

1 Embryonic Thermal Challenge is Associated with Increased Stressor Resiliency Later in
2 Life: Molecular and Morphological Mechanisms in the Small Intestine

3 David L. Beck¹, Elizabeth R. Gilbert¹, Mark A. Cline¹

4 ¹School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg,
5 VA, United States

6

7 Abstract

8 Developing chick embryos that are subjected to increased incubation temperature are more
9 stressor-resilient later in life, but the underlying process is poorly understood. The potential
10 mechanism may involve changes in small intestine function. In this study, we determined
11 behavioral, morphological, and molecular effects of increased embryonic incubation
12 temperatures and post-hatch heat challenge in order to understand how embryonic heat
13 conditioning (EHC) affects gut function. At 4 days post-hatch, duodenum, jejunum, and ileum
14 samples were collected at 0, 2, and 12 hours relative to the start of heat challenge. In EHC
15 chicks, we found that markers of heat and oxidative stress were generally lower while those of
16 nutrient transport and antioxidants were higher. Temporally, gene expression changes in
17 response to the heat challenge were similar in control and EHC chicks for markers of heat and
18 oxidative stress. Crypt depth was greater in control than EHC chicks at 2 hours post-challenge,
19 and the villus height to crypt depth ratio increased from 2 to 12 hours in both control and EHC
20 chicks. Collectively, these results suggest that EHC chicks might be more energetically efficient
21 at coping with thermal challenge, preferentially allocating nutrients to other tissues while
22 protecting the mucosal layer from oxidative damage. These results provide targets for future

23 studies aimed at understanding the molecular mechanisms underlying effects of embryonic heat
24 exposure on intestinal function and stressor resiliency later in life.

25 Keywords

26 thermoregulation; antioxidant function; nutrient transport; intestinal morphology; oxidative
27 damage

28

29 Declarations of interests: The authors declare that they have no known competing financial
30 interests or personal relationships that could have appeared to influence the work reported in this
31 paper.

32 Introduction

33 Heatwaves have been more frequent in recent years resulting in substantial animal fatalities and
34 financial setbacks in the farming industry and poultry sector (Brugaletta et al., 2022). High
35 environmental temperatures have the potential to affect living organisms through changes in
36 metabolism, immune response, and cellular function (Dillon et al., 2010; Paital et al., 2016).
37 Among the various organs affected, the small intestine is particularly prone to heat-related
38 functional disruptions.

39

40 Physiological responses and long-term adaptations to high temperatures are relevant to both human
41 and animal populations. One notable example is the leaky-gut hypothesis, which proposes that
42 endotoxins, in poultry and humans alike, can translocate from the intestinal lumen into circulation
43 from prolonged high internal body temperature (Rostagno, 2020; Garcia et al., 2022).
44 Physiological ramifications include bacterial infections, systematic inflammation, and changes in
45 microbiota composition (Mu et al., 2017; Rostagno, 2020). Heat stress and compromised gut
46 function are associated with compromised health and well-being in animals such as swine
47 (Mayorga et al., 2020). Growth, reproduction, and lactation are impaired due to reallocation of
48 nutrients to survival-oriented behaviors and processes (Mayorga et al., 2020). These animal and
49 agricultural implications can have profound impacts on welfare, costs of products, and availability
50 of food.

51

52 Previous research pertaining to embryonic heat conditioning in broiler chicks showed that an
53 elevation in incubation temperature can lead to increased stress resilience later in life (Rosenberg

54 et al., 2020). Depending on stressor intensity, embryonic heat manipulation can either promote
55 vulnerability or resilience, and effects can be transgenerational (Rosenberg et al., 2022). Moreover,
56 embryonic heat conditioning can increase heat and immunological cross-tolerance through
57 epigenetic mechanisms such as hydroxymethylation (Rosenberg et al., 2020). This expands on the
58 notion that in-utero environments impact the health and well-being of organisms later in life
59 (Boekelheide et al., 2012). Prior embryonic heat conditioning research focused on the
60 hypothalamus; thus, it remains unclear whether the effects of embryonic heat conditioning on the
61 small intestine apply, persist, and promote a beneficial phenotype in times of heat stress. Thus, we
62 determined effects of embryonic heat conditioning and early post-hatch heat challenge on behavior
63 and small intestinal physiology in broiler chicks.

64

65 Materials and Methods

66 Animals

67 Cobb-500 broiler (*Gallus gallus*) eggs were obtained from a commercial hatchery. The eggs
68 were randomly divided into incubation treatments of control (CTRL) and embryonic heat
69 conditioned (EHC). CTRL eggs were incubated constantly at 37.5°C through the 21-day
70 incubation period. From embryonic day 7 to 16, EHC eggs were incubated at 39.5°C from 19:30
71 to 07:30 and 37.5°C for the remainder of each day. From embryonic day 17 to 21, EHC eggs
72 were incubated at an identical temperature to the CTRL group, 37.5°C. After hatch, chicks were
73 raised in individual cages in climate-controlled rooms with temperatures at $31.5 \pm 1^\circ\text{C}$ and ad
74 libitum access to feed and water. Diets were formulated to meet minimum recommended nutrient

75 levels for the starter phase of Cobb-500 chicks and formulations are published elsewhere. All
76 trials were conducted at 4 days post-hatch. Experimental procedures were approved by the
77 Virginia Tech Institutional Animal Care and Use Committee.

78 Experiments

79 Gene expression

80 On day 4 post-hatch, both CTRL and EHC chicks were divided into 3 groups (0, 2, and 12 hour)
81 using a randomized complete block design, with body weight as the blocking factor, and chicks
82 were thermally challenged by exposure to 36.7°C conditions for 12hrs. Feed and water were not
83 withheld. Chicks were euthanized by decapitation and tissues were collected at 0 (before heat
84 application), 2, and 12hrs relative to the start of the heat challenge. Sixty chicks (30 CTRL and
85 30 CTRL) were sampled for 1cm sections of the duodenum, jejunum, and ileum with ten
86 samples from each group collected at each time-point. The duodenum sample was dissected at
87 the distal portion of the duodenal loop. The jejunum was sampled midway between the end of
88 the duodenal loop and Meckel's diverticulum (yolk sac remnant). The ileum was sampled
89 midway between Meckel's diverticulum and the cecal tonsils. Samples were rinsed in ice-cold
90 phosphate-buffered saline (PBS), blotted on a kimwipe, and submerged in RNAlater (Invitrogen,
91 Waltham, MA), incubated at 4°C overnight, and then stored at -20°C until nucleic acid
92 extraction.

93 Tissues of 10-20mg were homogenized in 1mL TRI Reagent (Molecular Research Center,
94 Cincinnati, OH) using 5mm stainless steel beads (Qiagen, Germantown, MD) and a Tissue Lyser
95 II (Qiagen) for 3 x 2min at 20Hz. After the step of adding equal parts 100% molecular biology-

96 grade ethanol, the lysate and ethanol mixture were transferred to spin columns and purified with
97 RNase-free DNase I using the Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA). Total
98 RNA was quantified using an Implen NanoPhotometer at 260/280nm and stored at -80°C.
99 Single-stranded cDNA was synthesized in 20µL reactions using the High-Capacity cDNA
100 Archive Kit (Applied Biosystems, Waltham, MA) following the manufacturer's instructions:
101 25°C for 10 minutes, 37°C for 2 hours, and 85°C for 5 minutes. Primers were designed using
102 Primer Express 3.0.1 (Applied Biosystems) (Table A.1). Real-time PCR was performed in 10µL
103 reactions containing 5µL Fast SYBER Green Master Mix (Applied Biosystems), 0.25µL each of
104 5µM forward and reverse primers, 1.5µL of nuclease-free water, and 3µL of 10-fold diluted
105 cDNA. Reactions were performed in duplicate using a 7500 FAST system (Applied Biosystems)
106 and the default "FAST" program. Melting curve analyses were performed after PCR to ensure
107 amplicon specificity.

108 Morphology

109 Samples of duodenum were rinsed in PBS and submerged in 10% neutral-buffered formalin,
110 incubated on a rocker at 4°C overnight, and then rinsed in a graded ethanol series and stored in
111 vials of 70% ethanol. The samples were shipped to StageBio (Mount Jackson, Virginia) for
112 paraffin embedding and sectioning at 5µm with replicate sections collected at least 200 µm apart
113 in the same tissue sample. Three to five cross-sections were prepared on each slide per sample,
114 and slides were stained with hematoxylin and eosin. A Nikon Eclipse 80i microscope with Nikon
115 DS-Ri2 color camera was used for brightfield microscopy and images were captured under a 2x
116 objective. The Nikon Ni-S Elements AR 5.30.05 software (Nikon, Tokyo, Japan) was used to
117 measure 10 villus heights and 10 crypt depths per chick. The villus was defined as the base

118 (before start of crypt) to the tip of the villus, and the crypt was defined as the base of the villus to
119 the bottom of the invagination (Figure B.1).

120 Behavior and Food/Water Intake

121 At 4 days post-hatch, non-heat-challenged chicks were placed individually in a 290 x 290mm
122 enclosed acrylic observation arena with food and water containers in diagonal corners. Food and
123 water containers were massed before observation. Chicks were recorded from three angles for 30
124 minutes. Data were analyzed on a 300s basis using ANY-maze (Stoelting Co., Wood Dale, IL).
125 Distance traveled (in meters), as well as the number of food pecks, water pecks, exploratory pecks,
126 jumps, and escape attempts were quantified as count-type behaviors. Amount of time spent (s)
127 standing, sitting, preening, perching, and sleeping were quantified as timed-type behaviors.
128 Food/water pecks were defined as pecks within the food/water containers. Non-food/water-related
129 pecks were counted as exploratory pecks. Sleeping was quantified starting after 3s of eye closure.
130 After 30 minutes, the weights of the food and water containers were recorded. The difference
131 between container weights was defined as food/water intake.

