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ABSTRACT
Detecting copy number variations (CNVs) in single-cell DNA se-
quencing (scDNA-seq) data is challenging due to substantial noise
and variability. To address this, we present DCCNV, a novel method
that integrates diffusion processes, contrastive learning, and cir-
cular binary segmentation (CBS) for reliable CNV detection. Our
method employs adaptive k-nearest neighbors (KNN) and multi-
scale diffusion to reduce noise while preserving key biological sig-
nals, followed by contrastive learning to distinguish true genomic
alterations from technical noise. The CBS algorithm is then used to
partition the enhanced signals into discrete copy number segments.
We compared the performance of DCCNV with those of several
current single-cell CNV detection methods, including DeepCopy, rc-
CAE, SCOPE, SCONE, HMMcopy, SeCNV, as well as filtering-based
CNV detection approaches that employ commonly used filters such
as Wavelet, Median, and Gaussian filters. This comparison was con-
ducted using both simulated and real data. The results show that
DCCNV outperforms these approaches in terms of accuracy and
computational efficiency. The code used in this research is publicly
available at https://github.com/NabaviLab/DCCNV.
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• Computing methodologies → Machine Learning; Neural Net-
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1 INTRODUCTION
Single-cell sequencing enables precise genomic, transcriptomic,
and epigenomic analysis, significantly advancing cancer research
by addressing cancer cell heterogeneity [4, 5, 8, 9, 18, 21]. Its key
application is detecting copy number variants (CNVs), which in-
fluence genetic diversity and are linked to cancer [23, 25]. CNV
identification at the single-cell level reveals malignant clones, rare
cell groups, and genetic drivers of disease progression [17]. To de-
tect CNVs in scDNA-seq, read count signals quantify how often
specific genomic regions are sequenced, providing a key indicator
of CNVs when adjusted for sequencing depth and cellular DNA
content [35]. In CNV detection, denoising eliminates unwanted
technical interferences while retaining genuine biological signals.
It also reduces data dimensionality, simplifying the visualization
and interpretation of patterns [38]. Conventional filters like Gauss-
ian [28], median [31], and wavelet [6] reduce scDNA-seq noise but
struggle with high dimensionality and complex noise, often failing
to fully separate biological and technical signals. Recent computa-
tional tools address complex noise patterns and high dimensionality
in scDNA-seq but still require improvement when managed by tra-
ditional filters. Each CNV detection tool has unique methods and
limitations. For instance, SCOPE [33] uses cross-sample segmenta-
tion to normalize and estimate copy numbers but is time-consuming.
SeCNVs [26] employs structural entropy and a local Gaussian ker-
nel for robust performance, though it struggles with highly noisy
data. HMMCopy [27] uses hidden Markov models (HMM) [2] for
CNV detection but faces scalability challenges. SCONCE [14] offers
precise CNV detection in cancer progression, yet struggles with
high noise levels. These methods highlight the need for improved
noise management while maintaining accuracy.

To handle the high dimensionality and complex noise in scDNA-
seq, deep learning and machine learning methods have emerged.
The rcCAE (reconstruction convolutional autoencoder) [36] uses
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a convolutional autoencoder [24] to improve read count accuracy,
grouping cells into subpopulations via a Gaussian mixture model
(GMM) [7] and identifying CNAswith anHMM [12]. DeepCNA [19]
transforms high-dimensional read counts into a lower-dimensional
latent space, applies CBS to detect breakpoints, and uses a mixture
model to estimate copy numbers. This approach reduces recon-
struction error and enhances accuracy through the expectation-
maximization (EM) algorithm [20]. While these techniques improve
CNV detection, they require significant processing resources and
careful hyperparameter tuning but represent progress in scDNA-
seq.

We present a novel method combining self-supervised learning
and graph theory to denoise scDNA-seq data and extract true biolog-
ical signals. Tested on simulated and real datasets, it improves CNV
detection accuracy by adapting to noise variations and distinguish-
ing noise from signals with greater precision. The key contributions
are:

• Robustness to Noise: The self-supervised learning architec-
ture adapts to diverse noise distributions, ensuring flexibility
across data formats and noise levels in scDNA-seq.

• Fusion of advance learning method and graph theory:
Integrating deep learning with graph theory improves sig-
nal/noise distinction, enhancing clarity and CNV reliability.

• Improved CNV Detection: Enhanced denoising improves
CNV identification, capturing subtle variations and provid-
ing crucial insights into genetic diversity and its implications.

