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Abstract—As power grids modernize to include wide area
monitoring and advanced metering infrastructures, the appli-
cations for data-driven methods based on artificial intelligence
(AI) for situational awareness, reliability, and security continue
to grow. However, obtaining effective training data that captures
normal and anomalous operations in power systems remains
a great challenge. This paper proposes a data-augmentation
method that can efficiently build effective training data sets,
benefiting various data-driven applications used in power grids
without increasing the size of training data set. By leveraging
load prediction in smart grids, we obtain the knowledge of
future operating conditions and potential anomalies, which are
integrated with the historical data in the training data set.
By utilizing this augmented training data set, we significantly
increase the accuracy of data-driven fault detection, e.g., 8.6%
on average, compared to the results trained based on historical
data only.

Index Terms—Data augmentation, machine learning, fault
detection.

I. INTRODUCTION

The reliability and security of power grids are essential in
ensuring economic sectors’ continuous operations and main-
taining public safety [1]. The advent of smart grids and
advanced metering infrastructure provides new opportunities
for anomaly detection, which can be widely applied to various
problems, including energy fraud detection [2], demand man-
agement [3], and fault detection [4]. Among these applications,
accurately detecting and locating faults in power systems
is critical to shorten response time and prevent cascading
outages, ensuring reliability and stability of the grid [5].

In a conventional power system, model-based methods
dominate fault detection and location, mainly by solving
explicit physical models of power grids. For example, studies
in [6], [7] use the model of state estimation to identify dif-
ferent types of faults in transmission and distribution systems.
These methods can incur long latency by processing sufficient
measurements in grids’ physical model to ensure accurate
detection. With the increasing adoption of renewable energy
and dynamic configuration, model-based methods can struggle
to capture all variables and dependencies in power systems,
making them infeasible in certain situations.
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Alternative to the model-based methods, many studies have
exploited the data collected from wide area monitoring (WAM)
systems to implement data-driven methods [5]. These methods
are model-free and can detect faults or anomalies with a small
latency by making inferences in a pre-trained deep neural
network [8], [9]. Furthermore, studies show that many power
grid applications beyond fault detection, including demand
responses and intrusion detection, can benefit from data-driven
approaches if their models are trained properly [10].

While data driven methods have become the most prevalent
forms of fault detection in the current research, there is still a
wide research gap affecting their performance, i.e., how to ob-
tain effective training data. Solving this problem by exclusively
using historical data is challenging for two reasons. First,
slow mechanical inertia in power grids requires a long history
to collect various operating conditions. Second, some studies
leverage Monte Carlo simulation, which can only produce
random operating conditions. Those historical or randomly-
generated conditions can fail to characterize the future op-
erating conditions, under which faults occur, significantly
downgrading the performance of data-driven approaches.

To fill this gap, we propose an original data-augmentation
method that can efficiently build effective training data sets.
Current data-augmentation methods used in image processing
enhance training data sets by manipulating existing data and
increasing the data set size. These methods can become ineffi-
cient and ineffective for power grids’ applications, because (i)
creating various operating conditions require heavy computa-
tion, (ii) a large training data set can inevitably increase the
training overhead, and (iii) newly added training data may not
fully capture the characteristics of future operations affected
by unexpected factors, e.g., weather or human involvements.

Instead of randomly adding training data, our original data-
augmentation method leverages load prediction to add a small
amount of training data closely related to upcoming operating
conditions and potential faults. Load prediction is commonly
used to optimize power grid stability and economical benefits;
to our knowledge, this is the first work to integrate load
prediction with data-augmentation and improve the perfor-
mance of data-driven applications in power grids. To further
reduce training overhead, we introduce two design variations



that synthesize predicted conditions with historical ones and
seamlessly apply the augmented data set into existing training
procedure. Evaluations of two IEEE test systems, simulated in
two different environments, show a significant improvement
in data-driven fault detection, e.g., approximately 8.6% in
detection accuracy on average, even without increasing the
size of the training data set.

Even though we focus on one type of fault detection
in this paper, the proposed data-augmentation methods can
be integrated with other data-driven applications, which are
gradually equipped in modern power grids. As data driven
approaches offer a critical alternative to traditional model-
based methods, we believe that the data-augmentation methods
can benefit a wide range of applications, which we leave as
future work.

The rest of the paper is organized as follows. Section II
introduces related research in the areas of fault detection,
data augmentation and load prediction. Section III describes
the proposed data augmentation and fault detection methods,
Section IV details the experimentation and results, and con-
clusions are drawn in Section V.