132 Statistical Analysis

133 Gene expression and morphology data were analyzed by analysis of variance (ANOVA) using
134 JMP 17.2.0 (SAS Institute, Cary, NC) with Tukey's test used for post-hoc comparisons. The
135 level of statistical significance for all analyses was set at $P \leq 0.05$. Gene expression data were
136 analyzed using the DDC_T method (Schmittgen and Livak, 2008). Actin was used as the reference
137 gene and the average of the duodenum of the CTRL group at time 0 served as the calibrator
138 group. The first statistical model included the effect of EHC (CTRL vs. EHC), time-point (0hrs,

139 2hrs, 12hrs), and the two-way interaction, within an intestinal segment. The second model
140 included all segments (duodenum, jejunum, ileum) and the three-way interaction between effect
141 of EHC, time-point, and segment. For all analyses, sex was non-significant and thus removed
142 from the model.

143

144 For morphological analyses, the statistical model included the effect of EHC, time-point, body
145 weight, and the two-way interaction between effect of EHC and time-point. Body weights were
146 analyzed by a T-test. A bivariate fit of body weight and corresponding morphological variables
147 was used to determine correlation (r) and the linear model. Villus-height:crypt-depth (VCR) was
148 calculated for each chick by dividing the corresponding average villus height by average crypt
149 depth.

150

151 Behavioral data were analyzed by the Wilcoxon Rank Sum Test due to non-heterogenous
152 variances. Food and water intake were analyzed by a T-test.

153

154 Sample sizes for each experiment are reported within corresponding tables.

155

156 Results

157 Gene Expression: mRNA Abundance

158 Tables A.2, A.3, A.4, and A.5 summarize results for mRNAs in the small intestine and then
159 segmentally as the duodenum, jejunum, and ileum, respectively. A two-way interaction of
160 treatment and time was observed for one gene (Figure B.2; described below).

161 Combined Segments

162 Treatment-wise, there were multiple main effects in the small intestine (Table A.2). There was
163 greater expression of both heat shock protein 70 (HSP70) and heat shock protein 47 (HSP47)
164 mRNAs in CTRL than EHC. Reactive oxygen species-related gene xanthene dehydrogenase
165 (XDH) was also greater in CTRL than EHC. Superoxide dismutase 1 (SOD1) expression was
166 greater in EHC than CTRL. Glucose transporter 2 (GLUT2) was greater in EHC than CTRL.

167

168 There were also several effects of time in the small intestine. HSP70 mRNA decreased from 2 to
169 12hrs during the heat challenge. XDH expression increased from 0 to 12hrs.

170

171 Segmentally, expression differed for almost every target gene. Hypoxia-inducible factor 1-alpha
172 (HIF1A) was not affected. Glucose transporter 1 (GLUT1) expression increased from the
173 duodenum to the ileum. GLUT2 expression was similar between the duodenum and jejunum and
174 lower in the ileum than the prior two segments. Sodium-glucose cotransporter 1 (SGLT1)
175 expression was highest in the duodenum with lower expression in the jejunum and ileum. HS47
176 expression decreased from the proximal to distal end of the small intestine. Heat shock protein
177 60 (HSP60) expression was similar in the duodenum and jejunum and lower in the ileum. HSP70
178 expression increased from the duodenum to jejunum and was similar to the duodenum in the

179 ileum. Heme oxygenase 2 (HMOX2) expression was highest in the duodenum with lower levels
180 in the jejunum and ileum. Similarly, XDH expression was highest in the duodenum with lower
181 levels in the jejunum and ileum. Glutathione peroxidase 7 (GPX7) expression decreased from the
182 duodenum to the jejunum and then increased slightly to the ileum. SOD1 expression was similar
183 in the duodenum and jejunum with lower expression in the ileum. Cytochrome c oxidase 16
184 (COX16) expression was highest in the duodenum and ileum with lower expression in the
185 jejunum.

186

187 A treatment x time interaction was observed for XDH where there was an increase in CTRL
188 mRNA from 0 to 12hrs (Figure B.2).

189

190 A treatment x segment interaction was observed for GLUT1 mRNA (Figure C.6). Segment x
191 time interactions were observed for HSP70 (Figure C.7), HMOX2 (Figure C.8), and COX16
192 mRNA (figures included in supplemental figures).

193 Duodenum

194 There were several main effects of treatment in the duodenum (Table A.3). There was greater
195 expression of HSP47 mRNA in CTRL than EHC. Reactive oxygen species-related genes HIF1A
196 and XDH were also greater in CTRL than EHC.

197

198 There were also several effects of time in the duodenum. HSP70 expression increased in both
199 groups from 0 to 2hrs and then returned to baseline by 12hrs. HSP47 expression was constant

200 from 0 to 2hrs and then decreased to 12hrs. HMOX2 increased from 0 to 2hrs in both CTRL and
201 EHC with no difference from 2 to 12hrs.

202 Jejunum

203 In the jejunum (Table A.4), there was increased expression of GLUT2 mRNA in the EHC
204 compared to CTRL group. SOD1 expression was higher in EHC compared to CTRL.

205

206 A main effect of time was observed for SGLT1 and XDH mRNAs. SGLT1 expression increased
207 from 0 to 2hrs, while XDH expression increased from 2 to 12hrs.

208

209 Ileum

210 In the ileum (Table A.5), there were several treatment effects. GLUT1, GLUT2, and SGLT1
211 expression levels were higher in the EHC than CTRL group. HSP70 expression was greater in the
212 CTRL group.

213

214 There were also a few effects of time in the ileum where GPX7 and COX16 mRNAs decreased
215 from 0 to 2hrs. HSP70 and HMOX2 mRNA decreased from 0 to 12hrs.

216 Morphology

217 Histological analysis was focused on the duodenum. No treatment, time, or treatment x time
218 differences were observed for villus height (Table A.6).

219

220 There was an interaction of treatment x time for crypt depth. Crypt depth increased between 0 and
221 2hrs in the CTRL group and remained constant in the EHC group.

222

223 The VCR increased from 2 to 12hrs.

224

225 Differences in body weight between groups was not statistically significant, with CTRL chicks
226 having a mean weight at 87.67g and EHC chicks at 82.66g ($p = 0.31$). There was a significant
227 linear relationship between morphological parameters and body weight; villus height and VCR
228 increased as body weight increased (Figures B.4 and B.5, respectively).

229

230 Behavior

231 Behaviors were similar among groups. No differences were observed for food intake and water
232 intake. CTRL chicks consumed $0.05g \pm 0.11$ of food and $0.19g \pm 0.27$ of water. EHC chicks
233 consumed $0.28g \pm 0.11$ of food and $0.18g \pm 0.27$ of water. Other behaviors (Tables A.7, A.8)
234 were similar except for time spent sitting at 2 time-points. The EHC group spent less time sitting
235 than the CTRL at times 20 and 25min.

236

237 Discussion

238 Gene Expression

239 Heat shock proteins (HSP), which are distributed ubiquitously throughout the body, are crucial
240 for maintaining cell health and integrity (Dudeja et al., 2009), and can be indicators of stress,

241 cytoprotection, and immune response activation (Liu et al., 2014). In our study, differences in
242 HSP mRNA were observed in the duodenum, ileum, and combined segments, with several
243 factors reduced in the EHC group independent of heat challenge. HSP70 is a factor that is
244 induced in response to thermal challenge and actively combats inflammation, apoptosis, and
245 protein misfolding (Kisliouk et al., 2017; Hao et al., 2018). HSP47 is also triggered during heat
246 exposure and serves to avert procollagen misfolding; however, its expression correlates directly
247 with collagen impairment, suggesting possible negative long-term impacts on growth (Siddiqui
248 et al., 2020).

249

250 Responses to heat stress can have profound impacts on aerobic metabolism, leading to heightened
251 oxidative stress across various tissues due to the generation of reactive oxygen species (Rhoads et
252 al., 2013). The production of reactive oxygen species can generate dysfunction in regulation of
253 gene expression and redox signaling, damage to proteins and DNA/RNA (Barboza et al., 2017),
254 as well as contribute to leaky gut syndrome through changes in the ratio of anti-inflammatory to
255 pro-inflammatory molecules and alterations in bacterial compositions (Shandilya et al., 2022). We
256 observed HIF1A, a hypoxia-inducible factor, to be greater in the CTRL group in the duodenum.
257 Hypoxia-inducible factors are activated during hypoxic conditions, which can be induced by
258 elevated ambient temperature, to regulate and adapt to a lack of oxygen delivery to internal organs
259 (Rhoads et al., 2013; Li et al., 2015). With HIF1A's role in regulating angiogenesis, it is apparent
260 that the EHC group may have programmed gene expression levels that alter how they react to
261 changes in oxygen levels, nutrient supply, or tissue damage (Marchesi et al., 2019). XDH
262 expression was also greater in the CTRL group in the duodenum, and in the jejunum, it increased
263 during the heat challenge in both groups. XDH activity can directly yield superoxide anions (Lee

264 et al., 2014), or post-translational modification can cause the conversion of XDH to XO (xanthine
265 oxidase) and subsequent release of superoxide and hydrogen peroxide (Liang et al., 2024). XO's
266 long half-life allows time for reactive oxygen species to diffuse into the bloodstream and create
267 systematic effects (Liang et al., 2024).

