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A self-filtering liquid acoustic sensor for 
voice recognition

Xun Zhao    1,3, Yihao Zhou1,3, Aaron Li    1, Jing Xu    1, Shreesh Karjagi1, 
Edward Hahm1, Lara Rulloda1, Justin Li1, John Hollister    2, Pirouz Kavehpour1,2 & 
Jun Chen    1 

Wearable acoustic sensors can be used for voice recognition. However, the 
capabilities of such devices, which are typically based on solid materials, are 
often restricted by ambient noise, motion artefacts and low conformability 
to the skin. Here we report a liquid acoustic sensor for voice recognition.  
The approach is based on a three-dimensional oriented and ramified 
magnetic network structure of neodymium–iron–boron magnetic 
nanoparticles suspended in a carrier fluid, which behaves like a permanent 
magnet. The sensor can discriminate small pressures (0.9 Pa), has a high 
signal-to-noise ratio (69.1 dB) and provides self-filtering capabilities that can 
remove low-frequency biomechanical motion artefact (less than 30 Hz). We 
use the liquid acoustic sensor—together with a machine learning algorithm—
to create a wearable voice recognition system that offers a recognition 
accuracy of 99% in a noisy environment.

Voice is a potentially powerful basis for sophisticated human–machine 
interactions1–4. Wearable acoustic sensors can be directly attached 
to the throat to capture vocal cord vibrations5–7. However, wearable 
acoustic sensors for voice recognition are typically composed of solid 
materials such as piezoelectric materials8,9, polymer thin films10, met-
als11 and two-dimensional materials12. These sensors rely on material 
deformation or vibration induced by sound pressure13,14, and their 
capabilities—and wider applications—are restricted due to poor skin 
conformability, limited sensitivity, narrow pressure detection range 
and instability against motion artefacts15,16.

In this Article, we report a self-filtering liquid acoustic sensor for 
voice recognition and human–machine communication. The liquid 
acoustic sensor is based on a reconfigurable magnetic liquid—termed a 
permanent fluidic magnet (PFM)—that has a high remanent magnetiza-
tion. The magnet is created by using non-Brownian neodymium–iron–
boron (NdFeB) magnetic particles to construct a three-dimensional 
(3D) oriented and ramified magnetic (ORM) network structure within 
a carrier fluid. The sensor has a storage modulus of 100–1,000 Pa s 
(approximately three orders of magnitude lower than its solid coun-
terparts) and eliminates non-conformal acoustic coupling, exhibiting 
an acoustic impedance of 1.61 MRayl (around 11 times lower than the 
acoustic impedance of solid sensors, which is 40 MRayl). The tunable 

rheological properties of the liquid sensor provide in-sensor noise 
filtering by selectively dampening mechanical noise below 30 Hz.

The sensors can discriminate pressures of 0.9 Pa and offer a 
signal-to-noise ratio (SNR) of 69.1 dB. They also have a frequency detec-
tion resolution of 0.01 Hz and a wide frequency response range from 
30 Hz to 10 kHz. We use this sensor—together with a machine learning 
algorithm—to create a wearable voice recognition system that offers an 
accuracy of 99% in a noisy environment. We also show that the system 
can be used to control a wheelchair via voice commands.

