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Abstract—State estimation plays a critical role in power dis-
tribution systems. However, the conventional state estimation
commonly used in transmission systems cannot be applied to the
distribution systems because of insufficient measurements. Even
though machine learning methods have begun to demonstrate
their capabilities to overcome this challenge, they are not capa-
ble of explicitly incorporating distribution systems’ topological
information. This paper proposes EleGNN, an electrical-model-
guided graph neural network (GNN), to perform power distri-
bution system state estimation (DSSE). By explicitly considering
physical topology, EleGNN enhances GNN with original node
and edge feature propagation methods, allowing us to obtain
accurate estimation results despite insufficient measurements and
various topologies. Evaluations of six different power systems
demonstrate significant improvement in state estimation accuracy
than the method relying on general neural networks. Specifically,
node-level mean square errors introduced by EleGNN are at least
one order of magnitude smaller, even with up to 50% of missing
measurements.

Index Terms—graph neural networks; power distribution sys-
tems; state estimation

I. INTRODUCTION

State estimation plays a critical role in modern power
systems, obtaining system states from noisy measurement
data. Since its application in power transmission systems,
the accurately estimated system states serve as a foundation
for various control operations, from contingency analysis to
economic dispatch [12]. In recent years, power distribution
systems have adopted state estimation to accommodate various
control operations near load units [1]. However, because power
distribution systems share very different infrastructure charac-
teristics from transmission systems, state estimation methods,
which have become standardized in the transmission systems,
involve original design options.

The first group of design options to perform power distribu-
tion system state estimation (DSSE) is model-based methods.
If sufficient measurements and accurate topological informa-
tion ensure system observability, model-based methods will
result in closed-form solutions to system states. For example,
the conventional weighted-least-square (WLS) algorithm and
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its variants can obtain a deterministic estimation of system
states from the measurements that are corrupted with Gaus-
sian noises [12]. However, power distribution systems are
often unobservable due to insufficient meters. To compensate
for system unobservability, many studies leverage statisti-
cal characteristics of historical sensor data to craft pseudo-
measurements [10]. Unfortunately, the lack of sufficient his-
torical data makes it challenging to ensure the accuracy of
pseudo-measurements, leading to the performance downgrade
of model-based DSSE.

Another group of methods, which are intrinsically not
limited by system observability, is model-free methods. By ex-
ploiting machine and deep learning techniques, these methods
estimate system states by establishing a probability relation-
ship between system states and measurements. Learning from
a large number of measurement data, the model-free methods
estimate system states by performing probability inferences,
regardless of whether the system is observable. Existing
machine learning techniques, e.g., artificial neural networks,
are initially designed to process image-structured data, e.g.,
the data encoded in a three-dimension tensor. Because they
cannot directly process topological information from power
grids, machine-learning models and parameters are trained
again when they are performed for a different power system,
significantly limiting the broad applications of the model-free
methods [3], [4], [11], [19].

In this paper, we propose EleGNN, an electrical-model-
guided graph neural network (GNN), to advance model-free
methods for DSSE. By explicitly considering the physical
topology of distribution systems, EleGNN enhances GNN with
original node and edge feature propagation methods, allowing
us to obtain accurate estimation results despite insufficient
measurements and various topologies.

GNN is an emerging neural network specifically designed to
handle relational data in graphical representations. Because of
the success in node and graph classification in genomics data
and social network data [8], [20], some studies have explored
the potential of using GNNs to perform state estimation in
power systems, demonstrating promising results when suffi-
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cient measurements are available [7], [9].

To further leverage GNNs for DSSE, we observe a crit-
ical challenge that the previous studies fail to address, e.g.,
insufficient measurements in power distribution systems can
result in unbalanced or missing node and edge features in
a graph. Handling the graph with missing node features is
an open research problem in GNNs; existing solutions rely
on probability correlations among existing node features to
address the problem [6], [14], [15]. However, there is a lack of
dedicated solutions regarding the missing edge features, which
can prevent us from applying GNNs to DSSE. To address these
challenges, we make the following contribution to EleGNN:

. By integrating electrical models of power distribution
systems, e.g., the impedance of distribution lines and
various power measurements injected into substations and
distribution lines, EleGNN inductively estimates system
states by training the model on a small set of systems.

