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Asymptotic scaling relations for rotating
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We analyse the results of direct numerical simulations of rotating convection in spherical
shell geometries with stress-free boundary conditions, which develop strong zonal flows.
Both the Ekman number and the Rayleigh number are varied. We find that the asymptotic
theory for rapidly rotating convection can be used to predict the Ekman number
dependence of each term in the governing equations, along with the convective flow speeds
and the dominant length scales. Using a balance between the Reynolds stress and the
viscous stress, together with the asymptotic scaling for the convective velocity, we derive
an asymptotic prediction for the scaling behaviour of the zonal flow with respect to the
Ekman number, which is supported by the numerical simulations. We do not find evidence
of distinct asymptotic scalings for the buoyancy and viscous forces and, in agreement with
previous results from asymptotic plane layer models, we find that the ratio of the viscous
force to the buoyancy force increases with Rayleigh number. Thus, viscosity remains
non-negligible and we do not observe a trend towards a diffusion-free scaling behaviour
within the rapidly rotating regime.

Key words: quasi-geostrophic flows

1. Introduction

Rotating convection plays an important dynamical role in stars and planets, where it is
believed to be one of the primary drivers of global scale magnetic fields (Busse 1975;
Glatzmaier & Roberts 1995; Kageyama & Sato 1995; Stanley & Glatzmaier 2010; Jones
2011; Aurnou et al. 2015), and possibly gives rise to coherent large-scale flows such as
zonal jets and vortices, as observed on the giant planets (Heimpel et al. 2022; Siegelman
et al. 2022; Böning et al. 2023). Understanding the physics of turbulence driven by
rotating convection remains challenging due to the vast range of spatiotemporal scales.
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As a result, the parameter space accessible to direct numerical simulation (DNS) and
laboratory experiments remains distant from that which characterises natural convective
systems. An approach that is often taken to overcome this limitation is to identify
asymptotic scaling behaviour in model output so that extrapolation to the conditions of
natural systems is possible (e.g. Christensen 2002; Aurnou 2007). The development of
asymptotically reduced equation sets is another strategy that has been particularly helpful
for improving understanding of rotating convective turbulence and dynamos in simplified
planar geometries since more extreme parameter regimes can be accessed in comparison
to DNS (Sprague et al. 2006; Calkins, Julien & Marti 2013; Calkins et al. 2015; Yan &
Calkins 2022). In general, excellent agreement has been found between the results of plane
layer asymptotic models and DNSwhen an overlap in parameter space is possible (Plumley
et al. 2016; Yan &Calkins 2022). However, asymptotic models have not yet been developed
for global spherical geometries. Towards this end, the present investigation utilises DNS
in spherical shell geometries to determine the asymptotic scaling behaviour of various key
quantities, including force balances, length scales, and convective and zonal flow speeds.
We consider Boussinesq convection in a rotating spherical shell with angular velocity

Ω . The geometry is specified by the aspect ratio η = ri/ro, where ri is the radius of
the inner sphere and ro is the radius of the outer sphere. The fluid is forced via a
temperature contrast �T between the inner and outer boundaries, and gravity varies
linearly with radius. For this system, the convection dynamics are determined by the
sizes of several non-dimensional parameters, including the Rayleigh number and Ekman
number, respectively defined by

Ra = goα�TH3

κν
, Ek = ν

ΩH2 , (1.1a,b)

where go is the gravitational acceleration at the outer boundary, α is the coefficient of
thermal expansion, H = ro − ri is the depth of the fluid layer, κ is the thermal diffusivity
and ν is the kinematic viscosity. The most unstable state consists of convective Rossby
waves that align with the rotation axis and drift in the prograde direction (Busse 1970).
Asymptotic theory, valid in the limit Ek → 0, has shown that the critical Rayleigh number
scales as Rac = O(Ek−4/3), and the critical azimuthal (zonal) wavenumber scales as mc =
O(Ek−1/3) (Roberts 1968; Busse 1970; Jones, Soward &Mussa 2000; Dormy et al. 2004).
Thus, large Rayleigh numbers are needed to drive rotating convection and the subsequent
motions become increasingly smaller scale as the Ekman number is reduced.
As the Rayleigh number is increased beyond critical, strong zonal flows develop in

rotating spherical convection provided stress-free mechanical boundary conditions are
applied on the inner and outer spherical surfaces (e.g. Gilman 1978; Aurnou & Olson
2001; Christensen 2002). These zonal flows are characterised by alternating regions of
prograde and retrograde motion that are approximately invariant in the direction of the
rotation axis. For a fixed value of Ek, the number of jets is controlled both by the Rayleigh
number and the shell aspect ratio, η. In full sphere and small aspect ratio geometries
(η � 0.6), simulations typically find a single prograde jet in the equatorial region and
retrograde jets at higher latitudes (Aurnou &Olson 2001; Christensen 2002; Lin & Jackson
2021). As η and Ra are increased, there is a tendency for multiple jets to form at higher
latitudes, leading to a banded structure that is reminiscent of the flows observed on the
gas giant planets (Christensen 2001; Heimpel, Aurnou & Wicht 2005; Jones & Kuzanyan
2009; Gastine, Heimpel & Wicht 2014; Heimpel et al. 2022). The number of zonal jets
that appear can be related to the Rhines length scale (Rhines 1975; Heimpel et al. 2005;
Gastine et al. 2014). For sufficiently large Rayleigh numbers, there is an eventual transition
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to a retrograde equatorial jet and prograde high-latitude jets (Aurnou, Heimpel & Wicht
2007; Soderlund 2019).
Steady zonal flows are driven by Reynolds stresses and damped by global scale viscous

stresses. Thus, the scaling behaviour of the zonal flow is intrinsically linked to the
scaling of the correlations of the convective flows (Christensen 2002). Such correlations
are not known a priori, though various scaling theories have been presented in the
literature. For perfectly correlated small-scale velocity components, as relevant near
the onset of convection, the zonal flow amplitude exhibits a quadratic dependence on
the small-scale velocity (Aubert et al. 2001). However, Christensen (2002) found that
correlations decrease with increasing supercriticality, which causes the quadratic scaling
of the zonal flow to eventually break down. Later investigations have found that this loss
of correlation in the small-scale velocity is a monotonically decreasing function of Ra
(Showman, Kaspi & Flierl 2011; Gastine & Wicht 2012). For sufficiently large Rayleigh
numbers, Christensen (2002) and Lin & Jackson (2021) find evidence that the zonal flow
scaling approaches a ‘diffusion-free’ regime, so-called because of the lack of dependence
on ν and κ , though within this regime, the dynamics is no longer geostrophic since inertia
and the Coriolis force are of the same order of magnitude.
Aside from their correlations, it is also important to understand the scaling of

the convective flow speeds themselves. One scaling theory that is often invoked to
explain convective flow speed scaling behaviour in rotating convection is the so-called
Coriolis-inertia-Archimedean (CIA) balance (e.g. Cardin & Olson 1994; Jones 2015;
Aurnou, Horn & Julien 2020). This balance predicts that the dominant convective length
scale behaves like � ∼ R̃a1/2Ek1/3 and the global scale Reynolds number should scale like
Re = UH/ν ∼ EkRa/Pr, where U is a characteristic flow speed, the reduced Rayleigh
number is defined as R̃a = RaEk4/3 and the thermal Prandtl number is Pr = ν/κ . King
& Buffett (2013) analysed length scales and flow speeds in a broad suite of numerical
dynamo simulations in spherical geometries and concluded that viscous effects remained
important in controlling these quantities. CIA theory is often contrasted with the scaling
of the linear instability scale, � ∼ Ek1/3. However, it is important to emphasise that, from
the point of view of asymptotics, both the linear ‘viscous’ length scale and the length scale
predicted by CIA theory are of the sizeO(Ek1/3) given that R̃a is an order unity asymptotic
parameter.
Several previous investigations have tested these CIA scaling predictions in spherical

geometries with no-slip boundary conditions (Gastine, Wicht & Aubert 2016; Guervilly,
Cardin & Schaeffer 2019; Long et al. 2020), laboratory experiments in rotating cylindrical
geometries (Madonia et al. 2021), as well as asymptotic models of plane layer convection
with stress-free boundary conditions (Maffei et al. 2021; Oliver et al. 2023). Gastine et al.
(2016) carried out a comprehensive survey of rotating spherical convection and found
that the length scale for their smallest Ekman number cases (Ek = 3 × 10−7) approached
the Rhines scaling predicted by the CIA balance, and that the interior dissipation could
also be approximated through a CIA balance. However, as we discuss in the present
study, Gastine et al. (2016) did not investigate the convection and zonal flow separately.
A similar approach was taken by Long et al. (2020) in which constant heat flux thermal
boundary conditions were used. Guervilly et al. (2019) simulated rotating spherical
convection with no-slip boundary conditions and Pr = 0.01 using both a two-dimensional
quasi-geostrophic model and three-dimensional DNS, and found that the length scale
increases with Rayleigh number for all parameter ranges used; they find evidence of length
scales and flow speeds approaching the CIA scaling predictions as the Ekman number is
reduced.
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The rotating convection experiments of Madonia et al. (2021) exhibited an increase of
the integral length scale with Rayleigh number, but at a slower rate than that predicted
by CIA theory. The experiments of Hawkins et al. (2023) and Abbate & Aurnou (2023)
suggest that the turbulent length scale remains comparable to the viscous length scale
over the parameter space investigated. In asymptotic models, Maffei et al. (2021) found
flow speed scaling behaviour consistent with CIA theory over a finite range of Rayleigh
numbers; the deviation from CIA theory at large Rayleigh numbers was attributed to the
effects of the large scale vortex (LSV) that is generated in this system. Oliver et al. (2023)
also found that certain measures of the convective length scales show an increase with R̃a,
but at a rate that is slower than the exponent of 1/2. Importantly, however, the asymptotic
models do not find a CIA force balance in the fluid interior. Instead, the buoyancy
force is only comparable to the Coriolis and inertial forces within the thermal boundary
layers, though viscous effects are equally important in these regions of the flow domain.
Moreover, the ratio of the viscous force to the buoyancy force was found to be an increasing
function of R̃a, indicating that the CIA balance is never achieved in plane layer convection
(Maffei et al. 2021; Oliver et al. 2023). The conclusion from these asymptotic studies
is that convective length scales remain viscously controlled. This same conclusion was
reached by Yan & Calkins (2022) who found similar behaviour in DNS of rapidly rotating
convection driven dynamos in the plane layer geometry. An additional important finding
in the studies of Madonia et al. (2021), Yan & Calkins (2022), Oliver et al. (2023) is that
the viscous dissipation length scale remains approximately constant with increasing R̃a –
this indicates that length scale evolution in rotating convective turbulence is fundamentally
different than non-rotating convective turbulence where the dissipation length decreases
strongly with increasing Rayleigh number (e.g. Yan, Tobias & Calkins 2021). We observe
similar behaviour for the length scales and force balances in the spherical simulations
reported in the present investigation.
The scaling behaviour of key quantities such as flow speeds and length scales is linked

