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Abstract—As power grids modernize to include wide area
monitoring and advanced metering infrastructures, the appli-
cations for data-driven methods based on artificial intelligence
(AI) for situational awareness, reliability, and security continue
to grow. However, obtaining effective training data that captures
normal and anomalous operations in power systems remains
a great challenge. This paper proposes a data-augmentation
method that can efficiently build effective training data sets,
benefiting various data-driven applications used in power grids
without increasing the size of training data set. By leveraging
load prediction in smart grids, we obtain the knowledge of
future operating conditions and potential anomalies, which are
integrated with the historical data in the training data set.
By utilizing this augmented training data set, we significantly
increase the accuracy of data-driven fault detection, e.g., 8.6%
on average, compared to the results trained based on historical
data only.

Index Terms—Data augmentation, machine learning, fault
detection.

I. INTRODUCTION

The reliability and security of power grids are essential in

ensuring economic sectors’ continuous operations and main-

taining public safety [1]. The advent of smart grids and

advanced metering infrastructure provides new opportunities

for anomaly detection, which can be widely applied to various

problems, including energy fraud detection [2], demand man-

agement [3], and fault detection [4]. Among these applications,

accurately detecting and locating faults in power systems

is critical to shorten response time and prevent cascading

outages, ensuring reliability and stability of the grid [5].

In a conventional power system, model-based methods

dominate fault detection and location, mainly by solving

explicit physical models of power grids. For example, studies

in [6], [7] use the model of state estimation to identify dif-

ferent types of faults in transmission and distribution systems.

These methods can incur long latency by processing sufficient

measurements in grids’ physical model to ensure accurate

detection. With the increasing adoption of renewable energy

and dynamic configuration, model-based methods can struggle

to capture all variables and dependencies in power systems,

making them infeasible in certain situations.
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Alternative to the model-based methods, many studies have

exploited the data collected from wide area monitoring (WAM)

systems to implement data-driven methods [5]. These methods

are model-free and can detect faults or anomalies with a small

latency by making inferences in a pre-trained deep neural

network [8], [9]. Furthermore, studies show that many power

grid applications beyond fault detection, including demand

responses and intrusion detection, can benefit from data-driven

approaches if their models are trained properly [10].

While data driven methods have become the most prevalent

forms of fault detection in the current research, there is still a

wide research gap affecting their performance, i.e., how to ob-

tain effective training data. Solving this problem by exclusively

using historical data is challenging for two reasons. First,
slow mechanical inertia in power grids requires a long history

to collect various operating conditions. Second, some studies

leverage Monte Carlo simulation, which can only produce

random operating conditions. Those historical or randomly-

generated conditions can fail to characterize the future op-

erating conditions, under which faults occur, significantly

downgrading the performance of data-driven approaches.

To fill this gap, we propose an original data-augmentation

method that can efficiently build effective training data sets.

Current data-augmentation methods used in image processing

enhance training data sets by manipulating existing data and

increasing the data set size. These methods can become ineffi-

cient and ineffective for power grids’ applications, because (i)

creating various operating conditions require heavy computa-

tion, (ii) a large training data set can inevitably increase the

training overhead, and (iii) newly added training data may not

fully capture the characteristics of future operations affected

by unexpected factors, e.g., weather or human involvements.

Instead of randomly adding training data, our original data-

augmentation method leverages load prediction to add a small

amount of training data closely related to upcoming operating

conditions and potential faults. Load prediction is commonly

used to optimize power grid stability and economical benefits;

to our knowledge, this is the first work to integrate load

prediction with data-augmentation and improve the perfor-

mance of data-driven applications in power grids. To further

reduce training overhead, we introduce two design variations



that synthesize predicted conditions with historical ones and

seamlessly apply the augmented data set into existing training

procedure. Evaluations of two IEEE test systems, simulated in

two different environments, show a significant improvement

in data-driven fault detection, e.g., approximately 8.6% in

detection accuracy on average, even without increasing the

size of the training data set.

