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Wearable acoustic sensors can be used for voice recognition. However, the
capabilities of such devices, which are typically based on solid materials, are
oftenrestricted by ambient noise, motion artefacts and low conformability
tothe skin. Here we report aliquid acoustic sensor for voice recognition.
The approachisbased on athree-dimensional oriented and ramified
magnetic network structure of neodymium-iron-boron magnetic
nanoparticles suspendedin a carrier fluid, which behaves like a permanent
magnet. The sensor can discriminate small pressures (0.9 Pa), has a high
signal-to-noise ratio (69.1 dB) and provides self-filtering capabilities that can
remove low-frequency biomechanical motion artefact (Iess than 30 Hz). We
use the liquid acoustic sensor—together with amachine learning algorithm—

to create a wearable voice recognition system that offers arecognition
accuracy of 99% in a noisy environment.

Voiceis a potentially powerful basis for sophisticated human-machine
interactions'™. Wearable acoustic sensors can be directly attached
to the throat to capture vocal cord vibrations®”’. However, wearable
acoustic sensors for voice recognition are typically composed of solid
materials such as piezoelectric materials®’, polymer thin films'®, met-
als" and two-dimensional materials'>. These sensors rely on material
deformation or vibration induced by sound pressure™, and their
capabilities—and wider applications—are restricted due to poor skin
conformability, limited sensitivity, narrow pressure detection range
and instability against motion artefacts™.

In this Article, we report a self-filtering liquid acoustic sensor for
voice recognition and human-machine communication. The liquid
acousticsensor is based on areconfigurable magneticliquid—termed a
permanent fluidic magnet (PFM)—that has a high remanent magnetiza-
tion. The magnet is created by using non-Brownian neodymium-iron-
boron (NdFeB) magnetic particles to construct a three-dimensional
(3D) oriented and ramified magnetic (ORM) network structure within
a carrier fluid. The sensor has a storage modulus of 100-1,000 Pa s
(approximately three orders of magnitude lower than its solid coun-
terparts) and eliminates non-conformal acoustic coupling, exhibiting
an acoustic impedance of 1.61 MRayl (around 11 times lower than the
acousticimpedance of solid sensors, which is 40 MRayl). The tunable

rheological properties of the liquid sensor provide in-sensor noise
filtering by selectively dampening mechanical noise below 30 Hz.

The sensors can discriminate pressures of 0.9 Pa and offer a
signal-to-noiseratio (SNR) of 69.1 dB. They also have afrequency detec-
tion resolution of 0.01 Hz and a wide frequency response range from
30 Hzto10 kHz. We use this sensor—together with amachine learning
algorithm—to create awearable voice recognition system that offers an
accuracy of99%in anoisy environment. We also show that the system
can be used to control a wheelchair via voice commands.

PFM

Traditional acoustic sensors made of solid materials possess anacoustic
impedance of around 40 MRayl, whichis ten times higher than that of
thebiological tissues” (Fig. 1a). Solid materials cannot forma conformal
interface with the curved surface of skin owing to their mechanical
hardness (Supplementary Fig. 1). Currently, flexible sensors made of
ultrathin elastomers exhibitimproved contact with biological tissues'
(Fig.1b). However, mechanical mismatches and air gaps still exist, which
can contribute to the increased acoustic impedance mismatches and
limited acoustic sensing performance. This work addressed this central
challenge by developing a liquid acoustic sensor as a new platform
technology that gains better conformability and sensing performance
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Fig.1| A self-filtering liquid acoustic sensor. a, Schematic of a conventional
solid acoustic sensor that demonstrates the highest acousticimpedance with
soft tissue. b, Schematic of a soft solid acoustic sensor that demonstrates
relatively high acoustic impedance with soft tissue. ¢, Schematic of a liquid
acoustic sensor that demonstrates the lowest acoustic impedance with soft

tissue. d, Schematic showing the viscosity of the colloidal dispersion against
angular frequency. e, Magnetic nanoparticles dispersed in carrier fluids. f,
Transmission electron microscopy image of magnetic nanoparticles. Scale bar,
200 nm. g, Transmission electron microscopy image of magnetic nanoparticles
showing a coated nanolayer of SiO,. Scale bar, 60 nm.

