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Abstract

Embodied artificial intelligence (Al) agents, which navigate and interact with their environment using sensors and actuators,
are being applied for mobile robotic platforms with limited computing power, such as autonomous vehicles, drones, and
humanoid robots. These systems make decisions through environmental perception from deep neural network (DNN)-based
visual encoders. However, the constrained computational resources and the large amounts of visual data to be processed
can create bottlenecks, such as taking almost 300 milliseconds per decision on an embedded GPU board (Jetson Xavier).
Existing DNN acceleration methods need model retraining and can still reduce accuracy. To address these challenges, our
paper introduces a bionic visual encoder framework, Robye, to support real-time requirements of embodied Al agents. The
proposed framework complements existing DNN acceleration techniques. Specifically, we integrate motion data to identify
overlapping areas between consecutive frames, which reduces DNN workload by propagating encoding results. We bifurcate
processing into high-resolution for task-critical areas and low-resolution for less-significant regions. This dual-resolution
approach allows us to maintain task performance while lowering the overall computational demands. We evaluate Robye
across three robotic scenarios: autonomous driving, vision-and-language navigation, and drone navigation, using various
DNN models and mobile platforms. Robye outperforms baselines in speed (1.2-3.3 X), performance (+4% to +29%), and
power consumption (—36% to —47%).

Keywords Mobile robotics - Visual encoding - Embodied Al - Computer vision

1 Introduction

Embodied AI agents are designed for interaction and navi-
gation in physical environments. They combine sensory
inputs and actuator outputs for perception and action. These
systems are deployed on mobile robotic platforms for tasks
such as autonomous navigation and object manipulation, in
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which visual perception (encoding) plays a crucial role (Hu
et al. 2019; Qi et al. 2020; Schumann and Riezler 2022;
Thomason et al. 2018; Zhu et al. 2021). This visual encod-
ing enables the embodied Al agents to analyze and interpret
visual data for decision-making. As shown in Fig. 1, this
mimics human-environment interaction, aiding in informed
decision-making and appropriate environmental responses
in robots. However, the expanding capabilities of vision-
based robotic systems also require increased computational
capacity, especially in mobile robotics where the embodied
Al agents directly interact with their environment. Figure 2
demonstrates this in three major mobile robotic applica-
tions of autonomous driving, vision-and-language naviga-
tion (VLN), and drone navigation. We measure their latency
and power consumption on an embedded GPU platform,
Jetson Xavier (https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-agx-xavier/). For visual
encoding, we use a Mono3D object detection model (Chen
et al. 2016). We compress the model with state-of-the-art
acceleration techniques (Murti et al. 2022), which reduces
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Fig.2 Latency and power consumption (10 min) measured on Jetson
Xavier (https://www.nvidia.com/en-us/autonomous-machines/embed
ded-systems/jetson-agx-xavier/)

latency by 44.7% with accuracy loss of 8.2%. For action gen-
eration, we implement an LSTM model with 512 hidden
units (Anderson et al. 2018). For language encoding, we
use a standard attentive encoder—decoder model (Bahdanau
et al. 2014; Zhang et al. 2020).l We observe that, across
all the three applications, even with state-of-the-art model
acceleration techniques, visual encoding accounts for over
70-94% of the latency and power consumption, indicating
that it is critical to address the computational load imposed
by visual encoding in mobile robotic applications.
Neuroscience has advanced our understanding of human
visual encoding and its role in behavior. Key findings
include: First, the human visual system has a dichotomous
mechanism and processes retinal inputs selectively, focusing
on high-acuity focus vision in the central field and broader,
less detailed encoding in the peripheral field (Stewart et al.
2020). Second, iconic memory plays a crucial role in visual
encoding, acting as a short-term repository for visual stimuli
like shape, color, and motion, and enabling efficient integra-
tion of visual information in dynamic scenes (Becker et al.
2000; Coltheart 1980; Gegenfurtner and Sperling 1993).

! In the cases of VLN and drone navigation, the embodied Al agent
is given only one natural language instruction at the beginning of the
navigation process.

Third, the human visual system combines visual inputs with
motion information of proprioceptive and vestibular signals
for a cohesive representation of the external world, enhanc-
ing spatial perception through multisensory integration in
the visual and vestibular cortexes (Beers et al. 1996; Gr and
Gr 1972).

Inspired by human visual system principles, we propose
Robye, a bionic visual encoding framework for mobile robot-
ics. As illustrated in Fig. 1, Robye integrates the mechanisms
of dichotomous processing and motion-aware iconic mem-
ory into visual encoding, to reduce computational needs.
Specifically, the framework includes: (1) Dual workflows:
Robye applies high-resolution encoding on task-related focus
areas and low-resolution encoding on the rest contents, to
concentrate computation to key areas. (2) Motion fusion:
Instead of relying on visual information only, Robye utilizes
motion data (the position, direction, and speed of the robot
and surrounding objects) of sensors on mobile robotics to
aid in matching contents across frames. (3) Encoding result
sharing: Robye caches the encoding result of the preceding
frame and shares it with the matching contents in the current
frame, which reduces computing load of deep neural net-
work (DNN) encoding. The contributions of this work are:

e Robye is an efficient visual encoding framework designed
for mobile robotics. The innovations to reduce compu-
tational costs and keep high performance include: the
dichotomous processing for environmental understanding
and the motion-based spatial geometric projection for
lightweight cross-frame content correlation.

e To localize overlapping contents between frames, we pro-
pose to employ sensor-based motion data, which utilizes
lightweight, geometric projection-based localization that
demands fewer computational resources than image pro-
cessing methods.

e To reduce DNN computation, we propose to emulate the
iconic memory mechanism from human vision, which
integrates past encoding results for current frame analy-
sis, and adaptively regulating the visual encoding process
based on inter-frame motion changes, to further reduce
computational load.

e To preserve the performance of robotic applications, we
propose a dual workflow of visual encoding, which mir-
rors human vision mechanism. It includes task-related
focus localization and high-resolution encoding, to
reduce computational cost without sacrificing perfor-
mance of mobile robotic applications.

e We evaluate Robye across three mobile robotic applica-
tions (autonomous driving, vision-and-language naviga-
tion, and drone navigation) using various deep learning
models on mobile and embedded devices of Jetson Nano,
Jetson Xavier, Google Pixel 7, and Samsung Galaxy S22.
The results show that Robye outperforms baselines in
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terms of latency (by 1.2-3.3%x speedup), performance (by
+4% to +29%), and power consumption (—36% to —47%).