. EleGNN introduces original node and edge feature prop-
agation, leveraging the electrical centrality of each sub-
station and electrical connectivity between substations, to
address insufficient measurements.

. Evaluations of six power systems demonstrate significant
improvement on state estimation accuracy compared to the
methods relying on general neural networks, e.g., at least
one order of magnitude smaller in node-level mean square
errors, even with 50% of missing measurements.

The rest of the paper is organized as follows. Section II
presents existing studies related to DSSE and compares
EleGNN'’s contribution to selected related work. We include
some necessary background on graph neural networks in
Section III. Section IV presents the design of EleGNN; the
evaluations of EleGNN'’s performance are detailed in Sec-
tion V. We summarize the findings and present future work
in Section VI.

II. RELATED WORK

Model-based DSSE. Because power distribution systems
often lack sufficient measurements, state estimation methods
standardized in transmission systems cannot be directly ap-
plied. As a result, many studies created pseudo measurements
before using analytical methods to solve this problem. The
most common techniques to generate pseudo measurements
are based on the statistical features of historical or exist-
ing measurements [10]. These methods are proprietary, and
the accuracy can vary, affected by the number of existing
measurements. Note that the errors of the generated pseudo
measurements no longer follow the probability distributions
of the errors caused by metering devices, breaking the as-
sumptions of many model-based DSSE and downgrading their
performances.

Model-free DSSE. To bypass the observability require-
ments in model-based methods, traditional machine learning
and newly-emerged deep learning are used to estimate system
states from the obtained measurements. For example, the

studies in [3], [4], [11], [19] rely on various types of deep
neural networks (DNN), e.g., multi-layer perceptron (MLP) or
convolutional neural networks (CNN), to achieve this objective
by training the model with a large number of operating con-
ditions generated by Monte Carlo sampling. In [13], [18], the
authors implicitly integrate power systems’ physical properties
with general DNN models. However, because DNNs do not
explicitly incorporate power systems’ topology information,
the model structure and the parameters need to be trained again
when they target a different power system.

Even though some studies have successfully applied GNNs
to perform state estimation and bad data detection, their work
inherits a major obstacle found in GNNs [2], [7], [9]. GNNs
require that node and edge features in a graph, which encode
input data, are evenly distributed. However, when we use
a graph to encode measurements in a distribution system,
insufficient measurements can easily result in unbalanced or
missing node and edge features, making the data inapplicable
to a GNN. To deal with missing node features, [6], [14], [15]
estimate the missing node features by interpolating available
features in their neighbors. These techniques assume that some
latent random variables determine the probability distribution
of the node features. Consequently, the missing node features
can be deduced indirectly.

TABLE I: Compare EleGNN’s contribution to related work.

DNN [3], [4], GNN [7],

WLS [12] [11][ []19[]] [9][ L1 EleGNN
Observability
Limitation X 4 v 4
Handling
Electrical Model v/ [d( [13], [18]) X v
Topology v X v/ 4
Missing Feature
Hundling [4( [10]) N/A X v

EleGNN’s Contribution. In Table I, we position EleGNN
against the related work. We use “v” and “X” to directly
specify whether an approach is or is not equipped with the
corresponding capability. When ad-hoc extensions are made,
we use “[4” to reflect the fact and include the corresponding
references in brackets. Because EleGNN adopts the infras-
tructure of GNN, it is not limited by observability require-
ments and explicitly considers the topological knowledge of
distribution systems. Consequently, the same GNN models can
be trained by a few power systems and inductively applied
to estimate other systems’ states. Meanwhile, unlike GNNss,
which cannot handle missing node and edge features, EIleGNN
introduces original feature propagation methods. Note that
node and edge feature propagation is different from creating
pseudo measurements. We leverage electrical models to add
node and edge features to make input data compatible with
GNNs (there is still no need to observe the observability
requirement). Meanwhile, EleGNN’s state estimation accuracy
can strongly tolerate the accuracy of the generated missing
features.
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III. BACKGROUND
A. State Estimation