268

269 Cellular antioxidant capacity is important to minimize oxidative stress. SOD, catalase, and GPX
270 are enzymatic antioxidants that can react with potentially harmful substrates (Pei et al., 2023).
271 SOD is responsible for the initial conversion of a superoxide anion into hydrogen peroxide whereas
272 catalase and GPX reduce hydrogen peroxide into water and oxygen. We observed a higher
273 expression of SOD1 in EHC chicks. SOD1 mRNA can be decreased due to heat stress (Belhadj
274 Slimen et al., 2014) and elevated expression after EHC could suggest more optimal intestinal
275 barrier integrity through an increase in growth of intestinal stem cells (Wang et al., 2022), and an
276 overall greater capacity to reduce oxidative stress and thus restrict harmful inflammatory responses
277 (Hwang et al., 2020).

278

279 Glucose, as a primary fuel source for cells throughout the body, is necessary for the production of
280 ATP to support physiological processes (Nakrani et al., 2024). Glucose transporters are essential
281 for nutrient uptake, metabolism, and sensing, which lead to the secretion of entero-hormones
282 (Koepsell, 2020). While some of the differences were segment-specific, overall there were
283 instances of greater GLUT1, GLUT2, and/or SGLT1 mRNA in EHC chicks. GLUT2 expression
284 is down-regulated during heat stress (Sun et al., 2015; Al-Zghoul et al., 2019), and others showed
285 that EHC leads to increases in intestinal SGLT1 expression (Rashid et al., 2016). In conjunction,
286 SGLT1 and GLUT2 work to transport glucose from the lumen, into an enterocyte, and into a

287 capillary to eventually be available as an energy source. Since neither SGLT1 or GLUT2
288 expression levels were impacted by time during heat challenge, results suggest that EHC leads to
289 greater metabolism of glucose or a preparation for rapid uptake of glucose to combat consequences
290 of a stressor that may affect energy supply (Sun et al., 2023). As for GLUT1, hypoxic conditions
291 can allow HIF1A to interact with HIF1B to increase GLUT1 expression, and oxidative stress
292 caused by XO can directly upregulate GLUT1 expression (Liemburg-Apers et al., 2015). However,
293 we saw no change of HIF1A or XDH mRNA abundance in EHC chicks. GLUT1, which is
294 observed in most epithelial cells that border the vasculature (Koepsell, 2020), is typically more
295 abundant in the colon than small intestine (Yoshikawa et al., 2011). Due to the young age of the
296 chicks, GLUT1 expression in the ileum could be indicative of a still-developing organ
297 (Aschenbach et al., 2009). GLUT1 can work as a compensatory mechanism in the large intestine
298 to achieve greater blood glucose concentrations as it couples with SGLT1 in a similar fashion to
299 GLUT2 (Yoshikawa et al., 2011). GLUT1 expression and circulating blood glucose are inversely
300 correlated, and blood glucose typically increases with heat stress (Abbas et al., 2020). Thus, higher
301 expression of GLUT1 in conjunction with higher expression of SGLT1 and GLUT2 in EHC chicks
302 could indicate an adaptation to alleviate the physiological demands of hepatic or renal
303 gluconeogenesis in response to heat stress (Watford, 1985; Kimball et al., 2018).

304

305 Morphology

306 Because of the pronounced temporal and treatment-related gene expression changes in the
307 duodenum as well as its vital role in nutrient transport, absorption, and digestion, the duodenum
308 was selected as the focus of the morphological analyses. Small intestinal morphological

309 parameters such as villus height, crypt depth, and VCR can indicate health of the small intestine
310 and thus relative health of the organism. High temperatures alter small intestinal morphology by
311 epithelial shedding and can increase crypt depth (Zhang et al., 2017; Ghulam Mohyuddin et al.,
312 2022). In our study, villus height was not altered; however, crypts deepened in the CTRL group
313 from 0 to 2hrs (Figure B.3). Crypt depth is a marker of nutrient digestion, nutrient absorption,
314 and cell proliferation (Adeleye et al., 2018). The deepening of the crypt in the CTRL group could
315 be indicative of a villus renewal process stimulated by inflammation by a stressor (Adeleye et al.,
316 2018). Simultaneously, a deeper crypt would also suggest reduced digestion and absorption of
317 nutrients, as it could suggest that more immature cells are being recruited to the villus that do not
318 yet have complete nutrient digestive and absorptive functions (Blachier et al., 2022).
319 Furthermore, the increase in VCR across the thermal challenge suggests higher rates of epithelial
320 turnover and nutrient absorption (Marchewka et al., 2021). Body weight had some correlation to
321 villus height and VCR but not crypt depth (Figures B.4, B.5).

322 Behavior

323 No difference was observed in food or water consumption between groups. Behaviorally, most
324 count and time characteristics were similar. Given that sitting time (s) is not directly a stress-
325 associated behavior and no other behaviors were affected, changes observed in the small intestine
326 are likely not secondary to behavior modification.

327

328 Conclusion

329 Factors affected by EHC can be targeted for future studies aimed at understanding epigenetic
330 changes that are likely occurring to cause these persistent gene expression effects. Although the

331 heat challenge did not accentuate or reveal changes that were EHC-specific, there were a number
332 of gene expression differences that were identified independent of heat challenge. It is possible
333 that our selection of sample times may have not captured the dynamics of the heat stress response,
334 or it is possible that some of the changes occurred post-translationally. Measuring mRNA reflects
335 a portion, albeit a large one, of how cellular activities are regulated and coordinated to maintain
336 cellular integrity and adaptive responses to environmental stimuli. In conclusion, results suggest
337 that EHC leads to gene expression differences in the small intestine that may reflect alterations in
338 responses to oxidative stress and hence the ability to maintain barrier integrity and allocate sources
339 of energy during a heat challenge.

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360 Appendices

361 Appendix A

362 **Table A.1.** Primers used for real-time PCR

Gene ¹	Accession no.	Sequences (forward/reverse)
β-actin	NM_205518.2	GTCCACCGCAAATGCTTCTAA/TGCGCA TTTATGGGTTTGT
GLUT1	NM_205209.2	TCCTGATCAACCGCAATGAG/TGCCCG GAGCTTCTT
GLUT2	NM_207178	GAAGGTGGAGGAGGCCAAA/TTTCATC GGGTCACAGTTCC
SGLT1	XM_046928028.1	GCCTCGAGCAGATTCTTTCA/ CCCTGGCCATGGCAGAT
HSP47	XM_046906875.1	TCATGGTACCCGCTCCTA/ TGTAGAGACCTGTACGATGCATCA
HSP60	NM_001012916.3	CGCAGACATGCTCCGTTG/ TCTGGACACCGGCCTGAT
HSP70	NM_001006685.2	TCGGCCGCAAGTATGATGA/ CGGAAGGGCCAGTGCTT
HMOX2	XM_040684169.2	GTGGAGTTGACTGCAGGGAAA/ TGGATAGTCCCCCTGGATTT
HIF1A	XM_040700545.2	TGGCAATGTCCCCACTACCT/ GGATCGGCATTGCTACGAA
XDH	XM_046913190.1	GGCATTCTCTAGGGTCAGTCTCTT/ CAAAACTAAGGGTTGTCTGAAAAGG
GPX7	NM_001163245.2	TCTAGCCATGCTCCTGCAA/ TGCTGAGTAGCGGAAAATGCT
SOD1	NM_205064.2	TGGCTTCCATGTGCATGAAT/ AGCACCTGCGCTGGTACAC
COX16	XM_046918459.1	TGATGCAGCTATACCAACGCTTA/

	TTCATGTGCAAGTCTGCCTAGTG
--	-------------------------

363 ¹Primers for β-actin (Actin), glucose transporter 1 (GLUT1), glucose transporter 2 (GLUT2),
364 sodium-glucose cotransporter 1 (SGLT1), heat shock protein 47 (HSP47), heat shock protein 60
365 (HSP60), heat shock protein 70 (HSP70), heme oxygenase 2 (HMOX2), hypoxia-inducible
366 factor 1-alpha (HIF1A), xanthene dehydrogenase (XDH), glutathione peroxidase 7 (GPX7)
367 cytochrome c oxidase 16 (COX16), and superoxide dismutase 1 (SOD1).

368 **Table A.2** Fold difference in mRNA of target genes¹ in the small intestine (duodenum, jejunum, ileum) of 4-day old chickens.