than conventional solid counterparts. Using liquid materials to design
an acoustic sensor would lower the acoustic impedance mismatches
between the human body and the device, minimize reflections and
promote the transmission of acoustic waves (Fig. 1c). The liquid acoustic
sensor was built on PFM as the liquid material, with low mechanical
hardness contributing to a conformal sensor-tissue interface and
minimized impedance mismatches. Conventionally, liquid materi-
als can be classified into three categories based on their rheological
properties. Newtonian fluids exhibit a linear shear stress in response
to external shear rate, yielding a consistent viscosity across various
frequencies (Fig.1d). Pseudoplastic fluids exhibit a decreasing viscos-
ity withincreasing shear rate, which responds better to low-frequency
signals®*°. Conversely, dilatant fluids exhibitanincreased viscosity in
response to increasing shear rate, which allows them to respond bet-
ter to high-frequency signals such as acoustic voice. Thus, among the
threekinds of liquid material, we aim to design a fluid that is sensitive to
voice signals and minimizes the low-frequency biomechanical motion
artefacts from the human body (Supplementary Fig. 2).

Based onthe design principles, we use PFM as adilatant fluid inside.
The magnetic nanoparticles forma3D ORM networkstructurein the car-
rier fluid, which is distinct from the solid wavy chains within the polymer
matrix?.. Ferrofluids*?—magnetic colloids—are paramagnetic and lose
magnetization once the external magnetic field isremoved. Maintaining
ferromagnetism in a liquid state is challenging®>**. PFM can simultane-
ously maintain ferromagnetism and stability because of the 3D ORM
network. Tosynthesize, we first uniformly immersed the NdFeB magnetic
nanoparticles into the carrier fluids. We use ultrasonication to prevent
particle aggregation and evenly disperse the nanoparticles in a state of
equilibrium (Fig. 1e). NdFeB nanoparticles were uniformly dispersed
withinthe carrier fluids, exhibiting an average diameter of 200 nm (Fig. 1f
and Supplementary Fig. 3). To enhance their biocompatibility, we per-
formed additional surface modifications through a SiO, layer coating
(Fig. 1g). Subsequently, a pulse magnetic field was applied to the mag-
netic colloids, resulting in the formation of the 3D ORM network within
the carrier fluid (Fig. 2a and Supplementary Figs. 4-6). The 3D network
structure was also filmed (Supplementary Video 1).
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Fig.2|Formation process of PFMs. a, Magnetic nanoparticles organized in

the flow adopt a head-to-tail configuration as the shear stress rate increases,
where energy will be dissipated. The dotted line indicates the shear direction.

b, Magnetic nanoparticle chain structure was restrained by clusters in higher
shear stress. The energy is stored during deformation. c-f, Microscope images
ofthe cross-section ORM network structure under amagnetic field of 0.1 T (c),
0.2T(d),0.5T (e)and 1.5 T (). Scale bars, 100 pm. g-j, Direction-dependent pair
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correlation function to characterize the ORM magnetic network. Calculation of
the pair correlation function giving the g(r) value along the Xand Y axes under a
magnetic field of 0.1 T(g), 0.2 T (h), 0.5 T (i) and 1.5 T (j). k, Relationship between
remanent magnetization and the applied impulse magnetization.l, Three-axis
magnetic flux density of 4.0 vol% PFM over 45 days, showing a negligible loss of
magnetic strength.