2 METHOD AND DATASETS
Our methodology follows four steps (Figure 1) to improve accuracy
and reliability.We start with data preprocessing tomanage technical
biases, followed by graph analysis to integrate information across
cells. Next, we apply denoising to reduce noise while preserving
biological signals, and finally, use circular binary segmentation
(CBS) to detect CNVs. The read count data is generated using a
sliding window approach, segmenting the genome into smaller
units for analysis.

2.1 Data Preprocessing
Accurate CNV detection in scDNA-seq data requires minimizing
biases and noise. Preprocessing focuses on GC content and read
mappability. High or low GC content can cause uneven coverage,
affecting CNV detection accuracy. We filter out bins with GC con-
tent below 0.3 or above 0.7. For mappability bias, we remove bins
with a mappability score below 0.9, ensuring only regions with
reliable mapping are included.

2.2 Graph Analysis
We considered a set of cell read counts, each represented by a vector
x𝑖 ∈ R𝑁 , where 𝑁 is the number of genomic bins. The set of all cell
read count vectors is denoted as 𝑋 = {x1, x2, . . . , x𝑛}.

The cosine similarity between two cell vectors x𝑖 and x𝑗 is com-
puted as:

Sim(x𝑖 , x𝑗 ) =
x𝑖 · x𝑗

∥x𝑖 ∥∥x𝑗 ∥
, (1)

where x𝑖 · x𝑗 is their dot product, and ∥x𝑖 ∥ and ∥x𝑗 ∥ are their
magnitudes.

We construct the k-nearest neighbors [11] (k-NN) graph for
each vector based on cosine similarity. The value of 𝐾 is adaptively
chosen based on the average distance to the nearest neighbors.
Specifically, 𝐾 is set as the smallest value such that the distance to
the 𝐾-th nearest neighbor exceeds the average neighbor distance.
We cap 𝐾 at a maximum value of 10 to maintain a balance between
capturing local details and excluding distant, noisy neighbors. This
dynamic adjustment of 𝐾 ensures the k-NN graph accurately rep-
resents the underlying data structure.

The affinity between vectors is computed using a Gaussian ker-
nel:

𝐴𝑖 𝑗 = exp

(
−
𝑆𝑖𝑚(x𝑖 , x𝑗 )2

2𝜎2
𝑖

)
, (2)

where 𝜎 controls how quickly the affinity diminishes with distance.
We determine 𝜎 adaptively for each data point by calculating the
cosine distance to its adaptively determined 𝐾-th nearest neighbor.
This ensures that the affinity matrix accurately reflects the local
structure of the data and enhances the effectiveness of the diffu-
sion process by tuning the Gaussian kernel to each data point’s
characteristics.

The degree matrix 𝐷 and the normalized graph Laplacian 𝐿norm
are defined as:

𝐷𝑖𝑖 =

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗 , (3)

𝐿norm = 𝐼 − 𝐷− 1
2𝐴𝐷− 1

2 . (4)

2.3 Denoising Technique
The diffusion process [10], inspired by the heat equation [3], sim-
ulates the propagation of biological signals across cell networks.
DNA short read counts typically show gradual transitions across
datasets, and abrupt shifts often indicate noise or errors.

In our method, we apply multiple diffusion scales (e.g., 1, 5, 10)
rather than a single time step 𝜏 , modulating diffusion intensity to
balance signal retention and noise reduction. For each batch 𝑋𝑏 ,
the diffusion process is:

f (𝑚+1)
𝑏

= 𝑒−𝜏𝐿norm,𝑏 f (𝑚)
𝑏

, (5)

where f (𝑚)
𝑏

represents the denoised state at iteration𝑚. We use mul-
tiple scales to iteratively enhance denoising, preserving biological
signals while minimizing noise.

The diffusion operator 𝑒−𝜏𝐿norm , based on the normalized graph
Laplacian 𝐿norm, captures local connections between data points
(cells), preserving the dataset’s geometry during the diffusion pro-
cess.

The exponential of the graph Laplacian 𝑒−𝑡𝐿norm is computed
using the matrix exponential:

𝑒𝐴 =

∞∑︁
𝑘=0

1
𝑘!
𝐴𝑘 , (6)

where 𝐴 represents the product of −𝑡 and 𝐿norm. This series expan-
sion converts continuous-time diffusion into a computable discrete
form, modeling the cumulative pathways in the graph.
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Figure 1: The DCCNV workflow includes: I) Data preparation (read count extraction, GC content/mappability correction,
normalization). II) Initial denoising with cosine similarity and adaptive k-NN graph construction. III) Signal enhancement
through the diffusion process, followed by contrastive learning. IV) Final signal segmentation using CBS to detect CNV locations.

