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Abstract—In the big data era, vast amounts of data are pro-
cessed and stored in cloud data centers using Solid-State Drives
(SSDs). While SSDs are crucial for efficient data handling as the
fast-tier in tiered storage, they also contribute significantly to
embodied carbon emissions. In this paper, we explore a method to
enhance SSD sustainability by reducing the maximum threshold
voltage of flash cells, extending lifespan and improving write
performance. However, this leads to decreased read performance
due to a high Raw Bit Error Rate (RBER). To improve the SSD
performance while prolonging its lifespan, we partition the device
into two regions. One region maintains standard voltage levels to
efficiently manage read-intensive tasks. The other with a reduced
threshold voltage absorbs write-intensive data, leveraging the
benefits of extended lifespan and enhanced write performance
provided by low-voltage operation. Additionally, we propose a
dynamic caching policy that caches frequently accessed data to
the DRAM in SSD. Finally, our experimental results demonstrate
that the proposed design improves the SSD lifespan by 8.7%
to 20.3% compared to some previously proposed schemes while
achieving average latency reductions ranging from 19.7% to
69.8%. Our work demonstrates the potential for enhancing
the sustainability of SSDs while ensuring high performance,
contributing to the reduction of the carbon footprint associated
with storage systems in the era of big data.

Index Terms—Sustainability, Solid-State Drives (SSDs), NAND
Flash Memory, Error Correction Codes (ECC)

I. INTRODUCTION

In the era of big data, massive amounts of data generated
at edge nodes are moved and processed in cloud data centers,
involving a wide range of storage devices. This has placed a
spotlight on the sustainability of IT infrastructures, propelled
by a significant increase in data volume and the resultant
carbon emissions from data storage and management activities.
Among various storage options, NAND flash-based memory
drives are particularly crucial, ranging from mobile devices to
large data centers [1], [2]. These drives have largely replaced
older magnetic storage due to their speed and compactness. As
the technology evolves, there is a trend towards higher storage
density in flash cells. Innovations have moved from multi-
level cell (MLC) to denser triple-level cell (TLC) and quad-
level cell (QLC), which store more bits per cell. While this
increases economic efficiency, it compromises sustainability
and performance by reducing the reliability and lifespan of
flash memory, as seen in fewer Program-Erase (PE) cycles.

The lifespan and access times of NAND flash memory can
be balanced by adjusting parameters such as threshold voltages
and error correction code iterations. For example, lowering
the threshold voltage extends lifespan but may increase write
latency. Additionally, sophisticated Error Correction Codes
(ECC), like Low-Density Parity-Check Codes (LDPC), help
manage the higher Raw Bit Error Rates (RBERs) and extend
the operational lifespan of flash memory systems, enhancing
SSD sustainability. However, enhancing sustainability in SSDs
is challenging due to the complex error correction processes
like LDPC, which can slow data access, creating a trade-off
between extending lifespan and maintaining performance. In
data centers, where meeting Service-Level Agreements (SLAs)
is mandatory, the balance between SSD sustainability and
performance presents a significant design challenge.

In this paper, we propose a sustainability-aware flash trans-
lation layer (FTL) for SSDs that optimizes lifetime and perfor-
mance. Our design divides the flash memory into two regions:
one with a lower threshold voltage for write-intensive data to
extend lifespan, and another with a higher threshold voltage
for read-intensive data to ensure optimal read performance.
We introduce an intelligent data allocation strategy that dy-
namically assigns data based on access patterns, minimizing
wear. Additionally, we propose an adaptive caching policy
to enhance both the lifetime and performance. By combining
these techniques, our FTL effectively balances sustainability
and performance trade-offs in SSDs.

The rest of the paper is organized as follows. Section II
describes the backgrounds of flash memory. The discussion of
motivations is introduced in Section III. Section IV discusses
the structure and algorithm of the proposed scheme. Section V
shows the experimental results of EFM compared to the
existing schemes. Finally, some conclusions are presented in
Section VI.