2 Background
2.1 Vision-based mobile robotic systems

Mobile robotic systems increasingly use visual encoding in
applications such as autonomous driving, vision-and-lan-
guage navigation (VLN), and drone navigation. This tech-
nology is vital for interpreting road scenes in autonomous
driving (Shao et al. 2023; Zhang et al. 2021), integrating
visual perception with natural language in VLN (Hu et al.
2019), and enabling drones to navigate and avoid obstacles
in real time (Blukis et al. 2018). Such integration enhances
the cognitive abilities of mobile robots, boosting their auton-
omy in complex environments (Gu et al. 2022). In these
systems, environmental data from sensors and cameras are
processed using deep learning, particularly convolutional
neural networks (CNNs) (Wijmans et al. 2019b; Ye et al.
2021; Wahid et al. 2021; Anderson et al. 2018), for tasks
like object detection and semantic segmentation (Gu et al.
2022). The perception outcomes are fed into the action gen-
erator, where the robot formulates action strategies. There
are different options for the action generator. Most stud-
ies adopt Recurrent Neural Networks (RNN) (Duan et al.
2022; Wijmans et al. 2019b), such as Long Short-Term
Memory (LSTM) (Wijmans et al. 2019a; Wortsman et al.
2019; Wahid et al. 2021; Anderson et al. 2018) and Gated
Recurrent Unit (GRU) (Khandelwal et al. 2022; Ye et al.
2021; Das et al. 2018), or transformers (Shao et al. 2023;
Zhu et al. 2020; Fang et al. 2019). Recent works also pro-
pose to generate actions with diffusion-based methods (Ryu
et al. 2024; Huang et al. 2023). Nevertheless, despite dif-
ferent types of action generators, they generally rely on
the perception outputs from the visual encoders to make
decisions on the actions. Thus, improving the efficiency of
the visual encoding process is critical regardless what kind
of actions generators are used in the vision-based mobile
robotic systems. To meet the need for efficient visual encod-
ing, we propose Robye, drawing inspiration from the human
visual system. By incorporating motion-awareness, iconic
memory, and a dichotomous approach, Robye enhances the
efficiency and effectiveness of visual encoding in mobile
robotic applications.

2.2 Visual encoders in robotics
In vision-based robotics, the development of visual encod-
ers is becoming one of the pivotal studies at the intersec-

tion between computer vision and robotics (Gu et al. 2022).
While it is commonly accepted that the visual encoders in
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robotics are original neural network models for computer
vision tasks such as classification (Radosavovic et al. 2023;
Khandelwal et al. 2022; Ryu et al. 2024; Huang et al. 2023)
and semantic segmentation (Wijmans et al. 2019a; Li et al.
2022; Yen-Chen et al. 2020), recent works are focusing on
escalating the training methods from supervised learning to
self-supervised learning (Wang et al. 2024; Pari et al. 2021)
such as contrastive learning (Khandelwal et al. 2022; Fung
et al. 2023) and masked autoencoder (Radosavovic et al.
2023; Majumdar et al. 2024). While these studies keep the
same neural architectures of the visual encoders as other
works, they substitute the traditional supervised learning
methods with self-supervised learning methods to train the
parameters in the encoders in the training stage. Compared
to the supervised trained encoders, the self-supervised
trained encoders guide the robots to accomplish tasks with
better performance (Khandelwal et al. 2022). Majumdar
et al. (2024) and Nair et al. (2022) also explore on whether
visual encoders trained by masked autoencoder are univer-
sal to different types of robotic tasks. It is important to note
that, as we focus on improving the efficiency of the visual
encoders in the inference stage, the changes in the training
methods do not affect the design of the proposed framework.

2.3 Video deep neural networks

Video Deep Neural Networks (DNNs) are designed to ana-
lyze sequences of frames (Jain et al. 2019; Kim et al. 2022;
Liet al. 2021; Rhee et al. 2022; Sun et al. 2022a), extending
beyond single-image inputs by creating model architectures
specifically tailored for video data (Awan and Shin 2021;
Lee et al. 2021; Rhee et al. 2022; Zhuang et al. 2020). These
models incorporate historical data from previous frames
into the current frame analysis through lateral connections,
bridging raw pixels (Kim et al. 2022; Petrovai and Nedevschi
2022; Wang et al. 2021; Woo et al. 2021; Xie et al. 2021; Ye
et al. 2022; Liu et al. 2019, 2022; Yang et al. 2022; Du et al.
2020) or DNN features (Chen et al. 2022; Li et al. 2021;
Rhee et al. 2022; Seong et al. 2021; Sun et al. 2022a; Zhou
et al. 2022; Zhuang et al. 2023) between frames. However,
such integration is resource-intensive (Kim et al. 2022; Sun
et al. 2022b; Zhuang et al. 2023; Chen et al. 2022; Rhee et al.
2022; Zhou et al. 2022). Furthermore, most video DNNs
deviate from the principles of single image-based DNNs
due to their specialized neural architectures, losing compat-
ibility (Awan and Shin 2021; Lee et al. 2021; Zhuang et al.
2020; Kim et al. 2022; Li et al. 2021; Rhee et al. 2022; Sun
et al. 2022a). While some pixel-based video DNNs comple-
ment image-based models, they are constrained to the encod-
ing type of 2D object detection (Liu et al. 2019, 2022; Yang
et al. 2022; Du et al. 2020). These models also encounter
considerable image processing challenges of identifying new
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objects and tracking, leading to significant overhead (Liu
et al. 2022; Yang et al. 2022).

Instead of relying solely on pixel information, we pro-
pose novel techniques that harness motion data from mobile
robots’ accelerometers and speed sensors, facilitating spa-
tial geometric projection to correlate content, including both
background and objects, across consecutive frames. These
methods surpass pixel-based video DNNs in speed and
sensitivity to new objects. Furthermore, we develop a com-
prehensive visual encoding framework tailored for mobile
robots. This framework is designed to be compatible with
single image-based DNNs and general to different encoding
types. This framework incorporates a dual-resolution DNN
processing approach alongside motion-conditioned encod-
ing, significantly cutting down computational demands while
enhancing the performance of tasks undertaken by mobile
robotics. These designs not only streamline data process-
ing but also boost the efficiency and effectiveness of robotic
encoding and interaction within dynamic environments.

3 Robye overview

We propose Robye, a visual semantic encoding framework
for mobile robotics, to enhance efficiency by mimicking
human vision. As shown in Fig. 3, the framework has two
workflows: low-resolution frame encoding (the ‘purple’
modules) and high-resolution focus encoding (the ‘yellow’
modules), with motion information and cached historical
result (iconic memory) to boost efficiency. Specifically, in
the frame encoding workflow, Robye aligns consecutive
frames’ background and objects using sensor-informed
geometric projection in the motion-based projection mod-
ule. The appearance-based matching module analyzes these
aligned contents to localize new objects. Robye encodes the
overlapping contents between consecutive frames by histori-
cal result propagation, and applies DNN-based visual encod-
ing only on the non-overlapping content and new objects. In

the focus encoding workflow, Robye localizes focusing areas
based on application requirements and adaptively adjusts
computational load on them conditioned by motion data.
Given the encoding result from Robye, an action generator
produces actions for mobile robotics.