Power grids started to use state estimation in their transmis-
sion systems in the 1970s. They use the following mathemati-
cal representation to correlate data collected from substations,

ie., z = h(x) + e, where z = [zl,zz,...,zq]T represents
q measurements; X = [xq, Xy, ... ,xp]T represents p physical
state; e = [e}, e),...,¢e,] is the collection of ¢ measurement

errors; and A is a group of power flow equations. In a power
system, sensor measurements (z) can refer to data efficiently
measured by sensors, e.g., active/reactive power injected at
each substation and active/reactive power delivered by distri-
bution lines. State variables (x), indirectly estimated via the
state estimation, refer to voltage magnitudes and angles at each
substation or bus [12]. The state estimation can be regarded as
a weighted-least-square (WLS) problem on non-linear power
flow equations (denoted by A(-)). We can solve this problem
by minimizing a weighted measurement residual. Sufficient
measurements that satisfy the observability requirements can
ensure the deterministic solutions from the iterative WLS
solvers.

To simplity the discussion, we consider balanced three-
phase systems in this paper. However, EleGNN has no re-
strictions on unbalanced three-phase systems.

B. Graph Neural Networks (GNN)

GNN is a graph learning technique that leverages neural
networks to process and analyze graph-structured data directly.
A graph G can be represented as a set of vertices V' and a
set of edges E, i.e., G = (V, E). Each node and edge can
be characterized by a feature vector f. A graph learning is
a process, in which node features deduce a new embedding
of each node (e.g., formatted as another vector e). The
similarity of node embedding in the Euclidean space reflects
the similarity of nodes in their original graph. To facilitate
graph learning, GNNs use deep neural networks to learn node
embedding by aggregating features from neighbor nodes and
incident edges. Specifically, network neighborhood defines a
computation graph, which can be represented as:

=1, )

k+1 _ k k
ev - ”(enelvl’ finc[v]) (2)

where the layer-0 embedding of node v, i.e., eg, is initialized

as a node feature f, and then layer-(k+1) embedding of node v
is iteratively obtained by applying a neural network z over the
layer-k embedding of v’s neighbor (specified as ne[v]) and the
feature of edges incident to v (specified as inc[v]). In GNNS,
k is a hyper-parameter specifying how “deep” we want to
aggregate neighbor information to deduce a node’s embedding.
The last layer of node embedding is usually leveraged to
make decisions such as node classification [8]. As shown in
Equation 2, all node features and/or all edge features need

to have the same dimensions. In other words, GNNs cannot
directly handle a graph with missing node or edge features.

IV. ELEGNN DESIGN
A. Design Overview

We present the overall architecture of the electrical-model-
guided GNN (EleGNN) for DSSE in Figure 1, which in-
cludes three components: (i) a general GNN processing graph-
structured data that encode power distribution measurements
and estimate system state; (ii) a Node Feature Propagation
component designed based on electrical distances between
k-nearest neighbors; and (iii) an Edge Feature Propagation
component leveraging electrical-centrality of each substation
in the target distribution system.

Offline Online
Monte Carlo Matiis
Sampling

load

demands \ 4 runtime
Power Flow measurements

| Analysis

labeled
data (x,z)

Node Feature
Propagation

Edge Feature
Propagation
Fig. 1: Design overview: the components of EleGNN and the working

procedure.

B. GNN Construction

Input Encoding. We encode real and reactive power in-
jected at each bus as node features of the graph representing
the corresponding distribution system. An example 5-bus
distribution system is shown in Figure 2. Consequently, the
feature of each node is a two-dimension vector. In addition,
the feature of each edge is a four-dimension vector, including
the active and reactive power delivered over a distribution line
and the real and imaginary parts of the line impedance. To
simplify the discussion, we only consider the power delivery
at the sending end of the distribution line; adding additional
features such as power delivery at the receiving end can
be straightforward in EleGNN. Edge features characterizing
distribution lines are often ignored by previous studies; they
introduce an “inductive” capability, allowing the model trained
by one system directly be applied to other systems.

