Segmentation: We evaluate on Mask-RCNN 

3D (He et al. 2017b), PointNet-Seg (Qi et al. 2017), and 

3D-BoNet (Yang et al. 2019). (5) Semantic Segmentation: 

We evaluate on FCN (Long et al. 2015), SegNet (Badri-

narayanan et al. 2017), and DeepLab-v3 (Chen et al. 2019). 

(6) Backbone5: We evaluate on ResNet-101 (He et al. 2016), 

ResNet-50 (He et al. 2016), and VGG (Simonyan and Zis-

serman 2014). It is important to note that Robye applies 

to both 2D image data and 3D sensing data (e.g., LiDAR 

data). In the motion-based projection module, the overlap-

ping parts of 3D sensing data in background and objects 

can be directly obtained based on self translation. In the 

high-resolution focus encoding workflow, we map the focus-

ing regions on the 2D image from the focus localization 

module to the 3D sensing data based on the camera’s angle 

of view and focal length. We accelerate all the models with 

TensorRT (NVIDIA TensorRT 2024).

Action generation model: The inputs into the action gen-

eration model include both frame and focus encoding results. 

LSTM directly takes the output vector(s) from the encoding 

workflows as the input. The LSTM is with two hidden lay-

ers and each layer has 512 hidden units. We have 32 action 

embedding. For VLN and drone path planning, we have 256 

word embedding. We train the action generation models fol-

lowing their typical training scheme (Anderson et al. 2018).

Embedded edge/mobile devices: We evaluate on four 

embedded GPU devices: NVIDIA Jetson Nano, Jetson TX2, 

Jetson Xavier, and Jetson Orin. We also evaluate on two 

mobile devices: Samsung Galaxy S22 (https:// www. samsu 

ng. com/ us/ smart phones/ galaxy- s22/) and Google Pixel 

7 (https:// store. google. com/ produ ct/ pixel_7? hl= en- US).

Edge-assist setup: We evaluate with two options on the 

device: NVIDIA Jetson Nano and Google Pixel 7. The edge 

server is equipped with NVIDIA 1080 Ti. We evaluate with 

two options on the wireless network: WiFi 5 and 5 G. In this 

setup, we offload the DNN-based visual encoding modules 

to the edge server and keep the other modules on the device.

Metrics: For object detection and instance segmentation, 

the metric is mAP. For semantic segmentation, the metric is 

mIoU. For autonomous driving, the metric is driving score, 

which is the product of route completion ratio and infrac-

tion score (Shao et al. 2023). For vision-and-language navi-

gation, the metric is success rate weighted by path length 

(SPL) (Anderson et al. 2018). For drone navigation, the 

metric is success rate (Blukis et al. 2018).

Low-resolution settings: For autonomous driving, the 

resolution is scaled down to 240 × 240 . For VLN, the resolu-

tion is scaled down to 224 × 224 . For drone navigation, the 

resolution is scaled down to 72 × 72.

Settings in appearance-based matching: We set 

N = M = 4 for the grid background matching. We set the 

difference threshold as 17 for background matching and as 

2.4 for object matching.

Settings in motion-conditioned visual encoding: For 

autonomous driving, the focusing regions are cropped 

from the 520 × 520 frame resolution. For VLN, the focus-

ing regions are cropped from the 400 × 400 frame resolu-

tion. For drone navigation, the focusing regions are cropped 

from the 144 × 144 frame resolution. For each model, we 

compress the first 70% layers into 5 compression levels and 

c
0
= 0.3 . We set �

1
= 0.4 and �

2
= 0.5.

Baselines: We selected two leading works in efficient 

object detection to serve as baselines against our low-res-

olution frame encoding workflow inside Robye . The first 

baseline, FlexPatch (Yang et al. 2022), focuses on on-device 

object detection. However, unlike Robye , it lacks integration 

of physical motion awareness and relies on a combination of 

image processing techniques and a decision tree classifier for 

object localization across frames. While FlexPatch employs 

a cropping strategy to reduce detection latency, it incurs 

large overhead for object localization and its edge-intensity-

based object discovery method falls short in robustness. 