Even though we focus on one type of fault detection

in this paper, the proposed data-augmentation methods can

be integrated with other data-driven applications, which are

gradually equipped in modern power grids. As data driven

approaches offer a critical alternative to traditional model-

based methods, we believe that the data-augmentation methods

can benefit a wide range of applications, which we leave as

future work.

The rest of the paper is organized as follows. Section II

introduces related research in the areas of fault detection,

data augmentation and load prediction. Section III describes

the proposed data augmentation and fault detection methods,

Section IV details the experimentation and results, and con-

clusions are drawn in Section V.

II. RELATED WORKS

Data Driven Fault Detection. Detection of faults in the

smart grid is critical to shorten response time and prevent

cascading outages. In [5] the authors implement data driven

methods such as pursuit decomposition, hidden Markov mod-

els and k-means clustering to detect, identify, and locate faults.

Other machine learning techniques have been employed for

fault prediction in [11], where the authors implement long

short term memory (LSTM) and support vector machines

(SVM) to predict the occurrence of faults based on historical

information. Most recently, research has focused on deep

learning through artificial neural networks (ANN). Specifically

convolutional neural networks (CNNs), which leverage con-

volution layers to catch spatial inter-dependency of the input

data, demonstrate big success in areas like object identification

and image segmentation [12]. In smart grids, CNNs have been

employed for applications such as energy theft detection [13],

false data injection detection [14] and fault diagnosis [15].

Our previous work demonstrated a CNN could be employed

to locate bus faults with a high degree of accuracy for a single

operating condition [16]. The focus of this work is not to
propose a new fault detection method; we will improve the
performance of the previous anomaly detection methods by
augmenting the training data with future operating conditions.

Data Augmentation. While there remains a research gap

in data augmentation for smart grid applications, it is applied

to various other disciplines such as image processing, med-

ical research, and computer networks [17], [18]. In image

processing, data engineers use manual manipulation to create

more images, through rotating or mirroring. More complicated

approaches, such as generative adversarial networks (GAN),

use the statistical qualities of existing data. Specifically, many

studies use GAN to create data that can better train anomaly

detection tools in different applications, e.g., detecting cardiac

dysfunction in ECG signals [18]. Our data-augmentation
method distinguishes itself from previous work by creating
data that follows the physical laws and matches statistical
features of historical data in power grids. This is achieved by

predicting the future operating states of the power system.

Load Prediction. Power grid operations vary with time,

continuously accommodating load demands from residential

and industrial sectors. Load prediction plays a critical role

in estimating the trajectory of load demands in the future

by integrating various data, including statistical characteristics

of historical load demands, weather conditions, and user

patterns. Long-term prediction is helpful for power system

infrastructure planning, while short-term forecasting is widely

used to adjust runtime system operations [19]. Hernandez

et al. provide a comprehensive review of load prediction

algorithms in the last 2+ decades; most recent research has

focused on using ANN [20] and recurrent neural networks,

e.g., LSTM [21], [22].

III. PREDICTION BASED DATA AUGMENTATION

A. Data-driven Fault Detection Overview
This paper uses the data-driven fault detection presented

in [16] as an application to demonstrate the advancement of

the proposed data-augmentation method. Our previous method

detects faults by leveraging a CNN to process data collected

from increasingly deployed smart meters. Our CNN model

involves two feature layers, each of which included three

convolutional layers in sequence. Each convolutional layer

had a kernel size of three, a stride of one, and a single zero

padding.

The CNN model takes a set of time-series data as inputs and

infers the presence of faults. Specifically, each input data point

is represented by time-dependent three-dimensional tensor At.