GNNs use neural networks to aggregate node and edge
features. In EleGNN, we adopt GATConv proposed in [16]
to implement the structure of neural networks, ie., z in
Equation 2. GATConv is a powerful structure, which can
aggregate node features and multi-dimensional edge features.
Its computation logic can be found in [16].
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Fig. 2: The computational graph of node 3’s embedding in an
example 5-bus distribution system.

Dataset Generation. To generate sufficient amount of data,
we follow a common procedure used in existing model-free
state estimation (also shown in Figure 1) [11] by (i) randomly
changing measurements related to load demands of distribu-
tion systems based on Monte Carlo sampling and (ii) using
power flow analysis to calculate the corresponding system
states X, i.e., voltage magnitude and phasor angles at each
substation, and other measurements, e.g., the power delivered
by distribution line. The combination of measurements z and
the corresponding system states x serve as the labeled data to
train EleGNN in a supervised learning manner.

Output & Loss Function. We use node embedding as the
output. Specifically, the embedding of each node is a two-
dimension vector representing the estimated voltage magnitude
and phasor angle at each bus. In other words, the complete
node embedding directly presents the estimation of system
states X discussed in Section ITII-A. We define the loss function
as the node-level mean squared errors (MSE) between the
state estimated by EleGNN and the labeled state (obtained
through the power flow analysis), whose definition is presented
in Equation 6.

C. Node Feature Propagation

GNNs can only operate on graph-structured data, in which
node features or edge features share the same dimension, e.g.,
two-dimension node features and four-dimension edge features
considered in this work. In case a distribution system does not
deploy enough meters, we can have a graph with unbalanced
and missing node and edge features (an example is shown in
Figure 2). In that case, input data go through the Node and
Edge Feature Propagation components to complete features

before they are used to train the GNN.

Unlike crafting pseudo measurements used in many model-
based DSSEs, handling missing node features is based on a
very different concept. For example, the studies in [5], [14]
assume that node features can propagate within the graph in a
similar way that energy or heat diffuses among close entities.
Under this assumption, they formulate node feature propaga-
tion as a differential equation, whose discretization leads to an
iterative algorithm (shown in Algorithm 1). After initializing
missing node features as random values, the algorithm uses
a diffusion matrix D to “propagate” known features towards
missing features.

As shown in [14], this algorithm shows promising results
in general graph processing problems, e.g., node classification,
when the normalized adjacency matrix of a graph is used as
the diffusion matrix D. However, this selection of diffusion
matrix does not perform well in distribution systems, which
often have a flattened topology, as shown in Figure 2. For
example, if the features of nodes 2 and 3 are missing, applying
this algorithm can result in the same features due to the similar
structure characteristics these two nodes share in the graph.

To apply Algorithm 1 in distribution systems, we define
a different diffusion matrix D, i.e., a normalized adjacency
matrix built based on the electrical distances of m-nearest
neighborhood in the graph. Here, the value of m can be a
design parameter.

0 i=j
D(i, j) =1d,(i,j) 3 a m-hop path between i and j (3)

0 otherwise

where d (i, j) is an electrical distance between nodes i and j
and it is defined as:

dyi =1l ), Znll “

(s,H)epath(i—j)

where, Z (s, t) refers to the impedance of the edge (s, ). Using
more features from m-nearest neighbors instead of the direct
neighbors can compensate for the simple graph topology found
in power distributions. Meanwhile, features from different
neighbors are weighted based on electrical distances, which
specifies the electrical correlations between two nodes instead
of their geometrical distances [17].

