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Abstract Melatonin receptors MT; and MT;, are involved in synchronizing circadian rhythms and
are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we
performed large scale structure-based virtual screening for new ligand chemotypes using recently
solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing
of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-
micromolar potency at MT receptors, with compound 21 reaching ECsq of 0.36 nM. Six of these
molecules displayed selectivity for MT, over MT;. Moreover, two most potent agonists, including
21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MTo,
while compound 37 was devoid of G; signaling at MT+, implying biased signaling. This study
validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for
the structure-based discovery of selective agonists.

Introduction

The type 1A and 1B melatonin receptors (MT; and MT,) are G protein-coupled receptors (GPCRs)
that respond to the neurohormone melatonin (N-acetyl-5-methoxytryptamine) (Pévet, 2016;
Reppert et al., 1994). Melatonin is found in all mammals, including humans, where it regulates sleep
and helps to synchronize the circadian rhythm with natural light-dark cycles
(Brzezinski, 1997; Xie et al., 2017). Chemically, melatonin is synthesized from serotonin in the
pineal gland of the brain during darkness (Ganguly et al., 2002). Both MT; and MT; share canonical
helical 7-transmembrane (7-TM) topology (Johansson et al., 2019; Stauch et al., 2019), although
they are differentially expressed and implicated in diverse biological functions and pathologies
(Dubocovich and Markowska, 2005). While exogenous melatonin has been commonly used for the
treatment of insomnia and jetlag, more effective and long-lasting MT agonists such as ramelteon
have been approved for primary chronic insomnia treatment, because of their low side-effect profile
as compared to other sleeping aids such as benzodiazepines (Hardeland et al., 2011; Erman et al.,
2006). Other MT agonists such as tasimelteon and agomelatine, are used for non-24-hour sleep-
wake disorders in blind individuals and as an atypical anti-depressant for major depressive disorders,
respectively (Lavedan et al., 2015; de Bodinat et al., 2010). Recent studies also suggest MT recep-
tors play an essential role in learning, memory, and neuroprotection (Liu et al., 2016) and illustrate
the potential utility of partial and selective MT, receptor agonists as antinociceptive drugs (Lépez-
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Canul et al., 2015). Moreover, MT; single nucleotide polymorphisms (SNPs) are implicated in type-2
diabetes (Karamitri et al., 2018) (T2D), emphasizing the importance of MT receptors in a wide vari-
ety of functions relevant to human health and the quality of life (Karamitri and Jockers, 2019).

Although MT4 and MT; receptors have distinctive in vivo functions, most of the currently available
drugs non-selectively activate both MT; and MT, receptors (Zlotos et al., 2014).Recent studies on
melatonin receptors using partially selective MT, ligands and gene knockout approaches have shed
light on difference in the biology of melatonin receptor subtypes. For example, the MT, receptor
regulates non-rapid eye movement (NREM) while MT; mediates rapid eye movement (REM) phases
of the vigilance state in sleep architecture (Comai et al., 2013; Fisher and Sugden, 2009; Liu et al.,
2016). The discovery of novel and selective MT ligands may, therefore, lead to useful tool com-
pounds for better pharmacological dissection of the melatonin system, and accelerate the develop-
ment of alternatives to existing drugs (Jockers et al., 2016; Zlotos, 2012).

Recently, the three-dimensional structures of MT; and MT, were determined using an X-ray free-
electron laser (XFEL), providing atomic-level details of receptor-ligand interactions
(Johansson et al., 2019; Stauch et al., 2019). Although both receptors were resolved in complexes
with agonists — agomelatine, 2-phenylmelatonin, 2-iodomelatonin and ramelteon, thermostabilizing
mutations that were necessary for crystallization rendered these receptors functionally inactive.
Therefore, the accuracy of these agonist-bound inactive structures in reproducing the active-state
conformation of the orthosteric pocket, and their utility in the prospective discovery of new agonists
requires further validation.

Here, we utilized the MT structural information to perform a large scale virtual ligand screen (VLS)
on both MT; and MT, receptors, using libraries of 8.4 million available-for-purchase fragment-like
and lead-like compounds (Sterling and Irwin, 2015). Subsequent experimental testing of 62 com-
pounds selected from the top scoring molecules led to the discovery of ten new agonist chemotypes
with sub-micromolar potencies, with one of them, compound 21, displaying sub-nM agonist potency
(ECsp = 0.36 nM) in G-protein assays. Six of these hits, including the most potent one, demonstrated
selectivity for MT,, while five hits were partial agonists at MT,. Moreover, the two most potent MT,
compounds, 21 and a close derivative of melatonin, 28, show reduced arrestin signaling, thus result-
ing in substantial bias towards G-protein signaling. Our results demonstrate that structure-based
VLS approach can yield novel, highly potent and selective ligand chemotypes with potential utility as
chemical probes with distinct properties and candidate leads for the treatment of circadian rhythm
related sleep and mood disorders.