Small Intestine ²	GLUT1	GLUT2	SGLT1	HSP47	HSP60	HSP70
<i>Treatment³</i>						
CTRL	1.22±0.06	0.72±0.06	0.50±0.04	0.81±0.03	0.80±0.04	1.54±0.10
EHC	1.32±0.06	0.95±0.06	0.56±0.04	0.72±0.03	0.83±0.04	1.17±0.10
P-value	0.185	0.008	0.220	0.047	0.721	0.011
<i>Time</i>						
0	1.30±0.07	0.90±0.07	0.50±0.04	0.80±0.04	0.88±0.05	1.46 ^a ±0.12
2	1.25±0.07	0.81±0.07	0.60±0.04	0.81±0.04	0.88±0.05	1.58 ^a ±0.12
12	1.25±0.07	0.78±0.07	0.48±0.04	0.68±0.04	0.70±0.05	1.04 ^b ±0.12
P-value	0.846	0.498	0.122	0.043	0.0503	0.006
<i>Segment</i>						
Duodenum	1.08 ^b ±0.07	0.96 ^a ±0.07	1.09 ^a ±0.04	0.93 ^a ±0.04	1.01 ^a ±0.05	1.36 ^b ±0.12
Jejunum	1.30 ^{ab} ±0.07	1.15 ^a ±0.07	0.25 ^b ±0.04	0.78 ^b ±0.04	1.11 ^a ±0.05	1.75 ^a ±0.12
Ileum	1.42 ^a ±0.07	0.39 ^b ±0.07	0.26 ^b ±0.04	0.59 ^c ±0.04	0.33 ^b ±0.05	0.97 ^b ±0.12
P-value	0.0027	<0.0001	<0.0001	<0.0001	<0.0001	0.0001
<i>Treatment x Time</i>	0.984	0.893	0.661	0.889	0.946	0.623
<i>Treatment x Segment</i>	0.047	0.177	0.776	0.139	0.955	0.268
<i>Segment x Time</i>	0.463	0.404	0.354	0.092	0.243	0.010
<i>Treatment x Time x Segment</i>	0.793	0.699	0.980	0.988	0.886	0.159

369

370

371

372

373

Table A.2.1

Small Intestine ²	HMOX2	HIF1A	XDH	GPX7	SOD1	COX16
<i>Treatment</i> ³						
CTRL	1.01±0.07	1.04±0.05	1.05±0.05	0.58±0.04	0.85±0.04	1.00±0.14
EHC	0.96±0.07	0.96±0.05	0.90±0.05	0.56±0.04	0.97±0.04	0.84±0.14
P-value	0.689	0.245	0.035	0.744	0.044	0.423
<i>Time</i>						
0	0.89±0.09	0.91±0.06	0.85 ^b ±0.06	0.64±0.05	0.87±0.05	0.98±0.18
2	1.13±0.09	1.09±0.06	0.97 ^{ab} ±0.06	0.59±0.05	0.93±0.05	0.96±0.18
12	0.93±0.09	0.99±0.05	1.10 ^a ±0.06	0.49±0.05	0.93±0.05	0.82±0.17
P-value	0.151	0.105	0.014	0.093	0.643	0.776
<i>Segment</i>						
Duodenum	1.54 ^a ±0.09	1.10±0.06	1.29 ^a ±0.06	0.83 ^a ±0.05	1.09 ^a ±0.05	1.29 ^a ±0.18
Jejunum	0.62 ^b ±0.09	0.99±0.06	0.83 ^b ±0.06	0.35 ^c ±0.05	1.16 ^a ±0.05	0.49 ^b ±0.18
Ileum	0.80 ^b ±0.09	0.91±0.06	0.81 ^b ±0.06	0.53 ^b ±0.05	0.48 ^b ±0.05	0.98 ^{ab} ±0.18
P-value	<0.0001	0.078	<0.0001	<0.0001	<0.0001	0.007
<i>Treatment x Time</i>	0.671	0.339	0.043	0.393	0.427	0.865
<i>Treatment x Segment</i>	0.482	0.057	0.199	0.292	0.097	0.139
<i>Segment x Time</i>	0.0002	0.858	0.166	0.146	0.968	0.003
<i>Treatment x Time x Segment</i>	0.986	0.668	0.687	0.455	0.861	0.969

375 ¹GLUT 1,2 = glucose transporter 1 and 2; HSP47, 60, 70 = heat shock protein 47, 60, and 70; HMOX2 = heme oxygenase 2; HIF1A =
 376 hypoxia inducible factor 1-alpha; XDH = xanthene dehydrogenase; GPX7 = glutathione peroxidase 7; COX16 = cytochrome c oxidase
 377 16.

378 ² Values represent least square means ± SEM (n = 5-8 per treatment, per time, per segment), and P-values for main effects of
 379 treatment, time, and segment, and the corresponding two-way and three-way interaction(s) in the small intestine. Data were analyzed

380 using the $\Delta\Delta C_T$ method and relative quantity values were used for statistical analysis. Values without a common superscript within a
381 row and effect differ ($P \leq 0.05$).

382 ³ CTRL = control; EHC = embryonic heat conditioned chicks.

383

384

385

386

387

388

389

390

391

392 **Table A.3** Fold difference in mRNA of target genes¹ in the duodenum in 4-day old chickens.

Duodenum ²	GLUT1	GLUT2	SGLT1	HSP47	HSP60	HSP70
<i>Treatment³</i>						
CTRL	1.14±0.09	0.92±0.09	1.03±0.10	1.04±0.07	1.01±0.09	1.53±0.15
EHC	1.02±0.09	0.99±0.09	1.14±0.10	0.82±0.07	1.01±0.09	1.18±0.15
P-value	0.321	0.554	0.472	0.027	0.992	0.105
<i>Time</i>						
0	1.03±0.11	1.14±0.11	1.07±0.12	1.00 ^{ab} ±0.09	1.10±0.12	1.20 ^b ±0.18
2	1.19±0.11	0.99±0.11	1.24±0.12	1.04 ^a ±0.09	1.16±0.12	1.88 ^a ±0.18
12	1.03±0.11	0.75±0.11	0.94±0.12	0.75 ^b ±0.09	0.76±0.12	0.99 ^b ±0.18
P-value	0.467	0.059	0.244	0.043	0.051	0.003
<i>Treatment x Time</i>	0.732	0.824	0.884	0.848	0.848	0.336

393

394

395

396

397

398

399

400

401

402 **Table A.3.1**

Duodenum ²	HMOX2	HIF1A	XDH	GPX7	SOD1	COX16
<i>Treatment³</i>						
CTRL	1.64±0.19	1.26±0.10	1.45±0.09	0.90±0.10	1.10±0.09	1.65±0.39
EHC	1.43±0.19	0.93±0.10	1.12±0.09	0.77±0.10	1.08±0.09	0.93±0.39
P-value	0.435	0.034	0.012	0.346	0.870	0.203
<i>Time</i>						
0	1.02 ^b ±0.23	0.96±0.12	1.09±0.11	0.78±0.12	1.05±0.11	0.68±0.48
2	2.11 ^a ±0.23	1.23±0.12	1.35±0.11	0.96±0.12	1.13±0.11	1.68±0.48
12	1.48 ^{ab} ±0.23	1.11±0.12	1.41±0.10	0.76±0.12	1.09±0.12	1.51±0.47
P-value	0.010	0.305	0.090	0.453	0.889	0.298
<i>Treatment x Time</i>	0.874	0.605	0.124	0.341	0.970	0.881

403 ¹GLUT 1,2 = glucose transporter 1 and 2; HSP47, 60, 70 = heat shock protein 47, 60, and 70; HMOX2 = heme oxygenase 2; HIF1A =
 404 hypoxia inducible factor 1-alpha; XDH = xanthene dehydrogenase; GPX7 = glutathione peroxidase 7; COX16 = cytochrome c oxidase
 405 16.

406 ² Values represent least square means ± SEM (n = 6-8 per treatment, per time), and P-values for main effects of treatment, time, and
 407 the treatment by time interaction in the duodenum. Data were analyzed using the $\Delta\Delta C_T$ method and relative quantity values were used
 408 for statistical analysis. Values without a common superscript within a row and effect differ ($P \leq 0.05$).

409 ³ CTRL = control; EHC = embryonic heat conditioned chicks.

410

411

412 **Table A.4** Fold difference in mRNA of target genes¹ in the jejunum in 4-day old chickens.

Jejunum ²	GLUT1	GLUT2	SGLT1	HSP47	HSP60	HSP70
Treatment ³						
CTRL	1.26±0.09	0.92±0.15	0.24±0.02	0.80±0.05	1.09±0.08	1.80±0.13
EHC	1.34±0.08	1.37±0.15	0.26±0.02	0.75±0.05	1.14±0.08	1.70±0.13
P-value	0.531	0.037	0.524	0.576	0.705	0.613
Time						
0	1.36±0.10	1.17±0.18	0.20 ^b ±0.02	0.73±0.06	1.22±0.10	1.64±0.16
2	1.17±0.11	1.06±0.19	0.29 ^a ±0.02	0.80±0.06	1.09±0.11	2.07±0.17
12	1.38±0.10	1.20±0.18	0.25 ^{ab} ±0.02	0.80±0.06	1.03±0.10	1.55±0.16
P-value	0.317	0.857	0.034	0.601	0.482	0.071
Treatment x Time	0.610	0.755	0.403	0.998	0.827	0.808

413

414

415

416

417

418

419

420

421

422 **Table A.4.1**

Jejunum ²	HMOX2	HIF1A	XDH	GPX7	SOD1	COX16
Treatment ³						
CTRL	0.59±0.04	0.96±0.07	0.88±0.09	0.36±0.04	1.01±0.08	0.51±0.07
EHC	0.65±0.04	1.01±0.07	0.78±0.08	0.34±0.04	1.31±0.08	0.47±0.07
P-value	0.260	0.627	0.433	0.679	0.012	0.729
Time						
0	0.66±0.04	0.93±0.09	0.76 ^{ab} ±0.10	0.40±0.05	1.13±0.10	0.46±0.09
2	0.56±0.05	1.02±0.09	0.66 ^b ±0.11	0.36±0.05	1.14±0.10	0.52±0.09
12	0.64±0.04	1.00±0.09	1.07 ^a ±0.10	0.28±0.05	1.22±0.10	0.48±0.08
P-value	0.266	0.777	0.022	0.168	0.807	0.920
Treatment x Time	0.883	0.232	0.729	0.504	0.324	0.409

423 ¹GLUT 1,2 = glucose transporter 1 and 2; HSP47, 60, 70 = heat shock protein 47, 60, and 70; HMOX2 = heme oxygenase 2; HIF1A =
424 hypoxia inducible factor 1-alpha; XDH = xanthene dehydrogenase; GPX7 = glutathione peroxidase 7; COX16 = cytochrome c oxidase
425 16.

426 ² Values represent least square means ± SEM (n = 5-8 per treatment, per time), and P-values for main effects of treatment, time, and
427 the treatment by time interaction in the jejunum. Data were analyzed using the $\Delta\Delta C_T$ method and relative quantity values were used
428 for statistical analysis. Values without a common superscript within a row and effect differ ($P \leq 0.05$).