to the force balances in the governing equations. To our knowledge, the asymptotic scaling
behaviour of the force balances (and terms in the heat equation) in spherical convection
simulations have not been reported to date, though several previous dynamo studies have
computed these forces over a range of parameters. For an Ekman number of Ek = 10−4

in a spherical dynamo, Soderlund, King & Aurnou (2012) noted that the Lorentz force
was smaller than the inertial term and that the Lorentz force did not significantly alter the
convective flow as compared with the purely hydrodynamic model. However, Soderlund
et al. (2012) also noted that at smaller Ekman numbers, the Lorentz force seemed to make
larger changes to the convection. In general, simulations find that the force balance in
the mean equations is thermal wind to leading order, with the Lorentz force entering at
higher order in the zonal component of the mean momentum equation (Aubert 2005;
Calkins, Orvedahl & Featherstone 2021; Orvedahl, Featherstone & Calkins 2021). For the
small-scale convective dynamics, dynamo studies find that the zeroth-order force balance
is geostrophic, the first-order force balance is between the ageostrophic Coriolis force, the
buoyancy force and the Lorentz force, and inertial and viscous forces enter at the next
order (Yadav et al. 2016) (note, however, these authors did not separate the mean and
fluctuating dynamics). Here, we find a similar sequence of balances in the fluctuating
momentum equation, though there does not appear to be an asymptotic difference between
the buoyancy force, the viscous force and the inertial force, which is similar to plane layer
rotating convection. Also in agreement with previous asymptotic studies, we find that the
ratio of the viscous force to the buoyancy force is an increasing function of R̃a. For the
large-scale dynamics, we find that the flows are geostrophically balanced to leading order.
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In this paper, we investigate the asymptotic behaviour of rapidly rotating convection
and the associated zonal flows in a spherical shell with stress-free boundary conditions.
Knowledge of such scaling behaviour is crucial for the development of asymptotic models.
Overall, we find excellent agreement between the asymptotic predictions and the results
of the nonlinear simulations. We develop a prediction for the asymptotic scaling of the
amplitude of the zonal flow and conclude that the zonal flow must remain dependent on
viscosity given that viscous stresses are the sole saturation mechanism for this component
of the flow. The paper is organised as follows. In § 2, we describe the model and governing
equations. We give a brief overview of the asymptotic theory in § 3 and numerical results
are analysed in § 4. A discussion is provided in § 5.

2. Model

The governing equations consist of the conservation laws for momentum, thermal
energy and mass. We non-dimensionalise these equations using the length H, the
large-scale viscous diffusion time H2/ν and the temperature scale �T . With this
non-dimensionalisation, the governing equations are given by

∂tu + u · ∇u = − 2
Ek

ẑ × u − 1
Ek

∇P + Ra
Pr

(
r
ro

)
T r̂ + ∇2u, (2.1)

∂tT + u · ∇T = 1
Pr

∇2T, (2.2)

∇ · u = 0, (2.3)

where u = 〈ur, uθ , uφ〉 is the fluid velocity, T is the temperature, P is the pressure and r is
radius. The ‘axial’ direction points in the direction of the rotation axis, and the axial and
radial unit vectors are denoted by ẑ and r̂, respectively. In all of the simulations presented
here, we fix Pr = 1.
The boundary conditions are impenetrable (ur = 0), stress-free and fixed temperature.

We use the code Rayleigh to numerically solve the governing equations (Featherstone et al.
2022). Rayleigh is a pseudo-spectral code which uses spherical harmonics to represent
data on spherical shells and Chebyshev polynomials to represent data in the radial
direction. A 2/3 de-aliasing is used for both the spherical harmonics and the Chebyshev
polynomials. Rayleigh has been tested against the benchmark cases from Christensen
et al. (2001). We choose our spherical resolutions such that the kinetic energy spectra
exhibits a minimum of four orders of magnitude in separation between the peak value
and the value at the largest spherical harmonic degree. A similar method is used for
resolving the radial direction where we compute the magnitudes of the corresponding
Chebyshev coefficients. Moreover, the output from our simulations shows excellent
agreement with previous studies (e.g. Christensen 2002). Time stepping is carried out
using a second-order semi-implicit Crank–Nicolson method for the linear terms and a
second-order Adams–Bashforth method for the nonlinear terms. The time step is chosen
adaptively to maintain numerical stability.
We opt for stress-free mechanical boundary conditions in the present investigation since

one of the primary purposes is to determine how the amplitude of zonal flows depends
on the Ekman number and Rayleigh number. As shown in many previous investigations,
zonal flows tend to be strongly damped when no-slip boundary conditions are used at the
parameter values accessible in most simulations. Stress-free boundary conditions are also
more applicable to natural systems such as stars and giant planets.
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As discussed by Jones et al. (2011), the use of stress-free boundary conditions
implies that angular momentum is a conserved quantity, yet numerical simulations can
exhibit a spurious growth of this quantity due to the intrinsic error associated with
numerical time-stepping discretisations. To deal with this problem, we monitor the angular
momentum that builds up in the simulations. We found that this build up can lead to a
relative error in our Ekman number of up to 0.1%, though it is typically many orders
of magnitude smaller than this. To determine whether this build up has an influence
on our output quantities, we performed a test at one particular parameter combination
(Ek = 10−5,Ra = 2 × 108) that showed a higher growth of angular momentum than most
other cases. One case used a strict conservation of angular momentum setting which
changes the boundary condition of the l = 1 spherical harmonic mode on the outer
boundary to enforce zero total angular momentum in the simulation for all time (as
discussed by Jones et al. 2011). We ran this case from the same initial state that had
a buildup of angular momentum both for strict conservation of angular momentum and
with stress-free boundaries. Between these two runs, we found that the mean Reynolds
number differed by less than one percent and the fluctuating Reynolds number differed
by less than three percent. Some of the observed differences are likely the result of time
averaging errors due to the large time variability associated with the presence of relaxation
oscillations. Given the small change in values, we believe the amount of growth in the
angular momentum is not affecting our results.

2.1. Notation and outputs
Due to the symmetry of the model set-up around the rotation axis, it is convenient to define
mean and fluctuating components of some scalar quantity X relative to an azimuthal or
zonal average, i.e.

X̄ =
∫ 2π

0
X dφ, (2.4)

with X′ = X − X̄.
We define the Reynolds number as

Re = √〈u · u〉 t
, (2.5)

where 〈·〉 denotes a volume average and (·) t
denotes a time average. We further define

the mean and fluctuating (convective) Reynolds numbers respectively as

Rez =
√

〈ū · ū〉
t
, Rec = √〈u′ · u′〉 t

. (2.6a,b)

In all of the simulations, we find that the zonal component of the mean flow dominates
and we therefore refer to the mean Reynolds number as the ‘zonal’ Reynolds number.
We analyse several different length scales in this paper. Christensen & Aubert (2006)

(see also Gastine et al. 2016; Long et al. 2020) define the spherical harmonic length scale
as

(�sh)
−1 =

⎛⎜⎜⎜⎜⎜⎝
lmax∑
l=0

l∑
m=0

lEm
l

π

lmax∑
l=0

l∑
m=0

Em
l

⎞⎟⎟⎟⎟⎟⎠

t

, (2.7)
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where lmax is the maximum spherical harmonic degree in the simulation and Em
l is the

radially averaged kinetic energy density of spherical harmonic degree l and order m.
Thus, the volume averaged kinetic energy density is given by

1
2
〈u · u〉 =

lmax∑
l=0

l∑
m=0

Em
l . (2.8)

Due to the strong influence of the zonal flow in our simulations, we separate the spherical
harmonic length scale into a zonal and a non-zonal component. We define these length
scales as

(
�′
sh

)−1 =

⎛⎜⎜⎜⎜⎜⎝
lmax∑
l=1

l∑
m=1

lEm
l

π

lmax∑
l=1

l∑
m=1

Em
l

⎞⎟⎟⎟⎟⎟⎠

t

,
(
�̄sh

)−1 =

⎛⎜⎜⎜⎜⎜⎝
lmax∑
l=0

lEm=0
l

π

lmax∑
l=0

Em=0
l

⎞⎟⎟⎟⎟⎟⎠

t

. (2.9a,b)

We define the fluctuating and mean Taylor microscales as

�′
tm =

√
〈u′ · u′〉

〈(∇ × u′) · (∇ × u′)〉

t

, �̄tm =
√

〈ū · ū〉
〈(∇ × ū) · (∇ × ū)〉

t

, (2.10a,b)

respectively. The Taylor microscale can be considered a viscous dissipation length scale
since it characterises the length scale at which viscous effects become important.
The Nusselt number is calculated according to

Nu =
∂r T̄ φ,θ,t

∣∣
r=ro

∂rTc
∣∣
r=ro

, (2.11)

where (·) φ,θ,t
is a shell and time average, and Tc is the conductive temperature profile,

which satisfies
∇2Tc = 0, Tc(ri) = 1, Tc(ro) = 0. (2.12a–c)

We also define the viscous dissipation rates of the mean and fluctuating velocity fields
according to

ε̄ = 〈(∇ × ū)2〉
t

and ε′ = 〈(∇ × u′)2〉 t
, (2.13a,b)

respectively.

