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Abstract—In a random geometric graph model or latent space
model, the observed graph A on n vertices with average edge
density p is assumed to be generated from latent locations
z1, . . . , zn in Rd associated with the n vertices. Given the graph
A, it is of interest to estimate the inner products ⟨zi, zj⟩ which
represents the geometry of the latent locations. In this note,
assuming that the latent locations are Gaussian or spherical
points, we show an impossibility result for inner product recovery
when d ≳ nh(p) where h(p) is the binary entropy function.
This matches the condition required for positive results on inner
product recovery in the literature. The main technical ingredient
of this work is a lower bound on the rate-distortion function of
the Wishart distribution which is interesting in its own right.

Index Terms—Random geometric graphs, rate-distortion func-
tion, Wishart distribution

I. INTRODUCTION

Random graphs with latent geometric structures comprise
an important class of network models used across a broad
range of fields [6], [19], [26]. In a typical formulation of such
a model, each vertex of a graph on n vertices is assumed to be
associated with a latent location zi ∈ Rd where i = 1, . . . , n.
With A ∈ {0, 1}n×n denoting the adjacency matrix of the
graph, each edge Aij follows the Bernoulli distribution with
probability parameter κ(zi, zj), where κ : Rd×Rd → [0, 1] is
a kernel function. In other words, the edges of the graph are
formed according to the geometric locations of the vertices in
a latent space. Given the graph A, the central question is then
to recover the latent geometry, formulated as estimating the
inner products ⟨zi, zj⟩1.

In the study of this class of random graphs, a Gaussian
or spherical prior is often imposed on the latent locations
z1, . . . , zn, including in the early work on latent space models
[17]–[20] and in the more recent work on random geometric
graphs [3], [16], [23]. In particular, the isotropic spherical
or Gaussian prior allows the latter line of work to use the
theory of spherical harmonics to analyze spectral methods for
estimating the latent inner products. For a class of kernels
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1One can also formulate the problem as as estimating the pairwise distances
{∥zi−zj∥2}ni,j=1 which is essentially equivalent to inner product estimation.
The problem is not formulated as estimating the latent locations {zi}ni=1
themselves, because the kernel function κ is typically invariant under an
orthogonal transformation of z1, . . . , zn, making them non-identifiable.

including the step function κ(zi, zj) = 1{⟨zi, zj⟩ ≥ τ} for a
threshold τ , it is known (see Theorem 1.4 of [23]) that the
inner products can be estimated consistently if d ≪ nh(p)
where p is the average edge density of the graph and h(p)
is the binary entropy function. However, a matching negative
result was not known (as remarked in Section 1.3 of [23]).

In this note, we close this gap by proving in Corollary 3
that it is information-theoretically impossible to recover the
inner products in a random geometric graph model if d ≳
nh(p), thereby showing that d ≍ nh(p) is indeed the recovery
threshold2. In fact, it is not difficult to guess this negative result
from entropy counting: It is impossible to recover n vectors in
dimension d from

(
n
2

)
binary observations with average bias p

if nd ≳
(
n
2

)
h(p) since there is not sufficient entropy. And this

argument does not rely on the specific model for generating
the random graph A.

To formalize the entropy counting argument, we use a
general approach from the rate-distortion theory [29]. See also
[13], [27] for a modern introduction. The key step in this
approach is a lower bound on the rate-distortion function of
the estimand, i.e., X ∈ Rn×n with Xij := ⟨zi, zj⟩ in our case.
If z1, . . . , zn are isotropic Gaussian vectors, then X follows
the Wishart distribution. Therefore, our main technical work
lies in estimating the rate-distortion function for the Wishart
distribution (and its variant when z1, . . . , zn are on a sphere),
which has not been done in the literature to the best of our
knowledge. See Theorem 2.