PFM
Traditional acoustic sensors made of solid materials possess an acoustic 
impedance of around 40 MRayl, which is ten times higher than that of 
the biological tissues17 (Fig. 1a). Solid materials cannot form a conformal 
interface with the curved surface of skin owing to their mechanical 
hardness (Supplementary Fig. 1). Currently, flexible sensors made of 
ultrathin elastomers exhibit improved contact with biological tissues18 
(Fig. 1b). However, mechanical mismatches and air gaps still exist, which 
can contribute to the increased acoustic impedance mismatches and 
limited acoustic sensing performance. This work addressed this central 
challenge by developing a liquid acoustic sensor as a new platform 
technology that gains better conformability and sensing performance 
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Based on the design principles, we use PFM as a dilatant fluid inside. 
The magnetic nanoparticles form a 3D ORM network structure in the car-
rier fluid, which is distinct from the solid wavy chains within the polymer 
matrix21. Ferrofluids22—magnetic colloids—are paramagnetic and lose 
magnetization once the external magnetic field is removed. Maintaining 
ferromagnetism in a liquid state is challenging22,23. PFM can simultane-
ously maintain ferromagnetism and stability because of the 3D ORM 
network. To synthesize, we first uniformly immersed the NdFeB magnetic 
nanoparticles into the carrier fluids. We use ultrasonication to prevent 
particle aggregation and evenly disperse the nanoparticles in a state of 
equilibrium (Fig. 1e). NdFeB nanoparticles were uniformly dispersed 
within the carrier fluids, exhibiting an average diameter of 200 nm (Fig. 1f 
and Supplementary Fig. 3). To enhance their biocompatibility, we per-
formed additional surface modifications through a SiO2 layer coating 
(Fig. 1g). Subsequently, a pulse magnetic field was applied to the mag-
netic colloids, resulting in the formation of the 3D ORM network within 
the carrier fluid (Fig. 2a and Supplementary Figs. 4–6). The 3D network 
structure was also filmed (Supplementary Video 1).

than conventional solid counterparts. Using liquid materials to design 
an acoustic sensor would lower the acoustic impedance mismatches 
between the human body and the device, minimize reflections and 
promote the transmission of acoustic waves (Fig. 1c). The liquid acoustic 
sensor was built on PFM as the liquid material, with low mechanical 
hardness contributing to a conformal sensor–tissue interface and 
minimized impedance mismatches. Conventionally, liquid materi-
als can be classified into three categories based on their rheological 
properties. Newtonian fluids exhibit a linear shear stress in response 
to external shear rate, yielding a consistent viscosity across various 
frequencies (Fig. 1d). Pseudoplastic fluids exhibit a decreasing viscos-
ity with increasing shear rate, which responds better to low-frequency 
signals19,20. Conversely, dilatant fluids exhibit an increased viscosity in 
response to increasing shear rate, which allows them to respond bet-
ter to high-frequency signals such as acoustic voice. Thus, among the 
three kinds of liquid material, we aim to design a fluid that is sensitive to 
voice signals and minimizes the low-frequency biomechanical motion 
artefacts from the human body (Supplementary Fig. 2).

Magnetic nanoparticles 

e

Carrier fluid

f g

Angular frequency (a.u.)

Vi
sc

os
ity

 (a
.u

.)

0  5 10 20 30 40 50  60 70

Acoustic impedance (MRayl)

a

01.6110.0040.00

Transmitted wave

Acoustic wave

Air gap

Acoustic wave Reflected wave

Air gap

d

cb

Newtonian fluid

Pseudoplastic fluids

Solid particle Soft tissue Carrier fluidPolymer network Acoustic wave

Reflected wave Acoustic wave

No air gap

Fig. 1 | A self-filtering liquid acoustic sensor. a, Schematic of a conventional 
solid acoustic sensor that demonstrates the highest acoustic impedance with 
soft tissue. b, Schematic of a soft solid acoustic sensor that demonstrates 
relatively high acoustic impedance with soft tissue. c, Schematic of a liquid 
acoustic sensor that demonstrates the lowest acoustic impedance with soft 