II. BACKGROUND

A. Background of Flash Memory

NAND flash memory encodes N bits within a cell by
channeling electrons into the cell. The representation of N-bit
data in NAND flash memory is achieved through 2N distinct
voltage levels. These levels exhibit a broad, Gaussian-like
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distribution as noted by [3] and can be closely approximated
by the following Gaussian model:

Pe(x) =
1

σe

√
2π

e
− (x−µe)2

2σ2
e (1)

Here, µe and σe denote the mean and standard deviation of
the threshold voltage for the erased state, respectively.

As flash memory technology evolves to store more bits per
cell (e.g., from SLC to QLC), the number of distinct voltage
levels increases, leading to a reduction in the noise margin
between adjacent levels and a decrease in reliability [4]–[6].

B. Read and Write in Flash Memory
Writing data to a flash cell is accomplished using the

Incremental Step Pulse Programming (ISPP) technique [4].
ISPP applies a series of voltage pulses to the cell, gradually
increasing the voltage until the desired threshold voltage level
is reached. The voltage step size used in ISPP, denoted as
∆Vpp, plays a crucial role in determining the write latency
and raw bit error rate (RBER). The relationship between the
program latency tp, the ISPP step size ∆Vpp, and a fixed
coefficient γ can be expressed as:

tp ∝ γ × 1

∆Vpp
(2)

A larger ISPP step size reduces the number of programming
pulses required, thereby decreasing the write latency. However,
this comes at the cost of a higher RBER due to the reduced
noise margin between adjacent voltage levels [6].

Reading data from a flash cell involves comparing the cell’s
threshold voltage to a set of predefined reference voltages. The
presence of errors, caused by factors such as wear, cell-to-cell
interference, and retention loss, necessitates the use of error
correction codes (ECC) like Bose-Chaudhuri-Hocquenghem
(BCH) [7] and Low-Density Parity-Check (LDPC) codes [8].
The read latency is determined by the RBER and the number
of ECC decoding iterations required [3], [5]. The relationship
between the RBER and the voltage distribution of the k-th
state can be modeled as:

RBER =
∑

k

(∫ V (k)
p

−∞
p(k)(x)dx+

∫ +∞

V (k+1)
p

p(k)(x)dx

)

(3)
where p(k)(x) represents the probability density function of

the threshold voltage distribution for the k-th state, and V (k)
p

and V (k+1)
p are the lower and upper bounds of the voltage

window for the k-th state, respectively. As the RBER increases,
more ECC decoding iterations are needed, leading to a longer
read latency.

C. Lifetime of Flash Memory
The characteristic of flash memory necessitates erasing a

flash block before programming new data onto it. This entails a
program operation for each page and an erase operation for the
block, known as a P/E cycle. During programming, charges are

inserted into the flash cells, and during erasing, these charges
are removed by applying a high voltage, causing them to move
through the oxide layer of the flash cell. This movement will
damage the oxide layer, leading to the gradual wearing out
of the flash memory as the number of P/E cycles increases.
Therefore, the maximum number of P/E cycles refers to the
lifetime of flash memory (i.e., SSD).

To improve the lifetime of SSDs, a strategy involves lower-
ing the maximum threshold voltages of flash cells. By doing
so, lower voltage will lessen the wear out on the cells. The
relationship between threshold voltage and P/E cycle can be
modeled as [9]:

PE ∝ Vthreshold × r (4)

where r represents a threshold voltage reduction coefficient
(0 ≤ r ≤ 1). However, this reduction in threshold voltages
leads to a decreased noise margin between the voltage states
of adjacent flash cells, resulting in a higher Raw Bit Error Rate
(RBER) of the stored data. This will increase the read latency
and establish a trade-off between minimizing flash wearing-out
and maintaining read performance.