The technical problem we solve is closely related to a
work [22] on low-rank matrix estimation. To be more precise,
Theorem VIII.17 of [22] proves a lower bound on the rate-
distortion function of a rank-d matrix X = ZZ⊤ where
Z ∈ Rn×d. Our proof partly follows the proof of this
result but differs from it in two ways: First, the result of
[22] assumes that Z is uniformly distributed on the Stiefel
manifold, i.e., the columns of Z are orthonormal, while we
assume that Z has i.i.d. Gaussian or spherical rows. Without
the simplification from the orthonormality assumption, our

2Another related statistical problem is testing a random geometric graph
model against an Erdős–Rényi graph model with the same average edge
density [10]. This testing threshold, or detection threshold, is conjectured to
be d ≍ (nh(p))3, and the lower bound is still largely open. See [9], [10],
[24].
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proof requires different linear algebraic technicalities. Second,
the result of [22] focuses on d ≤ n, while we also consider
the case d > n which requires a completely different proof.

Finally, as a byproduct of our bound on the rate-distortion
function of X , we show in Corollary 4 an impossibility
result for one-bit matrix completion. While one-bit matrix
completion has been studied extensively in the literature [7],
[11], [14], less is known for the Bayesian model where a prior
is assumed on the matrix X to be estimated [12], [25]. Similar
to inner product estimation from a random geometric graph,
the goal of one-bit matrix completion is to estimate a (typically
low-rank) matrix X from a set of binary observations. It is
therefore plausible that many techniques for random graphs
can be used for one-bit matrix completion, and vice versa.
Our result provides such an example.

II. MAIN RESULTS

In this section, we study the rate-distortion function for
the Wishart distribution and its spherical variant. Let I(X;Y )
denote the mutual information between random variables X
and Y . The rate-distortion function is defined as follows (see
Part V of [27]).

Definition 1 (Rate-distortion function). Let X be a random
variable taking values in Rℓ, and let PY |X be a conditional
distribution on Rℓ given X . Let L be a distortion measure (or
a loss function), i.e., a bivariate function L : Rℓ×Rℓ → R≥0.
For D > 0, the rate-distortion function of X with respect to
L is defined as

RL
X(D) := inf

PY |X :EL(X,Y )≤D
I(X;Y ).

Our main technical result is the following lower bound on
the rate-distortion function of a Wishart matrix.

Theorem 2 (Rate-distortion function of a Wishart matrix).
For positive integers n and d, let Z := [z1 . . . zn]

⊤ ∈ Rn×d

where the i.i.d. rows z1, . . . , zn follow either the Gaussian
distribution N (0, 1dId) or the uniform distribution on the unit
sphere Sd−1 ⊂ Rd. Let X := ZZ⊤. Define a loss function3

L(X, X̂) :=
d

n(n+ 1)
∥X − X̂∥2F . (1)

Let n ∧ d := min{n, d}. There is an absolute constant c > 0
such that for any D ∈ (0, c), we have

RL
X(D) ≥ cn(n ∧ d) log 1

D
.

For d < n, the n × n matrix X is rank-deficient and is
a function of Z ∈ Rn×d, so we expect the order nd for
the rate-distortion function; for d ≥ n, we expect the order
n2 considering the size of X . The matching upper bound on
the rate-distortion function can be obtained using a similar
argument as that in Section III-A for small d and through

3The normalization in the definition of L is chosen so that the trivial
estimator EX = In of X has risk EL(X, X̂) = 1 in the case of Gaussian
zi, since E[X2

ij ] = E[⟨zi, zj⟩2] = 1/d for i ̸= j and E[(Xii − 1)2] =

E[(⟨zi, zi⟩ − 1)2] = 2/d.

a comparison with the Gaussian distribution for large d (see
Theorem 26.3 of [27]). Since it is in principle easier to obtain
the upper bound and only the lower bound will be used in the
downstream statistical applications, we do not state it here.
Moreover, at the end of this section, we discuss the best
possible constant c in the above lower bound. The bulk of
the paper, Section III, will be devoted to proving Theorem 2.
With this theorem in hand, we first establish corollaries for
two statistical models via entropy counting.

Corollary 3 (Random geometric graph or latent space model).
Fix positive integers n, d and a parameter p ∈ (0, 1).
Suppose that we observe a random graph on n vertices
with adjacency matrix A with average edge density p, i.e.,∑

(i,j)∈([n]
2 )

E[Aij ] =
(
n
2

)
p. Suppose that A is generated

according to an arbitrary model from the latent vectors
z1, . . . , zn given in Theorem 2, and the goal is to estimate
the inner products Xij := ⟨zi, zj⟩ in the norm L defined in
(1). If d ≥ cnh(p) where c > 0 is any absolute constant and
h(p) := −p log p − (1 − p) log(1 − p) is the binary entropy
function, then for any estimator X̂ measurable with respect to
A, we have EL(X, X̂) ≥ D for a constant D = D(c) > 0.