3. Theory

Here we provide arguments for the scaling behaviour of various quantities. We use the
term asymptotic to mean rotationally constrained motions in which the Ekman number
and Rossby number, Ro = U/(2ΩH), are both small relative to unity, i.e. (Ro,Ek) 	 1.
The dimensional flow speed U characterises the magnitude of the fluctuating velocity
field. We expect many aspects of the asymptotic theory for linear rotating convection in
spherical geometries presented by Jones et al. (2000) and Dormy et al. (2004) to hold
here, though some of these scalings must be modified to account for nonlinear terms
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in the governing equations. In particular, the scaling of the convective flow speeds and
temperature perturbation need to be reduced by a factor of Ek1/3 relative to those of
Jones et al. (2000) and Dormy et al. (2004), though this difference does not influence
the leading order force balance in the fluctuating momentum equation when zonal flows
are weak. The scaling of the large-scale zonal flow depends on the small-scale convective
velocity, so we first consider theoretical scaling laws for the convective velocity and the
corresponding convective length scale. Such scaling laws can be found by examining the
fluctuating momentum equation and the fluctuating heat equation, which are respectively
given by [

∂tu′ + ū · ∇u′] + u′ · ∇ū + u′ · ∇u′ − u′ · ∇u′

= − 2
Ek

ẑ × u′ − 1
Ek

∇P′ + Ra
Pr

(
r
ro

)
T ′ r̂ + ∇2u′,

(3.1)

[
∂tT ′ + ū · ∇T ′] + u′ · ∇T̄ + u′ · ∇T ′ − u′ · ∇T ′ = 1

Pr
∇2T ′. (3.2)

We find that the terms in brackets can be large compared to some terms due to the
large amplitude of the zonal flow. However, summing the terms in brackets leads to
results smaller than the individual terms in the brackets, which physically means that the
Lagrangian time derivative is smaller than the Eulerian time derivative. We will therefore
consider the sum of the terms in brackets rather than each individually. It is well known
from linear theory that the Coriolis force and pressure gradient force are dominant terms in
the limit (Ro,Ek) → 0. We will see below that the zonal flow can also modify the leading
order force balance. To study the first-order effects, we eliminate the pressure gradient by
taking the curl of the fluctuating momentum equation. This operation yields

∇ × [
∂tu′ + ū · ∇u′] + ∇ × (u′ · ∇ū) + ∇ × (u′ · ∇u′ − u′ · ∇u′)

= − 2
Ek

∂u′

∂z
+ Ra

Pr
∇ ×

(
r
ro
T ′ r̂

)
+ ∇2 (∇ × u′) . (3.3)

Assuming length scales of order one in the z-direction, length scales of order one for
azimuthally averaged terms and length scales of order � otherwise, the vorticity equation
and heat equation can be approximately written as

∇ × [
∂tu′ + ū · ∇u′] + ūu′

�
+

(
u′)2
�2

− ∇ × u′ · ∇u′ ∼ − u′

Ek
+ Ra

Pr
T ′

�
+ u′

�3
, (3.4)

[
∂tT ′ + ū · ∇T ′] + u′T̄ + u′T ′

�
− u′ · ∇T ′ ∼ 1

Pr
T ′

�2
, (3.5)

where factors of order one have been dropped. We now follow Aurnou et al. (2020) and
assume a balance between u′T̄ and u′T ′�−1 in the temperature equation. Using T̄ = O(1)
yields T ′ ∼ �. Plugging this relation in for T ′ in the momentum equation and assuming a
CIA balance where the fluctuating–fluctuating advection term is used yields(

u′)2
�2

∼ − u′

Ek
∼ Ra

Pr
, (3.6)

which can be solved for the convective velocity and length scale to give

u′ ∼ RaEk
Pr

, � ∼
√
RaEk2

Pr
. (3.7a,b)
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Rotating spherical convection with strong zonal flows

We can rewrite these expressions in terms of the reduced Rayleigh number as

u′ ∼ Ek−1/3 R̃a
Pr

, � ∼ Ek1/3

√
R̃a
Pr

. (3.8a,b)

Here again we note that both the CIA and viscous length scale have the same Ek1/3
dependence. Thus, for a fixed value of R̃a, the CIA length scale follows the same scaling as
predicted for the viscous length scale. Indeed, one of the points that we stress in the present
study is that all length scales in this system are viscously selected to leading order, with
order one variations away from this viscous scale since R̃a = O(1) (e.g. Yan & Calkins
2022; Oliver et al. 2023). We note that the statement R̃a = O(1) is in reference to the
scaling of this quantity with respect to the Ekman number only, and it does not require
that the reduced Rayleigh number is small, though the simulations presented here have a
limited range.
We can understand why these different balances produce the same Ekman dependence

by making a different set of assumptions than the assumptions used for a CIA balance.
The first assumption we make is that the Ekman dependence for any term can be written in
terms of a power law. We will assume that the Ekman dependence of the convective flow
speeds, the length scale and the fluctuating temperature can be written as u′ = O(Ekxu),
� = O(Ekx�) and T ′ = O(EkxT ), respectively. The second assumption is that ratios of
certain terms in the momentum and heat equations do not change when the Ekman
number is reduced. We will assume that the advection of fluctuating velocity by fluctuating
velocity, viscosity and buoyancy follow the same Ekman number scaling in the fluctuating
momentum equation. In the heat equation, we will assume that conduction and advection
of the mean temperature by the fluctuating velocity follow the same Ekman number
scaling. These assumptions produce the system of equations given by

2xu − x� = xu − 2x� = −4/3 + xT , xT − 2x� = xu. (3.9a,b)

Note that we have assumed the mean temperature and the length scale of the mean
temperature do not depend on the Ekman number. Solving this system of equations yields
xu = −1/3, x� = 1/3 and xT = 1/3, which implies that u′ = O(Ek−1/3), � = O(Ek1/3)
and T ′ = O(Ek1/3). Note that the Ekman number dependence derived here is the same
as the Ekman number dependence derived using the CIA balance written in terms of the
reduced Rayleigh number. Therefore, we can get the Ek1/3 scaling for the length scale
by assuming that various terms follow the same Ekman number scaling without actually
assuming any balances a priori. These scalings are equivalent to the scalings used to derive
the asymptotic model of rotating convection in a Cartesian geometry (e.g. Sprague et al.
2006).
An asymptotic constraint on the amplitude of the zonal flow can now be obtained upon

examination of the mean momentum equation. The mean momentum equation is given by

∂tū + ū · ∇ū + u′ · ∇u′ + 2
Ek

ẑ × ū = − 1
Ek

∇P̄ + Ra
Pr

(
r
ro

)
T̄ r̂ + ∇2ū. (3.10)

The zonal component is then

∂tūφ + [ū · ∇ū]φ +
[
u′ · ∇u′

]
φ

+ 2
Ek

[
ẑ × ū

]
φ

=
[
∇2ū

]
φ

, (3.11)

where the square brackets and corresponding subscript are used for brevity. The
above equation allows for a straightforward interpretation of the zonal flow dynamics.

981 A22-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.78


J.A. Nicoski, A.R. O’Connor and M.A. Calkins

Time dependence and advection of the zonal flow by mean meridional flows are captured
by the first two terms on the left-hand side; for simplicity, we find it useful to refer
to the latter quasi-linear term with the descriptor ‘mean-mean’. The term [u′ · ∇u′]φ
includes the divergence of the Reynolds stresses and acts as the primary source of the
zonal flow. The zonal component of the mean Coriolis force can be written as [ẑ × ū]φ =
cos θ ūθ + sin θ ūr such that only meridional circulation appears in this term.
Averaging (3.11) along the axial direction and in time leaves only the two advective

terms and the viscous term. For a careful derivation of the balance between the averaged
advection term and the viscous term in spherical coordinates, see Dietrich, Gastine &
Wicht (2017). Previous studies have found that the mean-mean term is small (e.g. Dietrich
et al. 2017), and we also find this to be the case in our simulations. While this advection
term may be important for transporting angular momentum (McIntyre 1998; Miesch &
Hindman 2011), it cannot play a role in setting the amplitude of the time-averaged (steady)
zonal flow. Thus, we anticipate that there must be a balance between the fluctuating
advection term and the viscous term when the flow is rapidly rotating. Letting (·) φ,z,t

denote an average over φ, z and time, the preceding argument implies that[
u′ · ∇u′ φ,z,t]

φ
≈

[
∇2 ū φ,z,t

]
φ

. (3.12)

The above balance is expected to hold for all values of Ek and Ra; the zonal flow
is therefore intrinsically dependent on viscosity and we should not expect its scaling
behaviour to be ‘diffusion-free’. We note that a similar balance holds for mean flows in
planar geometries, allowing for constraints on the amplitude of analogous ‘zonal flows’
(e.g. Nicoski, Yan & Calkins 2022). Finally, since averaged quantities vary on order one
length scales, this balance suggests

ūφ = O(CRu′u′), (3.13)

where CR represents the correlation of the fluctuating velocity components. We might
expect that this correlation gets weaker as the reduced Rayleigh number is increased and
the flow becomes less constrained by rotation; this weakening was confirmed via direct
computation by Christensen (2002). However, if we restrict our analysis to the regime of
asymptotically small Ekman number, then the dynamics should depend on R̃a, rather than
on Ek and Ra separately; in this sense, we do not expect CR to depend on the Ekman
number and we can then use (3.13) to determine how the zonal flow scales with Ek. The
asymptotic analysis predicts that the convective velocity scales as u′ = O(Ek−1/3), which
implies that

ūφ = O
(
Ek−2/3

)
, (3.14)

thus indicating that the zonal flow is intrinsically dependent on viscosity, albeit in an
asymptotic sense. For time dependence in the zonal flow, we require that the time
derivative is comparable to the viscous force so that

∂tūφ = O
(
Ek−2/3

)
, (3.15)

which, along with (3.14), indicates that the zonal flow time scale is O(1) in our
non-dimensional, large-scale viscous diffusion units. Thus, the zonal flow varies
on a large-scale viscous diffusion time. This property is one of the reasons that
computations of rotating spherical convection with stress free boundary conditions are so

981 A22-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.78


Rotating spherical convection with strong zonal flows

demanding – very long integration is necessary to saturate the amplitude of the zonal flow
and reach a statistically stationary state.
The asymptotic constraint on the zonal flow amplitude allows for additional insight

into the force balance by which it is constrained. In the limit Ek → 0, the Rayleigh
number must scale as Ra = O(Ek−4/3) to generate convection (Roberts 1968). Along
with the fact that the magnitude of the mean temperature is independent of the Ekman
number, this indicates that the mean buoyancy force scales as O(Ek−4/3). The radial and
co-latitudinal components of the mean Coriolis force both contain ūφ , thus indicating that
these components scale as O(Ek−5/3), which is larger than the mean buoyancy force by a
factor of O(Ek−1/3). Thus, the zonal flow is geostrophically balanced to leading order, i.e.

− 2 sin θ ūφ ≈ −∂rP̄, −2 cos θ ūφ ≈ −r−1∂θ P̄. (3.16a,b)

It is informative to compare the scaling behaviour of zonal flows that are geostrophically
balanced with a zonal flow that is in thermal wind balance (e.g. Calkins et al. 2021). An
order of magnitude estimate for the scaling of the thermal wind component of the zonal
flow can be obtained if we balance the mean Coriolis force with the mean buoyancy force,

− 2 sin θ

Ek
ūtwφ ≈ Ra

Pr

(
r
ro

)
T̄ ⇒ ūtwφ ∼ RaEk

Pr
. (3.17)

Using the definition of the reduced Rayleigh number, this becomes

ūtwφ ∼ R̃a
Pr

Ek−1/3. (3.18)

Additionally, since R̃a = O(1), this implies ūtwφ = O(Ek−1/3), which is of the same order
as the convective flow speeds. Thus, zonal flows that satisfy a thermal wind balance
are substantially weaker than those that are geostrophic. Interestingly, the above scaling
also provides an estimate for the scaling of the thermal wind with Rayleigh number and
represents a ‘diffusion-free’ scaling in the sense that it indicates that the thermal wind
does not depend on either ν or κ . The thermal wind scaling seems to be loosely consistent
with the zonal flows present in the dynamos of Calkins et al. (2021); when a magnetic field
is present, the Lorentz force strongly damps the geostrophic component of the zonal flow.