III. MOTIVATION

A. Sustainability Improvement of SSD

As of 2021, computing and networking devices had ac-
counted for approximately 2% of total carbon emissions [10].
During the lifecycles of these devices, manufacturing and
operations are the primary contributors to their total carbon
emissions. While operations largely drive the emissions of
server systems, for devices like workstations, desktops, lap-
tops, and mobiles, manufacturing is the predominant source
of carbon emissions [11]. In particular, as an integral part
of all computing systems, the SSD manufacturing process
contributes to a significant fraction of the total carbon emis-
sions [11]. For instance, the SSD in a Fujitsu workstation,
with a capacity of 512 GB, is responsible for about 38% of
the total manufacturing emissions, which is the highest among
all components [11]. Hence, reducing the carbon footprint
associated with SSD manufacturing can therefore significantly
lower overall emissions from computing systems.

The carbon emissions of SSDs originate from three main
phases: manufacturing, operations, and disposal. The relation-
ship between them and the total carbon emissions of SSDs
can be modeled as:

Totcarbon =
T∑

i=1

(Cman,i + Cop,i) +
K∑

i=1

Cdisp,i (5)

where Totcarbon denotes the total carbon emissions over X
years, T corresponds to the total number of drives used in these
X years, and K is the number of drives that are disposed
of during this period. Cman,i indicates the manufacturing
emissions for the i-th drive, Cop,i represents the operational
emissions from the i-th drive within the X years, and Cdisp,i
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Fig. 1. Impact of Maximum Threshold Voltage on RBER, Lifetime, and
Read/Write Latencies

captures the disposal emissions from the i-th drive during this
period.

K ∝ X/lifetimeSSD (6)

T ∝ X/lifetimeSSD (7)

Assuming the total data migration processed over X years
remains constant, equations (6) and (7) imply that extending
SSD lifespans reduces both the total amount of drives to be
disposed during these X years (i.e., K) and the total number of
drives involved during these X years (i.e., T ). Consequently,
with manufacturing and disposal emissions per SSD constant,
the total emissions from these stages decrease as the lifetime
of SSDs gets lengthened. As for the operational emissions of
SSDs during this period of time, given the consistent work-
loads of data migration and energy consumption within the X
years, its amount remain unchanged. Therefore, lengthening
the lifespan of SSDs can effectively decrease the total carbon
emissions associated with these devices.

B. Balancing Lifespan Extension and Performance

Based on the background discussion, there is a trade-off
between the performance and lifetime of SSDs. Reducing the
threshold voltage can prolong the P/E cycle and extend the
SSD lifespan, but it comes at the cost of increased Raw Bit
Error Rate (RBER), necessitating more LDPC iterations and
consequently longer read latency.

Figure 1 illustrates this trade-off, showing that decreasing
the threshold voltage improves the P/E cycle (i.e., lifetime)
of the SSD but degrades the read performance by increasing
the RBER and read latency, based on the SSD characteristic
model [3]. The write latency, however, slightly decreases with
lower threshold voltages.

As SSDs age and undergo more P/E cycles, their read
performance continuously degrades. Figure 2 shows that the
RBER increases with the number of P/E cycles, leading to
a corresponding increase in read latency, while the write
latency remains relatively constant. This trend indicates that
the negative impact of reduced threshold voltage on read
latency becomes more pronounced as the SSD ages, making
it increasingly challenging to meet the read performance
requirements specified in Service-Level Agreements (SLAs).

The combination of these factors presents a complex chal-
lenge in SSD design. Lowering the maximum threshold volt-
age offers the benefit of an extended lifespan, which is crucial

Fig. 2. Impact of Maximum Threshold Voltage on RBER and Latencies

for sustainability, but it also introduces performance over-
heads, particularly in terms of read latency. On the other hand,
increasing the threshold voltage improves read performance
but at the cost of reduced lifespan and slightly higher write
latency.

To address this challenge and achieve a balance between
performance and sustainability, it motivates us to design a
novel flash translation layer (FTL). The goal is to leverage the
advantages of reduced threshold voltage for lifetime improve-
ment while mitigating its negative impact on read performance.
By carefully managing this trade-off, we aim to enhance the
overall sustainability of SSDs without compromising on their
performance characteristics.