An entry At[i, j, k] specifies the voltage phasors at phase k of

bus j. The value i indicates the time stamp at t + i when a

meter, like a phasor measurement unit (PMU), samples the

corresponding value. Consequently, At includes time-series

voltage phasors sampled at high frequency within a small

period starting at t. To feed various data points to the CNN

model, we collect At at different times t, when a power

grid experiences different operating conditions. For example,

in Fig. 1(a), existing data-driven methods collect data points

from history only, e.g., collecting At with t0 ≤ t ≤ t1. After

collecting historical data, training starts at t1 and ends at t2,

taking δ time units.

Assuming the training period is short and a fault happens af-

ter the training, i.e., ta > t2, the accuracy of machine learning

models heavily relies on the training. If the training data set

fails to include the characteristics or probability distributions

in future events, data-driven models tend to make incorrect

inferences. Consequently, we encounter significant research

gaps to ensure the performance of deep-learning models in

smart grids. First, many unexpected factors, e.g., weather or

human involvements, are not reflected in the historical data.

Second, even if we build training data from a long history or

simulation, the randomly-generated operating conditions may



not be representative of future conditions during which faults

occur. To make things worse, blindly enlarging the training

data set also increases the training period δ; faults becomes

more probable to occur prior to completing the training and

force the inference to be made based on the subset of training

data. Consequently, building effective training data requires

we add operating conditions consistent with future conditions

without significantly increasing the training overhead.

B. Design of Prediction-based Data Augmentation

To bridge the gaps in the existing training procedure, we

propose a data-augmentation method that enriches the training

data set with the predicted knowledge of future operating

conditions in a power grid. In Fig. 1, we present this idea

in a timeline, demonstrating the benefits and its relationship

with the existing training procedure.g g p

Fig. 1: Prediction-based training: augmented historical data

with the knowledge relevant to future and anomaly operations.

As shown in Fig. 1(b), the highlighted orange bar specifies

the time period (marked as δ′) that it takes to augment the

training data, creating predicted data for the future time period

(marked as μ) and simulating faults that occurred during

historical and future operations. Consequently, the training

uses both historical and augmented data, including operations

closely relevant to faults.

Prediction-based data augmentation can be seamlessly inte-

grated with existing training procedures with a small over-

head. Simulating faults on historical operations introduces

inconsequential overheads, because it can be performed while

historical data is collected. Creating predicted operations and

subsequently simulating faults (e.g., during period μ) can

be performed in parallel while training the model with the

historical data. For example, predicting the operation 20 hours

ahead in a high-fidelity environment such as OPAL-RT (i.e.,

μ ≈ 20 hours) based on historical data and creating faults for

the 20-hour predicted operations takes around 1.5 hours in total

(i.e., δ′ ≈ 1.5). This augmentation period can be completely

overlapped with the training of historical data, which lasts 3.5

hours. However, training the model with the augmented data

adds another 0.5 hours, which makes δ ≈ 3.5+0.5 = 4 hours;

the 0.5-hour of overhead is tolerable in our experiments.

The predicted conditions can track the significant changes of

grid operations, complementing missing knowledge in histori-

cal data. Instead of predicting a few specific faults, we enhance

the training data with diverse knowledge that can be relevant

to fault conditions. Even if the prediction does not have high

accuracy, the enhanced training data can still increase the fault

detection accuracy (see evaluation in Section IV). This work

focuses on supervised learning; we believe that prediction-

based augmentation can also help other data-driven methods,

e.g., reinforcement learning, which will be our future work.

Design Variations to Remedy Data-augmentation Over-
heads. Based on the proposed design, we expect to encounter

two types of overheads: (i) additional training on the predicted

and fault conditions, and (ii) additional latency caused by a

too-long data-augmentation period when δ′ > δ. We propose

two design variations to remedy the overheads. When the size

of a training data set becomes too large, we propose variation

1 in Fig. 1(c), which reduces the amount of historical data

used in the training data set. For example, in our evaluation,

when we apply this variation, the data-augmentation can still

improve the fault detection performance (see Section IV for

details). When additional latency, δ′, is too large (i.e., δ
′
> δ),

we propose variation 2 in Fig. 1(d). Specifically, we stop

collecting historical data earlier (e.g., at t1 − (δ
′ − δ)) so that

we can start data-augmentation earlier, compensating for the

additional latency.