II. RELATED WORKS

Data Driven Fault Detection. Detection of faults in the
smart grid is critical to shorten response time and prevent
cascading outages. In [5] the authors implement data driven
methods such as pursuit decomposition, hidden Markov mod-
els and k-means clustering to detect, identify, and locate faults.
Other machine learning techniques have been employed for
fault prediction in [11], where the authors implement long
short term memory (LSTM) and support vector machines
(SVM) to predict the occurrence of faults based on historical
information. Most recently, research has focused on deep
learning through artificial neural networks (ANN). Specifically
convolutional neural networks (CNNs), which leverage con-
volution layers to catch spatial inter-dependency of the input
data, demonstrate big success in areas like object identification
and image segmentation [12]. In smart grids, CNNs have been
employed for applications such as energy theft detection [13],
false data injection detection [14] and fault diagnosis [15].
Our previous work demonstrated a CNN could be employed
to locate bus faults with a high degree of accuracy for a single
operating condition [16]. The focus of this work is not to
propose a new fault detection method; we will improve the
performance of the previous anomaly detection methods by
augmenting the training data with future operating conditions.

Data Augmentation. While there remains a research gap
in data augmentation for smart grid applications, it is applied
to various other disciplines such as image processing, med-
ical research, and computer networks [17], [18]. In image
processing, data engineers use manual manipulation to create
more images, through rotating or mirroring. More complicated
approaches, such as generative adversarial networks (GAN),
use the statistical qualities of existing data. Specifically, many
studies use GAN to create data that can better train anomaly
detection tools in different applications, e.g., detecting cardiac

dysfunction in ECG signals [18]. Our data-augmentation
method distinguishes itself from previous work by creating
data that follows the physical laws and matches statistical
features of historical data in power grids. This is achieved by
predicting the future operating states of the power system.

Load Prediction. Power grid operations vary with time,
continuously accommodating load demands from residential
and industrial sectors. Load prediction plays a critical role
in estimating the trajectory of load demands in the future
by integrating various data, including statistical characteristics
of historical load demands, weather conditions, and user
patterns. Long-term prediction is helpful for power system
infrastructure planning, while short-term forecasting is widely
used to adjust runtime system operations [19]. Hernandez
et al. provide a comprehensive review of load prediction
algorithms in the last 2+ decades; most recent research has
focused on using ANN [20] and recurrent neural networks,
e.g., LSTM [21], [22].

III. PREDICTION BASED DATA AUGMENTATION
A. Data-driven Fault Detection Overview

This paper uses the data-driven fault detection presented
in [16] as an application to demonstrate the advancement of
the proposed data-augmentation method. Our previous method
detects faults by leveraging a CNN to process data collected
from increasingly deployed smart meters. Our CNN model
involves two feature layers, each of which included three
convolutional layers in sequence. Each convolutional layer
had a kernel size of three, a stride of one, and a single zero
padding.

The CNN model takes a set of time-series data as inputs and
infers the presence of faults. Specifically, each input data point
is represented by time-dependent three-dimensional tensor Ay.
An entry A.[4, j, k] specifies the voltage phasors at phase k of
bus j. The value ¢ indicates the time stamp at ¢ + ¢ when a
meter, like a phasor measurement unit (PMU), samples the
corresponding value. Consequently, A; includes time-series
voltage phasors sampled at high frequency within a small
period starting at t. To feed various data points to the CNN
model, we collect A; at different times ¢, when a power
grid experiences different operating conditions. For example,
in Fig. 1(a), existing data-driven methods collect data points
from history only, e.g., collecting A; with ty <t < ¢;. After
collecting historical data, training starts at ¢; and ends at to,
taking § time units.

Assuming the training period is short and a fault happens af-
ter the training, i.e., £, > t2, the accuracy of machine learning
models heavily relies on the training. If the training data set
fails to include the characteristics or probability distributions
in future events, data-driven models tend to make incorrect
inferences. Consequently, we encounter significant research
gaps to ensure the performance of deep-learning models in
smart grids. First, many unexpected factors, e.g., weather or
human involvements, are not reflected in the historical data.
Second, even if we build training data from a long history or
simulation, the randomly-generated operating conditions may



not be representative of future conditions during which faults
occur. To make things worse, blindly enlarging the training
data set also increases the training period ¢; faults becomes
more probable to occur prior to completing the training and
force the inference to be made based on the subset of training
data. Consequently, building effective training data requires
we add operating conditions consistent with future conditions
without significantly increasing the training overhead.

B. Design of Prediction-based Data Augmentation

To bridge the gaps in the existing training procedure, we
propose a data-augmentation method that enriches the training
data set with the predicted knowledge of future operating
conditions in a power grid. In Fig. 1, we present this idea
in a timeline, demonstrating the benefits and its relationship
with the existing training procedure.
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Fig. 1: Prediction-based training: augmented historical data
with the knowledge relevant to future and anomaly operations.