Proof. The estimand X , the observation A, and the estimator
X̂ form a Markov chain X → A→ X̂ . By the data processing
inequality, we have

I(X; X̂) ≤ I(A; X̂) ≤ H(A),

where H(A) denotes the entropy of A. Since∑
(i,j)∈([n]

2 )
E[Aij ] =

(
n
2

)
p, by the maximum entropy

under the Hamming weight constraint (see Exercise I.7 of
[27]), we get

H(A) ≤
(
n

2

)
h(p).

If EL(X, X̂) ≤ D, then combining the above inequalities with
Theorem 2 gives

cn(n ∧ d) log 1

D
≤ RL

X(D) ≤ I(X, X̂) ≤
(
n

2

)
h(p).

Taking D > 0 to be a sufficiently small constant, we then get
n ∧ d < cnh(p), i.e., d < cnh(p).

As a second application of Theorem 2, we consider one-bit
matrix completion with a Wishart prior.

Corollary 4 (One-bit matrix completion). Fix positive integers
n, d and a parameter p ∈ (0, 1). Suppose that X ∈ Rn×n is a
rank-d matrix to be estimated. Assume the prior distribution of
X as given in Theorem 2. For each entry (i, j) ∈ [n]2, suppose
that with probability pij , we have a one-bit observation
Aij ∈ {0, 1} according to an arbitrary model, and with
probability 1−pij , we do not have an observation, denoted as
Aij = ∗. Let p be the average probability of observations, i.e.,∑n

i,j=1 pij = n2p. Let L be the loss function defined in (1).
If d ≥ cn(h(p)+p) where c > 0 is any absolute constant and
h(p) := −p log p− (1− p) log(1− p), then for any estimator
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X̂ measurable with respect to A, we have EL(X, X̂) ≥ D for
a constant D = D(c) > 0.

Proof. The argument is the same as the proof of Corollary 3,
except the bound on the entropy of A. Let Z ∈ {0, 1}n×n have
Bernoulli(pij) entries such that Zij = 1{Aij ̸= ∗}. Then we
have the conditional entropy H(Z | A) = 0. Conditional on
any value of Z, the entropy of A is at most log 2∥Z∥1 . As a
result,

H(A | Z) ≤ EZ log 2∥Z∥1 = n2p log 2.

We therefore obtain

H(A) = H(A | Z) + I(Z;A) = H(A | Z) +H(Z)

≤ n2(h(p) + p log 2).

The rest of the proof is the same as that for the random
geometric graph model.

Open problems. Several interesting problems are left open.
• Sharp constant: Recall that the lower bound on the

rate-distortion function of the Wishart distribution in
Theorem 2. While the order n(n ∧ d) log 1

D is believed
to be optimal, we did not attempt to obtain the sharp
constant factor. In the case d ≥ n, the rate-distortion
function can be bounded from above by that of a Gaussian
Wigner matrix, and the best leading constant is 1/4 (see
Theorems 26.2 and 26.3 of [27]). Indeed, the end result
of Section III-B indeed shows a lower bound with the
constant 1/4 in the leading term if D → 0. In the case
d/n → 0, Lemma 7 suggests that the best constant may
be 1/2, but we did not make the effort to obtain it as
the end result. The most difficult situation appears to be
when d < n = O(d), in which case our techniques fail
to obtain any meaningful constant factor.

• Optimal rate: Combined with the work [23], our result
gives the recovery threshold d ≍ nh(p) for random geo-
metric graphs with Gaussian or spherical latent locations.
However, it remains open to obtain an optimal lower
bound on EL(X, X̂) as a function of d, n, p in the regime
d ≪ nh(p). We believe the simple approach of entropy
counting is not sufficient for obtaining the optimal rate
and new tools need to be developed.

• General latent distribution: Existing positive and negative
results for estimation in random geometric graph models
are mostly limited to isotropic distributions of latent
locations, such as Gaussian or spherical in [3], [16], [23]
and this work. It is interesting to extend these results to
more general distributions and metric spaces; see [4], [5]
for recent work. Even for random geometric graphs with
anisotropic Gaussian latent points, while there has been
progress on the detection problem [8], [15], extending the
recovery results to the anisotropic case remains largely
open.