The second baseline, AdaMask (Liu et al. 2022), focuses 

on object detection offloading but does not incorporate new 

object discovery, opting instead for periodic full-frame off-

loading, which results in diminished accuracy. Addition-

ally, lacking geometric projection informed by physical 

motion, AdaMask arbitrarily increases the crop size based on 

5 For memonic part localization, we add a lightweight 2D object 

localization head with three additional layers upon the output from 

the backbone to generate proposals of objects’ locations without 

semantic recognition.

https://leaderboard.carla.org/
https://www.samsung.com/us/smartphones/galaxy-s22/
https://www.samsung.com/us/smartphones/galaxy-s22/
https://store.google.com/product/pixel_7?hl=en-US


1047Towards real-time embodied AI agent: a bionic visual encoding framework for mobile robotics  

tracking distance, leading to further latency increases. For 

autonomous driving and VLN, we set the input resolution to 

320 × 320 for all baselines. For drone navigation scenarios, 

the resolution is 100 × 100.

6  Evaluation

6.1  Performance on autonomous driving

The performance of autonomous driving on the CARLA 

public leaderboard (https:// leade rboard. carla. org/) is 

shown in Fig. 9 for 2D visual encoding models and Fig. 10 

for 3D models. Note that in Fig. 10i–k, the visual encoder 

employs a ResNet-18 (Shao et al. 2023) to extract LiDAR 

Bird’s Eye View (BEV) features in addition to 2D visual 

features. Thus, we categorize it under 3D visual encoding 

models.

2D Visual encoding: As shown in Fig. 9, we measure 

the average latency per action decision, frame accuracy, 

and driving score with three types of 2D visual encod-

ing on four mobile and embedded devices. For 2D object 

detection, we present results using YOLO-v5, EfficientDet, 

and Faster-RCNN in Fig. 9a–g. Figure 9h–n show the per-

formance with 2D instance segmentation models including 

Mask-RCNN, SOLO-v2, and YOLACT. We evaluate the 

performance with semantic segmentation, utilizing models 

of FCN, SegNet, and DeepLab, as shown in Fig. 9o–u. It 

is important to note that for each action, we process three 

RGB frames from the front, left, and right camera angles 

through the visual encoding model.

Robye enhances driving scores by +3% to +11% and 

achieves 1.5 to 2.6× faster latency than the model-only 

baseline, due to its motion-aware cross-frame map-

ping, dualistic frame and focus encoding workflows, and 

motion-conditioned focus encoding. The reasons for Robye 

’s superior performance are:

(1) Motion-based projection: Robye leverages motion-

based cross-frame content correlation for efficient spatial 

projection, processing only non-overlapping areas with 

DNN. As the non-overlapping parts are often a small por-

tion of a frame, the computing latency of the non-overlap-

ping encoding is significantly lower than processing the 

whole frame, as shown in Fig. 9.

(2) Dual-level encoding: Different from the single-

level 320 × 320 resolution encoding of the baseline 

model, Robye adopts a two-tier approach: low-resolution 

( 240 × 240 ) holistic and high-resolution focus encoding 

(crops from 520 × 520 ). While the overall frame accuracy 

of Robye may be lower than the baseline, its focus accu-

racy excels due to higher resolution (Fig. 9g, n, u). This 

dual encoding finally contributes to Robye ’s improved 

driving scores.

(3) Motion-conditioned focus encoding: The focusing 

regions in Robye , despite being high-resolution, are small 

crops from the entire frame, making the input size rela-

tively small. For example, a 75 × 75 focusing region from 

a 520 × 520 frame is just 5.5% of a 320 × 320 frame’s size. 

Moreover, Robye ’s DNN computational cost in the focus 

encoding is dynamically adjusted based on motion change 

magnitude, which further enhances efficiency.