429 ³ CTRL = control; EHC = embryonic heat conditioned chicks.

430

431

432 **Table A.5** Fold difference in mRNA of target genes¹ in the ileum in 4-day old chickens.

Ileum ²	GLUT1	GLUT2	SGLT1	HSP47	HSP60	HSP70
<i>Treatment</i> ³						
CTRL	1.24±0.12	0.31±0.05	0.22±0.02	0.60±0.05	0.32±0.03	1.30±0.22
EHC	1.61±0.13	0.47±0.05	0.29±0.02	0.59±0.05	0.34±0.03	0.64±0.24
P-value	0.040	0.049	0.034	0.799	0.641	0.047
<i>Time</i>						
0	1.52±0.15	0.39±0.07	0.23±0.03	0.69±0.06	0.33±0.04	1.55 ^a ±0.28
2	1.40±0.16	0.38±0.06	0.28±0.03	0.60±0.06	0.33±0.03	0.78 ^{ab} ±0.28
12	1.35±0.15	0.40±0.06	0.25±0.03	0.50±0.06	0.31±0.03	0.58 ^b ±0.28
P-value	0.719	0.979	0.493	0.094	0.929	0.046
<i>Treatment x Time</i>	0.850	0.183	0.179	0.952	0.425	0.201

433

434

435

436

437

438

439 **Table A.5.1**

Ileum ²	HMOX2	HIF1A	XDH	GPX7	SOD1	COX16
<i>Treatment³</i>						
CTRL	0.78±0.08	0.90±0.07	0.82±0.08	0.49±0.07	0.43±0.04	0.85±0.16
EHC	0.82±0.08	0.92±0.08	0.79±0.09	0.58±0.07	0.52±0.04	1.11±0.16
P-value	0.768	0.823	0.811	0.323	0.101	0.273
<i>Time</i>						
0	1.01 ^a ±0.10	0.84±0.09	0.70±0.11	0.74 ^a ±0.08	0.42±0.05	1.80 ^a ±0.20
2	0.72 ^{ab} ±0.10	1.03±0.09	0.90±0.11	0.45 ^b ±0.08	0.52±0.05	0.67 ^b ±0.20
12	0.68 ^b ±0.10	0.86±0.09	0.82±0.10	0.42 ^b ±0.08	0.49±0.05	0.46 ^b ±0.21
P-value	0.037	0.283	0.423	0.018	0.370	<0.0001
<i>Treatment x Time</i>	0.531	0.575	0.194	0.511	0.808	0.959

440 ¹ GLUT 1,2 = glucose transporter 1 and 2; HSP47, 60, 70 = heat shock protein 47, 60, and 70; HMOX2 = heme oxygenase 2; HIF1A =
 441 hypoxia inducible factor 1-alpha; XDH = xanthene dehydrogenase; GPX7 = glutathione peroxidase 7; COX16 = cytochrome c oxidase
 442 16.

443 ² Values represent least square means ± SEM (n = 6-8 per treatment, per time), and P-values for main effects of treatment, time, and
 444 the treatment by time interaction in the ileum. Data were analyzed using the $\Delta\Delta C_T$ method and relative quantity values were used for
 445 statistical analysis. Values without a common superscript within a row and effect differ ($P \leq 0.05$).

446 ³ CTRL = control; EHC = embryonic heat conditioned chicks.

447 **Table A.6** Duodenal villus height, crypt depth, and villus-height:crypt-depth in 4-day old chicks¹.

	Villus Height (μm) ²	Crypt Depth (μm) ²	Villus-height:Crypt-depth ²
Treatment ³			
CTRL	894.68±25.52	202.32±3.91	4.48±0.15
EHC	881.41±25.67	188.54±3.91	4.64±0.14
P-value	0.711	0.018	0.432
Time			
0	855.73±30.97	183.34 ^b ±4.74	4.69 ^{ab} ±0.18
2	893.59±32.48	213.62 ^a ±5.20	4.14 ^b ±0.19
12	914.81±28.67	189.33 ^b ±4.39	4.85 ^a ±0.16
P-value	0.382	0.0004	0.021
Treatment x Time	0.532	0.025	0.115
Body Weight	0.0005	0.566	0.028

448 ¹ Values represent least square means ± SEM from 10 measurements of villus height and 10 measurements of crypt depth per chick (n
 449 = 5-7; per treatment per time-point), and *P*-values for main effects of treatment, time, the treatment by time interaction, and correlation
 450 to body weight (“Body Weight”) in the duodenum. Values without a common superscript within a row and effect differ (*P* ≤ 0.05).

451 ² The villus height was defined as the top of the crypt to the tip of the villus, and the crypt depth was defined as the bottom of the
 452 villus to the bottom of the invagination beside the crypt. Villus-height:crypt-depth is the ratio of villus height to crypt depth.

453 ³ CTRL = control; EHC = embryonic heat conditioned chicks.

454

455 **Table A.7** Count-type behaviors in chicks (Experiment 3)¹.456 * Significantly different ($P \leq 0.05$) from CTRL.

		Time (min)					
Behavior	Treatment ²	5	10	15	20	25	30
Steps (n)	CTRL	31.6 \pm 9.7	50.3 \pm 13.5	73.5 \pm 21.9	84.9 \pm 23.1	99.0 \pm 25.3	112.6 \pm 31.6
	EHC	30.50 \pm 7.28	61.20 \pm 13.19	87.0 \pm 21.2	107.6 \pm 26.7	121.5 \pm 31.9	127.8 \pm 34.5
Distance Traveled (m)	CTRL	1.9 \pm 0.5	3.0 \pm 0.7	4.5 \pm 1.2	5.5 \pm 1.3	6.4 \pm 1.5	7.5 \pm 1.9
	EHC	2.3 \pm 0.4	4.1 \pm 0.7	5.7 \pm 1.1	7.6 \pm 1.7	8.6 \pm 2.2	9.0 \pm 2.4
Water Pecks (n)	CTRL	0.0	0.0	0.0	0.0	0.0	0.0
	EHC	0.0	0.07 \pm 0.07	0.15 \pm 0.10	0.4 \pm 0.2	0.4 \pm 0.2	0.6 \pm 0.3
Food Pecks (n)	CTRL	20.1 \pm 12.19	38.1 \pm 27.6	45.9 \pm 34.8	65.3 \pm 37.2	68.7 \pm 37.0	68.9 \pm 37.0
	EHC	0.54 \pm 0.27	0.77 \pm 0.32	1.23 \pm 0.60	1.38 \pm 0.62	1.62 \pm 0.73	14.0 \pm 8.83
Jumps (n)	CTRL	0.0	0.0	0.27 \pm 0.27	0.55 \pm 0.45	0.64 \pm 0.54	0.73 \pm 0.63
	EHC	0.07 \pm 0.07	0.15 \pm 0.1	0.23 \pm 0.16	0.23 \pm 0.17	0.23 \pm 0.17	0.23 \pm 0.17
Escape Attempts (n)	CTRL	0.54 \pm 0.25	0.64 \pm 0.31	0.72 \pm 0.38	0.82 \pm 0.38	0.82 \pm 0.38	0.91 \pm 0.46
	EHC	0.15 \pm 0.10	0.23 \pm 0.12	0.54 \pm 0.27	0.77 \pm 0.34	0.85 \pm 0.34	0.92 \pm 0.34

457 ¹ Values are the means \pm SEM. Data are from 11-13 chicks per treatment.458 ² CTRL = control; EHC = embryonic heat conditioned chicks.

459

460

461

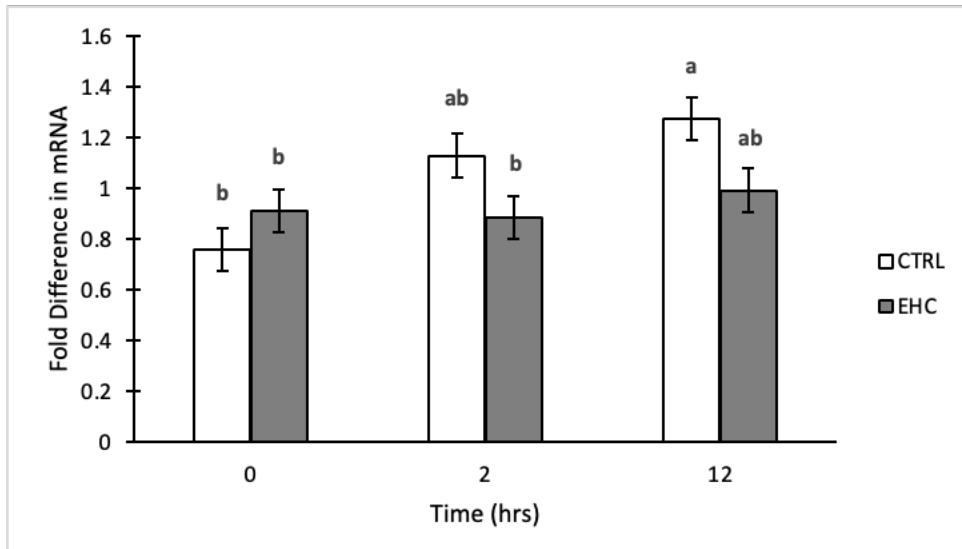

462 **Table A.8** Timed-type behaviors in chicks (Experiment 3)¹.

463 * Significantly different ($P \leq 0.05$) from CTRL.