Results

Benchmarking receptor models

To evaluate the ability of the structure-based receptor models to recognize high-affinity melatonin
receptor ligands, we performed extensive docking of a subset of known ligands of MT; and MT,
receptors (Figure 1—figure supplement 1) into (i) the unmodified 3D structures obtained from
X-ray crystallography (MT;_Xtal, MT,_Xtal), as well as (ii) into the receptor models where the ligand-
binding pocket was optimized by conformational modeling (MT;_Opt, MT,_Opt). Analysis of the
docking poses for the known MT ligands in both crystal structures and optimized MT receptor mod-
els showed favorable binding scores with docking poses consistent with the orientation and binding
modes of crystallized ligands (Figure 1a—-d). The major interactions include aromatic stacking of the
heterocyclic core with ECL2 hydrophobic residue F179/1925¢"2 (the residue numbers for MT; and
MT, listed for UniProt (Bateman et al., 2017) ids: P48039 and P49286, respectively, followed by
superscripted Ballesteros — Weinstein numbering scheme Ballesteros and Weinstein, 1995), as well
as hydrogen bonding interactions with N162/175%%° and Q181/1945°2 (Johansson et al.,
2019; Stauch et al., 2019) . The performance of each model was then evaluated as the area under
the corresponding receiver operator characteristic (ROC) curve (AUC), benchmarking the ability of
these models to correctly detect ligands among decoys. The AUC values for the optimized models
of MT receptors showed substantial improvement over AUC values for MT crystal structures
(MT,_Opt = 87 vs. MT_Xtal = 69; and MT,_Opt = 82 vs. MT,_Xtal = 70) (see Figure 1e). Overall,
these results validated the improved VLS performance of the optimized models of MT; and MT,
receptors, which were then used for large-scale prospective VLS.
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Figure 1. Predicted binding modes of selected known MT ligands. (a) 5-HEAT and (b) S5-26131 docked into
MT;_Opt model; whereas (c) IIK-7 and (d) 4P-PDOT docked into MT,_Opt model. (e) ROC plots for MT receptor
crystal structures and optimized models.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Chemical structures of known (a) MTy_selective and (b) MT, selective ligands, used in the
benchmark.

Figure supplement 2. MT; crystal structure in complex with 2-PMT (PDB id: 6ME3) displaying mutated residues
near orthosteric ligand binding pocket.

Prospective VLS and candidate selection

A library of 8.4 million commercially available compounds was docked into the optimized MT,_Opt
and MT,_Opt structural models (see Materials and methods), and for every compound, docking
scores and binding interactions were predicted. The top 5000 scoring compounds were selected
from these VLS runs for each receptor, which were further evaluated by redocking into both MT,
and MT, receptors with increased computational sampling. The initial hit list contained 700 com-
pounds predicted to bind to both receptors. To evaluate these top docking solutions, we created
additional models of MT receptors by restoring thermostabilizing mutations (Figure 1—figure sup-
plement 2) in the proximity of the orthosteric site to wild-type residues (A104%2°G and W251%48F in
MTq; W264%48F in MT,), and performed further conformational optimizations. We determined that
the impact of these mutations on the docking results was negligible. The dock scores for selected
MT ligands were better than the standard ICM VLS cutoff —32.0 kJ/mol, which is better than or com-
parable to the docking score of melatonin (—29.3) and other high affinity MT receptor ligands
(Johansson et al., 2019).

To capture chemotype diversity, we selected the top 500 compounds for each receptor using
chemical clustering in combination with docking scores. A final set of 62 compounds (23 from only
MT, VLS; 25 from only MT; VLS; 14 from both MT; and MT; VLS) were selected for purchase based
on a multidimensional composite criterion accounting for compound novelty, chemical diversity,
well-defined interaction patterns with binding site residues N162/1 75%90 and/or Q181/1945°%2, and
interaction similarities with ligands observed in the crystal structures (See Figure 2;
Supplementary file 1 Table S1).

Most of the compounds represented new chemotypes with Tanimoto chemical
distance values >0.22 (Abagyan et al., 2016), separating them from known high-affinity MT ligands
available in CHEMBL24 (Gaulton et al., 2017). We also chose a close analog of melatonin — com-
pound 28 (Tanimoto distance = 0.05), which to our knowledge, has not yet been characterized as a
ligand for MT receptors (Gaulton et al., 2017; Kim et al., 2019). Compound 28 served as an addi-
tional positive control, which also helped us to evaluate the effect of a single chemical group substi-
tution in melatonin on the binding and function at the MT receptors.
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Figure 2. Structural features in selected hit candidate compounds. (a) 2-phenylmelatonin in complex with MT1
receptor with the topology of chemical features shown as colored spheres indicating R1 (orange) = 5-methoxy, R2
(green) = alkylamido chain, and R3 (blue) = 2-phenyl substitutions, (b) Venn diagram summarizing the topologically
equivalent chemical features in selected 62 candidate compounds from MT; and MT, VLS.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Histogram of predicted logP values of known high-affinity MT ligands (N,ef = 515) from
ChEMBL and selected MT ligands (Ng¢ = 30).

Experimental hit identification and validation
The selected 62 candidate compounds from VLS were tested experimentally for binding and func-
tional profiles in both MT receptors. Eleven compounds (Table 1; Figure 3) demonstrated sub-

Table 1. Hit compounds from VLS with G;,, mediated potency ECsq <1 uM for at least one MT receptor.