Robye surpasses the FlexPatch baseline with a +16% 

to +25% improvement in driving scores and a 1.3 to 2.2× 

speedup in latency. This is achieved through its Dual-Level 

Encoding and Motion-Conditioned Focus Encoding as ana-

lyzed above. Additionally, our Motion-based Projection 

also contributes to the higher performance of Robye over 

FlexPatch. Specifically, as FlexPatch uses image process-

ing methods including edge intensity, optical flow, and a 

decision tree classifier trained on image analysis, together 

for tracking objects across frames, it suffers from high 

latency overhead and limited new object detection capa-

bilities. It also lacks application to semantic segmentation 

(Fig. 9o–u) as FlexPatch is designed for object detection in 

camera surveillance and intrinsically ignores background.

In contrast, Robye employs geometric relationships and 

motion data for cost-effective cross-frame content correla-

tion, applying image-based comparisons only to geometri-

cally correlated areas. This method detects new objects 

and backgrounds using comparisons of element-wise dif-

ferences and SVD. Robye ’s use of a 240 × 240 resolution 

for frame encoding, compared to FlexPatch’s 320 × 320 , 

partially contributes to its latency advantage. However, 

FlexPatch’s limitations in new object discovery and track-

ing accuracy result in lower overall performance, even 

with the higher input resolution. When using the same 

resolution, Robye still outperforms FlexPatch with a 1.2 to 

1.7× speedup and an even greater driving score improve-

ment of +18% to +29%.

3D visual encoding: As shown in Fig. 10, we measure 

the average latency per action decision, encoding accuracy, 

and driving score with three types of 3D visual encoding 

on two mobile/embedded devices and two edge-assisted 

setups. For 3D object detection, we present results using 

FrustumPointNet, Mono3D, and MLCVNet in Fig. 10a–d. 

Figure 10e–h show the performance with 3D instance seg-

mentation models including Mask-RCNN 3D, PointNet-Seg, 

and 3D-BoNet. We evaluate the performance with 2D/3D 

backbone, utilizing models of ResNet-101, ResNet-50, and 

VGG, as shown in Fig. 10i–l. These 3D encoding models 

use inputs in formats like RGB, depth, or point cloud. For 

RGB and/or depth based models, we have inputs from three 

cameras, while we have a single environmental point cloud 

for point cloud based models.

On mobile/embedded devices, with Motion-based 

Cross-Frame Projection, Dual-Level Encoding, and 

https://leaderboard.carla.org/
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Motion-Conditioned Focus Encoding, Robye achieves nota-

ble performance enhancements. Compared to the model-

only baseline, Robye improves driving scores by +3% to 

+10% and reduces latency by 2 to 3.3× . Compared to the 

FlexPatch baseline, it boosts driving scores by +12% to 

+26% and achieves 1.3 to 1.9× faster latency. The reasons 

for Robye ’s superior performance are the same as those in 

2D visual encoding.

In edge-assisted setups, with Motion-based Cross-Frame 

Projection, Dual-Level Encoding, and Motion-Conditioned 

Focus Encoding, Robye outperforms baselines. Specifically, 

it achieves 1.6–2.8× faster latency compared to the model-

only baseline and improves driving scores by +17% to +36% 

while also achieving 1.4–1.6× faster latency than the AdaM-

ask baseline. AdaMask’s limitations include: (1) Lack of 

New Object Localization Capability: AdaMask periodically 

offloads full-frame data for encoding, increasing latency. 

This approach often misses new objects, impacting accu-

racy due to its periodic nature. (2) Cropping Area Expan-

sion: AdaMask expands cropping areas based on the position 

difference from the last detected result on the image plane, 

which often including more background content. These 

larger, unnecessary cropped areas further increase trans-

mission and computing latency. These drawbacks explain 

why Robye , with its motion-based cross-Frame projection, 

surpasses AdaMask in performance on edge-assisted setups.