		Time (min)					
Behavior	Treatment ²	5	10	15	20	25	30
Preening Time (sec)	CTRL	0.99 ± 0.68	1.40 ± 0.97	1.40 ± 0.97	1.51 ± 0.97	3.92 ± 1.73	3.92 ± 1.73
	EHC	0.70 ± 0.51	0.82 ± 0.51	0.82 ± 0.51	1.40 ± 0.71	1.80 ± 1.04	1.80 ± 1.04
Standing Time (sec)	CTRL	241.6 ± 27.6	433.6 ± 63.1	568 ± 97.1	694.8 ± 130.9	823.5 ± 166.2	929.0 ± 203.9
	EHC	250.2 ± 19.9	480.5 ± 36.9	666.8 ± 62.9	847.2 ± 98.1	996.2 ± 134.1	1125.0 ± 166.3
Sitting Time (sec)	CTRL	42.8 ± 23.1	81.9 ± 29.6	145.9 ± 39.4	181.6 ± 43.8	195.7 ± 46.6	203.8 ± 48.0
	EHC	25.7 ± 18.4	28.8 ± 25.0	61.5 ± 29.4	79.4 ± 41.4*	81.8 ± 42.8*	111.8 ± 54.0
Perching Time (sec)	CTRL	11.9 ± 7.8	12.6 ± 7.9	14.6 ± 7.8	24.8 ± 10.3	27.8 ± 10.4	27.8 ± 10.4
	EHC	8.3 ± 8.2	15.7 ± 14.3	18.4 ± 14.5	22.1 ± 18.1	23.3 ± 17.9	47.79 ± 28.5
Sleeping Time (sec)	CTRL	0.0	67.5 ± 35.3	166.4 ± 75.4	282.4 ± 108.9	432.6 ± 146.0	611.2 ± 180.8
	EHC	12.1 ± 9.8	39.2 ± 24.8	136.8 ± 51.9	234.3 ± 85.6	381.3 ± 119.1	498.4 ± 149.9

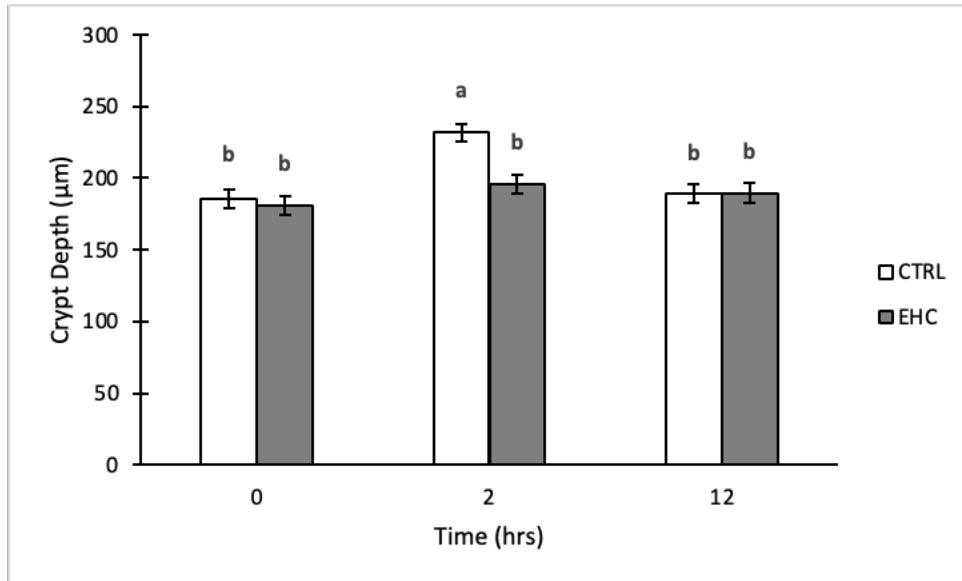
464 ¹ Values are the means ± SEM. Data are from 11-13 chicks per treatment.

465 ² CTRL = control; EHC = embryonic heat conditioned chicks.



467

468 **Fig. B.1.** Representative cross-section from EHC chick with example measurements of villus


469 height and crypt depth. 980.82 micrometers

470

471
472 **Fig. B.2.** XDH (xanthene dehydrogenase) mRNA in the small intestine. XDH increased in the
473 CTRL (control) group between time 0 and time 12. No differences were observed in the EHC
474 (embryonic heat conditioned) group. Times (0, 2, 12) represent duration of exposure to a heat
475 challenge. Values are least squares means \pm SEM. Bars with unique superscripts are different (P
476 ≤ 0.05).

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

496 **Fig. B.3.** Crypt depth (μm) in duodenum over time (0, 2, 12hrs) in 4-day old chicks. An increase
 497 in crypt depth occurred between 0 and 2hrs for CTRL with a return to baseline by 12hrs. Times
 498 (0, 2, 12) represent duration of exposure to a heat challenge. Values are least squares means \pm
 499 SEM. Bars with unique superscripts are different ($P \leq 0.05$).

500

501

502

503

504

505

506

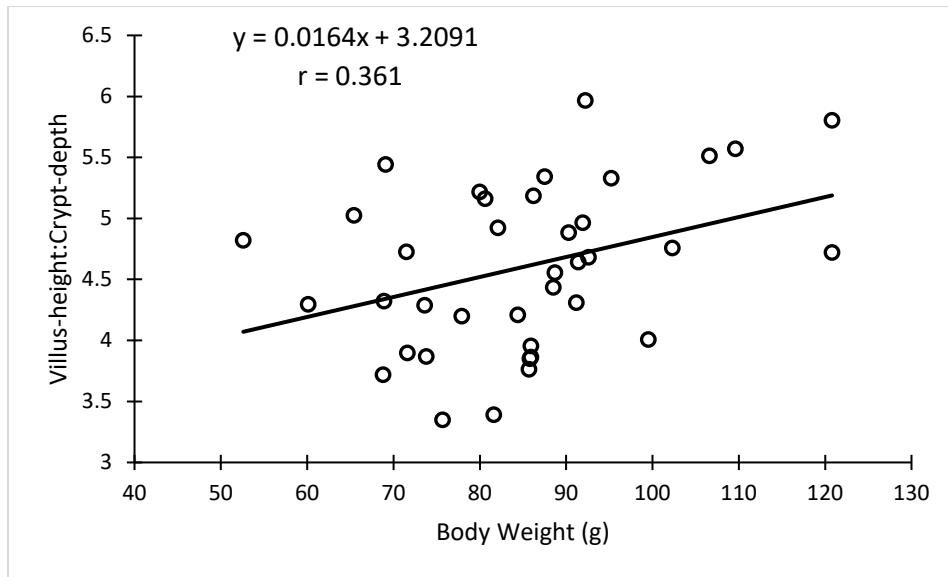
507

508

509

510

511


512

513

514

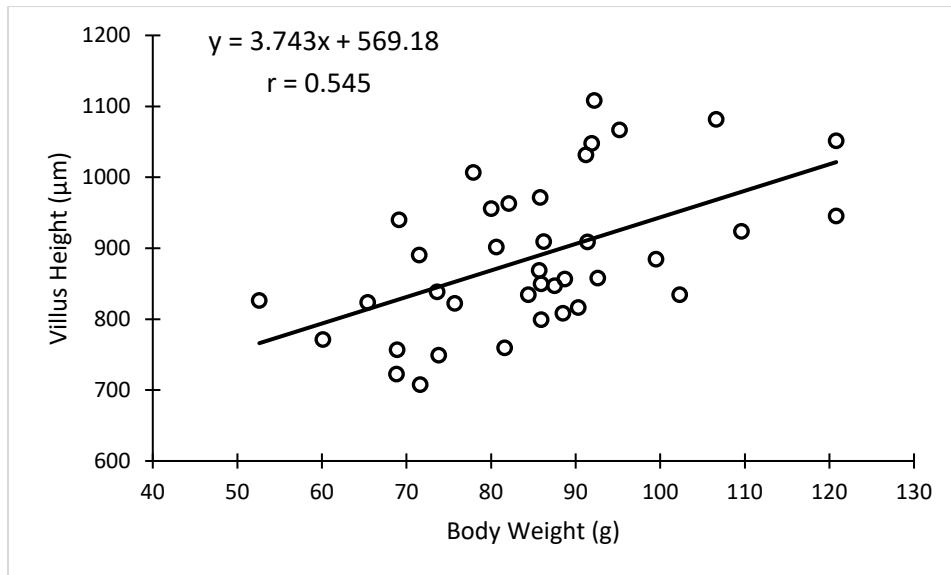
515

516

517

518 **Fig. B.4.** Scatterplot of relationship between body weight (g) and villus-height to crypt-depth
519 ratio in 4-day old chicks.

520


521

522

523

524

525

526

527 **Fig. B.5.** Scatterplot showing relationship between body weight (g) and villus height (μm) in 4-
528 day old chicks.