4. Numerical results

4.1. Overview
To test the theoretical arguments given in the previous section, we perform a suite of
direct numerical simulations of convection across a range of Ekman number and Rayleigh
number. We expect the agreement between simulation output and the asymptotic trends
to become better as the Ekman and Rossby numbers are made smaller. We consider the
aspect ratios η = 0.35 and η = 0.7. The smallest Ekman numbers that were simulated are
Ek = 10−6 and Ek = 3 × 10−5 for the η = 0.35 and η = 0.7 aspect ratios, respectively.
Details of the simulations are contained in tables 1–2 in the Appendix. The Rossby

number, Ro = EkRec, is often used to determine the rotational constraint. We note that
for all of our cases, the Rossby number is smaller than 0.1, which would suggest that
our simulations are rotationally constrained, and this is confirmed directly via a force
balance analysis. Another common measure of rotational constraint in convection is the
convective Rossby number, Roc =

√
RaEk2/Pr. The largest convective Rossby number in

our simulations is Roc = 0.94 for the largest Rayleigh number case with Ek = 3 × 10−4.
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–1500 15000 –1500 1500 –2500 25000 0

(b) (c)(a)

Figure 1. Instantaneous visualisations of the zonal flow where red indicates prograde motion and blue
indicates retrograde motion: (a) η = 0.35, Ek = 10−5, Ra = 2 × 108 (R̃a ≈ 43); (b) η = 0.7, Ek = 3 × 10−5,
Ra = 3.2 × 107 (R̃a ≈ 30); (c) η = 0.7, Ek = 3 × 10−5, Ra = 6.4 × 107 (R̃a ≈ 60).

However, we note that for our lower Ekman number cases, the convective Rossby number
tends to be smaller. For example, our largest convective Rossby number at Ek = 3 × 10−6

is Roc = 0.11.
Our simulations share some overlap in parameter space with several previous

investigations. In particular, Christensen (2002) ran cases similar to our η = 0.35 cases
to Ekman numbers as low as Ek = 10−5. We reach Ekman numbers as low as Ek = 10−6

at that aspect ratio, although the highest Rayleigh numbers we reach are approximately a
factor of three smaller than Christensen (2002) reached because we are mainly interested in
the rapidly rotating regime. As an example, we reach Ra/Rac ∼ 30 for Ek = 10−5, while
Christensen (2002) reached Ra/Rac ∼ 105 for this same Ekman number.
All of the simulations presented in this study generate zonal flows with an amplitude that

is at least comparable to the amplitude of the underlying convection, though in many of
the cases, the zonal flow is substantially larger in magnitude compared to the convection.
Although we fix the Prandtl number to be unity, smaller Prandtl numbers tend to yield
stronger zonal flows (e.g. Aubert et al. 2001). The qualitative nature of the zonal flows
was similar for much of the parameter space covered, and representative cases for both
shell thicknesses are shown in figure 1. The zonal flows we observe in this study are
similar to zonal flows observed in previous works. These zonal flows are characterised
by a nearly invariant structure in the axial (z) direction, and consist of a single prograde
jet at the equator with retrograde jets at higher latitudes. Three of the simulations that
were performed with a thin shell (η = 0.7) developed high-latitude jets; one example
is shown in figure 1(c). As discussed in previous work (e.g. Heimpel et al. 2005), the
number of jets is related to the Rhines length scale; in general, high-latitude jets are more
likely to form when the shell is made thinner, the Ekman number is made smaller and the
Rayleigh number is larger. A subset of our cases exhibit relaxation oscillations in which
the convection mainly occurs during short bursts; this behaviour was also observed in
previous work (e.g. Christensen 2002). Movie 1 from the supplementary material available
at https://doi.org/10.1017/jfm.2024.78 shows the radial velocity in the equatorial plane over
the course of one relaxation oscillation with the convective Reynolds number shown for
reference. From this movie, we see that during times of weak convection, the convection is
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Figure 2. Reynolds number characterising the flow speeds of the fluctuating (convective) velocity versus the
reduced Rayleigh number, R̃a: (a) the convective Reynolds number Rec; (b) the rescaled convective Reynolds
number R̃ec = Ek1/3Rec; (c) the compensated convective Reynolds number R̃ecR̃a−1; (d) the compensated
convective Reynolds number R̃ecR̃a−3/2. The filled symbols represent η = 0.35 cases and the hollow symbols
represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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Figure 3. Reynolds number characterising the flow speeds of the mean (zonal) velocity field versus R̃a:
(a) the zonal Reynolds number Rez; (b) the rescaled zonal Reynolds number R̃ez = Ek2/3Rez. The solid
line is a least squares fit of the data for the η = 0.35, Ek = 10−5 cases to a line and is given by Rez =
(0.022R̃a − 0.19)Ek−2/3; the dashed line is a least squares fit of all the η = 0.7 data to a line and is given
by Rez = (0.031R̃a − 0.016)Ek−2/3. The symbols are the same as defined in figure 2.

loses rotational constraint; this deviation is particularly noticeable in figure 2(b) for the
high-Rayleigh-number regime (R̃a � 100) for the two largest Ekman numbers used in the
η = 0.35 simulations, Ek = 3 × 10−4 and Ek = 10−4. Figure 2(c,d) shows two versions
of the compensated convective Reynolds number: R̃ecR̃a−1 and R̃ecR̃a−3/2. We observe
in figure 2(c) that the compensated Reynolds number R̃ecR̃a−1 becomes nearly horizontal
for our large Rayleigh number cases at large Ekman number and small aspect ratio, which
suggests these cases may be scaling as Rec ∼ R̃a. However, this scaling behaviour may be
localised in R̃a space. For sufficiently small Ekman number and large Rayleigh number,
the compensated plot for R̃ecR̃a−3/2 collapses the data well, though the scaling appears
slightly weaker than R̃a3/2 which suggests that the convective Reynolds number scales
approximately as Rec ∼ R̃a3/2 in this regime.
Figure 3(a) shows the mean Reynolds number as a function of R̃a, and figure 3(b) shows

the corresponding asymptotically rescaled mean Reynolds number, R̃ez = Ek2/3Rez. As
mentioned previously, the mean flow is dominated by the zonal component in all of our
simulations. While there is clearly some spread in the rescaled data for the thick shell
cases, there is an indication that the data collapse to an asymptotic state as Ek → 0.
Moreover, the rescaled values are order unity. There appears to be better collapse for the
thin shell cases, indicating that the fluid depth may play an important role. Also note the
excellent collapse for the three thin shell data points near R̃a ≈ 60 – the two lower Ekman
number cases of these three develop prograde high-latitude jets as shown in figure 1(c).
Taken together, the data seem to support that the zonal flow scales as Ek−2/3 in the rapidly
rotating regime. We note that Gastine et al. (2014) found an empirical scaling for the zonal
Rossby number of Rozon ∼ Ra0.6Ek0.99, which, when converted to a Reynolds number and
using Ra ∼ Ek−4/3, gives Rez ∼ Ek−0.81. This result broadly agrees with the scaling of
Rez ∼ Ek−2/3 derived in this paper.
While the balance between viscosity and Reynolds stresses predicts a zonal flow scaling

of Ek−2/3, this balance is unable to predict how the zonal flow scales with the reduced
Rayleigh number due to the fact that the correlation of the fluctuating velocity components
is an unknown function of R̃a. Thus, we make an empirical fit of Rez with respect to the
reduced Rayleigh number, which is shown in figure 3(b). We find that a line does a good
job of fitting our small Ekman number cases. However, our larger Ekman number cases at
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Figure 4. Ratio of the zonal Reynolds number to the square of the convective Reynolds number. The least
squares fit to a power law scaling calculated using the η = 0.35, Ek = 10−4 cases is shown as a black line, and
is given by CR = 14.21R̃a−1.526. The symbols are the same as defined in figure 2.

η = 0.35 are run to larger values of the reduced Rayleigh number and are not well fit by a
line at larger values of R̃a. One possibility for this effect is that these larger Ekman number
cases at large Rayleigh number are no longer in the rapidly rotating regime and therefore
follow a different trend. Another possibility is that the affine dependence we have used to
fit the data only holds near the onset of convection and that the zonal Reynolds number
follows a different trend for large enough values of the reduced Rayleigh number, even as
the Ekman number is decreased.
It is also interesting to consider the relationship between the zonal and convective

Reynolds numbers. Equation (3.13) suggests that the relevant quantity to consider is
Rez/Re2c , which we show in figure 4. We predicted that this ratio is independent of the
Ekman number, which we see is a good approximation for our range of parameters.
Christensen (2002) noted that the relation Rez ∼ Re2c holds only when the correlation
between the fluctuating velocity components is constant, which occurs near the onset of
convection. Anelastic simulations of rotating spherical convection also find that Rez/Re2c
is nearly constant near the onset of convection and that Rez/Re2c decreases with increasing
Ra for sufficiently large Rayleigh number (Gastine & Wicht 2012). Our simulations are
also consistent with this behaviour, showing that Rez/Re2c is approximately constant up to
R̃a ≈ 15. For R̃a � 15, we observe that Rez/Re2c decreases with increasing R̃a. This trend
of Rez/Re2c decreasing as R̃a is increased does not show a systematic dependence on the
Ekman number, since all data points appear to collapse well. Because Rez/Re2c is related
to the correlation of the convective velocity components, this suggests that the correlation
of the convective velocity components decreases as R̃a is increased, even at asymptotically
small Ekman numbers.

4.3. Length scales
In this section, we compute length scales for both the mean flow and the small-scale
convection. To provide a physical picture of how these length scales vary with Ekman
number, we show snapshots of the radial velocity in the equatorial plane for three different
Ekman number cases with R̃a ≈ 50 in figure 5. As expected, the typical length scale of
the convection decreases with decreasing Ekman number.
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Figure 5. Visualisations of the radial velocity for three thick shell cases during a time interval of strong
convection. Equatorial slices are shown in panels (a–c) and meridional slices are shown in panels (d– f ) for the
cases (a,d) Ek = 3 × 10−4, Ra = 2.5 × 106 (R̃a ∼ 50.2); (b,e) Ek = 3 × 10−5, Ra = 5.4 × 107 (R̃a ∼ 50.3);
(c, f ) Ek = 3 × 10−6, Ra = 1.2 × 109 (R̃a ∼ 51.9).