As shown in Fig. 1(b), the highlighted orange bar specifies
the time period (marked as ¢’) that it takes to augment the
training data, creating predicted data for the future time period
(marked as p) and simulating faults that occurred during
historical and future operations. Consequently, the training
uses both historical and augmented data, including operations
closely relevant to faults.

Prediction-based data augmentation can be seamlessly inte-
grated with existing training procedures with a small over-
head. Simulating faults on historical operations introduces
inconsequential overheads, because it can be performed while
historical data is collected. Creating predicted operations and
subsequently simulating faults (e.g., during period p) can
be performed in parallel while training the model with the
historical data. For example, predicting the operation 20 hours
ahead in a high-fidelity environment such as OPAL-RT (i.e.,
1~ 20 hours) based on historical data and creating faults for
the 20-hour predicted operations takes around 1.5 hours in total
(i.e., & ~ 1.5). This augmentation period can be completely
overlapped with the training of historical data, which lasts 3.5
hours. However, training the model with the augmented data
adds another 0.5 hours, which makes § ~ 3.5+0.5 = 4 hours;
the 0.5-hour of overhead is tolerable in our experiments.

The predicted conditions can track the significant changes of
grid operations, complementing missing knowledge in histori-

cal data. Instead of predicting a few specific faults, we enhance
the training data with diverse knowledge that can be relevant
to fault conditions. Even if the prediction does not have high
accuracy, the enhanced training data can still increase the fault
detection accuracy (see evaluation in Section IV). This work
focuses on supervised learning; we believe that prediction-
based augmentation can also help other data-driven methods,
e.g., reinforcement learning, which will be our future work.

Design Variations to Remedy Data-augmentation Over-
heads. Based on the proposed design, we expect to encounter
two types of overheads: (i) additional training on the predicted
and fault conditions, and (ii) additional latency caused by a
too-long data-augmentation period when §’ > §. We propose
two design variations to remedy the overheads. When the size
of a training data set becomes too large, we propose variation
1 in Fig. 1(c), which reduces the amount of historical data
used in the training data set. For example, in our evaluation,
when we apply this variation, the data-augmentation can still
improve the fault detection performance (see Section IV for
details). When additional latency, &', is too large (i.e., § > 0),
we propose variation 2 in Fig. 1(d). Specifically, we stop
collecting historical data earlier (e.g., at t; — (6 — &)) so that
we can start data-augmentation earlier, compensating for the
additional latency.

C. Components of Prediction-based Data Augmentation

In Fig. 2, we present the components of prediction-based
data-augmentation, whose details are presented in the follow-
ing paragraphs.
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Fig. 2: Components of the
augmentation.

Load Prediction. In this paper, we use LSTM as the method
to predict transactions in power grids, benefiting from its good
performance in processing time-series data in applications
like natural language processing. However, the proposed data-
augmentation method is not restricted by the specific load-
prediction algorithm. Other load predictions used in actual
utility companies can be easily integrated.

After estimating load demands, we use deterministic algo-
rithms, e.g., optimal power flow analysis or economic dispatch,
to determine remaining unknown operating parameters, e.g.,
generation outputs [23]. The resultant predicted and benign
operating conditions are added to the training data.

Fault Injection & Simulation. In addition to enhancing
the training data with benign predicted operations, we further
simulate faults on the predicted and historical operations. The
resultant simulated fault conditions are added to the training
data as well, which can better balance the training data by
including the data labeled with both considered categories
(i.e., “normal” and “anomaly’). Similar to the load prediction
component, the fault injection and simulation component can

prediction-based  data-



benefit from high-order contingency screening implemented in
actual utility environments.

The implementations of load prediction and fault injec-
tion/simulation components are not restricted by a specific
simulation environment. This work achieves the prediction-
based data augmentation by advanced functionalities in an
intelligent digital twin. A traditional digital twin uses a high-
fidelity simulation of cyber and physical infrastructures to
process runtime measurements from a real environment. Its
capability to parallelize the computation of real-time data
enables system administrators to optimize grid operations. Our
recent work developed an advanced intelligent digital twin by
including machine learning techniques to quantify patterns of
external factors, e.g., user behavior and weather changes [23].
Developing a new digital twin is beyond the scope of this
work. Instead, this work uses the implementation in [23] to
create predicted data and simulate faults to enrich the existing
training data set by retrieving historical measurements.