6.2  Performance on VLN and drone navigation

In our evaluation of Robye on Vision-and-Language Naviga-

tion (VLN) and drone navigation (Figs. 11 and 12), we test 

3D object detection and semantic segmentation models on 

a Jetson Xavier embedded GPU and an edge-assisted setup 

with Google Pixel 7 and 1080 Ti. For 3D object detection, 

Robye surpasses the model-only baseline with a 1.4–2.7× 

latency speedup and a +3% to +6% performance increase. It 

improves latency by 1.5 to 1.9× speedup and performance 

by +6% to +9% over the AdaMask baseline, and shows a 

1.7 to 2.2× latency speedup and +7% to +8% performance 

enhancement compared to the FlexPatch baseline. With 
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semantic segmentation models, Robye outperforms the 

model-only baseline with a 1.3–2× latency speedup and a 

+4% to +7% performance increase. Besides the reasons dis-

cussed in Sect. 6.1, FlexPatch’s reliance on edge intensity for 

new object discovery leads to excessive patch generation in 

indoor environments, further resulting in speed and perfor-

mance losses in VLN scenarios.

6.3  Performance on real robotic platforms

To evaluate the performance of Robye , we test them on 

two real hardware platforms: (1) In the car setup (shown in 

Fig. 13a, b), we utilize three Intel Realsense L515 (https:// 

www. intel reals ense. com/ lidar- camera- l515/) as the captur-

ing device, all these cameras connect to the Jetson AGX 

Fig. 11  Performance of vision-

and-language navigation
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Orin (https:// www. nvidia. com/ en- il/ auton omous- machi nes/ 

embed ded- syste ms/ jetson- orin/) through USB 3.1 cables. 

We take 3D-BoNet as the visual encoder. The Inertial Meas-

urement Unit (IMU), and GPS sensor are also attached to 

this system. During the road test, we collect the actions from 

the human driver and Robye for action matching rate cal-

culation. (2) In the drone setup (shown in Fig. 14a, b), we 

design and build a Hexacopter as the testing platform for 

drone navigation. The Hexacopter is equipped with six 4006 

motors and a Pixhawk (https:// pixha wk. org/) flight control-

ler. The capturing device Intel Realsense L515 is connected 

to an on-board Jetson TX2. We take Mono3D as the visual 

encoder. The Jetson TX2 communicates with Pixhawk flight 

controller through I2C protocol. We evaluate Robye and the 

baselines on performance in Figs. 13c, d and 14c, d. Over-

all, Robye outperforms the baselines by 9% to 18% higher 

matching rate, 2.2 to 2.7× latency speedup, and 36% to 47% 

power consumption reduction (20 min).

6.4  Ablation study

We investigate the individual contributions of key modules 

within Robye to its overall performance enhancement. We 

selectively remove each module and observe the result-

ant impact on performance, as detailed in Table 1, on the 

autonomous driving application using Mono3D (Chen et al. 

2016). Based on the observations, we analyze the contribu-

tions of each module as follows:

Motion-based projection: The module identifies over-

lapping areas between consecutive frames based on the 

robot’s movement. Instead of running a DNN model to 

encode these areas, Robye directly propagates the encod-

ing results from the previous frame. By reducing the DNN 

model’s input size, we lower the computation required. 

On average, the number of operations in the DNN encoder 

decreases from 19.2 to 13.7 GFLOPs per frame in the low-

resolution encoding workflow with the motion-based pro-

jection module. This reduction in computation translates to 

a decrease in latency per action from 113.9 to 85 ms. Fur-

thermore, this reduction in computation has only a minimal 

negative impact on accuracy (3D IoU) and driving score, 

as we approximate the encoding results of the overlapping 

areas rather than ignoring them.

Appearance-base matching: The module further refines 

the overlapping areas identified by the motion-based projec-

tion module using image comparison. It is designed to detect 

areas with new content within the overlapping regions, i.e., 

false positives. Without the appearance-based matching 

module, the overlapping areas are larger, including these 

false positives, which results in reduced DNN computation. 

On average, the number of operations in the DNN encoder 

increases from 12.8 to 13.7 GFLOPs per frame in the low-

resolution encoding workflow when using the appearance-

based matching module. However, identifying new content 

is crucial for maintaining a high driving score as ignoring 

objects can lead to infractions and route completion failures. 

Based on our observation, without the appearance-based 

matching module, the driving score drops from 69 to 48 

due to missed obstacles and objects. Thus, the appearance-

based matching module plays an important role in improving 

the driving score with trivial increase of computation and 

latency.