One way to quantitatively study how the length scale varies with Ekman number is to
consider how the kinetic energy power spectrum varies with Ekman number. We define
the sum of the kinetic energy power spectrum over the order m and the normalisation of
the kinetic energy power spectrum summed over the order m as

El =
l∑

m=1

Em
l

t

, Ẽl =

⎛⎜⎜⎜⎜⎜⎝
l∑

m=1

Em
l

lmax∑
l=1

l∑
m=1

Em
l

⎞⎟⎟⎟⎟⎟⎠

t

. (4.1a,b)

Due to the influence of the zonal flow, we again only sum over m � 1 modes to remove
the influence of the zonal flow. Figure 6 shows how these kinetic energy spectra vary with
Ekman number. The critical azimuthal wavenumber mc is shown for reference, and mc
takes the values 6, 8, 11, 16 and 23 for the cases of Ek = 3 × 10−4, Ek = 10−4, Ek = 3 ×
10−5, Ek = 10−5 and Ek = 3 × 10−6, respectively. These values were calculated using the
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Figure 6. Time- and radially averaged spherical harmonic kinetic energy spectra. Cases with η = 0.35 and
similar values of the reduced Rayleigh number are shown. Circles denote the critical azimuthal wavenumber
(mc) at the onset of convection for each parameter set and squares denote the degree l derived from the spherical
harmonic length scale �′

sh = π/l. (a) Spherical harmonic spectra. (b) Rescaled spherical harmonic spectra.
(c) Spherical harmonic spectra at small l. (d) Rescaled spherical harmonic spectra at small l.

eigenvalue solver Kore (Barik et al. 2023). We see that the smaller Ekman number cases
have more power in each mode and extend to higher values of l in comparison to larger
Ekman number cases. We attempt to collapse these data by multiplying the degree l by
Ek1/3, the expected scaling for the length scale, and multiplying the amplitude of the data
by Ek1/3. We choose the amplitude scaling such that the area under the kinetic energy
power spectrum, the volume averaged kinetic energy density, scales as Ek−2/3, which is
consistent with the scaling of our convective Reynolds number. This collapsed data for the
kinetic energy power spectrum are shown in figure 6(b). We see that the collapse of the data
is reasonable for values of l greater than mc, but not as good for values of l less than mc.
This discrepancy might suggest that large length scales are following a different scaling
than anticipated. We investigate the behaviour of the kinetic energy power spectrum for
the small l modes in figure 6(c,d). The power spectrum for these small l modes appears to
shift more slowly to the right with Ekman number than the large l modes. Several papers
on the linear onset of convection predict a longer length scale in the cylindrical radial
direction than in the azimuthal direction. Dormy et al. (2004) predicts an Ek2/9 length
scale for cases with differential heating, and an Ek1/6 length scale for cases with certain
boundary conditions and heating conditions. We show the collapse of our data for the
predicted Ek2/9 length scale in figure 6(d), which does a reasonable job of collapsing our
data. However, we do not have a large enough range in Ekman number to discern between
an Ek1/6 and an Ek2/9 scaling.
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Figure 7. Time- and radially averaged spherical harmonic spectra. Select cases from η = 0.35, Ek = 10−5 are
shown. Circles denote the critical azimuthal wavenumber at the onset of convection and squares denote the
spherical harmonic degree calculated from �′

sh, as in figure 6. (a) Spherical harmonic spectra. (b) Spherical
harmonic spectra normalised to have an area of one.

Figure 7 shows the kinetic energy spectra for the η = 0.35, Ek = 10−5 cases averaged
in time and radius. Figure 7(b) shows the spherical harmonic spectra normalised to have
area one. We find that the kinetic energy contained in high l values increases slightly with
increasing R̃a, but that the overall shape of the spectra does not change significantly. This
behaviour indicates that small-scale convection becomes more prominent as the Rayleigh
number is increased. The spectra show that many different length scales are present
within the flow, and these scales may exhibit different scaling behaviour with varying
Ekman number. Thus, different methods for calculating length scales may lead to different
conclusions. Here we use a few different methods to hopefully capture the scaling for both
large and small scales.
The computed length scales are all shown in figure 8. The spherical harmonic length

scale is shown in panels (a,b), and the Taylor microscale is shown in panels (c,d); the
asymptotically rescaled lengths are shown in panels (b,d). The spherical harmonic length
scale is observed to decrease rapidly for R̃a � 50, then levels off for larger values of
R̃a; not surprisingly, this behaviour is consistent with the trends observed in the kinetic
energy spectra. There may be a trend suggesting that this length scale converges to a
nearly constant value at the largest values of R̃a, though this behaviour may be occurring
outside of the rapidly rotating regime. Both the decreasing and constant dependence of
the length scale on Rayleigh number observed here is in contrast to the prediction made
by the CIA balance where the length scale increases as the Rayleigh number increases.
Figure 8(b) shows the asymptotically rescaled spherical harmonic length scale. As with
the flow speeds, this rescaled quantity is order unity and we find significantly less scatter
in the data when viewed in this rescaled coordinate, suggesting that this particular length
scale does approximately scale as Ek1/3. However, we also note that a subtle Ekman
number dependence still exists in the rescaled length scale; larger Ekman number cases
seem to level off at smaller rescaled length scales in comparison to the smaller Ekman
number cases. This behaviour might indicate that the system is either converging slowly
towards the O(Ek1/3) length scale with decreasing Ekman number or that the asymptotic
dependence of this length scale is slightly weaker than Ek1/3. Our data for the kinetic
energy power spectrum indicate that a second length scale may be present at small l values
which follows a different Ekman number scaling. Thus, the spherical harmonic length
scale may have a composite asymptotic dependence on Ek since it may be capturing both
the Ek2/9 and Ek1/3 asymptotic scalings.

981 A22-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.78


Rotating spherical convection with strong zonal flows

50 100 150 200

0.05

0.10

0.15

0.20

0.25

0.30
�
′ sh

0 0 50 100 150 200

3

4

5

6

E
k–

1
/3
�
′ sh

50 100 150 200

Ra

0.02

0.04

0.06

0.08

�
′ tm

0 0 50 100 150 200

Ra

0.8

1.0

1.2

1.4

1.6

E
k–

1
/3
�
′ tm

(b)(a)

(d )(c)

Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since �′

sh and �′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3�′
sh ≈ 4 and Ek−1/3�′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by �′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than �′

sh, which suggests that �′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale �′

peak increases with increasing Rayleigh number, in contrast to �′
sh
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Figure 9. Length scale calculated from the degree lpeak where the fluctuating kinetic energy power spectrum
peaks: (a) peak length scale; (b) peak length scale versus the Rossby number characterising the convective
flow speeds (two Rossby number scalings are shown for reference); (c) peak length scale rescaled by Ek−2/9;
(d) peak length scale rescaled by Ek−1/6. The symbols are as defined in figure 2.
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Figure 10. Length scales computed from the mean flow: (a) spherical harmonic length scale; (b) Taylor
microscale. The symbols are the same as defined in figure 2.

and �′
tm, which either decrease or remain constant as the Rayleigh number is increased.

Figure 9(b) shows the peak length scale as a function of the Rossby number characterising
the convective flow speeds, Ro = EkRec, where it can be seen that �′

peak approximately
scales as Ro1/4, which is in contrast to the Ro1/2 scaling that is predicted from the CIA
balance. To ensure the validity of our results with polynomial interpolation, we also
estimated the peak length scale by replacing Em

l in (2.9a,b) with (Em
l )10, which weights

the length scale more towards the peak. Using this estimate of the peak length scale, we
found qualitatively similar results to what is shown in figure 9.
We now consider length scales of the zonal flow, which are shown in figure 10. Unlike

the convective length scales, we expect these mean length scales to be order unity and
approximately independent of the Ekman number; the data set confirms these expectations.
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Figure 11. Time-averaged volume r.m.s. of the fluctuating temperature; (a) raw data; (b) asymptotically
rescaled data; (c) compensated data. The line Ek−1/3T ′ = 0.01R̃a + 0.5 is shown for reference in panel (b).
The symbols are the same as defined in figure 2.

The mean length scale reaches a maximum at approximately R̃a ∼ 25 and, for larger
values of the reduced Rayleigh number, decays slowly over the range of Rayleigh numbers
used in this study. We also computed a Taylor microscale for the mean flow, as shown
in figure 10(b); although this length scale is slightly smaller than the spherical harmonic
length scale, it shows a similar behaviour with Ek and R̃a in comparison with the spherical
harmonic length scale.

4.4. Heat equation balances
The asymptotic scaling behaviour of terms in both the momentum and heat equations
are linked. For this purpose, we study the scaling of various terms in both equations
beginning with the heat equation in the present section. Figure 11 shows the r.m.s. of the
fluctuating temperature for all of the thick shell cases. We observe a systematic decrease in
the magnitude of the fluctuating temperature as the Ekman number is reduced. Figure 11(b)
shows that the fluctuating temperature is well described by the relationship T ′ = O(Ek1/3)
for fixed R̃a, as predicted by asymptotic theory. A line gives a decent approximation for
how the fluctuating temperature varies with R̃a, in contrast to the CIA balance, which
predicts a reduced Rayleigh number dependence of T ′ ∼ R̃a1/2. Figure 11(c) shows the
compensated fluctuating temperature using the reduced Rayleigh number dependence
predicted by the CIA balance: R̃a1/2. We see that the data are not very well described
by this Rayleigh number dependence; for none of the low-Ekman-number cases does there
exist a large range of R̃a where the compensated data are horizontal. Some of the larger
Ekman number cases appear to be fit by this relation for 60 � R̃a � 85. However, this is a
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Figure 12. Time-averaged volume r.m.s. values of various terms from the fluctuating heat equation. The
terms shown are: (a) u′ · ∇T ′; (c) u′ · ∇T̄; (e) ∇2T ′. Asymptotically rescaled data: (b) Ek1/3u′ · ∇T ′;
(d) Ek1/3u′ · ∇T̄; ( f ) Ek1/3∇2T ′. The symbols are the same as defined in figure 2.

rather narrow range, so it is difficult to say whether these cases are actually following the
predicted CIA scaling. We also note that for the Ek = 3 × 10−4 cases, the largest R̃a cases
exhibit a slight decrease in the r.m.s. value of T ′ as compared to the lower R̃a cases, so T ′
is not strictly increasing with R̃a in our data.
Figure 12 shows how the various terms from the fluctuating heat equation depend

on Ekman number and reduced Rayleigh number. Figure 12(b,d, f ) shows how well
the asymptotic prediction of the scaling collapses the data. The diffusion term and the
advection of the mean temperature by the fluctuating velocity term are well collapsed by
the predicted Ek−1/3 scaling, although the advection of the fluctuating temperature by the
fluctuating velocity is not as well collapsed by the asymptotic scaling. The data suggest
that a slightly stronger dependence on the Ekman number is present since the rescaled
data from the smaller Ekman number cases lie above that of the larger Ekman number
cases. However, we note that the magnitude of the rescaled terms are all comparable, thus
providing support for the asymptotic theory.
Figure 13 shows how the various terms from the fluctuating heat equation vary with the

reduced Rayleigh number for two fixed values of the Ekman number. The large magnitude
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Figure 13. Time-averaged volume r.m.s. of several terms from the fluctuating heat equation averaged in time

for thick shell simulations: (a) Ek = 3 × 10−4; (b) Ek = 10−5.

of the time derivative term is a consequence of the zonal flow; advection by the zonal flow
is not balanced and causes large accelerations. Therefore, the sum of the advection by the
zonal flow and the time derivative is smaller by comparison and this sum is approximately
balanced by the term u′ · ∇T ′. Another interesting observation from figure 13 is that there
is a near balance of the diffusion term and the advection of the mean temperature term for
a wide range of R̃a. This balance was also noted by Maffei et al. (2021).