tissue. d, Schematic showing the viscosity of the colloidal dispersion against 
angular frequency. e, Magnetic nanoparticles dispersed in carrier fluids. f, 
Transmission electron microscopy image of magnetic nanoparticles. Scale bar, 
200 nm. g, Transmission electron microscopy image of magnetic nanoparticles 
showing a coated nanolayer of SiO2. Scale bar, 60 nm.
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The PFM was modified using diethylene glycol (DEG) to enable 
tunable rheological properties and to improve responsiveness to 
high-rate frequency signals (Fig. 2b). To understand the 3D ORM 
formation process, we captured microscope images under different 
magnetic field strengths. Under a magnetic field of 0.1 T, no evident 
orientation was observed (Fig. 2c). However, on increasing the mag-
netic field to 0.2 T, clusters began to form in the cross-section areas 
(Fig. 2d). With a further increase in the external magnetic field to 
0.5 T, a greater degree of orientation became apparent. In particular, 
under a magnetic field of 1.5 T, the clusters grew and interconnected 
in branch-like patterns, forming a well-defined 3D ORM network 
structure (Fig. 2f and Supplementary Fig. 7). Consequently, as the 
magnetic field increases, the orientation of 3D ORM becomes more 
obvious. These findings provide valuable insights into the dynamic 
formation process and microstructural characteristics of the PFM. 
In addition, we use directional pair correlation function to analyse 
the degree of orientation. Initially, at low magnetic field levels, the 
statistical results showed that the particles exhibited a nearly equal 
possibility of orientation in the X and Y directions, indicating a lack 
of orientation (Fig. 2g). However, as the magnetic field increased, 
the probability of orientation in the X direction surpassed that in 
the Y direction (Fig. 2j). This is reflected in the increasing X/Y ratio, 
which rose from around 1.00 to 1.75. We also systematically exam-
ined the connectivity of the 3D ORM network structure using graph 
theory24 to analyse the topological descriptor of average connected 

nodes (Supplementary Fig. 8). We found that with the increase in 
magnetic field, the average connected nodes increased from 1.37 to 
3.00 (Supplementary Fig. 9). As a result, the degree of magnetization 
will influence the orientation of the particles, with a clear prefer-
ence for alignment in the X direction as the magnetic field intensity 
increases. This finding matches with our Monte Carlo simulation 
(Supplementary Fig. 10).

The stable 3D ORM structure of the PFM is achieved through 
magnetic interactions among the nanoparticles. The PFM stability 
is achieved by the rigidity of the 3D network structure. This structure 
retains its magnetization even after the external magnetic field is 
removed, which was shown by 3D scanning imaging (Supplementary 
Fig. 11). From the magnetic hysteresis loop, the PFM demonstrated a 
coercivity of around 0.1 T and remanent magnetization of 12.4 A m2 kg–1 
(Fig. 2k). Accordingly, we summarized the magnetic flux density of the 
PFM under varying impulse magnetic fields (Supplementary Fig. 12), 
revealing a linear relationship between them in the range of 0–1.89 T. 
In particular, the remanent magnetization saturates at 1.8 T. Beyond 
this threshold, further increase in the magnetic field did not yield any 
changes in the magnetic flux density of the PFM. To assess the long-term 
stability of the PFM, we measured the remanent magnetization in the 
absence of an external magnetic field over a period of 46 days using a 
three-axis Hall effect sensor. The PFM retained its remanent magneti-
zations in all the three directions (Fig. 2l). These studies demonstrate 
the stability of the ferromagnetism of PFMs.
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Fig. 2 | Formation process of PFMs. a, Magnetic nanoparticles organized in 
the flow adopt a head-to-tail configuration as the shear stress rate increases, 
where energy will be dissipated. The dotted line indicates the shear direction. 
b, Magnetic nanoparticle chain structure was restrained by clusters in higher 
shear stress. The energy is stored during deformation. c–f, Microscope images 
of the cross-section ORM network structure under a magnetic field of 0.1 T (c), 
0.2 T (d), 0.5 T (e) and 1.5 T (f). Scale bars, 100 µm. g–j, Direction-dependent pair 