4 Design of Robye
4.1 Low-resolution frame encoding

The low-resolution frame encoding in Robye emulates
human peripheral vision and keeps full-frame understand-
ing with low computational load. Specifically, it utilizes
an iconic memory mechanism to transfer visual encoding
result across frames through motion-based projection and
appearance-based matching. By aligning the overlapping
areas across frames, we propagate visual encoding result of
the matched parts across frames and only process unmatched
areas with DNN. Overall, by integrating motion-assisted
correlation, iconic memory, and dual-level encoding, this
workflow mirrors human vision efficiency to lower compu-
tational needs.

4.1.1 Motion-based projection

In the human visual system, motion plays a crucial role in
shaping perception. Humans effectively track motion, both
of themselves and objects in their surroundings, for predic-
tive estimations of upcoming visual stimuli. This capability
enables transferring information from past to future visual
processing and reduces the computational load in visual
encoding. In Robye, we mimic this process with a “motion-
based projection” module, which incorporates motion into
the visual encoding of robotic systems. To keep resource-
efficient, this module identifies overlapping areas in both
background and objects across frames, which are then
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analyzed for appearance features in the “appearance-based
matching” module.

As shown in Fig. 4, the motion-based projection is
divided into the localization for the background and for
objects. The background component, being static in the
world coordinate system, changes position between frames
due to the self movement. Conversely, object localization
accounts for both the self movement and object dynamics
within the environment. To localize object positions, we
can adopt prediction or tracking techniques to estimate their
temporal positions accurately. A plethora of options exists
for these predictive and tracking approaches. In our imple-
mentation, we employ a hybrid way. Initially, an Object-
oriented Fast Robust Binary (ORB) feature-based tracking
method (Mur-Artal and Tardés 2014)? is used for newly
appearing objects over three frames, with their world posi-
tions stored to the iconic memory. Subsequently, we employ
a Kalman Filter (Welch et al. 1995) for predicting object
positions, utilizing historical data from the iconic memory.

Background projection: Fig. 5 shows our use of the pin-
hole camera model to estimate the overlapping background
area between consecutive frames. We record the self posi-
tion at times ¢ and # — 1as (x,,y,,z,) and (x,_,y,_;, Z,_), With
s representing the transition vector between these points.
Assuming that the z-axis is perpendicular to the camera’s
image plane, s is split into s, (along the z-axis, affecting
zooming) and s,, (on the xy-plane, causing parallel back-
ground shifts).

2 The ORB feature-based tracking method is applied to 2D frames
and we map it to the world position based on the robot’s self posi-
tions.
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from the background in outdoor scenes, using frame encod-
ing results from the previous frame at# — 1. We approximate
d,asd,_| +|s.|, where “~" and “+” denote moving towards
or away from the background, respectively. This approxi-
mation, as shown in Fig. 5, helps estimate the overlapping
background area effectively.

With the orthogonal zooming vector s, the four corners of
the image plane at 7 — 1, {(0,0), (0,1)), (/,,1,), (,, 0)}, is
zoomed to { (-Az, —Azy) ,  (—Az, l), + Azy) ,
(,+ Az, [, + AZ,}) , (I, + Az, —Azy)a . LV here
Azxztan(%)-(;—"‘—l)-f, Azy=tan(7"')-(;—‘l‘—1)-f,
L.=2f- tan(%), and/, =2f - tan(%). With the parallel moving
vector s, each 2D point (i, v) on the image plane at ¢ — 1is
shifted to (u— As,,v— As,), where As, = g Isyl, and

As, = §’ = |84y l,- The| - |; represents the signed projection of a

vector on the j-axis.

By combining the effects from the orthogonal zoom-
ing vector and the parallel moving vector, we obtain the
mapping positions at ¢ of the four image corners at t — 1 as
{(=Az, — As,, —Az, — As)), (=Az, — As,, [, + Az, — As,),
(I, + Az, — As,, ly + Azy - Asy) ,
(, + Az, — As,, —Az, — As,)}. With the four mapping cor-
ners of the image plane from ¢ — 1 to ¢, we obtain the inter-
section of union (IoU) between the two frames in frame ¢ as:

I, = { max(0, —Az, — As,), max(0, —Az, — As,),

. . 1

min(/,, [, + Az, — As,), min(,, [, + Az, — As,)} M
where the first two elements represent the xy-values of the
bottom-left corner of the IoU in frame ¢ and the last two
elements represent the xy-values of the top-right corner. By

3 The original point is bottom-left corner and the indexing is clock-

wise.
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mapping /, to the image plane at # — 1, we obtain the IoU
between the two frames in frame ¢ — 1 as:

I_, =d,/d,_, - {max(0,-Az, — As) + As,,

max(0, —Azy - Asy) + Asy,

min(l,, [, + Az, — As,) + As,, @

min(l,, [, + Az, — As,) + As, )

We visualize the procedure of background’s projection
between consecutive frames in Fig. 4.

Object projection: Objects in frames experience spatial
changes due to the self movement and their own motion. We
track or predict their world positions, denoted as (xj’., yj’., zj’.)
for object j at time . Combined with the robot’s position
(x; ¥;» 2,) and camera focal length f, we project the object’s

.. . o f .
position in frame ¢ as ( = X _(z;—z,) y].), assuming the

z-axis aligns with the camera’s facing direction. We deter-
mine an object’s area in frame ¢ using the previous frame’s
visual encoding result, taking either the bounding box from
object detection or the minimum box covering the semantic
segmentation mask at# — 1, mapping 3D bounding boxes to
2D planes for 3D detection. In this way, we obtain the size
of the object j at t — 1, denoted as (X]f", I/j"l). We scale the
size by the distance change from ¢ to r—1, i.e.,
X' =d'/d7" - X" 'andY' = d'/d'"" - Y'7!, where d' and d'~!
J J R L J J J
are the distance between the robot and the object j at # and
t — 1, respectively. We take the (Xjf , YJ?) bounding box center-
A S
@=z) "7 (@=z)
in frame ¢. We visualize the procedure of objects’ projection
between consecutive frames in Fig. 4.