The PFM was modified using diethylene glycol (DEG) to enable
tunable rheological properties and to improve responsiveness to
high-rate frequency signals (Fig. 2b). To understand the 3D ORM
formation process, we captured microscope images under different
magnetic field strengths. Under amagnetic field of 0.1 T, no evident
orientation was observed (Fig. 2c). However, onincreasing the mag-
neticfieldto 0.2 T, clusters began to formin the cross-section areas
(Fig. 2d). With a further increase in the external magnetic field to
0.5T,agreater degree of orientation became apparent. In particular,
under amagnetic field of 1.5 T, the clusters grew and interconnected
in branch-like patterns, forming a well-defined 3D ORM network
structure (Fig. 2f and Supplementary Fig. 7). Consequently, as the
magnetic field increases, the orientation of 3D ORM becomes more
obvious. These findings provide valuable insights into the dynamic
formation process and microstructural characteristics of the PFM.
In addition, we use directional pair correlation function to analyse
the degree of orientation. Initially, at low magnetic field levels, the
statistical results showed that the particles exhibited a nearly equal
possibility of orientation in the Xand Y directions, indicating alack
of orientation (Fig. 2g). However, as the magnetic field increased,
the probability of orientation in the X direction surpassed that in
the Ydirection (Fig. 2j). This is reflected in the increasing X/Y ratio,
which rose from around 1.00 to 1.75. We also systematically exam-
ined the connectivity of the 3D ORM network structure using graph
theory* to analyse the topological descriptor of average connected

nodes (Supplementary Fig. 8). We found that with the increase in
magneticfield, the average connected nodesincreased from1.37 to
3.00 (Supplementary Fig. 9). As aresult, the degree of magnetization
will influence the orientation of the particles, with a clear prefer-
ence for alignment in the X direction as the magnetic field intensity
increases. This finding matches with our Monte Carlo simulation
(Supplementary Fig.10).

The stable 3D ORM structure of the PFM is achieved through
magnetic interactions among the nanoparticles. The PFM stability
is achieved by the rigidity of the 3D network structure. This structure
retains its magnetization even after the external magnetic field is
removed, which was shown by 3D scanning imaging (Supplementary
Fig. 11). From the magnetic hysteresis loop, the PFM demonstrated a
coercivity ofaround 0.1 T and remanent magnetization of 12.4 Am*kg™*
(Fig.2k). Accordingly, we summarized the magnetic flux density of the
PFM under varying impulse magnetic fields (Supplementary Fig.12),
revealing a linear relationship between them in the range of 0-1.89 T.
In particular, the remanent magnetization saturates at 1.8 T. Beyond
this threshold, further increase in the magnetic field did not yield any
changesinthe magnetic flux density of the PFM. To assess the long-term
stability of the PFM, we measured the remanent magnetization in the
absence of an external magnetic field over a period of 46 days using a
three-axis Hall effect sensor. The PFM retained its remanent magneti-
zationsinall the three directions (Fig. 21). These studies demonstrate
the stability of the ferromagnetism of PFMs.
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Fig.3|Fabrication of liquid acoustic sensors. a-d, Schematic of the liquid
acoustic sensor fabrication including permanent fluidic magnets injected into
acopper coil (a), coating with a thin layer of PDMS (b), curing with UV light

(c) and layering the fully constructed device on top of the skin (d). e, Output
current of the liquid acoustic sensor under a frequency of 452.00-452.01 Hzand
sound pressure level of 70 dB. f, FFT-processed frequency spectrum of a typical
electrical output for frequencies of 453.00, 452.10, 452.01 and 452.00 Hz (from
top tobottom). g, Frequency response measurement of the liquid acoustic
sensor with a4 vol% PFM. h, Effect of sound pressure level on the output current
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amplitude. The blue line represents the fitted relationship between the sound
pressure level and the output current amplitude. i, Liquid acoustic sensory
system converts acoustic waves into mechanical vibrations and then into
electrical signals by using a coil receiver. j, Solid-state acoustic sensor shows
apoorinterface with biological tissues. Scale bar, 250 pm. k, Liquid acoustic
sensors can conformally attach to the throat for voice recognition. Scale bar,
250 pm. 1, Schematic of solid and liquid devices demonstrate viscoelastic and
damping properties verified by dropping a metal ball on the device.