C. Components of Prediction-based Data Augmentation

In Fig. 2, we present the components of prediction-based

data-augmentation, whose details are presented in the follow-

ing paragraphs.

Fig. 2: Components of the prediction-based data-

augmentation.

Load Prediction. In this paper, we use LSTM as the method

to predict transactions in power grids, benefiting from its good

performance in processing time-series data in applications

like natural language processing. However, the proposed data-

augmentation method is not restricted by the specific load-

prediction algorithm. Other load predictions used in actual

utility companies can be easily integrated.

After estimating load demands, we use deterministic algo-

rithms, e.g., optimal power flow analysis or economic dispatch,

to determine remaining unknown operating parameters, e.g.,

generation outputs [23]. The resultant predicted and benign

operating conditions are added to the training data.

Fault Injection & Simulation. In addition to enhancing

the training data with benign predicted operations, we further

simulate faults on the predicted and historical operations. The

resultant simulated fault conditions are added to the training

data as well, which can better balance the training data by

including the data labeled with both considered categories

(i.e., “normal” and “anomaly”). Similar to the load prediction

component, the fault injection and simulation component can



benefit from high-order contingency screening implemented in

actual utility environments.

The implementations of load prediction and fault injec-

tion/simulation components are not restricted by a specific
simulation environment. This work achieves the prediction-

based data augmentation by advanced functionalities in an

intelligent digital twin. A traditional digital twin uses a high-

fidelity simulation of cyber and physical infrastructures to

process runtime measurements from a real environment. Its

capability to parallelize the computation of real-time data

enables system administrators to optimize grid operations. Our

recent work developed an advanced intelligent digital twin by

including machine learning techniques to quantify patterns of

external factors, e.g., user behavior and weather changes [23].

Developing a new digital twin is beyond the scope of this
work. Instead, this work uses the implementation in [23] to

create predicted data and simulate faults to enrich the existing

training data set by retrieving historical measurements.

IV. EVALUATION

A. Experiment Setup

We conduct evaluations in two power systems, i.e., IEEE 9-

bus and 39-bus systems. To simulate the normal variation of

operations in the power grid, we built a profile representing

the changes of load demands based on a public data set,

ACTIVSg2000s [24]. This data set includes 8,784 different

operating conditions, based on hourly load demands observed

at real substations for one year. We built six evaluation cases;

each case included 100 hours of those operating conditions

which were randomly selected. In Table I, we list the starting

and ending timestamps in the ACTIVSg2000 data set for each

evaluation case; the first 80 hours of operations are fully or

partially used as historical data, while the remaining 20 hours

of operations are always used as the testing data set.
TABLE I: Evaluation cases.

Case Starting/Ending Time Case Starting/Ending Time
Case 1 0-100 hours Case 4 4000-4100 hours
Case 2 500-600 hours Case 5 7000-7100 hours
Case 3 1900-2000 hours Case 6 8684-8784 hours

For each evaluation case, we performed experiments under

four training scenarios. All four scenarios used the same

testing data set; they differ in the composition of the training

data set, as shown in Table II. The first, Base-60 scenario,

used 60 hours of historical operating conditions in the training

data set. In the second, Augmented scenario, we combined the

60-hour historical and the 20-hour predicted conditions. The

third, V1-Augmented scenario (corresponding to the variation

1 design in Section III.B), included only 40 hours of historical

conditions and the 20 hours of predicted conditions in the

training data set. In this scenario, the training data set has

the same size as the training data set used in the Base-60

scenario. In addition, we compare all of these results to the

training scenario that used the 80 historical hours of operating

conditions (labeled as Base-80).