Algorithm 1 Node Feature Propagation in EleGAN

1: Input: feature vector f, diffusion matrix D

2: procedure

3 y «f

4: while x has not converged do

5 x <« Df > node propagation
6 Xinown < Yinown > reset known features
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D. Edge Feature Propagation

At this stage, very little work is dedicated to handling
edge feature propagation. Consequently, we apply the node
feature propagation shown in Algorithm 1 to an edge-to-vertex
dual graph G’ of G. Specifically, a node in G’ corresponds
to an edge in G; the connectivity of two nodes in G’ is
determined if the corresponding edges in G' share one same
vertex. Constructing a diffusion matrix D for G’ requires us
to define edge weights in G’, which actually encodes the
original distribution system’s node properties. We achieve this
objective by using electrical centrality for each bus of the
original distribution system [17]. Similar to node centrality in
a graph, electrical centrality quantifies a bus’ criticality related
to the states of a power distribution system. It is defined as
follows, which is used as the edge weight in G’.

n—1
ZIEV\S d,(s,1)

where n is the number of nodes in G and d,(s,t) is defined
in Equation 4.

C(s) = (5)

V. EVALUATION RESULTS & DISCUSSIONS
A. Implementation

We consider six different power systems in our evaluation,
which are included in the MATPOWER toolbox [21]. The
basic properties of each system is summarized in Table II.
The first four systems are distribution systems; the latter
two are large-scale transmission systems used to evaluate the
scalability of EleGNN.

TABLE II: Power systems used in the evaluation.

Case # of # of Case Name # of # of

Name buses branches buses branches
12da 12 11 136ma 136 156
38si 38 37 ACTIVSg200 200 245
74ds 74 73 ACTIVSgS500 500 597

To generate datasets, we randomly changed the load de-
mands of each bus by +10% and used power flow analysis
in MATPOWER to obtain the labeled dataset. For each case,
we have generated 5,000 labeled data. We made ten runs of
training and testing; 80% of data were randomly selected as
training data and the remaining 20% were used as testing data
in each run. The loss function is defined as the average per-
node mean-square errors:

1 5
MSE = —— ; |IRTkT — x[k]]] ©6)
where M and k is the number and the index of labeled data
and N is the number of nodes. We used the mean and the
95% confidence interval of the MSE in these ten runs as the
performance metric for each system.
We implemented all components of EleGNN by Pytorch

and Pytorch geometric toolbox. Specifically, the GNN used
by EleGNN includes two GATConv layers, each followed by

a dropout and an activation layer. In the Node and Edge
Feature Propagation components, 5-nearest neighbours were
used. All experiments were performed in a 64-bit Ubuntu
20.04, deployed in a workstation with an AMD Threadripper
3970X 32-Core processor, 64 GB RAM, and a 24 GB Titan
GPU.

B. Estimation Accuracy

In Figure 3, we present the estimation accuracy of EleGNN
when sufficient measurements are available. To demonstrate
the benefit of using GNNs, we compare EleGNN to two
model-free state estimation methods. The first one is based
on a multi-layer perceptron (MLP), consisting of two fully-
connected layers. Each layer includes eight neurons, followed
by a “leaky relu” activation layer. The second one is based on
a convolutional neural network, including two convolutional
layers, two pooling layers, and one fully-connected layer. Each
convolutional layer had a kernel size of three, a stride of one,
and a single zero padding. In Figure 3, the x-axis specifies the
six systems considered in this work, while the y-axis specifies
the mean and the 95% confidence interval of MSE on a
logarithmic scale. Even though the MLP has a similar number
of parameters to GATCONYV used in EleGNN, EleGNN enjoys
a significant improvement in estimation accuracy of system
states; EleGNN’s MSE is at least one order of magnitude
smaller than the results obtained by the other two methods.

10°
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MSE (log)
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._.
15}
&
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Fig. 3: Compare EleGNN, MLP, and CNN. The MSE obtained by
EleGNN is at least one order of magnitude smaller than MLP and
CNN.

Compared to MLPs and CNNs, EleGNN uses more com-
plicated infrastructures. Despite this, EleGNN also produces
stable results, especially in large-scale power systems. As
we change the training and testing dataset, EleGNN'’s results
introduce small confidence intervals. The exception happens
in the /2da system. This is probably because a GNN model
trains neural networks by node and edge features. A system
with a smaller size results in less effective training data, which
introduces more variations.