Motion-conditioned encoder: The module adaptively 

adjusts the DNN computation for processing the focusing 

regions based on position changes between consecutive 

frames. By reducing computation for small movements of 

the robot, the average number of operations in the DNN 

encoder decreases from 21.3 to 15.1 GFLOPs per frame 

Intel RealSense Camera

Jetson 

AGX Orin

IMU and GPS

(a) Car Test System (b) On-car Setup

Robeye

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

500

0

400

300

200

100

L
aten

cy
 p

er A
ctio

n

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

500

0

400

300

200

100

L
aten

cy
 p

er A
ctio

n

P
o
w

er
 C

o
n
su

m
p
ti

o
n 10

0

8

6

4

2

Model Only FlexPatch

Unit: ms Unit: kJ

(c) Performance Evaluation (d) Power Consumption Evaluation

Fig. 13  Real car test on autonomous driving

Intel RealSense 

Camera Jetson 

TX2

(a) Drone Test System (b) Drone Navigation Test

Robeye

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

700

200

600

500

400

300

L
aten

cy
 p

er A
ctio

n

)
%(

eta
R

g
ni

hcta
M

n
oitc

A

100

0

80

60

40

20

700

200

600

500

400

300

L
aten

cy
 p

er A
ctio

n

P
o

w
er

 C
o

n
su

m
p

ti
o

n 10

0

8

6

4

2

Model Only FlexPatch

Unit: ms Unit: kJ

(c) Performance Evaluation (d) Power Consumption Evaluation

Flight Control

System

Fig. 14  Real drone test for navigation

https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/
https://pixhawk.org/


1052 X. Hou et al.

in the high-resolution encoding workflow when using the 

motion-conditioned encoder. This reduction in computation 

leads to a decrease in latency per action from 109.6 to 85 

ms. The motion-conditioned encoder shows a slight decrease 

in accuracy (3D IoU) from 56.4 to 56 and a drop in driving 

score from 71.1 to 69.

7  Discussion

Robye for different robotic applications: The development 

of a universally applicable visual foundation DNN model for 

robotic applications remains a challenging task (Xu et al. 

2024; Majumdar et al. 2024). The performance improvement 

of Robye primarily comes from two designs: (1) reducing 

computation on overlapping areas across frames, and (2) 

high-resolution encoding on focus regions only. In low-

speed applications such as indoor and downtown navigation, 

overlapping areas between frames are large, which leads to 

more computation reduction. In contrast, high-speed appli-

cations such as highway driving have smaller overlapping 

areas, which leads to less computation reduction. Similarly, 

applications with more focusing regions consume more 

computing resources. Thus, to keep fast response for differ-

ent applications, we need to adaptively adjust the available 

computing resources for them. For example, by profiling the 

relationship between the DNN-based encoder’s computing 

latency and input size offline, we can prepare more com-

puting resources to high-speed applications and those with 

more focus regions.

Robye for different DNN architectures: The design of 

Robye is orthogonal to DNN-based embodied AI systems 

and is adaptable to visual encoders of different DNN archi-

tectures, including CNNs and Vision Transformers (ViT). 

Using a pre-trained DNN-based visual encoder (Radosavo-

vic et al. 2023; Khandelwal et al. 2022; Ryu et al. 2024; 

Huang et al. 2023; Wijmans et al. 2019a; Li et al. 2022; 

Yen-Chen et al. 2020), we directly take it as the DNN-based 

visual encoder in the low-resolution frame encoding work-

flow. We prepare a dynamic version of the encoder with mul-

tiple compression levels following (He et al. 2017a). There 

is no need to modify the other modules of motion-based 

projection, appearance-based matching, and focus localiza-

tion in Robye.

Limitations of Robye : We discuss the potential limita-

tions of the components in Robye and provide suggestions 

on their improvement as follows:

(1) Motion-based projection: The performance of posi-

tion prediction and tracking affects the accuracy of object 

projection. For lightweight position prediction and tracking 

algorithms such as the Kalman Filter (Welch et al. 1995), 

ORB (Mur-Artal and Tardós 2014), and Optical Flow (Kale 

et al. 2015), their prediction and tracking accuracies tend to 

decrease in more dynamic environments. For example, in 

high-density crowds, an object may not appear in consecu-

tive frames but rather intermittently. In high-speed driving, 

motion blur requires additional correction in pixel-based 

tracking. To adapt the motion-based projection to different 

environments, an environment-type detection module can be 

incorporated to switch the object projection schemes accord-

ingly. For example, in high-density crowds, tracking can be 

extended from two consecutive frames to multiple frames. 