The diffusion process enhances scDNA-seq data by merging
each cell’s read counts with its neighbors, reducing random fluctua-
tions while preserving biological patterns. This approach efficiently
addresses the variability and noise in scDNA-seq data.

Batch processing is primarily used to improve computational
efficiency when handling large datasets. Batches are randomly sam-
pled for contrastive learning, and while the k-NN graph is crucial
for the diffusion process, the formation of batches is independent
of the graph. This ensures efficient processing without targeting
specific local structures.

Dividing the dataset 𝑋 into subsets 𝑋1, 𝑋2, . . . , 𝑋𝐵 allows inde-
pendent batch processing, given these advantages:

• Computational Feasibility: Denoising becomes manage-
able for large datasets, reducing memory and resource de-
mands.

• Focused Diffusion: Batch processing allows diffusion to be
adjusted to the specific attributes of each subset, particularly
useful for scDNA-seq data, where cell subpopulations may
exhibit distinct copy number patterns and noise levels.

• Noise Variability: The diffusion process can be calibrated
separately for each batch, adjusting parameters like 𝜎 or 𝜏
to account for varying technical noise.

The iteration process within each batch continues until conver-
gence, indicated by signal stability orminimal change. This prevents
excessive alteration of the biological signal, crucial for accurate
analysis.

Our contrastive learning framework uses a contrastive loss func-
tion to enhance the quality of the denoised signal. Given an original
vector x𝑖 , its denoised counterpart y𝑖 , and a negative sample y𝑗 ,
the loss is:

𝐿(x𝑖 , y𝑖 , y𝑗 ) = max (𝑑 (𝑓 (x𝑖 , 𝜃 ), 𝑓 (y𝑖 , 𝜃 ))
−𝑑 (𝑓 (x𝑖 , 𝜃 ), 𝑓 (y𝑗 , 𝜃 )) + 𝛾, 0

)
,

(7)

here,𝑑 denotes distance in the embedding space, 𝜃 the parameters of
the embedding function 𝑓 , and 𝛾 the margin for separating positive
(original and denoised) from negative pairs. 𝛾 is empirically chosen,
and negative samples are selected using hard negative sampling
based on cosine similarity to challenge the model.
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The objective is to minimize this contrastive loss:

𝜃∗ = argmin
𝜃

𝐵∑︁
𝑏=1

∑︁
𝑖, 𝑗

𝐿(x𝑖 , y𝑏𝑖 , y
𝑏
𝑗 ). (8)

This aligns original and denoised pairs while distancing them
from unrelated negative samples, improving signal reliability for
downstream analysis. Regularization terms prevent overfitting and
are fine-tuned on validation sets to balance model complexity with
generalization. The denoising algorithm is detailed in Algorithm 1,
provided in the Supplementary Material.

2.4 Segmentation
After denoising, CBS [22] is used for CNV detection and segmenta-
tion. Denoising enhances CBS input by reducing noise and improv-
ing signal integrity, essential for accurate genomic segmentation.

CBS divides genomic bins into segments with consistent copy
numbers, solving the change-point problem statistically. For each
change-point 𝑖 and 𝑗 , the statistic 𝑍𝑖 𝑗 is calculated:

𝑍𝑖 𝑗 =

√︂
𝑗 − 𝑖

𝑛 − 𝑗 + 𝑖 ·
(
𝑆 𝑗 − 𝑆𝑖
𝑗 − 𝑖 −

𝑆𝑛 − 𝑆 𝑗 + 𝑆𝑖
𝑛 − 𝑗 + 𝑖

)
, (9)

where 𝑛 is the number of bins, 𝑆𝑘 the cumulative sum of log ratios
up to marker 𝑘 , and 𝑍𝑖 𝑗 measures the mean difference between seg-
ments at 𝑖 and 𝑗 . The maximum |𝑍𝑖 𝑗 | identifies significant change-
points.

Once a change-point is found, the chromosome is segmented, and
the process repeats recursively. This ensures thorough exploration
of genomic structure.

CBS applied to our denoised data improves CNV detection by
enhancing signal clarity. To assign integer copy numbers to seg-
ments, read counts are normalized based on coverage (𝐶), read
length (𝐿read), and region length (𝐿region):

Expected Read Count =
(
𝐶 × 𝐿region
𝐿read

)
× 2. (10)

Normalized read counts near 1 correspond to diploid (copy num-
ber 2), with higher values indicating duplications.