correlation function to characterize the ORM magnetic network. Calculation of 
the pair correlation function giving the g(r) value along the X and Y axes under a 
magnetic field of 0.1 T (g), 0.2 T (h), 0.5 T (i) and 1.5 T (j). k, Relationship between 
remanent magnetization and the applied impulse magnetization. l, Three-axis 
magnetic flux density of 4.0 vol% PFM over 45 days, showing a negligible loss of 
magnetic strength.
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PFM-based liquid acoustic sensors
Wearable acoustic sensors are typically made of solid materials, 
which play an important role in communications with the ability 
to augment human auditory perception by increasing situational 
acoustic awareness and promote the intelligibility of acoustic infor-
mation. Solid sensors have low skin conformability, which leads to 
poor sensing performance5,25,26. PFM-based liquid acoustic sensors 
could improve the sensing performance (Fig. 3a). To form our sen-
sor, we initially inject the PFM into a conductive coil structure. To 
prevent diffusion during subsequent applications, a thin layer of 
polydimethylsiloxane (PDMS) is coated on one side of the sensor 
surface (Fig. 3b) and then cured under ultraviolet (UV) light, result-
ing in the formation of a thin membrane on the surface (Fig. 3c). 
The other side of the device without the membrane can be securely 
attached to the skin in a conformal manner (Fig. 3d). When exposed 
to acoustic pressure, the PFM undergoes deformation in response 
to subtle throat vibrations, which converts sound pressure into 
magnetic field fluctuations. This is ascribed to the displacement 
of the PFM as a whole relative to the throat. Subsequently, the coil 
detects these magnetic field variations and generates electrical 
signals through magnetic induction according to Faraday’s law.  
As a result, liquid acoustic sensors convert subtle sound pres-
sure into high-fidelity electrical signals for acoustic sensing  
(Supplementary Note 1).

The designed liquid acoustic sensor achieves good skin conforma-
bility. First, since 450 Hz is a common frequency in human voice, varying 
frequencies ranging from 452 to 453 Hz were applied to the liquid acous-
tic sensor, and its detection resolution was measured. Figure 3e displays 
the typical electrical output for frequencies of 452.00 and 452.01 Hz, 
whereas Fig. 3f shows the corresponding frequency spectrum via fast 
Fourier transform (FFT). Our liquid acoustic sensor demonstrates a 
detection resolution of 0.01 Hz. We further tested the liquid acoustic 
sensor performance under sound waves over a frequency range from 
0.4 to 10.0 kHz (Fig. 3g). The corresponding electrical output across 
the entire spectrum is shown in Supplementary Fig. 13 and we show a 
sensing range up to 10 kHz, which is larger than the frequency range 
of human voice. Our sensor can respond to a small pressure of 0.9 Pa 
(Supplementary Fig. 14). We further conducted measurements of the 
electrical output at various sound pressures. As the sound pressure 
increased from 55 to 90 dB, the observed current rose from 3.0 to 11.6 µA 
(Fig. 3h). This behaviour can be attributed to the amplified vibration of 
the liquid acoustic sensor resulting from the increased sound pressure.

Skin conformability and self-filtering capability
A key feature of the PFM is its conformable interface with the curved 
skin (Fig. 3i). Solid-material-based wearable acoustic sensors with 
high mechanical hardness exhibit poor conformability with the 
curved skin surface, which negatively impacts the acoustic sensing 
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electrical signals by using a coil receiver. j, Solid-state acoustic sensor shows 
a poor interface with biological tissues. Scale bar, 250 µm. k, Liquid acoustic 
sensors can conformally attach to the throat for voice recognition. Scale bar, 
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performance5,27–31. Even though solid materials can be fabricated in the 
form of a thin-film (around 20 µm) structure, a noticeable sensor–skin 
interface gap still exists (Fig. 3j). In contrast, liquid-state materials 
offer a promising solution by providing a conformable sensor–skin 
interface, minimizing the occurrence of gaps and acoustic impedance 
mismatch (Fig. 3k and Supplementary Fig. 15). This is because liquid 
molecules have higher mobility and can freely slide and diffuse. When 
a liquid is applied to the skin’s surface, its molecules can quickly rear-
range to adapt to the skin’s contours. This molecular mobility allows 
the liquid materials to closely adhere to the skin’s surface, achieving 
optimal conformability. Additionally, our PFM has weaker intermo-
lecular forces and lower surface tension and therefore can fill uneven 
surfaces of the skin.