4.5. Force balances
In this section, we investigate the scaling behaviour of the forces present in the radial
component of the fluctuating momentum equation (similar scaling was observed in the
other two components). Figure 14 shows the time average and r.m.s. over the entire
domain of the viscous force, buoyancy force and the fluctuating advective term. For the
fluctuating advective term, we remove the spherically symmetric l = 0 mode as this mode
is not dynamically relevant. From the arguments in the theory section, we expect these
three terms to all scale as Ek−1 in our non-dimensional units. We test these scalings by
multiplying the data in figure 14(a,c,e) by Ek, which is shown in figure 14(b,d, f ). We
see that the predicted Ekman number scalings are consistent with the data. Similar to the
heat equation terms in the previous section, the collapse for the advective term is not as
good as the collapse for the other terms. This difference either indicates that the advective
term is converging slower than the other terms or that the advective term is converging to a
slightly different scaling than predicted by asymptotic theory. We also note that the scaling
of the advective term is time-dependent; removing the intervals of time in which strong
convective bursts are occurring in the time series produces a scaling for the fluctuating
advective term that more closely follows the predicted Ek−1 scaling. This effect suggests
that the relaxation oscillations are playing some role in the scaling, which may be due to
the larger Rossby numbers that occur during these times. The Coriolis force is not shown
since its scaling follows from the scaling of the fluctuating velocity given in figure 2 – in
our units, it scales as Ek−4/3.
These scalings suggest that for a fixed value of the reduced Rayleigh number, the ratio

of the viscous force, buoyancy force and fluctuating advection term remain approximately
fixed as the Ekman number is decreased. However, the ratio of either the viscous force, the
buoyancy force or the fluctuating advective term to the Coriolis force will scale as Ek1/3.
While we have only shown the radial component of the fluctuating force balance, we note
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Figure 14. Time-averaged volume r.m.s. of various terms from the radial component of the fluctuating
momentum equation: (a) viscous force; (c) buoyancy force; (e) fluctuating advection term; (b) rescaled viscous
force; (d) rescaled buoyancy force; ( f ) rescaled fluctuating advection term. The symbols are the same as defined
in figure 2.

that the θ and φ components of the fluctuating force balance show similar behaviour. We
also tested removing the thermal boundary layers, and did not observe a qualitative change
in any of the trends shown.
Some terms from the momentum equation follow a stronger Ekman number scaling

due to the presence of the zonal flow, and these terms are shown in figure 15. The
zonal flow strongly advects the fluctuating velocity, which is unbalanced and causes large
accelerations in the small-scale fluid structures. Because the zonal flow scales as Ek−2/3,
the fluctuating velocity scales as Ek−1/3 and the length scale of the fluctuating velocity
scales as Ek1/3, we expect the advection by the zonal flow to scale as Ek−4/3, which we
also expect for the scaling of the time derivative. Figure 15(b,d) shows the collapse of the
mean advection term and the time derivative term for this scaling. We see that both the
advection by the zonal flow and the time derivative follow an Ek−4/3 scaling, which we
note is the same scaling followed by the Coriolis force. Therefore, the advection by the
zonal flow and the time derivative appear at leading order asymptotically, and the sum of
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Figure 15. Time-averaged volume r.m.s. of various terms from the radial component of the fluctuating
momentum equation: (a) advection by the zonal flow; (c) time derivative (inertia); (e) the sum of the time
derivative and advection by the zonal flow; (b) rescaled advection by the zonal flow; (d) rescaled time derivative;
( f ) rescaled sum of the time derivative and advection by the zonal flow. The symbols are the same as defined
in figure 2.

these two terms is somewhat smaller than either individually, as shown in figure 15(c,e)
and in figure 16.
Figure 16 shows how the different terms in the fluctuating radial momentum equation

depend on the reduced Rayleigh number for two Ekman numbers. For both Ek = 3 × 10−4

and Ek = 10−5, the buoyancy force is approximately an order of magnitude larger than
viscosity or advection at small R̃a, and both viscosity and advection grow more rapidly
with Rayleigh number as compared to the buoyancy force. For Ek = 3 × 10−4, advection
becomes larger than buoyancy near R̃a ≈ 140 and continues growing larger than buoyancy.
For Ek = 10−5, we do not reach large enough Rayleigh numbers for advection to become
as large as buoyancy. Therefore, we do not observe a CIA balance in our simulations since
the buoyancy force and advection scale differently with Rayleigh number for the parameter
space we surveyed.
In figure 17, we plot the ratio of the viscous force to the buoyancy force, and the ratio of

the fluctuating advective term to the buoyancy force. We find that the ratio of the viscous
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Figure 16. Volume r.m.s. of several terms from the fluctuating radial momentum equation averaged in time

for thick shell simulations: (a) Ek = 3 × 10−4; (b) Ek = 10−5.
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Figure 17. Ratios of forces in the fluctuating radial momentum equation where Fv = [∇2u′]r, Fa = [u′ · ∇u′]r
and Fb = (Ra/Pr)(r/r0)T ′: (a) ratio of the viscous force to the buoyancy force; (b) ratio of the fluctuating
advective term to the buoyancy force. The symbols are the same as defined in figure 2.

force to buoyancy is an increasing function of the Rayleigh number, which suggests that
viscosity does not become negligible at more extreme parameters. This behaviour is in
contrast to the diffusion-free scaling that is used in many previous studies, which assume
that viscosity is negligible. Therefore, the trends we observe in our data do not support
viscosity becoming negligible, although it is possible that this trend changes at higher
values of the reduced Rayleigh number than we achieved in this study. However, Oliver
et al. (2023) also investigated this ratio over a larger range of R̃a in the plane geometry
and found similar behaviour, where it was attributed to the fact that the fluid interior acts
as the dominant control on heat transport. In this sense, this measure may simply be a
manifestation of the energetic constraints on the system in which work done by the viscous
force must balance the work done by the buoyancy force when averaged over time and
space (e.g. Siggia 1994).

4.6. Heat flow and dissipation
Figure 18 shows the Nusselt number for all of the η = 0.35 cases. The raw data are shown
in panel (a); asymptotically rescaled data are shown in panel (b); and the Nusselt number
compensated by the diffusion-free scaling is shown in panel (c). As for much of the data
shown previously, in comparison to panel (a), the collapse of the data in panel (b) is
indicative that the simulations are in the regime of rotationally constrained dynamics.
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Figure 18. Time-averaged Nusselt number calculated at the outer boundary: (a) Nusselt number versus
Rayleigh number; (b) Nusselt number versus reduced Rayleigh number; (c) compensated Nusselt number. The
symbols are the same as defined in figure 2.

Moreover, the force balances presented previously indicate that none of our simulations
are within the buoyancy-dominated regime. The solid line in panel (b) shows the predicted
scaling for diffusion-free heat transport,Nu ∼ R̃a3/2, and the dashed line shows the scaling
Nu ∼ R̃a. It appears that our data have not quite reached the predicted Nu ∼ R̃a3/2 scaling,
although some of our Ek = 3 × 10−6 cases appear to be close to this scaling. This might
suggest that the Nu ∼ R̃a3/2 scaling can be reached at lower Ekman number and higher
Rayleigh number.
Figure 19(a,c) shows the dissipation by both the convective flow and the mean flow. The

dissipation by the convective flow is greater than the dissipation by the mean flow for all
of the cases we studied. Figure 19(b,d) shows that the dissipation follows the expected
scaling of Ek−4/3 and that the convective dissipation follows the scaling Ek−4/3 slightly
better than the mean flow. Figure 20 shows the ratio of the dissipation by the mean flow
to the dissipation by the convective flow. We see that for all Ekman numbers, this ratio
reaches a maximum when R̃a ∼ 30, and that for higher values of the reduced Rayleigh
number, the ratio of mean to convective dissipation decreases. This trend might suggest
that for large values of the reduced Rayleigh number, the dissipation is mainly controlled
by the convection. There is also a trend where the maximum value of the ratio of the mean
dissipation to the convective dissipation increases as the Ekman number is decreased.
However, this trend is rather weak, with only approximately a factor of two change in the
ratio while the change in Ekman number was two orders of magnitude.