IV. DESIGN

A. Overall Architecture
The proposed access pattern-aware data allocation archi-

tecture for SSDs consists of several key components. The
overall architecture is shown in Figure 3. The SSD storage
space is partitioned into two regions with different maximum
threshold voltages. The Access Pattern Sensor monitors the
read and write access patterns of each data page, providing
statistical information to the Data Allocator for dynamic data
placement. The DRAM cache prioritizes storing the most
frequently accessed data from Region 2 that exhibits both high
read and write intensity. This helps to reduce the impact of the
increased read latency in Region 2 due to its lower threshold
voltage, while leveraging the improved write performance and
extended lifespan. The Wearout Sensor monitors the wear-
leveling balance between the regions and triggers data migra-
tion when necessary. These components work collaboratively
to optimize data allocation, improve performance, and enhance
the overall sustainability of the SSD.

B. Page Management and FTL Design
1) Page Metadata: In the Flash Translation Layer (FTL),

each page entry contains several essential components. Beyond
standard elements such as the Logical Address of the page and
the Physical Address where the page is stored, we also include:

• Write Counter: W count records the historical number
of writes, with an initial value of 0.

• Read Counter: R count records the historical number
of reads, with an initial value of 0.

• Last Access Time: The timestamp of the last read or
write operation.
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Fig. 3. Overall Architecture

2) Decay Function Design: A decay function D(t) is intro-
duced to address the temporal locality of data access patterns
and to prevent the counters from increasing indefinitely. The
decay function gradually reduces the value of the counters
over time, representing the ”forgetting” effect of the access
history. This is important because recent access patterns are
more likely to be indicative of future access patterns than
older ones. By applying the decay function, we ensure that the
access counters give more weight to recent access patterns,
allowing the system to adapt more quickly to changes in
data access behavior. Additionally, the decay function prevents
the counters from growing too large, which could lead to
overflow or reduced sensitivity to new access patterns. The
interval t represents the time elapsed since the last access to
the current time.A simple form of the decay function could
be exponential: D(t) = e(−λt), where λ is the decay rate,
determining the speed of forgetting.

3) Counter Update Rule: Each time a page is accessed, the
counters R count and W count are updated first based on
the time interval t and the decay function D(t):

• If it is a read access: R count = R count ×D(t) + 1,
W count = W count×D(t).

• If it is a write access: W count = W count×D(t)+1,
R count = R count×D(t).

Then, Last access time is updated to the current time.

C. Data Allocation Algorithm

1) Initialization: The SSD is divided into two physical
regions: Region 1 and Region 2. Region 2 is larger than Region
1, as it is designed to accommodate the majority of the data
initially. The specific characteristics of these regions, such as
their threshold voltage levels, P/E cycle endurance, read and
write latencies, and optimization goals, are shown in Table I.

First, when the specific access patterns of the workload
are unknown, all data is initially written to Region 2 due
to its superior write performance and durability compared to
Region 1, thereby making it suitable for initial data writes.
As the system continues to operate and the access patterns
of the data become apparent, the data allocation algorithm
dynamically migrates the data between the regions based on
the observed access patterns, ensuring optimal placement for
improved performance and endurance.

TABLE I
SSD REGIONS CHARACTERISTICS ANALYSIS

Characteristic SSD Region
Region 1 Region 2

Threshold Voltage Standard Low
P/E Cycles Endurance Low High
RBER Low High
Read Latency Low High
Write Latency High Low
Optimization Read Lifetime/Write
Data Type Read-Focused Write-Focused
Note: P/E Cycles Endurance reflects the memory cell endurance level.

2) Access Pattern Classification: Based on the dynamic
access counters and decay function, we classify the pages into
four categories according to their access patterns:

• Pages with R count < Read Threshold and
W count < Write Threshold are historically infre-
quently accessed and should remain in Region 2.

• Pages with R count < Read Threshold and
W count > Write Threshold are infrequently read
but frequently written and should keep in Region 2.

• Pages with R count > Read Threshold and
W count > Write Threshold are frequently accessed
and should be cached in SSD DRAM to reduce latency
and avoid frequent accesses to Region 2 due to its higher
read cost/latency.