It is important to note that the motion-based projection in
Robye are not designed for exact overlapping region identi-
fication between frames. Instead, we aim to cost-effectively
identify potential overlapping areas considering self-motion
and object motion patterns. These candidate overlapping
parts are then further examined by the appearance-based
matching module to determine if they require DNN-based
visual encoding.

ing at ( . y;) as the memonic part of object j

4.1.2 Appearance-based matching

The appearance-based matching module receives as input
the potential overlapping parts identified by the motion-
based projection module. As shown in Fig. 6, we design
individual comparative analysis for background and object
matching, respectively.

Background matching: For background matching,
we scale and align the background part from the previous
frame, X}, with the motion-based overlapping area X in
the current frame, as depicted in Fig. 6’s “Grid Background
Matching”. We divide both X' and X, into an N x M grid,

(" Grid Background Matching
Frame #-1:

[

Frame #:

(" Motion-based Overlapping N
Frame #-1:

Object Matching
Frame t-1:

Not matched object
Not matched background
Not overlapped background

Fig.6 Appearance-based matching

calculating element-wise differences between correspond-
ing grid cells. A predefined threshold on this difference
determines a match; for example, non-matching cells are
highlighted in blue in Fig. 6. When computing average dif-
ferences, (potential) object parts are nullified by setting their
differences to zero.

Object matching: For object matching, we use Singu-
lar Value Decomposition (SVD) for assessing object cor-
respondence between time steps ¢ — 1 and ¢. Our empirical
evaluations suggest that SVD yields superior performance
in measuring object similarity compared to element-wise
difference with trivial computational overhead. We represent
object j at time 7 — 1as X'~! and at time ¢ as X]’., decomposing
them into Ut — 1%t — thT_l and U, %, V. The singular values
in X, reflect the importance of basis vectors in representing
Xj’fl and X]’ We calculate the Frobenius norm* of the differ-
ence between Xt — 1 and Xt — 1, with a smaller value indicat-
ing higher similarity. We set a threshold to decide whether
the objects of r — 1 and # match.

4.1.3 Historical result propagation

For the matched regions within the background and objects,
we derive their visual encoding result by employing a process
of translation and scaling, which is executed in accordance
with the motion-based projection module. This procedure
involves the transformation of the relevant result from the
previous frame to align with the current frame’s context,
which enables the direct generation of visual encoding result.

* The Frobenius norm is defined as the square root of the sum of
squares of all singular values within Z,.
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4.1.4 DNN-based visual encoder

Non-overlapping areas in Robye fall into three types: (1)
areas not projected by the motion-based projection module,
(2) background parts that do not match in the appearance-
based matching module, and (3) object parts that also remain
unmatched in the appearance-based matching module. Fig-
ure 6 visualizes examples of non-overlapping areas in blue.
Notably, new objects appearing in each frame are effectively
captured as non-overlapping areas through our grid back-
ground matching method. For these non-overlapping areas,
Robye utilizes a DNN to obtain visual encoding results. As a
general framework for robotic visual encoding, Robye allows
for the integration of various DNN within its DNN-based
visual encoder.

Our low-resolution frame encoding workflow has two
distinct sources for the final results: (1) Overlapping part
results from the historical result propagation module, and
(2) Non-overlapping part results via the DNN-based visual
encoder module. The complete encoding result for a frame
comes from merging these two. Since there is no overlap
between the parts, their combination is based on their spatial
positions.

4.2 High-resolution focus encoding

The focus visual encoding workflow in Robye involves two
steps. First, it uses a cost-effective model to localize focus-
ing regions with bounding boxes. Second, the workflow
adaptively adjusts computational load for DNN-based vis-
ual encoding based on motion change magnitude, to reflect
how position changes affect feature variation over time. As
motion changes increase, the computational cost rises, while
the influence of historical features decreases.

4.2.1 Focus localization

In mobile robotics, such as autonomous driving, under-
standing the spatial relationships between the robot, nearby
objects, and the background is key to identifying focusing
regions. Objects closer to an autonomous vehicle are more
crucial for immediate decisions, while distant objects can
still be significant in vision and language navigation. Con-
sequently, focus localization is split into two types: distance-
relevant, focusing on proximate objects, and distance-irrel-
evant. Figure 7 demonstrates this, categorizing vehicles and
pedestrians as distance-relevant and traffic signals and signs
as distance-irrelevant.

In mobile robotics, human experts play an important role
in creating ground-truth annotations for training datasets,
especially for tasks resembling human activities. We involve
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human experts to define ground-truth focusing regions for
training our focus localization model. However, unlike
labor-intensive dataset labeling, we only require experts
to identify object categories for focusing regions and set
distance thresholds. Using an object detection model, we
automate the annotation of ground-truth bounding boxes in
the dataset, by omitting semantic class labels and retain-
ing only the coordinates. This process yields two sets of
ground-truth bounding boxes, one for each localization type.
These bounding boxes, termed “binary masks,” lack seman-
tic labels, dividing image content into focusing regions and
the rest.

To design the focusing region localization model, we
modify the output layer of an object detection model, by
removing neurons for semantic labels and keeping those
for bounding box coordinates. The model is trained using
a bounding box regression loss function, expressed as
L= (b — by )+ (by = by o) + (by — by ., + (by — by ) Where
b,,b,, b5, b, denote the four coordinate values defining the
bounding box, and b, ,, represents their corresponding
ground truth counterparts. The removal of semantic recog-
nition allows for model compression with minimal IoU loss.
For example, we compress the Tiny-YOLO model by about
63.7% in operations, with only a minor IoU reduction of less
than 7.5%. This demonstrates the efficiency of our binary-
masking focus localization model.

4.2.2 Motion-conditioned visual encoder

Mirroring the human visual system’s foveation acuity, we feed
high-resolution focusing regions into our motion-conditioned
visual encoder module. Using motion data from the motion-
based projection module, we integrate historical features of
focusing regions into the encoding process. This integration
adapts to motion change magnitudes in the environment, as
shown in Fig. 8. If a focusing region includes an object from
the previous frame, we use its historical features. These fea-
tures, termed “historical features” and denoted by X, are
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Fig. 8 Motion-conditioned visual encoder

directly accessible based on the motion-based projection and
appearance-based matching modules.