2.5 Dataset
We evaluated ourmethod on simulated and real scDNA-seq data. For
the simulated data, we used CNAsim [34] that generates accurate
copy number profiles for simulated tumor cells, covering a range of
CNA pathways and addressing scDNA-seq biases. It includes whole-
genome duplications, whole-chromosomal CNAs, chromosome-
arm CNAs, and subclonal population structures with normal diploid
and pseudo-diploid cells.

The real data used SNS [21] to study tumor populations. Two
breast cancer scDNA-seq datasets were analyzed: T10, featuring
a tumor with multiple genetic abnormalities, and T16, involving
a primary tumor and its liver metastasis. In T10, 100 cells were
sequenced, revealing three clonal subpopulations. T16 involved 100
cells sequenced from the primary tumor and its metastasis.

3 EXPERIMENTS AND RESULTS
3.1 Evaluation Metrics
To evaluate DCCNV, we use breakpoints to compare the segmented
denoised read count signals with the ground truth in simulated data.
The primary metric is the mean absolute differences (MAD) [14]
between the actual and estimated copy numbers for each cell across
shared bins.

Let Ctrue and Cest represent the matrices of true and estimated
copy numbers (size 𝑁 ×𝑀 , where 𝑁 is the number of cells and𝑀
is the number of genomic bins). The MAD for cell 𝑖 is:

MAD𝑖 =
1
𝑀

𝑀∑︁
𝑗=1

��𝐶true,𝑖 𝑗 −𝐶est,𝑖 𝑗 �� . (11)

The overall MAD is the mean across all cells:

MADmean =
1
𝑁

𝑁∑︁
𝑖=1

MAD𝑖 . (12)

Smaller MAD values indicate better alignment with the ground
truth, reflecting higher accuracy. We also use sensitivity, preci-
sion, and F1-score to further assess the breakpoint detection per-
formance.

3.2 Baseline Models
We compared DCCNV with several baseline methods, including
DeepCNA [19], rcCAE [36], SCOPE [33], SCONE [14], HMMCopy [27],
and SeCNV [26], as well as traditional filter-based methods like
Wavelet [1], Median [31], and Gaussian [28]. To ensure fairness, the
same segmentation and pipeline procedures were applied across all
methods.

3.3 Analyzing Simulated Data
We used simulated data to evaluate the model’s performance in
identifying breakpoints and CNVs. After preprocessing, 2955 out of
3450 bins remained. The model was trained with a latent dimension
of 𝑑 = 128, over 500 epochs, using a learning rate of 0.001 and a
batch size of 32 (Supplementary Table 4 shows the architecture).
The four simulated datasets (A, B, C, and D) are described in Ta-
ble 1, each varying in the number of cells, bin length, and other
characteristics. MAD results for CNV detection across the four sim-
ulated datasets are shown in Figure 2. For visualization purposes,
see Supplementary Figure 1.

In dataset A, DCCNV achieved the lowest MAD (0.10), indicat-
ing the highest accuracy, followed by DeepCNA (0.11) and rcCAE
(0.12). Filter-based methods like Gaussian (0.37), Wavelet (0.33), and
Median (0.35) had higher MAD values.

For dataset B, DCCNV maintained high performance with a
MAD of 0.12, while DeepCNA and rcCAE had MADs of 0.13 and
0.15. Filter-based methods continued to perform worse, with the
Gaussian method reaching up to 0.42.

In dataset C, DCCNV achieved a MAD of 0.15, followed by Deep-
CNA (0.16) and rcCAE (0.18). SCOPE and SCONE performed better
than filter-based methods but were outperformed by DCCNV.

In dataset D, DCCNV had a MAD of 0.17, with DeepCNA and
rcCAE close behind at 0.18 and 0.20. HMMCopy showed compa-
rable performance but was outperformed by DCCNV. Filter-based
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Figure 2: Copy number estimation accuracy of the proposed methods on simulated datasets. We compute the MAD between the
estimated and real copy numbers for every cell.

Table 1: Summary of Simulated Datasets

Dataset # Cells Bin Length # Clones Mean CN Length Min CN Length Chromosomal Events Coverage Error Rate
A 100 1,000,000 3 5,000,000 10,000 Chromosomal level 0.1 0.02
B 500 5,000,000 7 5,000,000 10,000 WGD present 0.05 0.02
C 1,000 5,000,000 12 5,000,000 10,000 High rate of arm-level 0.05 0.02
D 10,000 5,000,000 12 5,000,000 1,000 Arm-level changes 0.02 0.02

methods had the highest MAD values, reinforcing the superiority
of CNV detection tools.