The acoustic sensor has adjustable rheological properties. This 
enables the modification and optimization of its frequency detection 
range to naturally occurring human voice waves. Although digital 
filters can help mitigate noise, excluding epochs with artefacts will 
result in a loss of meaningful information32. However, the PFM-based 
liquid acoustic sensor allows for the extraction of clean sound pressure 
signals through the mitigation of low-frequency motion artefacts. The 
self-filtering property of the liquid acoustic sensor stems from the 
adaptable rheological properties of the PFM. In essence, the deform-
ability of the ORM network, as well as the variation in macroscopic 
magnetic flux density, is frequency dependent and can be tuned by 

shear thinning or shear thickening of the carrier fluids by adding differ-
ent additives. This feature can be used to design liquid acoustic sensors 
capable of filtering out specific ranges of frequencies. The drop-ball 
test on the device demonstrates the elastic property of a conventional 
solid device and the fluidic property of the liquid acoustic sensor (Fig. 3l 
and Supplementary Video 2). Thus, to study the self-filtering property 
of the acoustic sensor, we conducted rheological tests on the PFM 
under different magnetization conditions.

Figure 4a illustrates the relationship between viscosity, magnetiza-
tion and shear rate, showing an increasing trend of viscosity as the mag-
netic field intensifies from 0 to 1.2 T and a decreasing trend of viscosity 
as the shear rate increases from 0.01 to 100.00 s–1. This increase in viscos-
ity with the magnetic field indicates that the PFM can utilize a reversible 
chain break–reconnection process inside the 3D ORM network structure 
within the carrier fluid to dissipate energy. The decrease in viscosity with 
shear rate indicates that the PFM exhibits a shear-thinning behaviour, 
which can be attributed to the increased chain breakage at high shear 
rates. Additionally, the storage and loss modulus values increased with 
an increase in magnetic field, which confirmed the formation of the 3D 
ORM network structure within the PFM. Both storage and loss modulus 
values decreased with an increase in shear rates, demonstrating the 
shear-thinning behaviour (Fig. 4b,c). We note that the measured storage 
modulus of the PFM is at the level of 100–1,000 Pa s, 100 times smaller 
than the conventional soft solid materials.
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When the PFM was modified by adding emulsifiers to the carrier 
fluids, a shear-thickening property was observed. The PFM exhibits 
a more pronounced viscoelastic behaviour with an increase in shear 
stress indicated by the delta degree (Fig. 4d). The additives tend to 
form temporary clusters, which, in turn, increase the flowing resist-
ance and raise the viscosity of the fluid. These findings indicate that 
the rheological behaviour of the PFM can be modified by adjusting the 
magnetization and the additives. Given that noises emanating from 
human bodily activities typically fall within a low-frequency range 
(around 0.5–10.0 Hz), such as respirations, heartbeats and gaits, the 
tunable rheology of the PFM allows for the transduction of acoustic 
energy into applicable signals at higher frequencies (larger than 30 Hz). 
This enables an accurate capture and conversion of the acoustic waves 
into high-fidelity electrical signals.

Motion artefact mitigation
Motion artefacts can cause fluctuations or distortions in the signals 
measured by wearable sensors. This leads to inaccurate data, poten-
tially affecting the reliability of measurements for physical signals 
and the detection of important events due to signal interference33–35. 
Moreover, mitigating motion artefacts often requires complex signal 
processing algorithms, which can increase computational demands 

and power consumption, potentially impacting battery life and overall 
device performance.