C. Cross-system Evaluation

Compared to general neural networks, EleGNN inherits
a unique feature from GNNs. By using neural networks to
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aggregate node and edge features, EleGNN can be trained
by one system and be directly applied to another system.
This inductive property can significantly reduce the training
overhead of EleGNN-based state estimation compared to the
state estimation based on general neural networks.
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Fig. 4: Cross-system evaluation. State estimation trained by one
system can maintain its performance in other systems.

In Figure 4, we use a heatmap to demonstrate the results
of cross-system evaluation. We use the model trained by the
data from one system, specified by the y-axis, to evaluate
the testing dataset generated by different systems, specified
by the x-axis. The corresponding MSEs are presented in
the figure. An interesting observation is that if a model is
trained by a distribution system, it can perform well for other
distribution systems. But its accuracy downgrades slightly
in the two large transmission systems. However, using the
transmission systems to train the model can perform well in
both distribution and transmission systems. The major reason
is that transmission systems usually have more complicated
typologies and have more node and edge features to train
EleGNN. Consequently, cross-system evaluation can benefit
from training on systems with more complicated typologies.

D. Impact of Insufficient Measurements

To evaluate the impact of insufficient measurements, we
randomly remove 50% of node and edge features in the
training/testing dataset and apply the proposed node and edge
feature propagation algorithms.

In Figure 5, we present the impact of node/edge feature
propagation on state estimation, when 50% node or 50%
edge features or both features are missing (shown in different
bar patterns). Because of the feature propagation algorithms,
EleGNN maintains its performance. We only observe less
than 1% increase in MSE in the large ACTIVSg500 power
system. Also, this downgrade is mainly caused by the missing
node features. Consequently, the node features or the bus

15
Complete Feature
o 50% Node Features Missing
lo 10 A 50% Edge Features Missing .
>, 27 50% Node/Edge Features Missing N
W N 2\A
wn 1 PA VA VA AN XN N
= NA NS N NG 2:;:_&:; N
NG AN NS AN NS N
0 Z5NE VNS ENE 4 e é.:.: BRZENE
a S\ S 0
1202 38S! qad 36“" NS%:)'—\—NSQSO

Fig. 5: The impact of insufficient measurements. Even with up
to 50% of missing measurements, EleGNN still obtains a decent
estimation accuracy.

measurements play more critical roles in EleGNN than the
edge features.

E. Discussion

As discussed in [11], model-free state estimation, like
EleGNN, results in a different type of error from the model-
based state estimation. The model-based state estimation,
relying on power flow equations and iterative algorithms
like the WLS solver, attempts to minimize modeling errors.
However, the model-free methods, like the ones based on
EleGNN, MLP, and CNN, directly build probability corre-
lations between measurements and system states, attempting
to minimize estimation errors. Consequently, they are used
as an alternative approach to model-based methods, not a
replacement. In addition to the benefits shown in Table I,
EleGNN is also more suitable for real time state estimation,
because it takes less and stable latency than the model-based
methods. In Figure 6, we can see that the latency of WLS
state estimation increases with the size of the system. The
latency caused by EleGNN is stable and is at least one order
of magnitude smaller.

—
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S_ ,o0 | S ElGNN  EE® WLS

—Z O
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52 3
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385\ 7adS 136 N C‘nglo\%sg?)oo

Fig. 6: Latency of state estimation. The latency of WLS state
estimation increases dramatically with the size of power grids, at
least one order of magnitude larger than EleGNN.

V1. CONCLUSION

In this paper, we introduce EleGNN, an electrical-model-
guided GNN for DSSE. EleGNN integrates the electrical mod-
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els of power distribution systems, e.g., the impedance of dis-
tribution lines and various power measurements injected into
substations and distribution lines, and inductively estimates
system states by training on a small set of distribution systems.
When a distribution system obtains insufficient measurements,
EleGNN introduces original node and edge feature propagation
by leveraging electrical centrality of each substation and
electrical connectivity between substations. Evaluations of six
different power systems demonstrate significant improvement
in state estimation accuracy, even with up to 50% of missing
measurements.
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