529

530

531

532

533

534

535

536

537

538

539

540

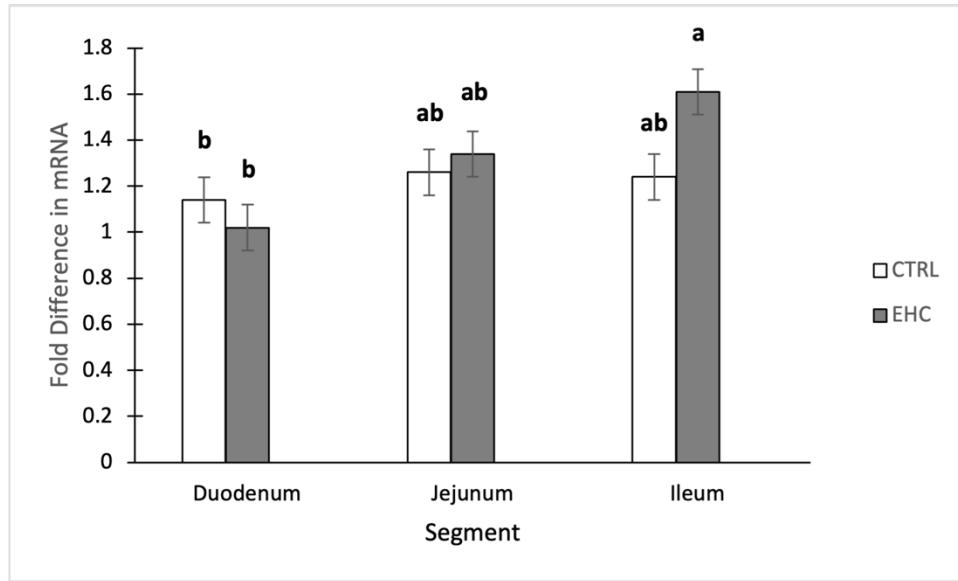
541

542

543

544

545


546

547

548

549

550 Appendix C (Supplemental Figures)

551

552 **Fig. C.6.** GLUT1 (glucose transporter 1) mRNA expression in the combined segments. Values
553 are least squares means \pm SEM. Bars with unique superscripts are different ($P \leq 0.05$).

554

555

556

557

558

559

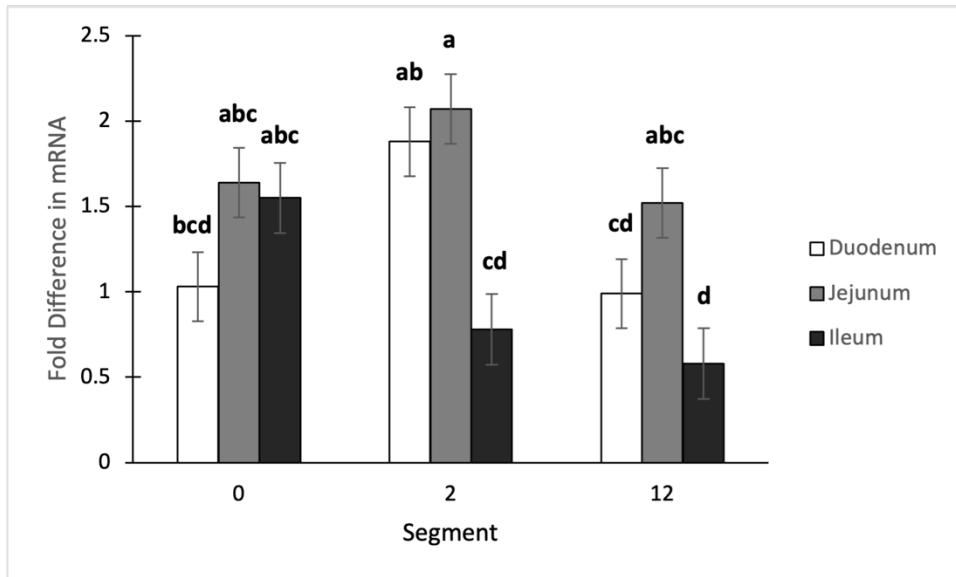
560

561

562

563

564


565

566

567

568

569

570

571 **Fig. C.7.** HSP70 (heat shock protein 70) mRNA expression in the combined segments. Values
 572 are least squares means \pm SEM. Bars with unique superscripts are different ($P \leq 0.05$).

573

574

575

576

577

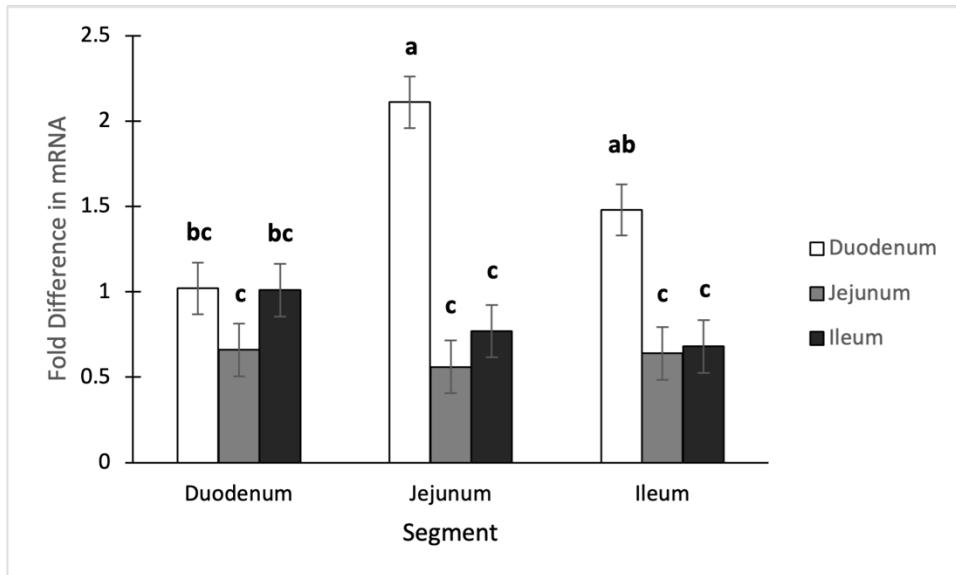
578

579

580

581

582


583

584

585

586

587

588

589 **Fig. C.8.** HMOX2 (heme oxygenase 2) mRNA expression in the combined segments. Values are
 590 least squares means \pm SEM. Bars with unique superscripts are different ($P \leq 0.05$).

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605 References

606 Abbas, Z., Sammad, A., Hu, L., Fang, H., Xu, Q., Wang, Y., 2020. Glucose Metabolism and
607 Dynamics of Facilitative Glucose Transporters (GLUTs) under the Influence of Heat Stress
608 in Dairy Cattle. *Metabolites* 10, 312. <https://doi.org/10.3390/metabo10080312>

609 Adeleye, O.O., Otakoya, I.O., Fafiolu, A.O., Alabi, J.O., Egbeyle, L.T., Idowu, O.M.O., 2018.
610 Serum chemistry and gut morphology of two strains of broiler chickens to varying interval
611 of post hatch feeding. *Veterinary and Animal Science* 5, 20–25.
612 <https://doi.org/10.1016/j.vas.2017.12.001>

613 Al-Zghoul, M., Alliftawi, A., Saleh, K., Jaradat, Z., 2019. Expression of digestive enzyme and
614 intestinal transporter genes during chronic heat stress in the thermally manipulated broiler
615 chicken. *Poultry Science* 98. <https://doi.org/10.3382/ps/pez249>

616 Aschenbach, J.R., Steglich, K., Gäbel, G., Honscha, K.U., 2009. Expression of mRNA for
617 glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigs. *J Physiol
618 Biochem* 65, 251–266. <https://doi.org/10.1007/BF03180578>

619 Barboza, G.D. de, Guizzardi, S., Moine, L., Talamoni, N.T. de, 2017. Oxidative stress,
620 antioxidants and intestinal calcium absorption. *World Journal of Gastroenterology* 23,
621 2841–2853. <https://doi.org/10.3748/wjg.v23.i16.2841>

622 Belhadj Slimen, I., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., Abdrabbah, M., 2014.
623 Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A
624 review. *International Journal of Hyperthermia* 30, 513–523.
625 <https://doi.org/10.3109/02656736.2014.971446>

626 Blachier, F., Andriamihaja, M., Kong, X.-F., 2022. Fate of undigested proteins in the pig large
627 intestine: What impact on the colon epithelium? *Animal Nutrition* 9, 110–118.
628 <https://doi.org/10.1016/j.aninu.2021.08.001>

629 Boekelheide, K., Blumberg, B., Chapin, R.E., Cote, I., Graziano, J.H., Janesick, A., Lane, R.,
630 Lillycrop, K., Myatt, L., States, J.C., Thayer, K.A., Waalkes, M.P., Rogers, J.M., 2012.
631 Predicting Later-Life Outcomes of Early-Life Exposures. *Environ Health Perspect* 120,
632 1353–1361. <https://doi.org/10.1289/ehp.1204934>

633 Brugaletta, G., Teyssier, J.-R., Rochell, S.J., Dridi, S., Sirri, F., 2022. A review of heat stress in
634 chickens. Part I: Insights into physiology and gut health. *Front Physiol* 13, 934381.
635 <https://doi.org/10.3389/fphys.2022.934381>

636 Dillon, M.E., Wang, G., Huey, R.B., 2010. Global metabolic impacts of recent climate warming.
637 *Nature* 467, 704–706. <https://doi.org/10.1038/nature09407>

638 Dudeja, V., Vickers, S.M., Saluja, A.K., 2009. The role of heat shock proteins in gastrointestinal
639 diseases. *Gut* 58, 1000–1009. <https://doi.org/10.1136/gut.2007.140194>

640 Garcia, C.K., Renteria, L.I., Leite-Santos, G., Leon, L.R., Laitano, O., 2022. Exertional heat
641 stroke: pathophysiology and risk factors. *BMJ Med* 1, e000239.
642 <https://doi.org/10.1136/bmjmed-2022-000239>

643 Ghulam Mohyuddin, S., Khan, I., Zada, A., Qamar, A., Arbab, A.A.I., Ma, X., Yu, Z., Liu, X.-
644 X., Yong, Y.-H., Ju, X.H., Zhang-Ping, Y., Yong Jiang, M., 2022. Influence of Heat Stress
645 on Intestinal Epithelial Barrier Function, Tight Junction Protein, and Immune and
646 Reproductive Physiology. *Biomed Res Int* 2022, 8547379.
647 <https://doi.org/10.1155/2022/8547379>