PFM-based liquid acoustic sensors

Wearable acoustic sensors are typically made of solid materials,
which play an important role in communications with the ability
to augment human auditory perception by increasing situational
acoustic awareness and promote the intelligibility of acoustic infor-
mation. Solid sensors have low skin conformability, which leads to
poor sensing performance®*?¢, PFM-based liquid acoustic sensors
could improve the sensing performance (Fig. 3a). To form our sen-
sor, we initially inject the PFM into a conductive coil structure. To
prevent diffusion during subsequent applications, a thin layer of
polydimethylsiloxane (PDMS) is coated on one side of the sensor
surface (Fig. 3b) and then cured under ultraviolet (UV) light, result-
ing in the formation of a thin membrane on the surface (Fig. 3c).
The other side of the device without the membrane can be securely
attachedto the skinina conformal manner (Fig.3d). When exposed
to acoustic pressure, the PFM undergoes deformation in response
to subtle throat vibrations, which converts sound pressure into
magnetic field fluctuations. This is ascribed to the displacement
of the PFM as a whole relative to the throat. Subsequently, the coil
detects these magnetic field variations and generates electrical
signals through magnetic induction according to Faraday’s law.
As aresult, liquid acoustic sensors convert subtle sound pres-
sure into high-fidelity electrical signals for acoustic sensing
(Supplementary Note 1).

The designed liquid acoustic sensor achieves good skin conforma-
bility. First, since 450 Hzis acommon frequency in humanvoice, varying
frequenciesranging from452to453 Hzwere applied to theliquid acous-
ticsensor, and its detection resolution was measured. Figure 3e displays
the typical electrical output for frequencies of 452.00 and 452.01 Hz,
whereas Fig. 3f shows the corresponding frequency spectrum via fast
Fourier transform (FFT). Our liquid acoustic sensor demonstrates a
detection resolution of 0.01 Hz. We further tested the liquid acoustic
sensor performance under sound waves over a frequency range from
0.4 t010.0 kHz (Fig. 3g). The corresponding electrical output across
the entire spectrum is shown in Supplementary Fig. 13 and we show a
sensing range up to 10 kHz, which is larger than the frequency range
of human voice. Our sensor can respond to a small pressure of 0.9 Pa
(Supplementary Fig. 14). We further conducted measurements of the
electrical output at various sound pressures. As the sound pressure
increased from55t090 dB, the observed currentrose from3.0to11.6 pA
(Fig.3h). Thisbehaviour canbe attributed to the amplified vibration of
theliquid acoustic sensor resulting from the increased sound pressure.

Skin conformability and self-filtering capability

A key feature of the PFM is its conformable interface with the curved
skin (Fig. 3i). Solid-material-based wearable acoustic sensors with
high mechanical hardness exhibit poor conformability with the
curved skin surface, which negatively impacts the acoustic sensing
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sensor and our liquid acoustic sensor. f, Electrical signal of the liquid acoustic
sensor containing DEG (red line), and the liquid acoustic sensor without DEG
(grey line) showing in-sensor filtering characteristics. g, Comparison of output
currentsignals of the liquid acoustic sensor and solid sensor for five voice
commands. The shaded region represented both sensors ina simulated noise
environment (90 dB). h,i, Acquired current signals (h) and the corresponding
short-time Fourier transforms spectrograms (i).

performance®” ', Even though solid materials can be fabricated in the
form of a thin-film (around 20 pm) structure, anoticeable sensor-skin
interface gap still exists (Fig. 3j). In contrast, liquid-state materials
offer a promising solution by providing a conformable sensor-skin
interface, minimizing the occurrence of gaps and acousticimpedance
mismatch (Fig. 3k and Supplementary Fig. 15). This is because liquid
molecules have higher mobility and can freely slide and diffuse. When
aliquid is applied to the skin’s surface, its molecules can quickly rear-
range to adapt to the skin’s contours. This molecular mobility allows
the liquid materials to closely adhere to the skin’s surface, achieving
optimal conformability. Additionally, our PFM has weaker intermo-
lecular forces and lower surface tension and therefore can fill uneven
surfaces of the skin.