III. PROOF OF THEOREM 2

Let c∗ ∈ (0, 1) be some absolute constant to be deter-
mined later. We first consider the Gaussian model where

zi ∼ N (0, 1dId). The proof is split into three cases d ≤ c∗n,
d ≥ n, and c∗n < d < n, proved in Sections III-A, III-B,
and III-C respectively. We then consider the spherical model
in Section III-D.

A. Case d ≤ c∗n

To study the rate-distortion function of X = ZZ⊤, we
connect it to the rate-distortion function of Z in the distortion
measure to be defined in (2). The strategy is inspired by [22],
but the key lemma connecting the distortion of X to that of
Z is different. For Z, Ẑ ∈ Rd×d, define a loss function for
recovering Z up to an orthogonal transformation

ℓ(Z, Ẑ) :=
1

n
inf

O∈O(d)
∥Z − ẐO∥2F , (2)

where O(d) denotes the orthogonal group in dimension d. The
normalization is chosen so that Eℓ(Z,EZ) = Eℓ(Z, 0) = 1.
We start with a basic linear algebra result.

Lemma 5. Let A,B ∈ Rn×d. For the loss functions L and ℓ
defined by (1) and (2) respectively, we have

ℓ(A,B) ≤
√
n+ 1

n
L(AA⊤, BB⊤).

Proof. Consider the polar decompositions A = (AA⊤)1/2U
and B = (BB⊤)1/2V where U, V ∈ O(d). Then we have

ℓ(A,B) =
1

n
inf

O∈O(d)
∥A−BO∥2F

≤ 1

n
∥(AA⊤)1/2U − (BB⊤)1/2V (V ⊤U)∥2F

=
1

n
∥(AA⊤)1/2 − (BB⊤)1/2∥2F .

The Powers–Størmer inequality [28] gives

∥(AA⊤)1/2 − (BB⊤)1/2∥2F≤ ∥AA⊤ −BB⊤∥∗,

where ∥·∥∗ denotes the nuclear norm. In addition, AA⊤ and
BB⊤ are at most rank d, so

ℓ(A,B) ≤ 1

n
∥AA⊤ −BB⊤∥∗

≤
√
d

n
∥AA⊤ −BB⊤∥F=

√
n+ 1

n
L(AA⊤, BB⊤).

Next, we relate the rate-distortion function of X = ZZ⊤ in
the loss L to the rate-distortion function of Z in the loss ℓ.

Lemma 6. Let Z and X be defined as in Theorem 2, and
let L and ℓ be defined by (1) and (2) respectively. Recall the
notation of the rate-distortion function in Definition 1. For
D > 0, we have

RL
X(D) ≥ Rℓ

Z(
√
8D).

Proof. Fix a conditional distribution PY |X such that,

EL(X,Y ) ≤ D.
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Define
Z̃ = argmin

W∈Rn×d

∥Y −WW⊤∥F ,

where the non-unique minimizer Z̃ is chosen arbitrarily. Then
we have

∥ZZ⊤−Z̃Z̃⊤∥F≤ ∥ZZ⊤−Y ∥F+∥Y−Z̃Z̃∥F≤ 2∥ZZ⊤−Y ∥F .

In other words,

L(ZZ⊤, Z̃Z̃⊤) ≤ 4L(X,Y ).

By Lemma 5,

ℓ(Z, Z̃) ≤
√
2L(ZZ⊤, Z̃Z̃⊤) ≤

√
8L(X,Y ).

Jensen’s inequality then yields

Eℓ(Z, Z̃) ≤ E
√

8L(X,Y ) ≤
√
8EL(X,Y ) ≤

√
8D.

Let O be a uniform random orthogonal matrix over O(d),
independent from everything else. In view of the definition of
ℓ, we have

Eℓ(ZO, Z̃) = Eℓ(Z, Z̃) ≤
√
8D.

Therefore, by the definition of the rate-distortion function Rℓ
Z

(see Definition 1),

I(ZO; Z̃) ≥ Rℓ
ZO(

√
8D) = Rℓ

Z(
√
8D),

where the equality follows from the orthogonal invariance of
the distribution of Z.