• Pages with R count > Read Threshold and
W count < Write Threshold are frequently read but
infrequently written, and should be migrated to Region
1 for lower read latency. If DRAM is not full, we will
cache pages with the highest R count into it.

The Read Threshold and Write Threshold are estab-
lished based on the characteristics of Region 1, Region 2 and
DRAM, and can be dynamically adjusted in response to the
system’s workload and observed performance metrics.

D. DRAM Cache Strategy

1) DRAM Cache Entry Strategy: When DRAM cache is
not full: Directly cache the pages that meet the condition into
DRAM. When DRAM cache is full: Compare the R count
values of all pages in the DRAM. Prioritize evicting the page
with the lowest R count value, those that are least frequently
read, to make space for new candidate pages.

2) DRAM Cache Exit Strategy: Passive Eviction: When a
new page needs to be cached and the DRAM is full, pages
with lower R count need to be evicted. The evicted pages will
be migrated based on the current wearing level of Region 1
and Region 2: If the wear level of Region 1 is lower, consider
migrating the page to Region 1 to achieve some level of wear
leveling. If Region 1 is already more worn, keep the evicted
page in Region 2 to avoid exacerbating the wear in Region 1.

Active Eviction (regular checks): Regularly inspect the
pages in the DRAM cache to assess their R count values.
For pages with an R count below Read Threshold, evict
them from the DRAM cache, as their frequency of being
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TABLE II
CONFIGURATIONS OF TRACES

Trace Number of IOs (Millions) Total request size (GB)
Write Read Write Read

PROJ 1 2.50 21.14 25.58 750.36
USR 1 3.86 41.43 56.13 2079.23
WEB 2 0.04 5.14 0.78 262.82
HM 0 2.58 1.42 20.48 9.96

PROJ 0 3.70 0.53 144.27 8.97
PRXY 0 12.14 0.38 53.80 3.05

read has decreased and they no longer require high-speed
caching. Since this data originally belongs to Region 2, no
extra migration operation is needed upon eviction; the data
still remains in Region 2.

E. SSD Wear Leveling Strategy
1) Monitoring Wear: We continue to monitor the wear

condition of both Region 1 and Region 2 through the counters
Region 1 Wear and Region 2 Wear. For example, if Region 1
has 10000 PE cycles while Region 2 has 17000. We maintain
a wear ratio threshold range between 1:1.5 and 1:2.

2) Real-time Calculation of Wear Ratio: The Cur-
rent Wear Ratio = Region 1 Wear / Region 2 Wear is cal-
culated periodically to monitor whether the wear distribution
is within the acceptable range.

3) Data Migration Strategy: When the Cur-
rent Wear Ratio falls below 1:1.5, it indicates that Region 2
is wearing out more rapidly. At this point, we may migrate
some data from Region 2 to Region 1 to balance the wear.

V. EVALUATION

A. Experimental Setup
Our assessment utilized various algorithms through the

SSDSim simulator [12], augmented to feature diverse read
and write latencies across two distinct physical areas. These
latency figures were derived from the device architecture
outlined in [3]. Within this simulation, the flash memory was
configured with a capacity of 256GB and a page size of 4KB,
with each block holding 128 pages. For our experimental data,
we collected six MSR Cambridge traces [13] as detailed in
Table II [14]. To evaluate our proposed scheme, we compared
it against three established frameworks: SSDSim without
cache [12], SSDSim with read cache, and EFM [15], serving
as our reference models.

B. Sustainability Improvement
To evaluate the sustainability improvement of our design,

we analyze the normalized SSD sustainability under different
workloads, which is proportional to the SSD lifetime as
discussed in Section III. As shown in Figure 4, our design
significantly enhances the SSD sustainability compared to the
baseline SSDSim with Cache and SSDSim without Cache by
an average of 20.3% across all traces. This improvement is
attributed to the lower threshold voltage used in Region 2,
which reduces the wear on flash cells during write operations.
Compared to EFM, our approach improves sustainability by an

Fig. 4. Normalized sustainability improvement

Fig. 5. Normalized sustainability improvement

average of 8.7%, due to our more precise access pattern classi-
fication and cache policy, minimizing unnecessary rewrites and
associated wear by lowering the frequency of data reallocation.