In high-speed driving scenarios, motion blur in RGB frames 

can be corrected using deblurring methods (Cho and Lee 

2009; Shan et al. 2008; Nayar and Ben-Ezra 2004).

(2) Appearance-based matching: The robustness of 

appearance-based matching depends on the relative dis-

placement between the self robot and other objects and the 

background, especially for pixel-value comparisons. A large 

relative displacement can cause a drastic change in the view 

of the same object, such as shifting from a front view to a 

side view. In such cases, appearance-based matching fails 

and the unmatched parts are processed by the DNN-based 

visual encoder, which results in redundant computation. One 

potential solution to address these issues is the adoption of 

Siamese Neural Networks to improve the robustness of 

appearance-based matching by capturing the semantic mean-

ing (Chicco 2021; Melekhov et al. 2016). When integrating 

such neural networks into the appearance-based matching, 

it is important to consider the computational overhead to 

ensure efficiency.

(3) Focus localization: Although human experts only 

need to specify the object types to focus on, the training 

of the focus localization module still relies on a supervised 

approach using pre-trained object detection models. This 

dependency on human input limits the generality of the 

focus localization. One potential improvement is to train the 

focus localization module in an unsupervised manner. For 

Table 1  Ablation study: Robye 

w/ a module vs Robye w/o a 

module (GLOPs and 3D IoU 

are compared in low-resolution 

and high-resolution encoding 

workflows)

Robye GFLOPs 

(low-r, high-r)

IoU (low-r, high-r) Latency (ms) Driving Score

Original Robye 13.7, 15.1 53, 56 85 69

w/o Motion-based projection 19.2, 15.1 53.5, 56 113.9 69.5

w/o Appearance-based matching 12.8, 15.1 47, 52.8 82.7 48.0

w/o Motion-conditioned encoder 13.7, 21.3 53, 56.4 109.6 71.1
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example, we can randomly initialize the types of objects to 

focus and adjust them adaptively based on the application’s 

metrics (e.g., driving score and SPL). Specifically, if the 

metric improves when a particular type of object is included, 

it indicates that the object requires focus, and vice versa.

(4) Motion-conditioned visual encoder: The training of 

the motion-conditioned visual encoder involves the typical 

retraining process used for compressed DNN models (He 

et al. 2017a). While it is common to retrain or fine-tune 

DNN models after compression, it adds extra work to pre-

pare the motion-conditioned visual encoder for a robotic 

application. Given the trend towards developing foundation 

models that are generally applicable across different applica-

tions (Xu et al. 2024), it is also crucial, in the future work, to 

explore methods for preparing a foundation motion-condi-

tioned visual encoder that can be utilized in various applica-

tions, which avoids the need for retraining from scratch as 

required by other model compression techniques.

8  Conclusion

This paper proposes Robye , a bionic visual encoding frame-

work to tackle the challenge of efficient visual encoding in 

mobile robotic applications. Drawing inspiration from the 

human visual system, Robye incorporates focus processing 

and motion-aware content correlation mechanisms into the 

mobile robotic encoding domain. The dual workflows in our 

framework include high-resolution focus processing, lower-

resolution frame analysis, motion-based projection for cross-

frame correlation, and a motion-conditioned adaptive DNN 

execution strategy. These designs collaboratively lead to a 

reduction in computational costs associated with encoding 

tasks. Specifically, our evaluation across robotic scenarios of 

autonomous driving, vision-language navigation, and drone 

navigation, demonstrates its capabilities. Specifically, Robye 

outperforms baselines in speed (ranging from 1.2 to 3.3× 

faster), performance (showing a 4% to 29% increase), and 

power consumption ( −36% to −47%).
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