1V. EVALUATION
A. Experiment Setup

We conduct evaluations in two power systems, i.e., IEEE 9-
bus and 39-bus systems. To simulate the normal variation of
operations in the power grid, we built a profile representing
the changes of load demands based on a public data set,
ACTIVSg2000s [24]. This data set includes 8,784 different
operating conditions, based on hourly load demands observed
at real substations for one year. We built six evaluation cases;
each case included 100 hours of those operating conditions
which were randomly selected. In Table I, we list the starting
and ending timestamps in the ACTIVSg2000 data set for each
evaluation case; the first 80 hours of operations are fully or
partially used as historical data, while the remaining 20 hours
of operations are always used as the testing data set.

TABLE I: Evaluation cases.

Case Starting/Ending Time Case Starting/Ending Time
Case 1 0-100 hours Case 4 4000-4100 hours
Case 2 500-600 hours Case 5 7000-7100 hours
Case 3 1900-2000 hours Case 6 8684-8784 hours

For each evaluation case, we performed experiments under
four training scenarios. All four scenarios used the same
testing data set; they differ in the composition of the training
data set, as shown in Table II. The first, Base-60 scenario,
used 60 hours of historical operating conditions in the training
data set. In the second, Augmented scenario, we combined the
60-hour historical and the 20-hour predicted conditions. The
third, VI-Augmented scenario (corresponding to the variation
1 design in Section III.B), included only 40 hours of historical
conditions and the 20 hours of predicted conditions in the
training data set. In this scenario, the training data set has
the same size as the training data set used in the Base-60
scenario. In addition, we compare all of these results to the
training scenario that used the 80 historical hours of operating
conditions (labeled as Base-80).

Discussion. Note that we used the subset of the 80-hour
of historical conditions in the first three training scenarios

TABLE II: Training scenarios.

Scenario Composition of Training Data
Base-60 60 hrs historical data
Augmented 60 hrs historical data + 20 hrs predicted data
VI-Augmented | 40 hrs historical data + 20 hrs predicted data
Base-80 80 hrs historical data

to represent the situation when there are not enough training
data. Our evaluations show that data-augmentation can signif-
icantly improve the fault detection accuracy in those specific
situations, where the performance of data-driven applications
usually downgrade.

Our implementation includes variation 1 of the prediction-
based data augmentation (see Fig. 1), but not variation 2. This
is because the period of data augmentation is much smaller
than the training period (i.e., §' < J) in our experiments.
Note that even if we intentionally delay the data-augmentation,
variation 2 of the data augmentation would present same-
level of improvements in the fault detection as shown in
the V1-Augmented scenario. In future work, we will further
explore data-driven approaches in other critical infrastructures,
in which data-augmentation may have much longer latency.

B. Prediction-based Data Augmentation Implementation

Load Prediction Component. We leveraged the LSTM
model to implement the load prediction component. Specif-
ically, the LSTM model included a linear prediction model,
using mean squared error (MSE) as the loss function and
the Adam optimization function to train the model. In our
experiments, the performance of the proposed data augmen-
tation is not degraded by the accuracy of the load prediction.
For example, Fig. 3 presents very different outcomes of load
prediction in two cases, i.e., Case 1 and Case 6, which does
not affect the data augmentation significantly (see results in
the following sections). To what extent the quality of the
prediction impacts the detection accuracy will be left for future
work.
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Fig. 3: Examples of load prediction based on LSTM model.

Fault Injection Component. For each operating condition,
we implemented three-phase-to-ground faults by changing
the resistance between a bus and a ground to 0.5 €. The
faults of the two power systems were implemented with
different simulation environments. We simulate the faults of
the IEEE 9-bus system in a high-fidelity hardware-in-the-
loop simulator from Opal RT; a total of 25.14 GB training



data is generated. Avoiding the exploded size of training data
in the IEEE 39-bus system (which can also reduce training
overhead significantly), we simulate the faults of the IEEE
39-bus system in PowerWorld, a commercial simulator used
in real utilities. Evaluations from the two different simulation
environments show that the results are general and the benefits
of the data-augmentation techniques are not affected by the
specific simulation environment.

Based on these implementations, we present the evaluation
results from these two cases in the following subsections.
C. Case Study 1: IEEE 9-Bus

Implementation. The IEEE 9-Bus implementation used
OpalRT and Hypersim to simulate normal and fault conditions.
For each operational condition, we have simulated 20 faults
per bus with various duration. Consequently, each evaluation
case includes a total of 16,000 conditions (including benign
cases without faults) as historical data, and 4,000 conditions
as the testing data set. In the OpalRT simulations, the ground
fault was randomly triggered between 0.03 and 0.06 seconds
and cleared after 0.005-0.035 seconds.
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Fig. 4: Comparisons of fault detection accuracy under different
training scenarios for the 9 Bus model.