MT, MT, MT./MT,
Compound pK; + SEM* pECso + SEM ECs5o(nM) Epn..' + SEM LE* pK; + SEM pECso + SEM ECso(nM) E,.x = SEM LE Selectivity’ Tanimoto?
21 6312011 791£005 120 938425 069 691+005 944008 036  861+32 083 306 0,50
23 542+003 7.16+009 575 969+53 056 556+0.13 7.69+008  20.42 917+30 040 27 0.22
28 7.78+0.10 10.39+004 0.04 953+26 086 7.63+0.08 10.35+0.10 0.04 694+ 40 085 0.7 0.05
29 522+ 007 683+006 1445 87.5+45 053 561005 7.46+0.10  34.67 6944+ 80 058 3.3 0.43
37 5.07 +0.13 ND >30000 ND ND 545+0.10 685+0.19 14125  61.1+ 91 053 >1000.0 0.57
44 419+036 333+036 575440 72847 033 495+030 658013 26303 889+63 051 267.2 0.59
45 454+015 506+012 87096  90.6+143 044 526019 637013 42658 750=74 056 169 0.59
47 458 +007 525+016 23442  1124+52 046 591+0.12 7.99+0.10  10.23 917+30 066 186.9 0.60
54 503+ 006 606+007 7413 828+43 054 556+0.10 7.74+0.10  18.20 750+37 068 369 0.43
57 484+003 572+011 17783  875+91 047 537004 688=0.15 13183 667+83 057 103 0.53
62 432+011 439+042 426580 54.1+100 036 549+033 7.28+0.14  52.48 583+ 4.8 0.60 8759 0.64
Melatonin  9.06 + 0.14 11.38 £ 0.06 0.004 1000+ 56 093 927 £0.14 1030 £ 0.14  0.05 1000 +£56 084 0.1 0.00

Standard error of the mean, N = 3.

T Activation compared to melatonin.

Ligand efficiency (based on ECs).

§Selectivity in folds (calculated as: Antilog (Iog(Emax/ECso) MT2- l0g (Emax/ECso) MT1)). MT; selectivity is shown as underlined values.
1 Tanimoto distance from closest MT receptor ligands in ChEMBL database with pAct >6. Hits with ECso <100 nM are displayed in bold, and with
Ernax <70% in italic.
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Figure 3. Functional characterization of selected VLS hits for agonist activity at MTy and MT; receptors in G-
mediated cAMP production inhibition assays. Results were normalized to the E.x value (%) of receptor activation
by melatonin. These VLS hits showed no activity at control HEK293 T cells without transiently transfected MTy or
MT, receptors (results not shown).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Radioligand H-Melatonin competition binding data for selected hit compounds.
Figure supplement 2. Tango assay measuring agonist-induced B-arrestin recruitment by MT,receptor.
Figure supplement 3. Tango assay measuring agonist-induced B-arrestin recruitment by MT,receptor.

micromolar potencies in Gj, mediated signaling assays (18% hit rate). Ten of these eleven com-
pounds also showed binding affinities K; <10 uM in a competition binding assay (Figure 3—figure
supplement 1). The melatonin derivative 28 identified by VLS was as potent as melatonin itself in
MT, (ECso = 0.04 nM) and had the same potency (ECsg = 0.04 nM) at MT4. The most potent new
chemotype, 21, displayed an ECso = 0.36 nM for MT,, with a 30-fold selectivity over MT4 receptor
(MT4ECs0 = 12 nM). Overall, seven hits had ECso <100 nM for at least one of the melatonin recep-
tors. Similar to other low molecular weight MT ligands, most of the hits identified belong to a library
of fragment-like compounds with molecular weights less than 250 Da, and have exceptionally high
ligand efficiency (LE), far exceeding the ~0.3 value considered as a standard for a promising lead.
For example, compound 21 (Mol. Wt. = 224 Da) had the highest LE values of 0.83 kcal/mol per non-
hydrogen atom for MT, and 0.69 kcal/mol per non-hydrogen atom for MT; receptors
(Hopkins et al., 2004; Hopkins et al., 2014). The excellent LE of these molecules
allows the potential for further optimization of their drug-like properties.

Chemical and conformational diversity of hits

Most of the hit compounds, as shown in Chemical structure 1, are novel and display diverse chemo-
types distinct from known high-affinity MT ligands (ChEMBL, pAct >6.0), with Tanimoto distance
exceeding 0.4 for all but two ligands (28 and 23). While the majority of known MT agonists reported
in ChEMBL have either substituted indene or naphthalene core, only two of the eleven hits reported
here have fused heterocycles and several others have two substituted aromatic rings connected by a
flexible chain. Most compounds have diverse substitutions at positions topologically equivalent to
the 5-methoxy, acetylamido and C2 position of melatonin (Figure 2). Two compounds— 21 and 29-
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Chemical structure 1. Chemical structures of hit compounds with ECsqy <1 uM at the MT receptors.

have a pyrimidine scaffold, whereas four compounds— 23, 37, 44, and 57- have a methoxyphenyl
group in place of the 5-methoxy indole scaffold in melatonin. Another interesting core is the cyclo-
pentyl-fused thienopyridine of compound 45. Only 2 compounds, 28 and 54, have substituted
indoles similar to melatonin.