The liquid acoustic sensor was found to mitigate the motion arte-
facts better than the solid acoustic sensor, and it holds distinct advan-
tages in offering high-quality signals. A comparison was made between 
the liquid sensor and the solid acoustic sensor as it was attached to 
the throat. Here we have chosen a capacitive-based acoustic micro-
phone as the solid acoustic sensor, given its widespread use in daily 
applications. First, we measured the electrical output from both solid 
and liquid acoustic sensors (Fig. 4e). Due to the air gap between the 
solid sensor and skin, the calculated results suggested that the liquid 
acoustic sensor realized a high SNR of 69.1 dB compared with that of 
the solid acoustic sensor (18.4 dB). Although human biomechanical 
motions are in the low-frequency range of less than 30 Hz (ref. 32), the 
modified liquid acoustic sensor enables the removal of low-frequency 
mechanical signals. In Fig. 4f, the electrical signal of the liquid acoustic 
sensor with DEG is represented by the red area; the output of the sensor 
without DEG is depicted by the grey area. Evidently, the red area in this 
figure exhibits a lower amplitude compared with the grey area, indicat-
ing the effective mitigation of low-frequency signals. For comparison 
purposes, we conducted tests on the solid acoustic sensor along with 
the presence of motion artefacts caused by movement of the neck and 
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commands: ‘go’, ‘stop’, ‘left’, ‘right’ and ‘back’. b, Schematic showing three 
components on a customized printed circuit board. DAC, digital-to-analogue 
converter. c, Schematic of a three-layer CNN used in the voice recognition 
algorithm. d, Diagram showing the deep learning procedure. e, Evolution of the 

model accuracy as well as loss function during the training epochs. Val-Accuracy 
shows the validation accuracy, and Val-Loss shows the validation loss.  
f, Confusion matrix of the recognition result. g, Schematic of the wheelchair.  
h, Picture showing the liquid acoustic sensor accurately capturing the 
commands, enabling the control of the wheelchair with voice.
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a simulated noise environment (90 dB). Figure 4g shows that the liquid 
acoustic sensor exhibits stable performance even in the presence of 
such interferences. Conversely, the solid acoustic sensor was suscep-
tible to the 90 dB noises and vibrations from the human body. The 
electrical signals from the liquid sensor and its corresponding acoustic 
spectrogram are clean and without these interferences (Fig. 4h,i).

Moreover, incorporating a cavity into the liquid sensor negatively 
impacted its sensing performance. This observation further supports 
the importance of a conformal interface between the acoustic sensor 
and human skin for optimal functionality (Supplementary Note 2). 
To comprehensively demonstrate the liquid acoustic sensor’s perfor-
mance, we created a radar graph to compare its acoustic performance 
with that of the commercial solid acoustic sensor (Supplementary 
Fig. 16). The liquid acoustic sensor shows better performance across all 
the six parameters including SNR, acoustic impedance, conformability, 
discriminating pressure, detection resolution and accuracy. Moreover, 
despite the interference of electromagnetic fields emanating from sur-
rounding electronic devices, the voice recordings by the liquid acoustic 
sensors still maintained high quality (Supplementary Fig. 17). Addition-
ally, the liquid acoustic sensor is insensitive to temperature changes, 
and can maintain stable performance within the normal human body 
temperature range (Supplementary Note 3).

Wearable voice recognition system
Acoustic sensors and voice recognition technologies have led to a rapid 
advancement in human–machine interaction and artificial intelligence. 
To showcase the application of the liquid acoustic sensor, a wearable 
voice recognition system was further developed to control a wheelchair. 
It aims to use voice signals to effectively command smart wheelchairs 
through given prompts and reliable responses with the assistance of 
machine learning algorithms (Fig. 5a).

The wearable voice recognition system consisted of the liquid 
acoustic sensor and a customized printed circuit board (Fig. 5b). 
The printed circuit board was designed to acquire and process the 
sound-wave-generated electrical signals from the liquid acoustic sen-
sor. It holds three sections. First, an analogue signal pre-processing 
circuit was used for sound-wave signal acquisition and conditioning. 
An amplifier was applied to further increase the analogue signals. Next, 
an analogue-to-digital converter (ADC) was used to collect and convert 
the analogue electrical signals into digital signals. A machine learning 
algorithm was applied to recognize the sound signals acquired from the 
devices to give a command. Then, the control commands were sent to 
the smart wheelchair by controlling the two motors of the wheelchair 
to execute the corresponding action of the voice command.