Next, we note that

I(ZO; Z̃) ≤ I(ZZ⊤; Z̃).

(In fact, equality holds because the reverse inequality is
trivial by data processing.) To see this, given ZZ⊤, take
any A ∈ Rn×d such that ZZ⊤ = AA⊤, and let Q be a
uniform random orthogonal matrix over O(d) independent
from everything else. Since A = ZP for some P ∈ O(d),
we have (AQ, Z̃) = (ZPQ, Z̃)

d
= (ZO, Z̃), where d

= denotes
equality in distribution. Hence, the data processing inequality
gives I(ZZ⊤; Z̃) ≥ I(AQ; Z̃) = I(ZO; Z̃).

Combining the above two displays and recalling that Z̃ is
defined from Y , we apply the data processing inequality again
to obtain

I(X;Y ) ≥ I(ZZ⊤; Z̃Z̃⊤) ≥ Rℓ
Z(

√
8D).

Minimizing PY |X subject to the constraint EL(X,Y ) ≤ D
yields the rate-distortion function RL

X(D) on the left-hand
side, completing the proof.

Lemma 7. Let Z be defined as in Theorem 2, let ℓ be defined
by (2), and let Rℓ

Z be given by Definition 1. There is an
absolute constant C > 0 such that for any D ∈ (0, 1/4),
we have

Rℓ
Z(D) ≥ nd

2
log

1

4D
− d2

2
log

C

D
.

Proof. Fix a conditional distribution PẐ|Z such that
Eℓ(Z, Ẑ) ≤ D. Let O = O(Z, Ẑ) ∈ O(d) be such that

1
n∥ẐO−Z∥2F= ℓ(Z, Ẑ). Then we have E∥ẐO−Z∥2F≤ nD.
Let N(O(d), ϵ) be an ϵ-net of O(d) with respect to the
Frobenius norm, where ϵ2 = nD

E∥Z∥2
2

∧ d. For O = O(Z, Ẑ),

choose Ô = Ô(Z, Ẑ) ∈ N(O(d), ϵ) such that ∥Ô−O∥2F≤ ϵ2.
Define W := ẐÔ. We have

E∥W − Z∥2F = E∥ẐÔ − Z∥2F= E∥Ẑ − ZÔ−1∥2F
≤ 2E∥Ẑ − ZO−1∥2F+2E∥ZO−1 − ZÔ−1∥2F
≤ 2E∥ẐO − Z∥2F+2E∥Z∥2∥O−1 − Ô−1∥2F
≤ 2nD + 2ϵ2E∥Z∥2= 4nD,

where ∥·∥ denotes the spectral norm.
By Theorem 26.2 of [27] (with d replaced by nd and σ2

replaced by 1/d), the rate-distortion function of Z with respect
to the Frobenius norm L0(Z,W ) := ∥Z −W∥2F is

RL0

Z (D) =
nd

2
log

n

D
. (3)

Since E∥W − Z∥2F≤ 4nD, we obtain

I(Z;W ) ≥ RL0

Z (4nD) =
nd

2
log

1

4D
.

Moreover, we have

I(Z;W ) ≤ I(Z; Ẑ, Ô) = I(Z; Ẑ) + I(Z; Ô | Ẑ)
≤ I(Z; Ẑ) +H(Ô),

where the three steps follow respectively from the data
processing inequality, the definition of conditional mutual
information I(Z; Ô | Ẑ), and a simple bound on the mu-
tual information by the entropy. The above two inequalities
combined imply

I(Z; Ẑ) ≥ I(Z;W )−H(Ô) ≥ nd

2
log

1

4D
−H(Ô).

Since Ô ∈ N(O(d), ϵ), the entropy H(Ô) can be bounded
by the metric entropy of O(ϵ). By Theorem 8 of [30], there is
an absolute constant C0 > 1 such that the covering number of

O(d) with respect to the Frobenius norm is at most
(√

C0d
ϵ

)d2

for any ϵ ∈ (0,
√
d). We have

ϵ =

√
nD

E∥Z∥2
∧
√
d ≥ c1

√
dD

for an absolute constant c1 > 0, where the bound follows
from the concentration of ∥Z∥ at order O(

√
n+

√
d√

d
) (see, e.g.,

Corollary 5.35 of [31]) and that d ≤ n. Therefore,

H(Ô) ≤ log|N(O(d))|≤ d2

2
log

C0d

ϵ2
≤ d2

2
log

C0

c21D
.