648 Hao, Y., Feng, Y., Li, J., Gu, X., 2018. Role of MAPKs in HSP70's Protection against Heat
649 Stress-Induced Injury in Rat Small Intestine. *Biomed Res Int* 2018, 1571406.
650 <https://doi.org/10.1155/2018/1571406>

651 Hwang, J., Jin, J., Jeon, S., Moon, S.H., Park, M.Y., Yum, D.-Y., Kim, J.H., Kang, J.-E., Park,
652 M.H., Kim, E.-J., Pan, J.-G., Kwon, O., Oh, G.T., 2020. SOD1 suppresses pro-
653 inflammatory immune responses by protecting against oxidative stress in colitis. *Redox Biol*
654 37, 101760. <https://doi.org/10.1016/j.redox.2020.101760>

655 Kimball, A.L., McCue, P.M., Petrie, M.A., Shields, R.K., 2018. Whole body heat exposure
656 modulates acute glucose metabolism. *International Journal of Hyperthermia* 35, 644–651.
657 <https://doi.org/10.1080/02656736.2018.1516303>

658 Kisliouk, T., Cramer, T., Meiri, N., 2017. Methyl CpG level at distal part of heat-shock protein
659 promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of
660 POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex. *Journal of*
661 *Neurochemistry* 141, 358–372. <https://doi.org/10.1111/jnc.14014>

662 Koepsell, H., 2020. Glucose transporters in the small intestine in health and disease. *Pflugers
663 Arch* 472, 1207–1248. <https://doi.org/10.1007/s00424-020-02439-5>

664 Lee, M.-C., Velayutham, M., Komatsu, T., Hille, R., Zweier, J.L., 2014. Measurement and
665 Characterization of Superoxide Generation from Xanthine Dehydrogenase: A Redox-
666 Regulated Pathway of Radical Generation in Ischemic Tissues. *Biochemistry* 53, 6615–
667 6623. <https://doi.org/10.1021/bi500582r>

668 Li, H., Wu, Q., Xu, L., Li, X., Duan, J., Zhan, J., Feng, J., Sun, X., Chen, H., 2015. Increased
669 oxidative stress and disrupted small intestinal tight junctions in cigarette smoke-exposed
670 rats. *Molecular Medicine Reports* 11, 4639–4644. <https://doi.org/10.3892/mmr.2015.3234>

671 Liang, Q., Huan, S., Lin, Y., Su, Z., Yao, X., Li, C., Ji, Z., Zhang, X., 2024. Screening of heat
672 stress-related biomarkers in chicken serum through label-free quantitative proteomics.
673 *Poultry Science* 103, 103340. <https://doi.org/10.1016/j.psj.2023.103340>

674 Liemburg-Apers, D.C., Willems, P.H.G.M., Koopman, W.J.H., Grefte, S., 2015. Interactions
675 between mitochondrial reactive oxygen species and cellular glucose metabolism. *Arch
676 Toxicol* 89, 1209–1226. <https://doi.org/10.1007/s00204-015-1520-y>

677 Liu, H., Dicksved, J., Lundh, T., Lindberg, J.E., 2014. Heat Shock Proteins: Intestinal
678 Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. *Pathogens*
679 3, 187–210. <https://doi.org/10.3390/pathogens3010187>

680 Marchesi, J.A.P., Ibelli, A.M.G., Peixoto, J.O., Cantão, M.E., Pandolfi, J.R.C., Marciano,
681 C.M.M., Zanella, R., Settles, M.L., Coutinho, L.L., Ledur, M.C., 2019. Whole
682 transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms
683 involved with white striping in broiler chickens. *Poultry Science* 98, 590–601.
684 <https://doi.org/10.3382/ps/pey429>

685 Marchewka, J., Sztandarski, P., Zdanowska-Sasiadek, Ź., Adamek-Urbańska, D., Damaziak, K.,
686 Wojciechowski, F., Riber, A.B., Gunnarsson, S., 2021. Gastrointestinal Tract
687 Morphometrics and Content of Commercial and Indigenous Chicken Breeds with Differing
688 Ranging Profiles. *Animals* 11, 1881. <https://doi.org/10.3390/ani11071881>

689 Mayorga, E.J., Ross, J.W., Keating, A.F., Rhoads, R.P., Baumgard, L.H., 2020. Biology of heat
690 stress; the nexus between intestinal hyperpermeability and swine reproduction.
691 *Theriogenology* 154, 73–83. <https://doi.org/10.1016/j.theriogenology.2020.05.023>

692 Mu, Q., Kirby, J., Reilly, C.M., Luo, X.M., 2017. Leaky Gut As a Danger Signal for
693 Autoimmune Diseases. *Frontiers in Immunology* 8.
694 <https://doi.org/10.3389/fimmu.2017.00598>

695 Nakrani, M.N., Wineland, R.H., Anjum, F., 2024. Physiology, Glucose Metabolism, in:
696 StatPearls. StatPearls Publishing, Treasure Island (FL).

697 Paital, B., Panda, S.K., Hati, A.K., Mohanty, B., Mohapatra, M.K., Kanungo, S., Chainy,
698 G.B.N., 2016. Longevity of animals under reactive oxygen species stress and disease
699 susceptibility due to global warming. *World J Biol Chem* 7, 110–127.
700 <https://doi.org/10.4331/wjbc.v7.i1.110>

701 Pei, J., Pan, X., Wei, G., Hua, Y., 2023. Research progress of glutathione peroxidase family
702 (GPX) in redoxidation. *Front Pharmacol* 14, 1147414.
703 <https://doi.org/10.3389/fphar.2023.1147414>

704 Rashid, A., Sharma, S.K., Tyagi, J.S., Mohan, J., Narayan, R., Kolluri, G., Singh, R.P., n.d.
705 Incubation Temperatures Affect Expression of Nutrient Transporter Genes in Japanese
706 Quail. *Asian Journal of Animal and Veterinary Advances* 11, 538–547.
707 <https://doi.org/10.3923/ajava.2016.538.547>

708 Rhoads, R.P., Baumgard, L.H., Suagee, J.K., Sanders, S.R., 2013. Nutritional Interventions to
709 Alleviate the Negative Consequences of Heat Stress. *Advances in Nutrition* 4, 267–276.
710 <https://doi.org/10.3945/an.112.003376>

711 Rosenberg, T., Kisliouk, T., Ben-Nun, O., Cramer, T., Meiri, N., n.d. Cross-tolerance: embryonic
712 heat conditioning induces inflammatory resilience by affecting different layers of epigenetic
713 mechanisms regulating IL6 expression later in life. *Epigenetics* 16, 228–241.
714 <https://doi.org/10.1080/15592294.2020.1795596>

715 Rosenberg, T., Marco, A., Kisliouk, T., Haron, A., Shinder, D., Druyan, S., Meiri, N., 2022.
716 Embryonic heat conditioning in chicks induces transgenerational heat/immunological
717 resilience via methylation on regulatory elements. *The FASEB Journal* 36, e22406.
718 <https://doi.org/10.1096/fj.202101948R>

719 Rostagno, M.H., 2020. Effects of heat stress on the gut health of poultry. *J Anim Sci* 98,
720 skaa090. <https://doi.org/10.1093/jas/skaa090>

721 Shandilya, S., Kumar, S., Kumar Jha, N., Kumar Kesari, K., Ruokolainen, J., 2022. Interplay of
722 gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection.
723 *Journal of Advanced Research* 38, 223–244. <https://doi.org/10.1016/j.jare.2021.09.005>

724 Siddiqui, S.H., Kang, D., Park, J., Khan, M., Shim, K., 2020. Chronic heat stress regulates the
725 relation between heat shock protein and immunity in broiler small intestine. *Sci Rep* 10,
726 18872. <https://doi.org/10.1038/s41598-020-75885-x>

727 Sun, B., Chen, H., Xue, J., Li, P., Fu, X., 2023. The role of GLUT2 in glucose metabolism in
728 multiple organs and tissues. *Mol Biol Rep* 50, 6963–6974. <https://doi.org/10.1007/s11033-023-08535-w>

729 Sun, X., Zhang, H., Sheikhahmadi, A., Wang, Y., Jiao, H., Lin, H., Song, Z., 2015. Effects of
730 heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens
731 (*Gallus gallus domesticus*). *Int J Biometeorol* 59, 127–135. <https://doi.org/10.1007/s00484-014-0829-1>

732 Wang, Y.-C., Leng, X.-X., Zhou, C.-B., Lu, S.-Y., Tsang, C.K., Xu, J., Zhang, M.-M., Chen, H.-
733 M., Fang, J.-Y., 2022. Non-enzymatic role of SOD1 in intestinal stem cell growth. *Cell
734 Death Dis* 13, 1–13. <https://doi.org/10.1038/s41419-022-05267-w>

735

736

737 Watford, M., 1985. Gluconeogenesis in the chicken: regulation of phosphoenolpyruvate
738 carboxykinase gene expression. *Fed Proc* 44, 2469–2474.

739 Yoshikawa, T., Inoue, R., Matsumoto, M., Yajima, T., Ushida, K., Iwanaga, T., 2011.
740 Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5)
741 throughout the mouse gastrointestinal tract. *Histochem Cell Biol* 135, 183–194.
742 <https://doi.org/10.1007/s00418-011-0779-1>

743 Zhang, C., Zhao, X.H., Yang, L., Chen, X.Y., Jiang, R.S., Jin, S.H., Geng, Z.Y., 2017.
744 Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora,
745 and barrier integrity in broilers. *Poultry Science* 96, 4325–4332.
746 <https://doi.org/10.3382/ps/pex266>