The predicted binding poses of the selected hit compounds in their docking models of MT recep-
tors are shown in Figure 4. Nine out of eleven hits have methoxy or a similar group predicted to
make hydrogen bonding interactions with N162/175%4°, which was found to be a critical residue for
receptor activation, despite playing a limited role in ligand affinity or structural stability of the recep-
tor (Stauch et al., 2019).

Furthermore, seven of the hits were predicted to form hydrogen bonding interactions with Q181/
194E€L2 similar to alkylamide tail of melatonin. Five hits were predicted to occupy a significant space
in the pocket flanked by TMs-II, 1ll, and VII forming hydrophobic interactions, especially with residues
Y281/2947-38 and Y285/2987-43, as previously found in the MT receptor structures (Johansson et al.,
2019, Stauch et al., 2019). These hydrophobic interactions are similar to those formed by the phe-
nyl moiety of 2-phenylmelatonin. Both types of hydrogen bonding and hydrophobic interactions
were found to be critical for a ligand's steric fit into the MT receptor binding pocket and are the pri-
mary determinants of ligand affinity.

Structural basis of subtype selectivity of the hits
Six of the identified hits were found to be at least 30 fold more potent at MT, compared to MT; in
the Gj/o.mediated cAMP inhibition assays. Among the hits reported here with novel scaffolds, com-
pound 21 has the highest potency for both MT, (ECso = 0.36 nM) and MT; (ECsg = 12 nM). Com-
pound 21 was predicted to bind both the MT receptors in a similar orientation by forming hydrogen
bonding interactions with N162/175%%° and Q181/1945°"2 with its methoxy anchor and acetylamido
tail, respectively. These interactions had been reported to be critical for ligand affinity and potency
at the MT receptors (Johansson et al., 2019; Stauch et al., 2019).

Other compounds also possess remarkable MT, selectivity. For example, compound 47 is 187-
fold selective towards MT, (ECso = 10 nM for MTa, and 2.34 uM for MT4, respectively). The pyrrole
ring mimics the indole ring of melatonin, the amide group forms hydrogen bonding with N162/
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Figure 4. Predicted binding poses for top six new chemotypes discovered with VLS. (a) 21, (b) 23, (c) 62, (d) 29, (e)
47 and (f) 54 inthe MT,receptor (purple). The center panel shows a canonical 7-TM receptor structure of MT,
receptor (blue helices; part of TM-V is not displayed for clarity) in complex with 2-phenylmelatonin shown as green
spheres (PDB id: 6ME6).

175%¢% and the chlorophenyl group forms hydrophobic interactions with ECL2 and TM-I, Ill, and VII
residues (Figure 4). Despite the lack of polar interactions with Q181/1945¢"2, the compound displays
sub-micromolar potency for MT,. Similarly, compound 45 also lacks a substitution topologically
equivalent to acetylamido tail of melatonin (R2 feature) and yet has a sub-micromolar potency and
17-fold selectivity for MT; (ECso = 427 nM). In contrast, compound 44 was predicted to form interac-
tions with Q181/194E¢L2 but it lacks an R3 equivalent substitution, which still makes it 267-fold
selective for MT, (ECso = 263 nM). These findings suggest that either R2 or R3 could be sufficient in
maintaining the potency and selectivity at MT».

Functional selectivity of the hit ligands

All the discovered hits show activity as agonists in G;/,-protein signaling assays at both MT; and MT,
receptors. At the same time, some compounds show functional profiles notably distinct from full and
balanced agonism, especially at MT,. Thus, four of the hits, 28, 29, 57, and 62 had their efficacy
(Emax) reduced to less than 70% in MT,, and are therefore considered partial agonists
(Audinot et al., 2003). The identified hits were also evaluated for their B-arrestin recruitment (Fig-
ure 3—figure supplements 2 and 3), with the comparative analysis of G-protein and B-arrestin activ-
ity shown in Figure 5. In the case of the MT receptor, there are no significant deviations from the
overall balanced G-protein/Arrestin signaling profiles for most compounds (Figure 5a). One excep-
tion is compound 37, which completely lacks G-protein signaling, though it still binds to MT4 and
displays substantial B-arrestin activity. In the case of MT,, however, there are several compounds
that show a marked reduction in B-arrestin signaling compared to G-protein, especially compounds
21 and 28, which show bias factors of 15.5 and 33.9, respectively (Figure 5b). These results suggest
that MT ligands may show rather distinct functional bias profiles in G-protein and B-arrestin
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ligands in G-Protein and Arrestin-mediated signaling assays are shown. The dashed lines for each receptor trace
the melatonin datapoint to the origin, with compounds far above or below the line showing functional selectivity.

signaling, as observed in many other GPCRs (Kenakin, 2019; Roth, 2019), though the biological
importance of this bias in MT remains to be investigated (Cecon et al., 2018).