Putting it together, we obtain

I(Z; Ẑ) ≥ nd

2
log

1

4D
− d2

2
log

C0

c21D
,

finishing the proof in view of the definition of RL
Z(D).
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Combining Lemmas 6 and 7, we conclude that

RL
X(D) ≥ nd

2
log

1

4
√
8D

− d2

2
log

C√
8D

≥ nd

8
log

1

D

provided that D ∈ (0, c∗) and d ≤ c∗n for a sufficiently small
constant c∗ > 0.

B. Case d ≥ n

In the case d ≥ n, the Wishart distribution of X = ZZ⊤

has a density on the set of symmetric matrices Rn(n+1)/2,
and we can apply the Shannon lower bound [29] on the rate-
distortion function. See Equation (26.5) and Exercise V.22 of
the book [27] (with the norm taken to be the Euclidean norm
and r = 2) for the following result.

Lemma 8 (Shannon lower bound [29]). Let Y be a continuous
random vector with a density on RN . For D > 0, let
RL0

Y (D) be the rate-distortion function of Y with respect to
the Euclidean norm L0(Y, Ŷ ) := ∥Y − Ŷ ∥22. Let h(Y ) denote
the differential entropy of Y . Then we have

RL0

Y (D) ≥ h(Y )− N

2
log

2πeD

N
.

As a result, for the loss L defined by (1) and the random
matrix X distributed over Rn(n+1)/2, we have

RL
X(D) ≥ h(X)− n(n+ 1)

4
log

4πeD

d
.

The differential entropy h(X) of the Wishart matrix X is
known.

Lemma 9 (Differential entropy of a Wishart matrix [21]). For
X defined in Theorem 2, we have

h(X) =
n(n+ 1)

2
log

2

d
+ log Γn

(
d

2

)
− d− n− 1

2
ψn

(
d

2

)
+
nd

2
,

where Γn is the multivariate gamma function and ψn is the
multivariate digamma function.

The above two results combined give the lower bound

RL
X(D) ≥ n(n+ 1)

2
log

2

d
+ log Γn

(
d

2

)
− d− n− 1

2
ψn

(
d

2

)
+
nd

2
− n(n+ 1)

4
log

4πeD

d

=
nd

2
+
n(n+ 1)

4
log

1

πeDd
+ log Γn

(
d

2

)
− d− n− 1

2
ψn

(
d

2

)
. (4)

We now analyze the functions Γn and γn. By Stirling’s approx-
imation for the gamma function (see Equation 6.1.40 of [1]),
we have log Γ(x+1/2) ≥ x log(x+1/2)−x− 1/2+ log(2π)

2

for x ≥ 0. Together with the definition of the multivariate
gamma function Γn, this gives

log Γn

(
d

2

)
=
n(n− 1)

4
log π +

n∑
i=1

log Γ

(
d+ 1− i

2

)
≥ n(n− 1)

4
log π

+

n∑
i=1

(
d− i

2
log

d+ 1− i

2
− d+ 1− i

2
+

log(2π/e)

2

)
≥ n2

4
log(πe)− nd

2
+

n∑
i=1

(
d− i

2
log

d+ 1− i

2

)
−O(n).

Moreover, by Equation (2.2) of [2], the digamma function
satisfies log x − 1

x < ψ(x) < log x for x > 0. Combining
this with the definition of the multivariate digamma function
ψn, we obtain

d− n− 1

2
ψn

(
d

2

)
=
d− n− 1

2

n∑
i=1

ψ

(
d+ 1− i

2

)
≤ d− n− 1

2

n∑
i=1

log
d+ 1− i

2
+O(n),

where we note that the O(n) term is only necessary in the
case that d = n and d−n−1

2 is negative.
Plugging the above two estimates into (4), we see that

RL
X(D) ≥n(n+ 1)

4
log

1

Dd

+

n∑
i=1

(
n+ 1− i

2
log

d+ 1− i

2

)
−O(n).