Convolutional neural networks (CNNs) were used in the wear-
able voice recognition system to increase the recognition accuracy 
of the command signals. As shown in Fig. 5c, a three-layer CNN was 
constructed for signal feature extraction and automatic recognition 
of voice signals. In Fig. 5d, a dataset containing five voice commands 
is established by repeating each voice command for 720 iterations. 
The 720 samples of each command were pre-processed by sampling a 
one-second series to generate training sets. After the model training, 
a different dataset containing random commands was used to test the 
model. The temporal progression of the model’s accuracy and loss 
function revealed that the peak recognition accuracy was achieved 
after 15 training epochs (Fig. 5e). The results showed that our system 
can achieve the recognition of different voice commands with an accu-
racy of 99%. Subsequently, to evaluate the sensing and recognizing 
efficacy of the smart wheelchair, we constructed a confusion matrix 
to represent the recognition results (Fig. 5f).

To demonstrate the practicality of the wearable voice recognition 
system, five voice commands were used to control the smart wheel-
chair: ‘go’, ‘stop’, ‘left’, ‘right’ and ‘back’. Voice commands allow the user 
to move around independently (Fig. 5g). We tested a smart wheelchair 
commanded by the wearable voice recognition system. With different 

commands, the wearable voice recognition system accurately captured 
the commands and identified them to control the wheelchair to move 
around (Fig. 5h). This wearable voice recognition system facilitates the 
timely control of the wheelchair’s movement through voice commands. 
To further shorten the response time of the voice recognition system, 
three potential strategies could be adopted, including optimizing sig-
nal processing, reducing latency in data transmission and optimizing 
algorithms. In addition, by attaining higher-quality sensing signals and 
eliminating motion artefacts, we can reduce the time consumption of 
signal processing. Consequently, this improvement could also enhance 
the detection accuracy in the machine learning segment of the system.

Conclusions
We have reported a self-filtering liquid acoustic sensor for voice recog-
nition. The approach is based on a PFM, which stays magnetized without 
the presence of external magnetic fields, and has a coercive magnetic 
field of around 0.1 T and a remanent magnetization of 12.4 A m2 kg–1. 
We showed that the rheological properties of the PFM can be tuned to 
both shear thinning and shear thickening through a dynamical chain 
break–reconnection mechanism and additives. This allows the fre-
quency response range to be tuned to the dynamic acoustic waves of 
human voices. The resulting liquid acoustic sensor showed an SNR 
of 69.1 dB and self-filtering capabilities to mitigate motion artefacts. 
With the assistance of a machine learning algorithm, we constructed a 
wearable voice recognition system that offered a recognition accuracy 
of 99%. We also showed that the wearable voice recognition system can 
be used to control a wheelchair.

The conformability of our liquid acoustic sensor overcomes chal-
lenges related to solid acoustic sensors. For example, compared with 
hydrogels36,37, our PFM exhibits lower acoustic impedances and better 
skin conformability (Supplementary Table 1). The liquid acoustic sen-
sor has potential applications beyond voice recognition, including 
monitoring and assessing vocal health, detecting changes in voice 
patterns and identifying potential vocal disorders. For individuals 
with voice impairments, it could offer an alternative communication 
method by detecting throat movements and translating them into 
audible voice or text.