In Robye, we offer the flexibility to employ any DNN model
within the motion-conditioned visual encoder module. To cur-
tail computational overhead, we employ compression tech-
niques (He et al. 2017a) at the first K layers of the DNN model,
where K is a hyper-parameter. The degree of compression is
governed by the compression ratio ¢, evenly ranging from
co(> 0)to 1 with Clevels. Cis a hyper-parameter that defines
the number of optional compression ratios. For example, the
adjustment of the number of channels in each convolutional
layer of the K layers of the DNN model follows the formula
[c - D], where D is the original number of channels in the
layer. The adaptation of the compression ratio ¢ is contingent
upon the magnitude of observed motion changes, referred to
as the “motion-conditioned compression ratio”. Specifically,
we select the compression ratio based on a motion index M
defined as:

[l m’| = [m 3

],

-1
_H|m’|x_|mf I
-1

jme=T],

where m' is the vector from the self-position (x,, y,, z,) to the
focusing object’s position (x]f, yj’., z;) at time 7, m’~! is the vec-
tor at time # — 1, | - |; represents the signed projection of a
vector on the i-axis, | - | represents the length of the vector,
and || - || represents the absolute value. The term

U =1
L H indicates alterations in the view angle of the

self-robot in relation to the focusing object from # — 1 to ¢,
while the term || |/m’| — |m’~!||| characterizes changes in the
viewing distance between the self-robot and the focusing
object from ¢ — 1 to z. The compression ratio is one of the C
compression levels from ¢, to 1 that is nearest to
co + max{y, - M, 1 —cy}:

m'|, ml

c= argmdin{co+max{y1 M, 1 =co} = caluepoc 4)

cd=co+%-(l—co). 5)
where y, is a hyper-parameter to control the effect of motion
on the compression ratio c. Our empirical observations show
that both terms in M lead to variations in feature representa-
tions. Thus, they generate an augmented computational cost
(higher ), in cases where these changes are significant in
their magnitudes.

In the DNN model, we insert an feature integration layer
between its original K-th layer and (K + 1)-th layer, as shown
in Fig. 8. The output of the integration layer X, equals to:

1
X, =Xg+7,- M}‘(XP,XK) 6)

where y, is the impact factor to control the effect of
motion on the integration of the historical feature X ,, and
X denotes the output from the first K layers in the DNN
model. It is noteworthy that X is affected by the motion-
conditioned compression ratio ¢ in Eq. (4). Although a
direct integration of X, into X by setting F(X,,, Xx) =X,
is feasible, our empirical observations reveal its subopti-
mal performance. Instead, we employ a cross-attention
layer to construct (X, X ), a strategy that demonstrates
enhanced performance gains without incurring substantial
computational overhead. It is worth emphasizing that we
have aligned the dimensions between X, and X by bicubic
interpolation. In F(X,, X ), X is the “Query” for informa-
tion retrieval, and Xp acts as both “Key” and “Value” for
reference and aggregation. The output merges X, and X
features with contextually relevant elements from X.

We train the cross-attention layer parameters and fine-
tune the compressed parameters of the DNN’s first K lay-
ers end-to-end with the same loss function as the original
visual encoding task. Parameters beyond the K layers are
frozen, with loss gradients computed only for the first K
layers and cross-attention layer during backpropagation. We
also offer parameter sharing across different compression
levels (Fang et al. 2018). Training data is divided into C
groups by motion-conditioned compression ratios, and the
first K layers’ parameters are incrementally trained from ¢ to
1 across C steps. Each step freezes parameters from previous
iterations and fine-tunes current step parameters, to keep the
total parameter count in the first K layers unchanged. Train-
ing data is prepared from consecutive frames of the original
dataset, with object detection localizing focusing regions.
Historical feature extraction from these regions in low-res-
olution preceding frames is derived directly from features in
the low-resolution frame encoding workflow.

@ Springer
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5 Implementation

Applications: We evaluate Robye on three popular mobile
robotic applications: (1) Autonomous Driving: We test on
CARLA public leaderboard (https://leaderboard.carla.org/).
We also build the autonomous driving on a real vehicle.
The inputs of visual encoding include three cameras facing
front, left, and right and a LiDAR sensor. The original RGB
resolution is 800 X 600. (2) Vision-and-Language Naviga-
tion (VLN): We test on R2R dataset (Anderson et al. 2018).
The original RGB resolution is 640 X 480. (3) Path Planning
of Drone: We test on LANI (Misra et al. 2018). The original
RGB resolution is 256 X 144. We also build a drone with
path planning for real-world test.

Types of visual encoding: We include six types of visual
encoding: (1) 2D Object Detection: We evaluate on YOLO-
v5, EfficientDet (Tan et al. 2020), and Faster-RCNN (Gir-
shick 2015). (2) 3D Object Detection: We evaluate on Frus-
tumPointNet (Qi et al. 2018), Mono3D (Chen et al. 2016),
and MLCVNet (Xie et al. 2020). (3) 2D Instance Segmenta-
tion: We evaluate on Mask-RCNN (He et al. 2017b), SOLO-
v2 (Wang et al. 2020), and YOLACT (Bolya et al. 2019). (4)
3D Instance Segmentation: We evaluate on Mask-RCNN
3D (He et al. 2017b), PointNet-Seg (Qi et al. 2017), and
3D-BoNet (Yang et al. 2019). (5) Semantic Segmentation:
We evaluate on FCN (Long et al. 2015), SegNet (Badri-
narayanan et al. 2017), and DeepLab-v3 (Chen et al. 2019).
(6) Backbone’: We evaluate on ResNet-101 (He et al. 2016),
ResNet-50 (He et al. 2016), and VGG (Simonyan and Zis-
serman 2014). It is important to note that Robye applies
to both 2D image data and 3D sensing data (e.g., LIDAR
data). In the motion-based projection module, the overlap-
ping parts of 3D sensing data in background and objects
can be directly obtained based on self translation. In the
high-resolution focus encoding workflow, we map the focus-
ing regions on the 2D image from the focus localization
module to the 3D sensing data based on the camera’s angle
of view and focal length. We accelerate all the models with
TensorRT (NVIDIA TensorRT 2024).

Action generation model: The inputs into the action gen-
eration model include both frame and focus encoding results.
LSTM directly takes the output vector(s) from the encoding
workflows as the input. The LSTM is with two hidden lay-
ers and each layer has 512 hidden units. We have 32 action
embedding. For VLN and drone path planning, we have 256
word embedding. We train the action generation models fol-
lowing their typical training scheme (Anderson et al. 2018).

5 For memonic part localization, we add a lightweight 2D object
localization head with three additional layers upon the output from
the backbone to generate proposals of objects’ locations without
semantic recognition.
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Embedded edge/mobile devices: We evaluate on four
embedded GPU devices: NVIDIA Jetson Nano, Jetson TX2,
Jetson Xavier, and Jetson Orin. We also evaluate on two
mobile devices: Samsung Galaxy S22 (https://www.samsu
ng.com/us/smartphones/galaxy-s22/) and Google Pixel
7 (https://store.google.com/product/pixel_7?hl=en-US).