(5)

If d ≥ 2n, then

RL
X(D) ≥n(n+ 1)

4
log

1

Dd

+

(
log

d+ 1− n

2

) n∑
i=1

n+ 1− i

2
−O(n)

=
n(n+ 1)

4
log

1

D
+
n(n+ 1)

4
log

d+ 1− n

2d
−O(n)

≥n(n+ 1)

4
log

1

D
−O(n2).

For n ≤ d < 2n, we first note that the term n+1−i
2 log d+1−i

2
with i = n can be dropped from the sum in (5), because
n+1−n

2 log d+1−n
2 < 0 only if d = n, in which case the

negative quantity 1
2 log

1
2 is subsumed by the −O(n) term.

Furthermore, since the function x 7→ n+1−x
2 log d+1−x

2 is
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decreasing on [1, n], we have

n−1∑
i=1

(
n+ 1− i

2
log

d+ 1− i

2

)
≥
∫ n

1

n+ 1− x

2
log

d+ 1− x

2
dx

=
2dn− d2

4
log

d

d+ 1− n
+
n2 − 1

4
log(d+ 1− n)

+O(n2),

where the integral can be evaluated explicitly, but we suppress
O(n2) terms for brevity. Plugging this back into (5), we obtain

RL
X(D) ≥n(n+ 1)

4
log

1

D

+
2dn− d2 − n2 + 1

4
log

d

d+ 1− n
−O(n2).

Since 2dn− d2 − n2 ≤ 0 and log d
d+1−n ≤ n−1

d+1−n ≤ n−1
d−n , it

holds that

2dn− d2 − n2 + 1

4
log

d

d+ 1− n
≥ 2dn− d2 − n2

4
· n− 1

d− n

= −1

4
(d− n)(n− 1).

(While the above argument relied on d > n due to the presence
of d− n in the denominator, the conclusion clearly holds for
d = n.) Consequently, we again have

RL
X(D) ≥ n(n+ 1)

4
log

1

D
−O(n2).

This readily implies the desired lower bound.

C. Case c∗n < d < n

This case can be easily reduced to the case d ≥ n. Fix a
conditional distribution PY |X such that EL(X,Y ) ≤ D. Let
Xd be the top left d× d principal minor of X and define Yd
similarly. Then Xd clearly has the Wishart distribution as X
in Theorem 2 with n replaced by d. Let Ld be the loss L in
(1) with n replaced by d. Then we have

Ld(Xd, Yd) =
d

d(d+ 1)
∥Xd − Yd∥2F

≤ d

(c∗)2n(n+ 1)
∥X − Y ∥2F=

1

(c∗)2
L(X,Y ),

so ELd(Xd, Yd) ≤ D/(c∗)2. Applying the result for the case
d = n, we get

I(Xd;Yd) ≥
d(d+ 1)

4
log

(c∗)2

D
−O(d2)

≥ c∗nd

4
log

(c∗)2

D
−O(nd).

Since I(X;Y ) ≥ I(Xd;Yd), to complete the proof, it remains
to take D ≤ c for a sufficiently small constant c > 0 depending
only on c∗ and the hidden constant in O(nd).

D. Spherical case
We now consider the case Z = [z1 . . . zn]

⊤ and X = ZZ⊤

where z1, . . . , zn are i.i.d. uniform random vectors over the
unit sphere Sd−1 ⊂ Rd. The proof is via a reduction from
the Gaussian case. Let w1, . . . , wn be i.i.d. N (0, 1dId) vectors
and let βi := ∥wi∥2, so that zi = wi/βi and wi = βizi.
Let B ∈ Rn×n be the diagonal matrix with β1, . . . , βn on its
diagonal. Let Y = BXB. Then Y has the distribution of X in
the case where z1, . . . , zn are Gaussian vectors, so the result
of the Gaussian case gives

RL
Y (D) ≥ cn(n ∧ d) log 1

D
. (6)

Fix a conditional distribution PX̂|X such that EL(X, X̂) ≤
D. Let g1, . . . , gn be i.i.d. N (0, δ2) random variables indepen-
dent from everything else, where δ > 0 is to be chosen. Define
β̂i := βi + gi, and let B̂ ∈ Rn×n be the diagonal matrix with
β̂1, . . . , β̂n on its diagonal. Define Ŷ := B̂X̂B̂. Since zi is
independent from βi, we see that (X, X̂) is independent from
(B, B̂). Hence,

I(Y ; Ŷ ) ≤ I(X,B; X̂, B̂) = I(X; X̂) + I(B; B̂).