To gain more insights into these variations in ligand activity at MT receptors, we analyzed confor-
mational differences among ligand-receptor pairs for these compounds. As the hit compounds are
fragment-like and may attain multiple energetically-favorable poses at the orthosteric site upon
docking, the specific conformational features driving partial agonism remain unclear. However, anal-
ysis of compounds 28 and 37 with the most pronounced bias to G-protein in MT, and B-arrestin in
MT,, respectively, suggests possible explanations for these phenomena.

Compound 28 is very similar to melatonin, except the amide is replaced by a urea. This substitu-
tion renders compound 28 as a partial agonist at MT, (Enax = 69.4%) while largely maintaining full
agonism at MTq (Emax = 95.3%). Docking predictions suggest that compound 28 assumes an orienta-
tion in the binding pocket similar to 2-phenylmelatonin with subtle differences, as shown in Figure 6.
In MT, orthosteric site, the urea of compound 28 forms hydrogen bonding interactions with the side
chains of polar residues Q19452 and N268%°? owing to its additional nitrogen. Such interactions,
however, are energetically unfavorable in the case of MT; with possible steric clashes
(Johansson et al., 2019; Stauch et al., 2019). Instead, the interactions of acetylamido group of mel-
atonin with Q18152 are replaced by a hydrogen bond between Y2817-3
in compound 28. These interactions become favorable in MT; as the residue Y2817 is rotated
towards TM-VI placing it 4 A away from T1785°%2, In the case of MT,, however, residues Y2947-38 —
T191542 are 3 A apart forming an intermolecular hydrogen bond with Y2817-38 oriented away from
TM-VI allowing favorable orientation of Q194512 to form a hydrogen bond with compound 28.

A similar pattern of ligand-receptor interaction is observed from the docking of the most selective
compound 37 into MT receptors. Compound 37 has a distinct and much bulkier substitution with a
3-cyclopropyl-1,2,4-oxadiazol group (R2 feature). In MTy, this oxadiazol group is predicted to form
hydrogen bonds with Q18152, T178512 and Y2817-38, while the cyclopropyl group is predicted to
fit in the sub pocket formed by ECL2, TM-V, and VII. These interaction pattern changes in MT5,
where the prominent hydrogen bonding between side chains of T1915°:2 and Y2947-%8 is formed,
precluding hydrogen bonding of these residues to compound 37. Moreover, the methoxy group (R1
feature) of the compound, which maintains a hydrogen bond with N175%%0 in MT, is lost with
N162%¢° side chain in MT1, due to a subtle shift of the compound. Indeed, the methoxy — N162%¢°

and oxygen from the urea
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Figure 6. Predicted binding poses for compounds 28 (a, b), and 37 (c, d) in MT; (light green) and MT (lavender)
receptors, respectively. The red dotted lines with arrows indicate a missing hydrogen bond between residues T178
and Y281 in MT, receptor, while the yellow dots show hydrogen bonding interactions.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Tango functional assays with MT1 mutants for melatonin.
Figure supplement 2. Binding activities of Compounds 21, 28 and 37 at a set of 47 potential off-targets.

interaction is found to be critical in receptor activation (Stauch et al., 2019), and loss of this interac-
tion is likely to explain lack of activity of compound 37 in G;-mediated signaling at MT,. This interac-
tion difference, however, does not seem to affect the B-arrestin mediated signaling by compound
37 in MTy. This peculiar feature of 37 is supported by our mutational studies, where N162Q muta-
tion in MT; actually increased potency of 37 slightly (2-fold), while Y281F, as expected, reduced
potency by over 10x (Figure 6—figure supplement 1). For comparison, 28 drastically (>100 fold)
reduced potency in both MT; mutants N162Q and Y281F. Taken together, these results support a
key role of N162/175%4° anchoring interactions in G;-mediated receptor activation, and also suggest
a distinct role of residues Y281/2947-3% in governing ligand bias at MT receptors. Further analysis,
including mutation and SAR studies of compound 37 derivatives are needed for comprehensive vali-
dation of this hypothetical mechanism in future studies.

Off-target profiling

To verify the ligand selectivity, the lead compounds 21, 28, and 37, were subjected to binding pro-
filing at a panel of 47 common drug targets (including many GPCRs and neurotransmitter transport-
ers). At a final concentration of 10 uM, they did not show any substantial binding at these targets,
except for compound 28 that displayed over 50% inhibition at three 5-HT receptors (Figure 6—fig-
ure supplement 2), with binding affinity of 851 nM (pK; = 6.07 + 0.11) for 5-HTq4, 1525 nM
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(pK; = 5.82 £ 0.02) for 5-HTp, and 286 nM (pK; = 6.54 + 0.03) for 5-HT74. Assessment of functional
activity of 28 in Gg-mediated cAMP production shows that it is a weak partial agonist with
ECso = 1819 nM, as compared to 0.04 nM at both MT, and MT, receptors. These results demon-
strated that the lead compounds 21, 28, and 37 act specifically at MT receptors and show high
selectivity for MT; or MT, over many common drug targets.