To explore how the maximum threshold voltage affects SSD
sustainability, we compare the normalized sustainability of our
design using different scaling factors for the standard voltage:
0.95, 0.9, 0.85, and 0.8. The results in Figure 5 show that re-
ducing the maximum threshold voltage enhances sustainability
improvements for all traces. However, excessively lowering the
maximum threshold voltage may exceed the error correction
limits of the LDPC codes used in SSDs, potentially reducing
reliability. Stronger LDPC codes with higher error correction
capabilities are typically employed to manage the increased
error rates. In this study, we assume that the employed LDPC
codes can correct errors from lowered voltages. Future work
will investigate different LDPC codes to address errors caused
by significantly reduced threshold voltages.

C. Performance Improvement

To evaluate the performance of our proposed design, we
focus on the average latency metric across different traces and
compare it with three other designs. The results are presented
in Figure 6. Our design demonstrates significant improvements
in average latency compared to all three designs, with average
reductions of 69.8%, 29.6%, and 19.7% compared to SSDSim
without Cache, SSDSim with Cache, and EFM, respectively.
These improvements can be attributed to our efficient cache
management, optimized data allocation strategy, and the use of
a lower threshold voltage for write operations. It is noteworthy
that while our design outperforms EFM on average, the
performance advantage is more pronounced for read-intensive
traces due to our efficient cache management policy. For
write-intensive traces, the performance difference between our
design and EFM is less significant, as both designs benefit
from the reduced write latency achieved by lowering the
maximum threshold voltage.
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Fig. 6. Overall performance comparison

TABLE III
LATENCIES OF READ AND WRITE WITH DIFFERENT REDUCED EFFECTIVE

WEARING FOR DIFFERENT PE CYCLES

PE cycle Stage-1 Stage-2 Stage-3 Stage-4

Region-1 Read (us) 90 120 160 200
Write (us) 500

Region-2 Read (us) 130 180 250 350
Write (us) 400

Fig. 7. Performance comparison in the context of flash memory degradation

D. Performance Analysis under Flash Memory Degradation

As discussed previously, flash memory wear leads to de-
graded read performance due to increased Raw Bit Error Rates
(RBERs) and longer decoding times. This subsection examines
the average latency across two traces at various SSD lifespan
stages. As shown in Table III, the SSD lifespan is divided into
four stages based on the number of PE cycles, with each stage
corresponding to a different set of read and write latencies for
Region 1 and Region 2.

As shown in Figure 7, our design consistently achieves
the lowest average latency across all stages for the read-
intensive trace WEB 2, with the performance gap becoming
more pronounced as the SSD ages. This can be attributed to
our efficient cache management and data allocation strategy,
which effectively mitigates the impact of increasing read
latencies in Region 2. For the write-intensive trace PRXY 0,
our design maintains a stable average latency across all stages,
comparable to EFM, as both designs benefit from the reduced
write latency achieved by lowering the threshold voltage. In
contrast, SSDSim with Cache and SSDSim without Cache
exhibit higher and increasing average latencies due to their
higher threshold voltage, resulting in higher write latency.

VI. CONCLUSION

In this paper, we propose a novel SSD architecture that en-
hances sustainability by extending the lifespan of SSDs while
maintaining high performance. By leveraging the trade-off
between threshold voltage, lifespan, and read/write latencies,
our design divides the SSD into two regions with different

threshold voltages and utilizes a DRAM cache and an intel-
ligent data allocation algorithm. This approach improves the
SSD lifespan by 8.7% to 20.3% compared to current designs,
while achieving latency reductions ranging from 19.7% to
69.8%. Our work demonstrates the potential for enhancing
the sustainability of SSDs while ensuring high performance,
contributing to the reduction of the carbon footprint associated
with storage systems in the era of big data.
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