The acoustic sensor has adjustable rheological properties. This
enables the modification and optimization of its frequency detection
range to naturally occurring human voice waves. Although digital
filters can help mitigate noise, excluding epochs with artefacts will
result in a loss of meaningful information®”. However, the PFM-based
liquid acoustic sensor allows for the extraction of clean sound pressure
signals through the mitigation of low-frequency motion artefacts. The
self-filtering property of the liquid acoustic sensor stems from the
adaptable rheological properties of the PFM. In essence, the deform-
ability of the ORM network, as well as the variation in macroscopic
magnetic flux density, is frequency dependent and can be tuned by

shear thinning or shear thickening of the carrier fluids by adding differ-
entadditives. This feature canbe used to design liquid acoustic sensors
capable of filtering out specific ranges of frequencies. The drop-ball
testonthe device demonstrates the elastic property of aconventional
solid device and the fluidic property of the liquid acoustic sensor (Fig. 31
and Supplementary Video 2). Thus, to study the self-filtering property
of the acoustic sensor, we conducted rheological tests on the PFM
under different magnetization conditions.

Figure4aillustrates therelationship betweenviscosity, magnetiza-
tionand shear rate, showing anincreasing trend of viscosity as the mag-
neticfield intensifies from0to1.2 Tand adecreasing trend of viscosity
astheshear rateincreases from 0.01t0100.00 s ™. Thisincrease in viscos-
ity with the magnetic field indicates that the PFM can utilize areversible
chainbreak-reconnection processinside the 3D ORM network structure
withinthe carrier fluid to dissipate energy. The decrease in viscosity with
shear rate indicates that the PFM exhibits a shear-thinning behaviour,
which can be attributed to the increased chain breakage at high shear
rates. Additionally, the storage and loss modulus valuesincreased with
anincrease in magnetic field, which confirmed the formation ofthe 3D
ORM network structure withinthe PFM. Both storage and loss modulus
values decreased with an increase in shear rates, demonstrating the
shear-thinning behaviour (Fig. 4b,c). We note that the measured storage
modulus of the PFMis at the level of 100-1,000 Pa s, 100 times smaller
than the conventional soft solid materials.
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Fig. 5| Wearable voice recognition system based on the liquid acoustic
sensor. a, Output current signals of the liquid acoustic sensor for five voice
commands: ‘go’, ‘stop’, ‘left’, ‘right’and ‘back’. b, Schematic showing three
components on a customized printed circuit board. DAC, digital-to-analogue
converter. ¢, Schematic of a three-layer CNN used in the voice recognition
algorithm. d, Diagram showing the deep learning procedure. e, Evolution of the

model accuracy as well as loss function during the training epochs. Val-Accuracy
shows the validation accuracy, and Val-Loss shows the validation loss.

f, Confusion matrix of the recognition result. g, Schematic of the wheelchair.

h, Picture showing the liquid acoustic sensor accurately capturing the
commands, enabling the control of the wheelchair with voice.

When the PFM was modified by adding emulsifiers to the carrier
fluids, a shear-thickening property was observed. The PFM exhibits
amore pronounced viscoelastic behaviour with an increase in shear
stress indicated by the delta degree (Fig. 4d). The additives tend to
form temporary clusters, which, in turn, increase the flowing resist-
ance and raise the viscosity of the fluid. These findings indicate that
therheological behaviour of the PFM can be modified by adjusting the
magnetization and the additives. Given that noises emanating from
human bodily activities typically fall within a low-frequency range
(around 0.5-10.0 Hz), such as respirations, heartbeats and gaits, the
tunable rheology of the PFM allows for the transduction of acoustic
energy into applicable signals at higher frequencies (larger than30 Hz).
Thisenables anaccurate capture and conversion of the acoustic waves
into high-fidelity electrical signals.