Methods
Synthesis of permanent fluidic magnets
The NdFeB magnetic nanoparticles (diameter, 200 nm) were specifically 
fabricated by Nanochemazone. Subsequently, a layer of SiO2 was applied 
to the magnetic nanoparticles through the hydrolysis and polyconden-
sation of tetraethyl orthosilicate (Sigma-Aldrich). The NdFeB magnetic 
nanoparticles were then mixed with 2–4 wt% sodium alginate or silicone 
fluids. The volume percentage of the NdFeB magnetic nanoparticles 
varied from 4 to 28 vol% with carrier fluids. Once thoroughly mixed, the 
magnetic nanoparticles were subjected to sonication dispersion using 
an ultrasonic homogenizer (FS-550T) operating at a power of 550 W for 
3 h. To modify the PFM, 2–5% DEG (Sigma-Aldrich), polyethylene glycol 
(Sigma-Aldrich) or fumed silica (Sigma-Aldrich) was added inside before 
the magnetization procedure. Following the dispersion process, the 
mixture was magnetized using impulse fields ranging from 0.05 to 2.27 T 
with an impulse magnetizer (IM-10-30, ASC Scientific).

Fabrication of a liquid acoustic sensor
Copper wires were first warped into a helix coil. Then, the PFM was 
put into the helix coils. After that, a thin layer of polydimethylsiloxane 
substrate (SYLGARD 184; mixing ratio, 10:1) was coated on the perma-
nent fluidic magnets to seal the device, which was further cured under 
exposure to UV light.

Structure characterization
The morphology of the magnetic powder was characterized by scan-
ning electron microscopy (Zeiss Supra 40VP). The morphology of the 
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PFM was characterized by a Zeiss Axio Observer Z1 inverted micro-
scope. A superconducting quantum interference device magnetometer 
(Quantum Design, MPMS3) was used to test the magnetic hysteresis 
loop. The magnetic flux density mapping on the surface of the PFM was 
achieved by using the Hall effect sensor (Melexis, MLX90393) mounted 
on a three-axis motion platform. Transmission electron microscopy 
images were obtained by a TF20 high-resolution electron microscope 
(FEI). The temperature variations were captured using a thermal cam-
era (TOPDON, TC001) across a range from 0 to 247 °C.

Rheological properties characterization
The storage modulus and loss modulus were measured with a rheom-
eter (AR-2000, TA Instruments). A 20-mm-diameter steel plate was 
used to hold the sample. The shear rate was applied from 0 to 100 s–1. 
In the oscillation experiment, the sweep of stress was applied from 10 
to 10,000 Pa. All the experiments were tested at a fixed temperature 
of 36 °C.

Electrical output measurement
The voltage and current signals of the liquid acoustic sensor were 
measured by a voltage preamplifier (SR560, Stanford) and current pre-
amplifier (SR570, Stanford), respectively. A commercial loudspeaker 
(R10200, JBL) was used to produce ambient noise. To simulate the voice 
from human throat, a piezoelectric thin film was used to generate the 
sound, which was driven by a function generator (AFG1062, Newark) 
and a power amplifier (PA-151, Labworks) to output the sound wave. 
Sound waves from 1 Hz to 10 kHz were generated by a Python 3.7 script. 
The setup is schematically illustrated in Supplementary Fig. 18. A deci-
bel meter (GM1352, Benetech) was used to measure the sound pressure.

Design the circuitry for the smart wheelchair
A customized printed circuit board was designed to acquire and pro-
cess the sound-wave signals generated by the liquid acoustic sensor. 
First, an analogue signal was amplified using the amplifier (AD620) to 
acquire the sound-wave signal. Subsequently, the ADC (AD7680) was 
employed to gather and convert the analogue signals into a digital 
format. The data from the ADC were then collected by a microcon-
troller unit (Seeeduino). A CNN algorithm was applied to recognize 
the sound signals acquired from the devices to control commands. 
Third, four analogue pins of the microcontroller unit were connected 
to the joystick input of the wheelchair to send control commands and 
therefore control the motors of the wheelchair, moving it in different 
directions. The wheelchair (Culver Mobility) in this work contains 
brushless motors on each wheel.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All other data that support 
the findings of this study are available from the corresponding author 
on reasonable request.

Code availability
Computational simulation code and speech recognition code are 
available from the corresponding author upon reasonable request.
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