DCCNV consistently achieved the lowest MAD values, demon-
strating superior performance. The combination of diffusion pro-
cesses and contrastive learning significantly enhances its ability to
detect CNVs accurately.

Table 3 shows the scalability and efficiency of DCCNV, made
possible by batching techniques. While filter-based methods are
faster, they lack the precision and reliability of more advanced
approaches like DCCNV for accurate CNV identification.

3.4 Analyzing Real Data
We evaluated the efficacy of DCCNV and baseline models using
the T10 and T16 datasets, with CHISEL [37] serving as the ref-
erence point, as ground truth breakpoints and copy numbers are
unavailable.

Table 2 compares the accuracy in terms of sensitivity, specificity,
and F1 score. For T10, DCCNV achieved a sensitivity of 0.92, a
specificity of 0.94, and an F1 score of 0.93, outperforming all base-
lines. DeepCNA and rcCAE followed with F1 scores of 0.91 and
0.89, respectively, while traditional filter-based methods showed
lower performance.

In T16, DCCNVmaintained strong performance (sensitivity: 0.90,
specificity: 0.91, F1: 0.89). DeepCNA showed similar results, and
rcCAE had slightly lower performance (specificity: 0.90, F1: 0.88).

A detailed ablation study assessing the contributions of key com-
ponents, including the diffusion process and contrastive learning,
is provided in the Supplementary Material. It shows that both the
diffusion process and contrastive learning are essential for achiev-
ing high accuracy in CNV detection. As shown in Supplementary
Material Tables 1, 2, and 3, removing either component results in a
notable decrease in the F1 score, demonstrating the importance of
each in preserving signal clarity and minimizing noise.

4 CONCLUSION
In this study, we introduced DCCNV, a novel pipeline for detect-
ing CNVs in scDNA-seq data, integrating diffusion processes and
contrastive learning. Extensive experiments on both simulated and
real datasets showed DCCNV’s superior performance over existing
methods, including DeepCNA, rcCAE, SCOPE, SCONE, HMMcopy,
SeCNV, and traditional filter-based pipelines.

DCCNV consistently achieves the lowest MAD values in simu-
lated data, indicating high accuracy and robustness. In real datasets,
using CHISEL’s results as the ground truth, DCCNV also showed
higher sensitivity, specificity, and F1 scores, further validating its
effectiveness.
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Table 2: Comparison of Breakpoint Detection Accuracy for
T10 and T16 Datasets (Sensitivity, Specificity, F1 score)

Method T10 Dataset T16 Dataset

Sens. Speci. F1 Sens. Speci. F1

DCCNV 0.92 0.94 0.93 0.90 0.91 0.89
DeepCNA 0.90 0.92 0.91 0.90 0.93 0.90
rcCAE 0.88 0.91 0.89 0.87 0.90 0.88
SCOPE 0.85 0.88 0.86 0.84 0.87 0.85
SCONE 0.83 0.86 0.84 0.82 0.85 0.83
HMMcopy 0.80 0.84 0.82 0.79 0.83 0.81
SeCNV 0.78 0.82 0.80 0.77 0.81 0.79
Wavelet-based 0.75 0.80 0.77 0.74 0.79 0.76
Median-based 0.73 0.78 0.75 0.72 0.77 0.74
Gaussian-based 0.70 0.76 0.73 0.69 0.75 0.72

Table 3: Runtime performance of all methods on simulated
datasets with different cell counts, run on a server with 48
CPU cores, 128 GB RAM, and 1 NVIDIA TESLA M10 GPU.

Method 100 cells 500 cells 1000 cells 10000 cells

DCCNV 53 73 94 288
SCOPE 3813 8245 14429 28750
HMMcopy 367 449 562 1251
SCONE 149 255 343 832
SeCNV 1408 1947 2474 5194
rcCAE 69 116 177 491
DeepCNA 65 95 124 353
Wavelet-based 49 53 61 154
Median-based 42 50 53 147
Gaussian-based 43 45 59 138

While promising, DCCNV could be further enhanced by improv-
ing noise reduction and normalization algorithms. Currently, GC
content and mappability are addressed, but incorporating advanced
methods like batch correction [32] and improved normalization
for DNA sequencing data could reduce biases and improve CNV
precision. Refining the graph creation process by using alternative
metrics like Pearson correlation [29] or mutual information [30],
along with adaptive clustering methods [16], could better capture
cell relationships and enhance diffusion. Also, incorporating models
like GANs [13] for synthetic data generation or reinforcement learn-
ing [15] for hyperparameter optimization could further improve
DCCNV’s performance and CNV detection precision.
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