Motion artefact mitigation

Motion artefacts can cause fluctuations or distortions in the signals
measured by wearable sensors. This leads to inaccurate data, poten-
tially affecting the reliability of measurements for physical signals
and the detection of important events due to signal interference® .
Moreover, mitigating motion artefacts often requires complex signal
processing algorithms, which can increase computational demands

and power consumption, potentiallyimpacting battery life and overall
device performance.

Theliquid acoustic sensor was found to mitigate the motion arte-
facts better than the solid acoustic sensor, and it holds distinct advan-
tages in offering high-quality signals. A comparison was made between
the liquid sensor and the solid acoustic sensor as it was attached to
the throat. Here we have chosen a capacitive-based acoustic micro-
phone as the solid acoustic sensor, given its widespread use in daily
applications. First, we measured the electrical output from both solid
and liquid acoustic sensors (Fig. 4e). Due to the air gap between the
solid sensor and skin, the calculated results suggested that the liquid
acoustic sensor realized a high SNR of 69.1 dB compared with that of
the solid acoustic sensor (18.4 dB). Although human biomechanical
motions areinthelow-frequency range of less than30 Hz (ref. 32), the
modified liquid acoustic sensor enables the removal of low-frequency
mechanical signals. In Fig. 4f, the electrical signal of the liquid acoustic
sensor with DEGis represented by the red area; the output of the sensor
without DEGis depicted by the grey area. Evidently, the red areain this
figure exhibits alower amplitude compared withthe grey area, indicat-
ing the effective mitigation of low-frequency signals. For comparison
purposes, we conducted tests on the solid acoustic sensor along with
the presence of motion artefacts caused by movement of the neck and
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asimulated noise environment (90 dB). Figure 4g shows that the liquid
acoustic sensor exhibits stable performance even in the presence of
such interferences. Conversely, the solid acoustic sensor was suscep-
tible to the 90 dB noises and vibrations from the human body. The
electrical signals from the liquid sensor and its corresponding acoustic
spectrogram are clean and without these interferences (Fig. 4h,i).

Moreover, incorporating a cavity into the liquid sensor negatively
impacted its sensing performance. This observation further supports
theimportance of a conformal interface between the acoustic sensor
and human skin for optimal functionality (Supplementary Note 2).
To comprehensively demonstrate the liquid acoustic sensor’s perfor-
mance, we created aradar graph to compareitsacoustic performance
with that of the commercial solid acoustic sensor (Supplementary
Fig.16). Theliquid acoustic sensor shows better performance acrossall
thesix parametersincluding SNR, acousticimpedance, conformability,
discriminating pressure, detection resolution and accuracy. Moreover,
despite the interference of electromagnetic fields emanating fromsur-
roundingelectronic devices, the voice recordings by the liquid acoustic
sensors still maintained high quality (Supplementary Fig.17). Addition-
ally, the liquid acoustic sensor is insensitive to temperature changes,
and can maintain stable performance within the normal human body
temperature range (Supplementary Note 3).

Wearable voice recognition system

Acoustic sensors and voice recognition technologies have led to arapid
advancement inhuman-machineinteraction and artificial intelligence.
To showcase the application of the liquid acoustic sensor, a wearable
voicerecognitionsystemwas further developed to control awheelchair.
Itaims to use voice signals to effectively command smart wheelchairs
through given prompts and reliable responses with the assistance of
machine learning algorithms (Fig. 5a).