Discussion. Note that we used the subset of the 80-hour

of historical conditions in the first three training scenarios

TABLE II: Training scenarios.

Scenario Composition of Training Data
Base-60 60 hrs historical data

Augmented 60 hrs historical data + 20 hrs predicted data
V1-Augmented 40 hrs historical data + 20 hrs predicted data

Base-80 80 hrs historical data

to represent the situation when there are not enough training

data. Our evaluations show that data-augmentation can signif-

icantly improve the fault detection accuracy in those specific

situations, where the performance of data-driven applications

usually downgrade.

Our implementation includes variation 1 of the prediction-

based data augmentation (see Fig. 1), but not variation 2. This

is because the period of data augmentation is much smaller

than the training period (i.e., δ′ < δ) in our experiments.

Note that even if we intentionally delay the data-augmentation,

variation 2 of the data augmentation would present same-

level of improvements in the fault detection as shown in

the V1-Augmented scenario. In future work, we will further

explore data-driven approaches in other critical infrastructures,

in which data-augmentation may have much longer latency.

B. Prediction-based Data Augmentation Implementation

Load Prediction Component. We leveraged the LSTM

model to implement the load prediction component. Specif-

ically, the LSTM model included a linear prediction model,

using mean squared error (MSE) as the loss function and

the Adam optimization function to train the model. In our

experiments, the performance of the proposed data augmen-

tation is not degraded by the accuracy of the load prediction.

For example, Fig. 3 presents very different outcomes of load

prediction in two cases, i.e., Case 1 and Case 6, which does

not affect the data augmentation significantly (see results in

the following sections). To what extent the quality of the

prediction impacts the detection accuracy will be left for future

work.

(a) Bus 5 prediction in Case 1. (b) Bus 5 prediction in Case 6.

Fig. 3: Examples of load prediction based on LSTM model.

Fault Injection Component. For each operating condition,

we implemented three-phase-to-ground faults by changing

the resistance between a bus and a ground to 0.5 Ω. The

faults of the two power systems were implemented with

different simulation environments. We simulate the faults of

the IEEE 9-bus system in a high-fidelity hardware-in-the-

loop simulator from Opal RT; a total of 25.14 GB training



data is generated. Avoiding the exploded size of training data

in the IEEE 39-bus system (which can also reduce training

overhead significantly), we simulate the faults of the IEEE

39-bus system in PowerWorld, a commercial simulator used

in real utilities. Evaluations from the two different simulation

environments show that the results are general and the benefits

of the data-augmentation techniques are not affected by the

specific simulation environment.
Based on these implementations, we present the evaluation

results from these two cases in the following subsections.

C. Case Study 1: IEEE 9-Bus
Implementation. The IEEE 9-Bus implementation used

OpalRT and Hypersim to simulate normal and fault conditions.

For each operational condition, we have simulated 20 faults

per bus with various duration. Consequently, each evaluation

case includes a total of 16,000 conditions (including benign

cases without faults) as historical data, and 4,000 conditions

as the testing data set. In the OpalRT simulations, the ground

fault was randomly triggered between 0.03 and 0.06 seconds

and cleared after 0.005-0.035 seconds.

Fig. 4: Comparisons of fault detection accuracy under different

training scenarios for the 9 Bus model.

Results. In Fig. 4, we compare the fault detection accuracy

of various training scenarios, averaged across all six evaluation

cases. We quantify fault detection accuracy by comparing the

number of faults detected by the CNN model and the actual

number of injected faults. By comparing the results in Base-60

and Base-80 scenarios, we observe that simply adding more

historical conditions in the training data set can introduce

few benefits in the fault detection. The main reason is that

operating conditions in a 80-hour period experiences small

changes. On the contrary, both Augmented and V1-Augmented

scenarios can significantly increase the performance of the

fault detection by 6.24% and 4.23% respectively. Note that

the overhead of data collection is a critical factor to train deep

learning models; this result can be significantly beneficial by

increasing model accuracy without any additional efforts to

collect more historical data.