5. Conclusions

A systematic investigation of rotating convection in a spherical shell with stress-free
boundary conditions was carried out. The scaling behaviour of various quantities was
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Figure 19. Viscous dissipation rates for (a,b) the convective flow and (c,d) the zonal flow. The symbols are
the same as defined in figure 2.
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Figure 20. Ratio of the large-scale viscous dissipation rate to the small-scale viscous dissipation rate. The
symbols are the same as defined in figure 2.

investigated for varying Rayleigh number and Ekman number, and two different aspect
ratios were employed. An emphasis was placed on characterising the asymptotic nature
of the system as the Ekman number is reduced. Here we have used the known scalings
obtained from both the linear theory of rotating spherical convection (Jones et al.
2000; Dormy et al. 2004) and the closely related nonlinear reduced model for rotating
Rayleigh–Bénard convection (e.g. Sprague et al. 2006). Overall, we find good agreement
between the asymptotic scalings and the DNS, though the parameter space explored with
the simulations is limited, especially when compared with natural systems.
In general, we find that the asymptotic nature of the system can be demonstrated

when plotting asymptotically rescaled quantities as a function of the reduced Rayleigh
number, R̃a. Using this approach, we find that the convective flow speeds, as measured
by the large-scale Reynolds number, scale as Rec = O(Ek−1/3) for both thin and thick
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shell simulations. This scaling can be deduced from the governing equations by requiring
the convection to be geostrophically balanced to leading order, with the buoyancy force
entering the next asymptotic order. As discussed by previous work, the amplitude of the
zonal flow is limited solely by large-scale viscous diffusion; thus, we do not anticipate
a diffusion-free scaling for this component of the velocity field at any combination of
Ekman or Rayleigh number in the rotationally constrained regime. By balancing the
large-scale viscous diffusion of zonal momentum with the Reynolds stresses, and noting
that Rec = O(Ek−1/3), we deduce that the zonal flow speeds scale as Rez = O(Ek−2/3).
The numerical data support a trend towards this scaling as Ek → 0. Moreover, we find
that because of this diffusion-Reynolds-stress-balance, the correlations in the convective
flow field are independent of the Ekman number. As noted in previous work (Christensen
2002; Gastine &Wicht 2012), these correlations decrease rapidly with increasing Rayleigh
number (approximately as ∼ R̃a−3/2). It is also interesting to consider how the boundary
conditions used would affect our scalings. Data from Gastine et al. (2016) suggest that
cases with no-slip boundaries follow the same Rec = O(Ek−1/3) scaling we observed
in this paper. However, zonal flows with no-slip boundaries tend to be significantly
suppressed as compared with stress-free boundaries. This suggests that cases with no-slip
boundary conditions either need to reach smaller Ekman number to achieve the same
scaling for the zonal Reynolds number as cases with stress-free boundary conditions, or
it suggests that the zonal flows for no-slip boundary conditions are asymptotically weaker
than the zonal flows with stress-free boundary conditions due to the presence of Ekman
pumping (e.g. Soward 1977).
Kinetic energy spectra exhibit a trend with increasing Rayleigh number in which energy

builds at nearly all spatial scales, with no clear preference for scales significantly larger
than the linear convective instability, as indicated by an Ek1/3 or Ek2/9 scaling. Using
the length scale calculation approach of Christensen & Aubert (2006) and Gastine et al.
(2016), we find that the dominant convective length scale decreases with increasing
R̃a and scales approximately as Ek1/3. At the largest accessible Rayleigh numbers,
but also the largest Ekman numbers, this length scale appears to saturate. The Taylor
microscale also scales as Ek1/3 and shows a very similar trend in comparison to the
spherical-harmonic-based length scale; after initially decreasing with increasing R̃a, it
tended to level off at the largest accessible Rayleigh numbers. Moreover, both of these
length scales remain comparable in value across the entire range of parameters that were
simulated, and the collapse of the asymptotically rescaled length scales suggests that this
trend continues for more extreme parameter values. The largest length scales present in the
fluctuating kinetic energy spectra scale weaker than the primary convective instability and
may be consistent with the Ek2/9 radial scale from linear theory (Dormy et al. 2004). This
Ek2/9 length scale increases with increasing Rayleigh number, and approximately follows
the scaling �′

peak ∼ Ro1/4c . Our results suggest that there are multiple length scales present
in rotating spherical convection, and that these length scales exhibit different dependencies
on the input parameters. Nevertheless, all of these length scales appear to depend on the
Ekman number and are therefore viscously controlled to some degree.
Several previous investigations have used no-slip boundary conditions that yield

different scaling behaviour of the length scales in comparison with the present study.
Gastine et al. (2016) computed length scales over a broad range of parameters with η =
0.6. These authors used a similar definition of the spherical-harmonic-based length scale
(2.7), but also included m = 0 in their calculations. In general, they found non-monotonic
behaviour in their values of �sh, though they did find an increase in the convective length
scale provided Ra was sufficiently large and Ek was sufficiently small. We have found
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that including the m = 0 component in the length scale calculation causes the length
scale to increase with increasing Rayleigh number over some range of R̃a, suggesting
it is necessary to remove this component when deducing length scale behaviour of the
small-scale convection. Using constant heat flux thermal boundary conditions, Long et al.
(2020) also used the full spectrum version of (2.7) (i.e. they included m = 0) and found an
increase in �sh at sufficiently small Ekman number.
The mechanical boundary conditions that are employed in the model might play an

important role in the scaling behaviour of the convective length scales. No-slip boundary
conditions result in the formation of Ekman layers, which tend to significantly damp the
large-scale flows (Soward 1977; Christensen 2002). One might expect that the strong
radial shear generated by the zonal flow limits the size to which convective structures
can grow, therefore yielding distinct scaling behaviour in comparison with simulations
in which the zonal flow is suppressed. It is also possible that a transition to a regime
in which the convective length scale increases occurs in a parameter regime outside of
that used in the presented study. However, our data show no evidence towards such a
transition. Another possibility for the observed differences in the scaling behaviour of the
length scale could be that the axisymmetric (m = 0) component of the flow is influencing
the evolution of the length scale even when no-slip conditions are used. While the zonal
flow is smaller for no-slip simulations, zonal flows can still be present and could influence
lsh. It is also worth noting that Gastine & Aurnou (2023) found that heat transport for
convection in rotating spherical shells is strongly dependent on latitude. This suggests that
other quantities, such as the length scale and Reynolds number, may also depend strongly
on latitude. In this case, it may be illuminating to study the Rayleigh number dependence
of the length scale as a function of latitude rather than as a globally averaged quantity.
The asymptotic scaling of various terms in the fluctuating momentum and heat equations

was investigated. In particular, for the fluctuating momentum equation, we found that the
viscous force and the buoyancy force scale as Ek−1, and that the fluctuating–fluctuating
advective term scales approximately as Ek−1, or perhaps slightly stronger than Ek−1

(with our large-scale viscous diffusion non-dimensionalisation), whereas the Coriolis
force scales as Ek−4/3. These scalings again agree with asymptotic theory up to a small
difference in the advective term. We find that viscosity does not become smaller compared
to buoyancy as the reduced Rayleigh number is increased, so we do not observe a trend in
which viscosity becomes negligible. We also do not observe a balance between buoyancy
and advection for any of our simulations; the advective term is always growing more
rapidly with Rayleigh number than the buoyancy force. Indeed, for the largest Ekman
number considered for η = 0.35 (Ek = 3 × 10−4), the magnitude of inertia surpasses that
of the buoyancy force, though this behaviour is outside the regime of rapidly rotating
convection. This finding suggests that, at least for the parameter space observed in this
study, there is no CIA balance that occurs.
The force balances that were computed for our spherical simulations are similar to

the results found by Aguirre Guzmán et al. (2021) for rapidly rotating convection with
no-slip boundaries in Cartesian coordinates. In particular, Aguirre Guzmán et al. (2021)
found that for large Rayleigh numbers, the viscous force was approximately as large as the
buoyancy force and that the inertial term would be larger than buoyancy. Simulations of
the asymptotic model for the plane layer also show that the ratio of the viscous force to
the buoyancy force approaches unity in the high-Rayleigh-number regime (Maffei et al.
2021; Oliver et al. 2023). This similarity indicates that the Rayleigh number dependence
of the forces may not depend too sensitively on the geometry of the system. Some dynamo
simulations also show similar scalings compared with the hydrodynamic cases. Yan &
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Calkins (2022) carried out numerical simulations of a dynamo in a plane layer and also
found that viscosity and buoyancy follow the same Ekman number dependence with no
indication of a regime where viscosity becomes small compared to buoyancy. However,
Yadav et al. (2016) carried out numerical simulations of spherical dynamo cases with
no-slip boundaries and found that the ratio of viscosity to buoyancy decreased as the
Ekman number was decreased at constant Ra/Rac. Some other papers studied the spectral
decomposition of the forces for spherical dynamo cases and also found that viscosity was
much smaller than buoyancy at small values of the Ekman number (e.g. Schwaiger, Gastine
& Aubert 2019, 2021). These dynamo simulations where viscosity seems to become small
compared to buoyancy at small values of the Ekman number could be following a different
asymptotic scaling than we observe in the hydrodynamic cases in this paper, although
dynamo plane layer simulations seem to follow similar scaling laws as the hydrodynamic
model (Yan & Calkins 2022).

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2024.78.
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Appendix. Numerical simulation data

Ra Rez Rec �′
sh �′

tm Nr lmax

Ek = 3 × 10−4

9.30 × 105 30.36 ± 1.65 20.81 ± 1.81 0.310 ± 0.020 0.0777 ± 0.0035 96 191
1.40 × 106 63.94 ± 3.56 32.63 ± 6.14 0.277 ± 0.023 0.0706 ± 0.0044 96 191
1.90 × 106 102.22 ± 5.48 44.14 ± 8.50 0.253 ± 0.017 0.0639 ± 0.0036 96 191
2.20 × 106 126.14 ± 6.20 53.46 ± 9.55 0.241 ± 0.017 0.0606 ± 0.0034 96 191
2.50 × 106 150.95 ± 6.49 64.57 ± 8.64 0.233 ± 0.013 0.0585 ± 0.0025 96 191
2.80 × 106 173.46 ± 4.98 75.08 ± 7.34 0.228 ± 0.011 0.0567 ± 0.0022 96 191
3.30 × 106 205.85 ± 5.66 94.02 ± 7.83 0.223 ± 0.010 0.0550 ± 0.0019 96 191
3.70 × 106 228.67 ± 5.83 108.08 ± 8.46 0.221 ± 0.011 0.0541 ± 0.0019 96 191
4.20 × 106 253.89 ± 6.56 125.22 ± 9.05 0.219 ± 0.010 0.0531 ± 0.0018 96 191

Table 1. For caption see on next page.
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Ra Rez Rec �′
sh �′

tm Nr lmax

4.60 × 106 271.37 ± 5.77 137.07 ± 7.96 0.217 ± 0.009 0.0524 ± 0.0016 96 191
5.00 × 106 286.06 ± 5.59 149.16 ± 7.59 0.216 ± 0.008 0.0519 ± 0.0015 96 255
5.50 × 106 305.38 ± 5.48 163.67 ± 8.55 0.217 ± 0.008 0.0514 ± 0.0014 96 255
6.00 × 106 322.14 ± 6.06 176.53 ± 7.65 0.215 ± 0.008 0.0507 ± 0.0013 96 255
7.00 × 106 349.95 ± 4.95 202.83 ± 9.24 0.214 ± 0.008 0.0499 ± 0.0013 96 255
8.00 × 106 374.44 ± 5.49 225.58 ± 8.82 0.212 ± 0.007 0.0490 ± 0.0011 96 255
1.00 × 107 409.37 ± 7.94 271.85 ± 10.23 0.209 ± 0.006 0.0480 ± 0.0011 96 383