The wearable voice recognition system consisted of the liquid
acoustic sensor and a customized printed circuit board (Fig. 5b).
The printed circuit board was designed to acquire and process the
sound-wave-generated electrical signals from the liquid acoustic sen-
sor. It holds three sections. First, an analogue signal pre-processing
circuit was used for sound-wave signal acquisition and conditioning.
Anamplifier was applied to furtherincrease the analogue signals. Next,
ananalogue-to-digital converter (ADC) was used to collect and convert
the analogue electrical signalsinto digital signals. Amachine learning
algorithmwas applied to recognize the sound signals acquired from the
devicestogive acommand. Then, the control commands were sent to
the smart wheelchair by controlling the two motors of the wheelchair
to execute the corresponding action of the voice command.

Convolutional neural networks (CNNs) were used in the wear-
able voice recognition system to increase the recognition accuracy
of the command signals. As shown in Fig. 5c, a three-layer CNN was
constructed for signal feature extraction and automatic recognition
of voice signals. In Fig. 5d, a dataset containing five voice commands
is established by repeating each voice command for 720 iterations.
The 720 samples of each command were pre-processed by sampling a
one-second series to generate training sets. After the model training,
adifferent dataset containingrandom commands was used to test the
model. The temporal progression of the model’s accuracy and loss
function revealed that the peak recognition accuracy was achieved
after 15 training epochs (Fig. 5e). The results showed that our system
canachieve the recognition of different voice commands with anaccu-
racy of 99%. Subsequently, to evaluate the sensing and recognizing
efficacy of the smart wheelchair, we constructed a confusion matrix
torepresent the recognition results (Fig. 5f).

To demonstrate the practicality of the wearable voice recognition
system, five voice commands were used to control the smart wheel-
chair: ‘go’, ‘stop’, ‘left’, ‘right’ and ‘back’. Voice commands allow the user
tomove around independently (Fig. 5g). We tested a smart wheelchair
commanded by the wearable voice recognition system. With different

commands, the wearable voice recognition systemaccurately captured
the commands and identified them to control the wheelchair to move
around (Fig. 5h). This wearable voice recognition system facilitates the
timely control of the wheelchair’'smovement through voice commands.
Tofurther shortenthe response time of the voice recognition system,
three potential strategies could be adopted, including optimizing sig-
nal processing, reducing latency in data transmission and optimizing
algorithms. In addition, by attaining higher-quality sensing signals and
eliminating motion artefacts, we canreduce the time consumption of
signal processing. Consequently, thisimprovement could also enhance
the detectionaccuracy in the machine learning segment of the system.

Conclusions

We have reported aself-filtering liquid acoustic sensor for voice recog-
nition. The approachisbased onaPFM, which stays magnetized without
the presence of external magnetic fields, and has a coercive magnetic
field of around 0.1 T and aremanent magnetization of 12.4 Am?kg ™.
We showed that the rheological properties of the PFM canbe tuned to
both shear thinning and shear thickening through a dynamical chain
break-reconnection mechanism and additives. This allows the fre-
quency response range to be tuned to the dynamic acoustic waves of
human voices. The resulting liquid acoustic sensor showed an SNR
of 69.1dB and self-filtering capabilities to mitigate motion artefacts.
Withthe assistance of amachine learning algorithm, we constructed a
wearable voice recognition system that offered arecognition accuracy
0f 99%. We also showed that the wearable voice recognition system can
be used to control a wheelchair.

The conformability of our liquid acoustic sensor overcomes chal-
lenges related to solid acoustic sensors. For example, compared with
hydrogels®***, our PFM exhibits lower acousticimpedances and better
skin conformability (Supplementary Table1). The liquid acoustic sen-
sor has potential applications beyond voice recognition, including
monitoring and assessing vocal health, detecting changes in voice
patterns and identifying potential vocal disorders. For individuals
with voice impairments, it could offer an alternative communication
method by detecting throat movements and translating them into
audible voice or text.