For the term I(B; B̂), the independence across the pairs
(βi, β̂i) for i = 1, . . . , n implies

I(B; B̂) =

n∑
i=1

I(βi; β̂i) = nI(β1; β̂1).

We have Var(β1) = Var(∥wi∥2) = 1
d (d − 2Γ((d+1)/2)2

Γ(d/2)2 ) ≤
1/(2d) using the variance of the χd distribution and basic
properties of the gamma function. Let g′ ∼ N (0, 1/(2d)).
Then the Gaussian saddle point theorem (see Theorem 5.11
of [27]) gives

I(β1; β̂1) ≤ I(g′; g′ + g1) =
1

2
log

(
1 +

1

2dδ2

)
.

The above three displays combined yield

I(X; X̂) ≥ I(Y ; Ŷ )− n

2
log

(
1 +

1

2dδ2

)
. (7)

It remains to bound I(Y ; Ŷ ) from below. To this end, note
that

∥Ŷ − Y ∥2F=∥B̂X̂B̂ −BXB∥2F
≤2∥B̂X̂B̂ − B̂XB̂∥2F+2∥B̂XB̂ −BXB∥2F

=2

n∑
i,j=1

β̂2
i β̂

2
j (X̂ij −Xij)

2

+ 2

n∑
i,j=1

X2
ij(β̂iβ̂j − βiβj)

2.

Since β̂i = βi + gi, we have E[β̂2
i ] = E[β2

i ] +E[g2i ] = 1+ δ2.
Moreover, we have E[X2

ii] = E[(z⊤i zi)2] = 1 and E[X2
ij ] =

E[(z⊤i zj)2] = 1/d for i ̸= j. Finally,

E[(β̂iβ̂j − βiβj)
2] = E[(βigj + βjgi + gigj)

2]

= 2δ2 + E[g2i g2j ] + 2E[βiβj ]E[gigj ]
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so E[(β̂2
i −β2

i )
2] = 4δ2+3δ4 and E[(β̂iβ̂j−βiβj)2] = 2δ2+δ4

for i ̸= j. Since β̂1, . . . , β̂n are independent and B, B̂,X are
mutually independent, we conclude that

E∥Ŷ − Y ∥2F ≤ 2(1 + δ2)2E∥X̂ −X∥2F+2n(4δ2 + 3δ4)

+ 2
n(n− 1)

d
(2δ2 + δ4)

≤ 8
n(n+ 1)

d
D + 14

n

d
D + 6

n(n− 1)

d2
D,

where we used that EL(X, X̂) ≤ D for the loss L defined in
(1) and chose δ2 = D/d < 1. Hence, we have EL(Y, Ŷ ) ≤
28D. This together with (6) implies that

I(Y ; Ŷ ) ≥ cn(n ∧ d) log 1

28D
.

Plugging this bound into (7), we obtain

I(X; X̂) ≥ cn(n ∧ d) log 1

28D
− n

2
log

(
1 +

1

2D

)
.

The above bound completes the proof if d ≥ C for some
constant C > 0 depending only on c. For the case d ≤ C
(in fact, for the entire case d ≤ c∗n), it suffices to note that
the proof in Section III-A also works for the spherical model.
To be more precise, there are only three places where the
Gaussianity assumption is used. First, the proof of Lemma 6
uses the orthogonal invariance of the distribution of the rows
of Z, which is also true for the spherical model where zi
is uniform over Sd−1. Second, (3) uses the rate-distortion
function of the entry-wise Gaussian matrix Z. In the case
where Z have i.i.d. rows distributed uniformly over Sd−1,
it suffices to replace this formula by a lower bound: by
Theorems 27.17 and 24.8 of [27], we have

RL0

Z (D) ≥ n(d− 1)

2
log

1

D
− nC2

for an absolute constant C2 > 0, which is sufficient for the
rest of the proof. Third, the proof of Lemma 7 also uses that
E∥Z∥2 is of order n+d

d , which is obviously true if d is of
constant size and the rows of Z are on the unit sphere.
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