Edge-assist setup: We evaluate with two options on the
device: NVIDIA Jetson Nano and Google Pixel 7. The edge
server is equipped with NVIDIA 1080 Ti. We evaluate with
two options on the wireless network: WiFi 5 and 5 G. In this
setup, we offload the DNN-based visual encoding modules
to the edge server and keep the other modules on the device.

Metrics: For object detection and instance segmentation,
the metric is mAP. For semantic segmentation, the metric is
mloU. For autonomous driving, the metric is driving score,
which is the product of route completion ratio and infrac-
tion score (Shao et al. 2023). For vision-and-language navi-
gation, the metric is success rate weighted by path length
(SPL) (Anderson et al. 2018). For drone navigation, the
metric is success rate (Blukis et al. 2018).

Low-resolution settings: For autonomous driving, the
resolution is scaled down to 240 x 240. For VLN, the resolu-
tion is scaled down to 224 x 224. For drone navigation, the
resolution is scaled down to 72 X 72.

Settings in appearance-based matching: We set
N = M = 4 for the grid background matching. We set the
difference threshold as 17 for background matching and as
2.4 for object matching.

Settings in motion-conditioned visual encoding: For
autonomous driving, the focusing regions are cropped
from the 520 x 520 frame resolution. For VLN, the focus-
ing regions are cropped from the 400 X 400 frame resolu-
tion. For drone navigation, the focusing regions are cropped
from the 144 x 144 frame resolution. For each model, we
compress the first 70% layers into 5 compression levels and
¢y =0.3.Wesety; =0.4andy, =0.5.

Baselines: We selected two leading works in efficient
object detection to serve as baselines against our low-res-
olution frame encoding workflow inside Robye. The first
baseline, FlexPatch (Yang et al. 2022), focuses on on-device
object detection. However, unlike Robye, it lacks integration
of physical motion awareness and relies on a combination of
image processing techniques and a decision tree classifier for
object localization across frames. While FlexPatch employs
a cropping strategy to reduce detection latency, it incurs
large overhead for object localization and its edge-intensity-
based object discovery method falls short in robustness.
The second baseline, AdaMask (Liu et al. 2022), focuses
on object detection offloading but does not incorporate new
object discovery, opting instead for periodic full-frame off-
loading, which results in diminished accuracy. Addition-
ally, lacking geometric projection informed by physical
motion, AdaMask arbitrarily increases the crop size based on
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tracking distance, leading to further latency increases. For
autonomous driving and VLN, we set the input resolution to
320 x 320 for all baselines. For drone navigation scenarios,
the resolution is 100 x 100.

6 Evaluation
6.1 Performance on autonomous driving

The performance of autonomous driving on the CARLA
public leaderboard (https://leaderboard.carla.org/) is
shown in Fig. 9 for 2D visual encoding models and Fig. 10
for 3D models. Note that in Fig. 10i—k, the visual encoder
employs a ResNet-18 (Shao et al. 2023) to extract LIDAR
Bird’s Eye View (BEV) features in addition to 2D visual
features. Thus, we categorize it under 3D visual encoding
models.

2D Visual encoding: As shown in Fig. 9, we measure
the average latency per action decision, frame accuracy,
and driving score with three types of 2D visual encod-
ing on four mobile and embedded devices. For 2D object
detection, we present results using YOLO-vS5, EfficientDet,
and Faster-RCNN in Fig. 9a—g. Figure 9h—n show the per-
formance with 2D instance segmentation models including
Mask-RCNN, SOLO-v2, and YOLACT. We evaluate the
performance with semantic segmentation, utilizing models
of FCN, SegNet, and DeepLab, as shown in Fig. 9o—u. It
is important to note that for each action, we process three
RGB frames from the front, left, and right camera angles
through the visual encoding model.

Robye enhances driving scores by +3% to +11% and
achieves 1.5 to 2.6X faster latency than the model-only
baseline, due to its motion-aware cross-frame map-
ping, dualistic frame and focus encoding workflows, and
motion-conditioned focus encoding. The reasons for Robye
’s superior performance are:

(1) Motion-based projection: Robye leverages motion-
based cross-frame content correlation for efficient spatial
projection, processing only non-overlapping areas with
DNN. As the non-overlapping parts are often a small por-
tion of a frame, the computing latency of the non-overlap-
ping encoding is significantly lower than processing the
whole frame, as shown in Fig. 9.

(2) Dual-level encoding: Different from the single-
level 320 X 320 resolution encoding of the baseline
model, Robye adopts a two-tier approach: low-resolution
(240 x 240) holistic and high-resolution focus encoding
(crops from 520 x 520). While the overall frame accuracy
of Robye may be lower than the baseline, its focus accu-
racy excels due to higher resolution (Fig. 9g, n, u). This
dual encoding finally contributes to Robye ’s improved
driving scores.

(3) Motion-conditioned focus encoding: The focusing
regions in Robye, despite being high-resolution, are small
crops from the entire frame, making the input size rela-
tively small. For example, a 75 X 75 focusing region from
a 520 x 520 frame is just 5.5% of a 320 x 320 frame’s size.
Moreover, Robye s DNN computational cost in the focus
encoding is dynamically adjusted based on motion change
magnitude, which further enhances efficiency.

Robye surpasses the FlexPatch baseline with a +16%
to +25% improvement in driving scores and a 1.3 to 2.2
speedup in latency. This is achieved through its Dual-Level
Encoding and Motion-Conditioned Focus Encoding as ana-
lyzed above. Additionally, our Motion-based Projection
also contributes to the higher performance of Robye over
FlexPatch. Specifically, as FlexPatch uses image process-
ing methods including edge intensity, optical flow, and a
decision tree classifier trained on image analysis, together
for tracking objects across frames, it suffers from high
latency overhead and limited new object detection capa-
bilities. It also lacks application to semantic segmentation
(Fig. 90—u) as FlexPatch is designed for object detection in
camera surveillance and intrinsically ignores background.

In contrast, Robye employs geometric relationships and
motion data for cost-effective cross-frame content correla-
tion, applying image-based comparisons only to geometri-
cally correlated areas. This method detects new objects
and backgrounds using comparisons of element-wise dif-
ferences and SVD. Robye ’s use of a 240 x 240 resolution
for frame encoding, compared to FlexPatch’s 320 x 320,
partially contributes to its latency advantage. However,
FlexPatch’s limitations in new object discovery and track-
ing accuracy result in lower overall performance, even
with the higher input resolution. When using the same
resolution, Robye still outperforms FlexPatch with a 1.2 to
1.7x speedup and an even greater driving score improve-
ment of +18% to +29%.