Methods

Synthesis of permanent fluidic magnets

The NdFeB magnetic nanoparticles (diameter,200 nm) were specifically
fabricated by Nanochemazone. Subsequently, alayer of SiO, was applied
to the magnetic nanoparticles through the hydrolysis and polyconden-
sation of tetraethyl orthosilicate (Sigma-Aldrich). The NdFeB magnetic
nanoparticles were then mixed with 2-4 wt%sodium alginate or silicone
fluids. The volume percentage of the NdFeB magnetic nanoparticles
varied from 4 to 28 vol% with carrier fluids. Once thoroughly mixed, the
magnetic nanoparticles were subjected to sonication dispersion using
anultrasonichomogenizer (FS-550T) operating at a power of 550 W for
3 h. Tomodify the PFM, 2-5% DEG (Sigma-Aldrich), polyethylene glycol
(Sigma-Aldrich) or fumedsilica (Sigma-Aldrich) was added inside before
the magnetization procedure. Following the dispersion process, the
mixture was magnetized usingimpulse fields ranging from 0.05t02.27 T
with animpulse magnetizer (IM-10-30, ASC Scientific).

Fabrication of aliquid acoustic sensor

Copper wires were first warped into a helix coil. Then, the PFM was
putintothe helix coils. After that, athin layer of polydimethylsiloxane
substrate (SYLGARD 184; mixing ratio, 10:1) was coated on the perma-
nent fluidic magnetsto seal the device, which was further cured under
exposure to UV light.

Structure characterization
The morphology of the magnetic powder was characterized by scan-
ningelectron microscopy (Zeiss Supra40VP). The morphology of the
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PFM was characterized by a Zeiss Axio Observer Z1 inverted micro-
scope. Asuperconducting quantuminterference device magnetometer
(Quantum Design, MPMS3) was used to test the magnetic hysteresis
loop. The magnetic flux density mapping on the surface of the PFM was
achieved by using the Hall effect sensor (Melexis, MLX90393) mounted
on a three-axis motion platform. Transmission electron microscopy
images were obtained by aTF20 high-resolution electron microscope
(FEI). The temperature variations were captured using athermal cam-
era (TOPDON, TCOO1) across a range from 0 to 247 °C.

Rheological properties characterization

The storage modulus and loss modulus were measured with arheom-
eter (AR-2000, TA Instruments). A 20-mm-diameter steel plate was
used to hold the sample. The shear rate was applied from 0 to 100 s ™.
Inthe oscillation experiment, the sweep of stress was applied from 10
to 10,000 Pa. All the experiments were tested at a fixed temperature
of 36 °C.

Electrical output measurement

The voltage and current signals of the liquid acoustic sensor were
measured by a voltage preamplifier (SR560, Stanford) and current pre-
amplifier (SR570, Stanford), respectively. Acommercial loudspeaker
(R10200,JBL) was used to produce ambient noise. To simulate the voice
from human throat, a piezoelectric thin film was used to generate the
sound, which was driven by a function generator (AFG1062, Newark)
and a power amplifier (PA-151, Labworks) to output the sound wave.
Sound waves from1Hzto10 kHz were generated by aPython 3.7 script.
Thesetupisschematicallyillustrated in Supplementary Fig.18. A deci-
bel meter (GM1352, Benetech) was used to measure the sound pressure.

Design the circuitry for the smart wheelchair

A customized printed circuit board was designed to acquire and pro-
cess the sound-wave signals generated by the liquid acoustic sensor.
First, an analogue signal was amplified using the amplifier (AD620) to
acquire the sound-wave signal. Subsequently, the ADC (AD7680) was
employed to gather and convert the analogue signals into a digital
format. The data from the ADC were then collected by a microcon-
troller unit (Seeeduino). A CNN algorithm was applied to recognize
the sound signals acquired from the devices to control commands.
Third, four analogue pins of the microcontroller unit were connected
tothejoystick input of the wheelchair to send control commands and
therefore control the motors of the wheelchair, moving it in different
directions. The wheelchair (Culver Mobility) in this work contains
brushless motors on each wheel.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All other data that support
the findings of this study are available from the corresponding author
onreasonable request.

Code availability
Computational simulation code and speech recognition code are
available from the corresponding author upon reasonable request.
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