Discussion

The discovery of potent and selective MT ligands with novel chemotypes holds promise for the
development of next-generation drugs to treat circadian rhythm and mood disorders, pain, insom-
nia, type-2 diabetes, and cancer (Karamitri and Jockers, 2019; Liu et al., 2016). Herein, we utilized
the recently solved 3D structures of the melatonin receptors, in complex with the agonist 2-phenyl-
melatonin, (Johansson et al., 2019; Stauch et al., 2019) to perform prospective virtual ligand
screening of large fragment-like compound libraries. This approach resulted in the discovery of ten
new chemotypes of potent agonists, both full and partial, for MT; and MT,. The number of sub-
micromolar hits and potency of the best among them is one of the highest reported for a VLS cam-
paign in class A GPCRs (Lyu et al., 2019) and in-line with another VLS screen for MT receptors, pub-
lished while this study was in revision (Stein et al., 2020). This is remarkable, considering that most
GPCR structures have a limited capacity to distinguish agonists vs. antagonists (Costanzi and Vilar,
2012; Weiss et al., 2018) and prospective VLS campaigns often result in antagonists even when an
agonist-bound VLS model is used (Lyu et al., 2019; Roth, 2019).

There are several factors, related to both the VLS procedure and the intrinsic properties of the
MT receptors, that likely contributed to the high hit rate and agonistic potency of the hits in our
study. Thus, the high quality of the initial crystal structure, further improved by ligand-guided optimi-
zation of the pocket for VLS, has been critical for the success of our previous VLS campaigns, and
likely played a similar role here (Katritch et al., 2010; Lane et al., 2013; Zheng et al., 2017). At the
same time, some intrinsic properties of MT receptors also likely facilitated successful VLS for ago-
nists. As we mentioned above, endogenous ligand melatonin itself has unusually high picomolar
potency at MT receptors (~4 pM at MT; and 50 pM at MT,, see Table 1). Melatonin and most other
high-potency ligands are small (<250 DA) and yet they still fully occupy the very small, enclosed MT
pocket. Chemical space of such size-limited fragment-like libraries is much smaller than the usual
drug-like space, and can be more exhaustively searched, likely resulting in higher hit rates. More-
over, most known MT receptor ligands show agonist activity, while antagonists of similar potency
are notoriously hard to find, suggesting that agonists may be intrinsically preferred ligands for MT
receptors (Jockers et al., 2016).

Two of the hit compounds, 37 and 62, are MT,-selective partial agonists, which may have a desir-
able profile for eliciting antinociceptive effects mediated by melatonin receptors, and may be poten-
tially useful in developing novel analgesics for pain management with reduced side effects (Lépez-
Canul et al., 2015). Of note, while some of the newly discovered hits are selective for MT,, none of
the hits in this study had substantial MT; selectivity. This may be explained by the lack of a bulky
chemical group at the R1 position, which are known to confer strong MT; selectivity, e.g. in bitopic
CTL 01-05-B-A05 ligand that stretches out of the pocket via narrow side channel (Stauch et al.,
2019). Design of such bitopic ligands with MT; selective chemotypes would need to explore larger
compounds (MW >500), which were not considered in the current VLS screen.

This study represents a successful application of structure-based VLS to identify agonists with
novel chemotypes, sub-nanomolar potencies, and a high degree of receptor subtype selectivity for a
class A GPCR (Lyu et al., 2019; Wang et al., 2017). This study also represents a successful imple-
mentation of molecular modeling and structure-based virtual screening, aimed at the melatonin
receptors, facilitated by the availability of high-quality structures capturing vital ligand-receptor
interactions (Alkozi et al., 2018; Johansson et al., 2019, Stauch et al., 2019). Prevalence of ago-
nists in the hit set suggests the importance of activated, agonist-bound conformations of the orthos-
teric pocket models for successful agonist screening. Note that, even though the receptors were
thermostabilized by 9 and 8 point mutations (MT1/MTj, respectively) to aid crystallization rendering
the receptor conformations inactive on the intracellular side, the agonist-bound orthosteric pockets
remain relevant for structure-based drug discovery applications. Our benchmarking also corrobo-
rated the important role of ligand guided receptor optimization (LIBERO) (Katritch et al., 2012) in
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improving the outcomes of a structure-based VLS, similar to some of our previous VLS campaigns
(Lane et al., 2013; Zheng et al., 2017). Another critical aspect of this successful VLS is the discovery
of novel chemotypes with reliable docking poses. With our screening library assembled to be frag-
ment-like with regards to molecular weights, our hits are diverse and amenable to chemical optimi-
zation to improve their pharmacological profiles. Thus, our results also illustrate the utility of
fragment-like compounds in the early stages of drug discovery.

The chemical diversity, selectivity, high potency and agonist activities of the identified hits serve
as a valuable starting point for the development of tool compounds to explore the biology of mela-
tonin receptors. With the potential for selective modulation over the melatonin receptor subtype-
mediated biology, these novel chemotypes could provide new leads for the development of next-
generation treatments for insomnia, pain, sleep and mood-related disorders, type 2 diabetes, and
cancer.