3D visual encoding: As shown in Fig. 10, we measure
the average latency per action decision, encoding accuracy,
and driving score with three types of 3D visual encoding
on two mobile/embedded devices and two edge-assisted
setups. For 3D object detection, we present results using
FrustumPointNet, Mono3D, and MLCVNet in Fig. 10a—d.
Figure 10e—h show the performance with 3D instance seg-
mentation models including Mask-RCNN 3D, PointNet-Seg,
and 3D-BoNet. We evaluate the performance with 2D/3D
backbone, utilizing models of ResNet-101, ResNet-50, and
VGG, as shown in Fig. 10i-1. These 3D encoding models
use inputs in formats like RGB, depth, or point cloud. For
RGB and/or depth based models, we have inputs from three
cameras, while we have a single environmental point cloud
for point cloud based models.

On mobile/embedded devices, with Motion-based
Cross-Frame Projection, Dual-Level Encoding, and

@ Springer
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Fig. 10 Performance of autonomous driving with 3D visual encoding

Motion-Conditioned Focus Encoding, Robye achieves nota-
ble performance enhancements. Compared to the model-
only baseline, Robye improves driving scores by +3% to
+10% and reduces latency by 2 to 3.3x. Compared to the
FlexPatch baseline, it boosts driving scores by +12% to
+26% and achieves 1.3 to 1.9x faster latency. The reasons
for Robye ’s superior performance are the same as those in
2D visual encoding.

In edge-assisted setups, with Motion-based Cross-Frame
Projection, Dual-Level Encoding, and Motion-Conditioned
Focus Encoding, Robye outperforms baselines. Specifically,
it achieves 1.6-2.8x faster latency compared to the model-
only baseline and improves driving scores by +17% to +36%
while also achieving 1.4-1.6X faster latency than the AdaM-
ask baseline. AdaMask’s limitations include: (1) Lack of
New Object Localization Capability: AdaMask periodically
offloads full-frame data for encoding, increasing latency.
This approach often misses new objects, impacting accu-
racy due to its periodic nature. (2) Cropping Area Expan-
sion: AdaMask expands cropping areas based on the position

(h) Driving Score and Accuracy

(1) Driving Score

difference from the last detected result on the image plane,
which often including more background content. These
larger, unnecessary cropped areas further increase trans-
mission and computing latency. These drawbacks explain
why Robye, with its motion-based cross-Frame projection,
surpasses AdaMask in performance on edge-assisted setups.

6.2 Performance on VLN and drone navigation

In our evaluation of Robye on Vision-and-Language Naviga-
tion (VLN) and drone navigation (Figs. 11 and 12), we test
3D object detection and semantic segmentation models on
a Jetson Xavier embedded GPU and an edge-assisted setup
with Google Pixel 7 and 1080 Ti. For 3D object detection,
Robye surpasses the model-only baseline with a 1.4-2.7x
latency speedup and a +3% to +6% performance increase. It
improves latency by 1.5 to 1.9% speedup and performance
by +6% to +9% over the AdaMask baseline, and shows a
1.7 to 2.2x latency speedup and +7% to +8% performance
enhancement compared to the FlexPatch baseline. With
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semantic segmentation models, Robye outperforms the
model-only baseline with a 1.3-2X latency speedup and a
+4% to +7% performance increase. Besides the reasons dis-
cussed in Sect. 6.1, FlexPatch'’s reliance on edge intensity for
new object discovery leads to excessive patch generation in
indoor environments, further resulting in speed and perfor-
mance losses in VLN scenarios.
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6.3 Performance on real robotic platforms

To evaluate the performance of Robye, we test them on
two real hardware platforms: (1) In the car setup (shown in
Fig. 13a, b), we utilize three Intel Realsense L5135 (https://
www.intelrealsense.com/lidar-camera-1515/) as the captur-
ing device, all these cameras connect to the Jetson AGX


https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
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Orin (https://www.nvidia.com/en-il/autonomous-machines/
embedded-systems/jetson-orin/) through USB 3.1 cables.
We take 3D-BoNet as the visual encoder. The Inertial Meas-
urement Unit (IMU), and GPS sensor are also attached to
this system. During the road test, we collect the actions from
the human driver and Robye for action matching rate cal-
culation. (2) In the drone setup (shown in Fig. 14a, b), we
design and build a Hexacopter as the testing platform for
drone navigation. The Hexacopter is equipped with six 4006
motors and a Pixhawk (https://pixhawk.org/) flight control-
ler. The capturing device Intel Realsense L515 is connected
to an on-board Jetson TX2. We take Mono3D as the visual
encoder. The Jetson TX2 communicates with Pixhawk flight
controller through I2C protocol. We evaluate Robye and the
baselines on performance in Figs. 13c, d and 14c, d. Over-
all, Robye outperforms the baselines by 9% to 18% higher

matching rate, 2.2 to 2.7X latency speedup, and 36% to 47%
power consumption reduction (20 min).

6.4 Ablation study

We investigate the individual contributions of key modules
within Robye to its overall performance enhancement. We
selectively remove each module and observe the result-
ant impact on performance, as detailed in Table 1, on the
autonomous driving application using Mono3D (Chen et al.
2016). Based on the observations, we analyze the contribu-
tions of each module as follows:

Motion-based projection: The module identifies over-
lapping areas between consecutive frames based on the
robot’s movement. Instead of running a DNN model to
encode these areas, Robye directly propagates the encod-
ing results from the previous frame. By reducing the DNN
model’s input size, we lower the computation required.
On average, the number of operations in the DNN encoder
decreases from 19.2 to 13.7 GFLOPs per frame in the low-
resolution encoding workflow with the motion-based pro-
jection module. This reduction in computation translates to
a decrease in latency per action from 113.9 to 85 ms. Fur-
thermore, this reduction in computation has only a minimal
negative impact on accuracy (3D IoU) and driving score,
as we approximate the encoding results of the overlapping
areas rather than ignoring them.

Appearance-base matching: The module further refines
the overlapping areas identified by the motion-based projec-
tion module using image comparison. It is designed to detect
areas with new content within the overlapping regions, i.e.,
false positives. Without the appearance-based matching
module, the overlapping areas are larger, including these
false positives, which results in reduced DNN computation.
On average, the number of operations in the DNN encoder
increases from 12.8 to 13.7 GFLOPs per frame in the low-
resolution encoding workflow when using the appearance-
based matching module. However, identifying new content
is crucial for maintaining a high driving score as ignoring
objects can lead to infractions and route completion failures.
Based on our observation, without the appearance-based
matching module, the driving score drops from 69 to 48
due to missed obstacles and objects. Thus, the appearance-
based matching module plays an important role in improving
the driving score with trivial increase of computation and
latency.