Fig. 5: Comparisons of fault detection accuracy in different

evaluation cases in the 9 Bus model.

In Fig. 5, we further breakdown the results in different eval-

uation cases and observe two exciting and important findings.

First, the data-augmentation can increase the performance of

fault detection relying exclusively on historical data, regardless

of its original performance. This observation is confirmed

by both Augmented and V1-Augmented scenarios. Using

augmented training data sets can increase the accuracy up to

12%. Furthermore, even though the size of the training data

set used in the V1-augmented scenario is smaller than the

size of the training data set used in the Augmented scenario,

the detection accuracy still shows a dramatic improvement

compared to the historical only training experiment in the

Base-60 and Base-80 scenarios.

The second finding is that data-augmentation improves

performance even in the case where the prediction accuracy

is lower. In Case 6, the predicted load demands significantly

deviate from the actual load demands, compared to the other

five test cases (see Fig. 3). Even under this situation, fault

detection accuracy improves by 4% to 8%, suggesting the data

augmentation algorithm is not sensitive to prediction accuracy,

likely because it enriches training data even though these new

operating states do not exactly match the actual future state.

D. Case Study 2: IEEE 39 Bus Model

Implementation. The IEEE 39-Bus model was imple-

mented in PowerWorld simulator. Specifically, the faults were

simulated in each bus for the six evaluation cases. The duration

of the faults varies from 0.01 second to 0.05 second with the

step size of 0.01 second. Consequently, we collected a total of

16,000 historical data points and 4,000 predicted data points.

Results. In Fig. 6, we can observe similar improvements

of fault detection in this larger system due to the data-

augmentation. Including the prediction in training improves

detection accuracy by 9.8% on average over the Base-60

scenario and 0.9% over the base-80 scenario. Note that the

detection based on the Base-80 scenario already achieved

95.8% accuracy, probably due to the reduction in variability

of fault simulation in the PowerWorld simulation. With 25%

less data used in training, fault detection based on the V1-

Augmented scenario can still achieve comparable accuracy

(around 94%) to the detection accuracy based on the Base-

80 scenario.

Fig. 6: Comparisons of average fault detection accuracy under

different training scenarios for the 39 Bus model.
We further breakdown the evaluation results in six evalua-

tion cases in Fig. 7. The CNN model used in fault detection

behaves differently for IEEE 39-bus system; increasing the

size of the training data set can increase the model accuracy.

However, comparing the results between the V1-Augmented

and Base-60 scenarios (whose training data set has the same



size), we can still increase the detection accuracy. Specifically,

we achieve 2.3% improvement in Case 5 (which observe

accurate detection in Base-60 scenario) and 18.5% in Case

1. In other words, the proposed data augmentation methods

can also be helpful when increasing the size of training data

set becomes challenging.

Fig. 7: Comparisons of fault detection accuracy under different

evaluation cases in the 39 Bus model.

V. CONCLUSION

In this paper, we present a prediction-based data augmen-

tation method that can increase fault detection accuracy in

power grids. To “learn from the future,” we create a training set

integrating the knowledge of both future and faulty operating

conditions with minor training overhead. Our implementation

integrates the load prediction built on LSTM and two sim-

ulation environments, OPAL-RT and PowerWorld. Based on

evaluations of four training scenarios and six evaluation cases

in two IEEE test systems, utilizing the augmented training data

set can increase the accuracy of data-driven fault detection by

8.6% on average, compared to the results trained based on

historical data only.

With the promising results, we will focus on two aspects

in future work: (i) systematic analysis on the impact of the

amount of future data on fault detection and other data-

driven applications and (ii) scenarios where the performance of

load-prediction is downgraded, which may be caused by load

anomalies or data compromise caused by malicious actors.
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