Materials and methods

(species) or Source or Additional

resource Designation reference Identifiers information

Cell line HTLA cells PMID:25895059

(Homo (HEKT based)

sapiens)

Transfected MTNR1TA PMID:25895059 AddGene #66443

construct

(Homo sapiens)

Recombinant MTNR1TA This paper CTGCCGTCCTGCCGcaaCTGAGGGCAGGCAC
DNA reagent, N162Q

PCR primers Forward

Recombinant MTNR1TA This paper GTGCCTGCCCTCAGttgCGGCAGGACGGCAG
DNA reagent, N162Q Reverse

PCR primers

Recombinant MTNR1A This paper GTTCGTAGCGAGCTtCTACATGGCTTAC
DNA reagent, Y281F Forward

PCR primers

Recombinant MTNR1A This paper GTAAGCCATGTAGaAGCTCGCTACGAAC
DNA reagent, Y281F Reverse

PCR primers

Commercial BrightGlo Promega.com Cat # E2610

assay or kit Reagent

Chemical Hit Enamine, See 62 compounds

compound, compounds Molport, listed in Supplementary

drug Chembridge file 1

Software, ICM-Pro, Molsof.com

algorithm V3.8-7

cell line HEK293 T ATCC CRL-11268

(Homo sapiens)

transfected Human MT1 PMID:31019306

construct

(Homo sapiens)

Chemical Luciferin Goldbio.com Cat#: LUCNA-1G

compound,

drug

Receptor model preparation and optimization

X-ray crystal structures of MT, (Stauch et al., 2019) and MT, (Johansson et al., 2019) receptors in
complex with 2-phenylmelatonin (PDB IDs Berman et al., 2000: 6ME3, 6ME6) were used to gener-
ate virtual screening models. Both structures were converted from PDB coordinates to ICM objects
using the object conversion protocol implemented in ICM-Pro (Abagyan et al., 2016). This process
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includes the addition of hydrogens and assignments of secondary structures, the energetically favor-
able protonation states to His, Asn and Gln side chains, and of formal charges to the ligand in a
complex with the receptor, followed by local minimization of polar hydrogens using energy minimi-
zation protocols in ICM-Pro. The orthosteric ligand-binding pocket was further optimized with
energy-based global optimization in ICM using Biased Probability Monte-Carlo (BPMC), where the
orthosteric ligand and amino acid side chains within 5 A radius were kept flexible and co-optimized
(Abagyan and Totrov, 1994), as described in LIBERO protocol (Katritch et al., 2012) and its previ-
ous applications (Lane et al., 2013; Zheng et al., 2017). To validate the models, a set of 20 known
MT receptor ligands were selected from ChEMBL database (Gaulton et al., 2017) along with 780
MT receptor decoys selected for each MT; and MT, receptor from GPCR decoy database (GDD)
(Gatica and Cavasotto, 2012) and docked into crystal structures, and optimized ligand models of
MT receptors. Following the previously described ligand guided receptor binding pocket optimiza-
tion protocol, the Receiver Operator Characteristic curves (ROC) were plotted based on the True
Positive Rates (TPR) and False Positive Rates (FPR) (Katritch et al., 2012) to evaluate the model opti-
mization. The AUC values were calculated as the areas under these ROC curves and used as a model
selection criteria for prospective VLS runs. The RMSD values of ligand binding pocket side chain
heavy atoms for MT; and MT, were 0.51 A and 0.76 A, respectively, compared to their correspond-
ing crystal structures.

To perform additional evaluation of screening results with the thermostabilizing mutants in the
proximity of the orthosteric site, as displayed in Figure 1—figure supplement 2, were restored to
wild-type (WT) residues. The Phe residue at F251/264%4¢ located 4.3 A from the ligand was mutated
to Trp, followed by local minimization of side-chain conformations using energy-based sampling and
minimization protocols (Abagyan and Totrov, 1994). Similarly, A104%2?, located 5.2 A was also
restored to Gly in the MT4 receptor model. Docking to this model suggests that these stabilizing
mutations do not substantially impact the binding of known ligands and selected hit candidates into
the orthosteric pocket.

Screening library

We selected a subset of commercially available (in-stock and on-demand) fragment-like compounds
from the ZINC database with physicochemical properties similar to already reported melatonin
receptor ligands (Gaulton et al., 2017; Sterling and Irwin, 2015). We considered compounds with
molecular weight <250 Da and logP values ranging 1 to 5 based on the logP data of high-affinity
MT ligands (Figure 2—figure supplement 1). The initial dataset comprised of ~10 million com-
pounds was converted from SMILES to 3D format, and formal charges were assigned. This set was
further reduced to 8.4 million compounds after applying additional filters for net charges (between
—1 to 1) and removing compounds with highly reactive functional groups and promiscuous PAINS
chemotypes (‘'molPAINS’ and ‘bad groups’ in ICM-Pro v.3.8-6) (Baell and Holloway, 2010).