Results. In Fig. 4, we compare the fault detection accuracy
of various training scenarios, averaged across all six evaluation
cases. We quantify fault detection accuracy by comparing the
number of faults detected by the CNN model and the actual
number of injected faults. By comparing the results in Base-60
and Base-80 scenarios, we observe that simply adding more
historical conditions in the training data set can introduce
few benefits in the fault detection. The main reason is that
operating conditions in a 80-hour period experiences small
changes. On the contrary, both Augmented and V1-Augmented
scenarios can significantly increase the performance of the
fault detection by 6.24% and 4.23% respectively. Note that
the overhead of data collection is a critical factor to train deep
learning models; this result can be significantly beneficial by
increasing model accuracy without any additional efforts to

collect more historical data.
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Fig. 5: Comparisons of fault detection accuracy in different

evaluation cases in the 9 Bus model.
In Fig. 5, we further breakdown the results in different eval-
uation cases and observe two exciting and important findings.

First, the data-augmentation can increase the performance of
fault detection relying exclusively on historical data, regardless
of its original performance. This observation is confirmed
by both Augmented and V1-Augmented scenarios. Using
augmented training data sets can increase the accuracy up to
12%. Furthermore, even though the size of the training data
set used in the Vl1-augmented scenario is smaller than the
size of the training data set used in the Augmented scenario,
the detection accuracy still shows a dramatic improvement
compared to the historical only training experiment in the
Base-60 and Base-80 scenarios.

The second finding is that data-augmentation improves
performance even in the case where the prediction accuracy
is lower. In Case 6, the predicted load demands significantly
deviate from the actual load demands, compared to the other
five test cases (see Fig. 3). Even under this situation, fault
detection accuracy improves by 4% to 8%, suggesting the data
augmentation algorithm is not sensitive to prediction accuracy,
likely because it enriches training data even though these new
operating states do not exactly match the actual future state.

D. Case Study 2: IEEE 39 Bus Model

Implementation. The IEEE 39-Bus model was imple-
mented in PowerWorld simulator. Specifically, the faults were
simulated in each bus for the six evaluation cases. The duration
of the faults varies from 0.01 second to 0.05 second with the
step size of 0.01 second. Consequently, we collected a total of
16,000 historical data points and 4,000 predicted data points.

Results. In Fig. 6, we can observe similar improvements
of fault detection in this larger system due to the data-
augmentation. Including the prediction in training improves
detection accuracy by 9.8% on average over the Base-60
scenario and 0.9% over the base-80 scenario. Note that the
detection based on the Base-80 scenario already achieved
95.8% accuracy, probably due to the reduction in variability
of fault simulation in the PowerWorld simulation. With 25%
less data used in training, fault detection based on the V1-
Augmented scenario can still achieve comparable accuracy
(around 94%) to the detection accuracy based on the Base-
80 scenario.
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Fig. 6: Comparisons of average fault detection accuracy under

different training scenarios for the 39 Bus model.
We further breakdown the evaluation results in six evalua-

tion cases in Fig. 7. The CNN model used in fault detection
behaves differently for IEEE 39-bus system; increasing the
size of the training data set can increase the model accuracy.
However, comparing the results between the V1-Augmented
and Base-60 scenarios (whose training data set has the same



size), we can still increase the detection accuracy. Specifically,
we achieve 2.3% improvement in Case 5 (which observe
accurate detection in Base-60 scenario) and 18.5% in Case
1. In other words, the proposed data augmentation methods
can also be helpful when increasing the size of training data
set becomes challenging.
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Fig. 7: Comparisons of fault detection accuracy under different
evaluation cases in the 39 Bus model.

V. CONCLUSION

In this paper, we present a prediction-based data augmen-
tation method that can increase fault detection accuracy in
power grids. To “learn from the future,” we create a training set
integrating the knowledge of both future and faulty operating
conditions with minor training overhead. Our implementation
integrates the load prediction built on LSTM and two sim-
ulation environments, OPAL-RT and PowerWorld. Based on
evaluations of four training scenarios and six evaluation cases
in two IEEE test systems, utilizing the augmented training data
set can increase the accuracy of data-driven fault detection by
8.6% on average, compared to the results trained based on
historical data only.

With the promising results, we will focus on two aspects
in future work: (i) systematic analysis on the impact of the
amount of future data on fault detection and other data-
driven applications and (ii) scenarios where the performance of
load-prediction is downgraded, which may be caused by load
anomalies or data compromise caused by malicious actors.
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