Ek = 10−4

5.00 × 106 103.78 ± 6.10 39.80 ± 9.54 0.214 ± 0.016 0.0540 ± 0.0032 96 191
6.50 × 106 159.63 ± 13.61 49.60 ± 19.43 0.194 ± 0.016 0.0485 ± 0.0037 96 191
7.80 × 106 212.92 ± 18.12 60.58 ± 26.87 0.183 ± 0.016 0.0454 ± 0.0040 96 191
9.80 × 106 308.16 ± 19.86 84.35 ± 26.51 0.172 ± 0.012 0.0423 ± 0.0029 96 191
1.10 × 107 357.39 ± 18.14 98.92 ± 23.40 0.167 ± 0.010 0.0409 ± 0.0023 96 191
1.30 × 107 433.31 ± 15.10 125.76 ± 19.57 0.163 ± 0.009 0.0395 ± 0.0017 96 255
1.50 × 107 502.52 ± 12.91 152.64 ± 15.71 0.159 ± 0.007 0.0384 ± 0.0012 96 255
1.70 × 107 563.11 ± 10.00 179.78 ± 11.73 0.157 ± 0.006 0.0376 ± 0.0010 96 319
1.90 × 107 618.83 ± 10.85 205.16 ± 13.94 0.156 ± 0.005 0.0370 ± 0.0009 96 319
2.00 × 107 643.66 ± 11.61 218.32 ± 14.74 0.155 ± 0.005 0.0367 ± 0.0009 96 319
2.20 × 107 693.42 ± 11.38 240.61 ± 11.80 0.155 ± 0.005 0.0362 ± 0.0008 96 383
2.50 × 107 764.63 ± 11.21 272.75 ± 12.89 0.153 ± 0.005 0.0355 ± 0.0008 96 383
3.00 × 107 862.91 ± 11.30 324.65 ± 12.96 0.152 ± 0.004 0.0347 ± 0.0006 96 511

Ek = 3 × 10−5

1.88 × 107 157.65 ± 17.55 42.60 ± 18.61 0.159 ± 0.015 0.0403 ± 0.0037 96 191
2.20 × 107 208.17 ± 19.61 50.79 ± 23.78 0.150 ± 0.015 0.0382 ± 0.0035 96 191
2.70 × 107 296.62 ± 31.63 63.80 ± 41.37 0.138 ± 0.016 0.0349 ± 0.0041 96 191
3.20 × 107 402.76 ± 37.15 74.98 ± 52.70 0.128 ± 0.016 0.0323 ± 0.0040 96 191
4.00 × 107 584.18 ± 44.58 98.52 ± 61.22 0.123 ± 0.010 0.0303 ± 0.0030 96 255
4.70 × 107 745.19 ± 45.97 126.10 ± 60.13 0.120 ± 0.009 0.0290 ± 0.0024 96 255
5.40 × 107 883.03 ± 46.04 153.36 ± 54.03 0.117 ± 0.009 0.0281 ± 0.0018 96 255
6.40 × 107 1068.66 ± 45.24 192.98 ± 50.60 0.113 ± 0.008 0.0271 ± 0.0014 96 319
7.50 × 107 1245.90 ± 40.44 243.58 ± 44.68 0.111 ± 0.005 0.0264 ± 0.0010 96 383
1.00 × 108 1578.58 ± 22.90 363.96 ± 28.11 0.110 ± 0.004 0.0255 ± 0.0006 144 511

Ek = 10−5

5.00 × 107 167.57 ± 21.90 39.25 ± 24.17 0.1160 ± 0.0111 0.0311 ± 0.0031 96 191
7.00 × 107 291.25 ± 35.19 53.62 ± 42.30 0.1117 ± 0.0137 0.0289 ± 0.0036 96 191
1.00 × 108 545.68 ± 45.56 80.19 ± 57.54 0.1036 ± 0.0109 0.0263 ± 0.0028 144 319
1.50 × 108 1089.39 ± 69.50 127.04 ± 99.16 0.0984 ± 0.0054 0.0230 ± 0.0021 144 383
1.70 × 108 1334.30 ± 76.57 150.91 ± 104.60 0.0977 ± 0.0047 0.0222 ± 0.0015 144 383
2.00 × 108 1677.26 ± 101.09 184.54 ± 119.67 0.0861 ± 0.0071 0.0205 ± 0.0016 144 383
2.20 × 108 1890.52 ± 112.78 207.11 ± 124.26 0.0850 ± 0.0081 0.0199 ± 0.0015 144 383
2.50 × 108 2190.80 ± 128.24 248.17 ± 136.41 0.0827 ± 0.0069 0.0193 ± 0.0013 144 511
3.00 × 108 2649.57 ± 129.37 331.31 ± 133.84 0.0819 ± 0.0054 0.0190 ± 0.0010 144 511

Ek = 3 × 10−6

2.30 × 108 377.82 ± 31.31 57.81 ± 44.80 0.0802 ± 0.0084 0.0216 ± 0.0024 140 359
3.50 × 108 735.92 ± 59.95 81.72 ± 83.93 0.0743 ± 0.0099 0.0194 ± 0.0029 140 399
4.60 × 108 1199.93 ± 66.06 118.52 ± 93.93 0.0740 ± 0.0085 0.0187 ± 0.0022 192 511
5.50 × 108 1627.09 ± 86.01 143.85 ± 132.06 0.0672 ± 0.0086 0.0171 ± 0.0024 192 511
6.90 × 108 2358.89 ± 99.82 184.17 ± 167.07 0.0615 ± 0.0081 0.0156 ± 0.0020 256 639
9.20 × 108 3646.15 ± 166.26 254.77 ± 221.77 0.0612 ± 0.0071 0.0142 ± 0.0013 256 639

Table 1. For caption see on next page.
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Ra Rez Rec �′
sh �′

tm Nr lmax

1.05 × 109 4273.72 ± 188.38 309.78 ± 231.08 0.0589 ± 0.0046 0.0138 ± 0.0012 256 767
1.20 × 109 5040.75 ± 217.84 366.99 ± 244.04 0.0585 ± 0.0050 0.0136 ± 0.0010 256 863
1.40 × 109 5901.61 ± 250.97 472.07 ± 265.69 0.0580 ± 0.0046 0.0133 ± 0.0009 256 863

Ek = 10−6

5.00 × 108 227.03 ± 8.32 47.30 ± 14.01 0.0603 ± 0.0024 0.0165 ± 0.0008 144 431
7.00 × 108 451.07 ± 26.64 66.29 ± 42.08 0.0635 ± 0.0041 0.0161 ± 0.0014 144 431
1.00 × 109 865.04 ± 47.76 90.02 ± 75.50 0.0557 ± 0.0069 0.0153 ± 0.0020 192 575
1.20 × 109 1165.20 ± 64.33 104.45 ± 102.12 0.0547 ± 0.0080 0.0145 ± 0.0023 192 575
1.50 × 109 1682.51 ± 76.85 126.77 ± 128.89 0.0499 ± 0.0076 0.0138 ± 0.0021 192 575
1.70 × 109 2079.70 ± 81.97 154.19 ± 146.21 0.0520 ± 0.0085 0.0138 ± 0.0017 192 639
2.00 × 109 2745.75 ± 89.92 189.02 ± 164.60 0.0505 ± 0.0076 0.0130 ± 0.0015 192 639
2.50 × 109 3932.11 ± 114.99 235.48 ± 235.13 0.0492 ± 0.0065 0.0114 ± 0.0015 192 639
3.00 × 109 5197.22 ± 138.03 279.56 ± 294.64 0.0434 ± 0.0057 0.0107 ± 0.0013 256 767
3.50 × 109 6481.03 ± 173.10 344.18 ± 316.83 0.0427 ± 0.0043 0.0103 ± 0.0012 256 767

Table 1. Summary of the cases with η = 0.35. Here Nr is the number of radial grid points used in the
simulation and lmax is the maximum spherical harmonic degree used in the simulation. The standard deviation
in time of given quantities is shown after the ‘±’.

Ra Rez Rec Nr lmax

Ek = 10−3

2.40 × 105 72.75 ± 1.60 36.92 ± 2.83 96 287
2.80 × 105 88.73 ± 1.23 43.39 ± 3.24 96 287
3.20 × 105 103.59 ± 1.10 50.34 ± 3.47 96 287
4.00 × 105 129.68 ± 1.40 66.22 ± 4.50 96 287
6.00 × 105 166.64 ± 2.93 103.71 ± 5.50 96 287

3 × Ek = 10−4

9.30 × 105 115.96 ± 1.76 41.72 ± 3.01 96 323
1.40 × 106 204.12 ± 2.18 61.81 ± 4.32 96 323
1.90 × 106 295.54 ± 2.65 86.12 ± 5.77 96 323
2.20 × 106 343.61 ± 2.42 102.68 ± 4.72 96 323
2.50 × 106 386.59 ± 2.52 119.17 ± 5.10 96 323
3.30 × 106 479.64 ± 3.79 164.64 ± 5.71 96 479

Ek = 10−4

2.80 × 106 143.37 ± 2.08 45.95 ± 3.67 96 511
5.00 × 106 336.55 ± 3.73 79.20 ± 6.55 96 511
6.50 × 106 468.59 ± 4.22 99.65 ± 7.83 96 511
7.80 × 106 609.74 ± 4.90 117.00 ± 9.35 96 511
9.80 × 106 775.45 ± 6.01 152.47 ± 11.39 96 511
1.30 × 107 789.71 ± 13.37 238.02 ± 17.57 96 575

Table 2. For caption see on next page.
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Ra Rez Rec Nr lmax

Ek = 3 × 10−5

1.20 × 107 264.29 ± 2.52 69.23 ± 5.42 144 719
1.80 × 107 564.54 ± 5.10 94.06 ± 11.78 144 719
2.70 × 107 810.67 ± 51.83 113.01 ± 74.85 144 719
3.20 × 107 964.48 ± 59.99 135.17 ± 81.81 144 719
4.70 × 107 1335.08 ± 58.80 235.85 ± 68.34 144 863
6.40 × 107 1746.58 ± 47.76 371.95 ± 52.73 144 1023

Table 2. Summary of the cases with η = 0.7. Here, Nr is the number of radial grid points used in the
simulation and lmax is the maximum spherical harmonic degree used in the simulation. The standard deviation
in time of given quantities is shown after the ‘±’.
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