Virtual ligand screening

The VLS of 8.4 million compounds library for MT; and MT, models were performed using the VLS
protocol in ICM-Pro (Abagyan et al., 1994). The receptor energy potential maps were calculated
using a fine potential grid (0.5 A). Several energy terms, including van der Waals, hydrophobic, elec-
trostatic and hydrogen bonding interactions were considered for map calculations. Full torsional flex-
ibility of ligands was allowed, and their internal conformational strain was considered while the
receptor atoms were assigned rigid for docking. The docking was performed using BPMC conforma-
tional sampling and energy minimization protocol implemented in ICM-Pro for scoring and finding
the best docking solutions at the default effort level 1. These top compounds were further docked
into corresponding MT receptor models with an increased sampling effort value of 3. Each VLS run
for the 8.4 million compound library used 32,000 CPU core hours on 3 Linux workstations with a total
of 192 CPU cores. The chemical similarity of selected compounds was calculated using Tanimoto
chemical distance function ‘Distance(chem1 chem?2)’, available in Molsoft's ICM-Pro (Totrov, 2008).
The fingerprints in this function use a combination of ECFP and linear fingerprints as described in
ICM-Pro manual (http://www.molsoft.com/icm/fingerprints.html).
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Binding and functional assays

Radioligand binding assays

All compounds for in vitro testing were purchased from Enamine, Molport, and Chembridge in stock
libraries, with verified identity and guaranteed purity of >95% (37 compounds) or >90% (25 com-
pounds), see Supplementary file 2 for compound QC data).

The Radioligand binding assays were conducted by the NIMH Psychoactive Drug Screening Pro-
gram (PDSP). The NIMH PDSP is directed by Bryan L. Roth, MD, PhD, at the University of North Car-
olina at Chapel Hill, North Carolina, and Program Officer Jamie Driscoll at NIMH, Bethesda, MD.
Binding assay procedures and protocols are also available online at http://pdspdb.unc.edu/
pdspWeb/?site=assays. All the radioligand binding assays were performed using membranes pre-
pared from transiently transfected HEK293T cells (purchased from ATCC, CRL-11268, authenticated
by the supplier using morphology, growth characteristics, and STR profiling and certified myco-
plasma-free) and in standard binding buffer (50 mM Tris, 10 mM MgCl,, 0.1 mM EDTA, 0.1% BSA,
0.01% ascorbic acid, pH 7.4) as recently reported (Stauch et al., 2019). [*H]melatonin (PerkinElmer,
specific activity = 77.4-84.7 Ci/mmol) is used as the radioligand. Competitive binding assays were
performed with various concentrations of test compounds (100 fM to 10 uM), [*H]melatonin (0.2-1.7
nM), and MT; or MT, membranes in a total volume of 150 uL. Assay plates were sealed and incu-
bated for 4 hr at 37°C in a humidified incubator until harvesting. Plates were harvested using vacuum
filtration onto 0.3% polyethyleneimine pre-soaked 96-well Filtermat A (PerkinElmer) and washed
three times with cold wash buffer (50 mM Tris, pH 7.4). Filters were dried and melted with a scintilla-
tion cocktail (Meltilex, PerkinElmer). Radioactivity was counted using a Wallac TriLux Microbeta
counter (PerkinElmer). Results were analyzed using GraphPad Prism 7.0.

Signaling assays

Gs and Gj/o-cAMP assays

GloSensor cAMP assays were conducted according to the recently published procedure
(Stauch et al., 2019) with minor modifications. Briefly, HEK293 T cells (as above) were transiently co-
transfected with receptor (MT; or MT,) and GloSensor cAMP (Promega) plasmids overnight, plated
in Poly-L-Lysine coated 384-well white clear bottom plates in DMEM + 1% dialyzed FBS. Cells were
used for assays at a minimum of 6 hr after plating. Culture medium was first removed and cells were
stimulated with drugs in assay buffer (1x HBSS, 20 mM HEPES, 1 mg/ml BSA, 0.1 mg/ml ascorbic
acid, pH 7.4) for 15 min at room temperature (this and all the following steps), followed by addition
of a mixture of isoproterenol (final of 100 nM) and luciferin (final of 1 mM) for G;,,-cAMP production
inhibition assays and luciferin (final of 1 mM) for Gs-cAMP production assays. The plates were
counted for luminescence after 25 min in a luminescence plate reader. Results were analyzed using
GraphPad Prism 7.0.

Tango assays

Tango arrestin recruitment assays were carried out according to the previously published procedure
Kroeze et al. (2015). In brief, HTLA cells were transiently transfected with receptor TANGO DNA
constructs overnight in DMEM with 10% FBS. Transfected cells were then plated into poly-L-Lys
coated 384-well plates using DMEM supplemented with 1% dialyzed FBS. After 6 hr incubation,
drug dilutions, prepared in DMEM with 1% dFBS, were added for incubation overnight (16-20 hr).
Medium and drug solutions were removed, Bright-Glo reagent (20 uL/well) was added for lumines-
cence counting 20 min later. Results were analyzed in GraphPad Prism 7.0.

Bias factors were estimated according to the published procedure Kenakin et al. (2012) with
modifications. Briefly, normalized and pooled results were analyzed by fitting the Black and Leff
operational model in Prism 7.0 to obtain Log(t/Ka) values for each pathway (Tango and G;-cAMP).
Within each signaling pathway, a difference of Log(t/Ka), ALog(t/K,a), between a test compound and
selected reference (melatonin in this case) was calculated. For a testing compound, the difference of

ALog(t/Kp), AALog(t/K,), was then obtained between two pathways. The bias factor is 102Akog(w/KA)
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