Motion-conditioned encoder: The module adaptively
adjusts the DNN computation for processing the focusing
regions based on position changes between consecutive
frames. By reducing computation for small movements of
the robot, the average number of operations in the DNN
encoder decreases from 21.3 to 15.1 GFLOPs per frame
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Table 1 Ablation study: Robye

GFLOPs
(low-r, high-r)

IoU (low-r, high-r) Latency (ms) Driving Score

Robye
w/ a module vs Robye w/o a
module (GLOPs and 3D IoU
are compared in low-resolution Original Robye

and high-resolution encoding

workflows) w/o Motion-based projection

w/o Appearance-based matching

w/o Motion-conditioned encoder

13.7,15.1 53,56 85 69

19.2,15.1 53.5,56 113.9 69.5
12.8,15.1 47,52.8 82.7 48.0
13.7,21.3 53,56.4 109.6 71.1

in the high-resolution encoding workflow when using the
motion-conditioned encoder. This reduction in computation
leads to a decrease in latency per action from 109.6 to 85
ms. The motion-conditioned encoder shows a slight decrease
in accuracy (3D IoU) from 56.4 to 56 and a drop in driving
score from 71.1 to 69.

7 Discussion

Robye for different robotic applications: The development
of a universally applicable visual foundation DNN model for
robotic applications remains a challenging task (Xu et al.
2024; Majumdar et al. 2024). The performance improvement
of Robye primarily comes from two designs: (1) reducing
computation on overlapping areas across frames, and (2)
high-resolution encoding on focus regions only. In low-
speed applications such as indoor and downtown navigation,
overlapping areas between frames are large, which leads to
more computation reduction. In contrast, high-speed appli-
cations such as highway driving have smaller overlapping
areas, which leads to less computation reduction. Similarly,
applications with more focusing regions consume more
computing resources. Thus, to keep fast response for differ-
ent applications, we need to adaptively adjust the available
computing resources for them. For example, by profiling the
relationship between the DNN-based encoder’s computing
latency and input size offline, we can prepare more com-
puting resources to high-speed applications and those with
more focus regions.

Robye for different DNN architectures: The design of
Robye is orthogonal to DNN-based embodied Al systems
and is adaptable to visual encoders of different DNN archi-
tectures, including CNNs and Vision Transformers (ViT).
Using a pre-trained DNN-based visual encoder (Radosavo-
vic et al. 2023; Khandelwal et al. 2022; Ryu et al. 2024;
Huang et al. 2023; Wijmans et al. 2019a; Li et al. 2022;
Yen-Chen et al. 2020), we directly take it as the DNN-based
visual encoder in the low-resolution frame encoding work-
flow. We prepare a dynamic version of the encoder with mul-
tiple compression levels following (He et al. 2017a). There
is no need to modify the other modules of motion-based
projection, appearance-based matching, and focus localiza-
tion in Robye.

@ Springer

Limitations of Robye: We discuss the potential limita-
tions of the components in Robye and provide suggestions
on their improvement as follows:

(1) Motion-based projection: The performance of posi-
tion prediction and tracking affects the accuracy of object
projection. For lightweight position prediction and tracking
algorithms such as the Kalman Filter (Welch et al. 1995),
ORB (Mur-Artal and Tardés 2014), and Optical Flow (Kale
et al. 2015), their prediction and tracking accuracies tend to
decrease in more dynamic environments. For example, in
high-density crowds, an object may not appear in consecu-
tive frames but rather intermittently. In high-speed driving,
motion blur requires additional correction in pixel-based
tracking. To adapt the motion-based projection to different
environments, an environment-type detection module can be
incorporated to switch the object projection schemes accord-
ingly. For example, in high-density crowds, tracking can be
extended from two consecutive frames to multiple frames.
In high-speed driving scenarios, motion blur in RGB frames
can be corrected using deblurring methods (Cho and Lee
2009; Shan et al. 2008; Nayar and Ben-Ezra 2004).

(2) Appearance-based matching: The robustness of
appearance-based matching depends on the relative dis-
placement between the self robot and other objects and the
background, especially for pixel-value comparisons. A large
relative displacement can cause a drastic change in the view
of the same object, such as shifting from a front view to a
side view. In such cases, appearance-based matching fails
and the unmatched parts are processed by the DNN-based
visual encoder, which results in redundant computation. One
potential solution to address these issues is the adoption of
Siamese Neural Networks to improve the robustness of
appearance-based matching by capturing the semantic mean-
ing (Chicco 2021; Melekhov et al. 2016). When integrating
such neural networks into the appearance-based matching,
it is important to consider the computational overhead to
ensure efficiency.

(3) Focus localization: Although human experts only
need to specify the object types to focus on, the training
of the focus localization module still relies on a supervised
approach using pre-trained object detection models. This
dependency on human input limits the generality of the
focus localization. One potential improvement is to train the
focus localization module in an unsupervised manner. For
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example, we can randomly initialize the types of objects to
focus and adjust them adaptively based on the application’s
metrics (e.g., driving score and SPL). Specifically, if the
metric improves when a particular type of object is included,
it indicates that the object requires focus, and vice versa.

(4) Motion-conditioned visual encoder: The training of
the motion-conditioned visual encoder involves the typical
retraining process used for compressed DNN models (He
et al. 2017a). While it is common to retrain or fine-tune
DNN models after compression, it adds extra work to pre-
pare the motion-conditioned visual encoder for a robotic
application. Given the trend towards developing foundation
models that are generally applicable across different applica-
tions (Xu et al. 2024), it is also crucial, in the future work, to
explore methods for preparing a foundation motion-condi-
tioned visual encoder that can be utilized in various applica-
tions, which avoids the need for retraining from scratch as
required by other model compression techniques.

8 Conclusion

This paper proposes Robye, a bionic visual encoding frame-
work to tackle the challenge of efficient visual encoding in
mobile robotic applications. Drawing inspiration from the
human visual system, Robye incorporates focus processing
and motion-aware content correlation mechanisms into the
mobile robotic encoding domain. The dual workflows in our
framework include high-resolution focus processing, lower-
resolution frame analysis, motion-based projection for cross-
frame correlation, and a motion-conditioned adaptive DNN
execution strategy. These designs collaboratively lead to a
reduction in computational costs associated with encoding
tasks. Specifically, our evaluation across robotic scenarios of
autonomous driving, vision-language navigation, and drone
navigation, demonstrates its capabilities. Specifically, Robye
outperforms baselines in speed (ranging from 1.2 to 3.3x
faster), performance (showing a 4% to 29% increase), and
power consumption (—36% to —47%).
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