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Abstract. Scene representations using 3D Gaussian primitives have
produced excellent results in modeling the appearance of static and dy-
namic 3D scenes. Many graphics applications, however, demand the abil-
ity to manipulate both the appearance and the physical properties of ob-
jects. We introduce Feature Splatting, an approach that unifies physics-
based dynamic scene synthesis with rich semantics from vision language
foundation models that are grounded by natural language. Our first con-
tribution is a way to distill high-quality, object-centric vision-language
features into 3D Gaussians, that enables semi-automatic scene decompo-
sition using text queries. Our second contribution is a way to synthesize
physics-based dynamics from an otherwise static scene using a particle-
based simulator, in which material properties are assigned automatically
via text queries. We ablate key techniques used in this pipeline, to illus-
trate the challenge and opportunities in using feature-carrying 3D Gaus-
sians as a unified format for appearance, geometry, material properties
and semantics grounded on natural language.

Keywords: Representation learning · Gaussian Splatting · Scene Edit-
ing · Physics Simulation

1 Introduction

What does a falling leaf know about autumn? A video of this moment, had
someone captured it, may include a delicate dance with the autumn breeze.
Although invisible to the camera, the shape of the wind is carved out by the
leaf’s swirling path, and thus, became fully visible to our eyes. This technique of
using motion to make the invisible visible lies behind many artistic manipulations
of images and movies. A leaf that falls straight down versus a leaf that floats
across a busy street bouncing up and down tells very different stories. In the
latter case we would intuitively reason about the presence of the wind despite
not directly feeling its touch on our skins; and we would be drawn in — as if it
were us who are being carried away.

In this work, we present Feature Splatting, a way to semi-automatically syn-
thesize dynamic scenes from an otherwise static 3D capture, where we use open-
text language queries to jointly manipulate the appearances and assign material
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Fig. 1: Feature Splatting. An overview of the language-grounded scene physics edit-
ing pipeline. Given input images, feature splatting optimizes for a unified Gaussian
representation that contains the geometry, texture, and semantics of the scene using
features from large-scale 2D vision models [14,21,22]. With open-vocabulary scene de-
composition, feature splatting segments an object and automatically determines the
physical properties of components within the object. In this example, a user gives a
query ‘a vase with flowers’. Feature splatting extracts the vase with flowers in the scene,
and further decomposes it into rigid and non-rigid parts, creating a dynamic scene of
flowers swaying in the wind. (Best viewed in videos on project website).

properties governing the dynamic interactions. We do so by augmenting existing
point-splatting methods that use 3D Gaussians as geometric primitives [12,31,33]
with additional view-invariant features sourced from vision, and vision-language
foundation models [14, 21, 22] within the same analysis-by-synthesis pipeline.
We further extend to physics-based dynamic scene synthesis, by augmenting
the static capture with particle-based interaction, where material categories and
properties are assigned semi-automatically via natural language queries. The re-
sulting format unifies photo-realism, rich semantics, and physics-based dynamic
synthesis in a single format.

Both the extension to feature-carrying 3D Gaussians, and the physics-based
dynamic synthesis involve unexpected technical challenges. To begin with, we
found that Gaussian primitives from [12] effectively shares the same interpolation
kernel for both the geometry and the radiance, whereas the 2D feature maps we
source from reference camera views are both low-resolution and noisy. A naive
distillation pipeline similar to NeRF-based methods [15] lead to poor results
with a lot of high-frequency feature noise (see Fig. 3). We address this problem
by introducing a novel method for extracting the feature maps, and a procedure
for distilling them. On the dynamic synthesis side, we propose ways to in-fill
existing static 3D Gaussian captures for volume-dependent physical effects, and
ways to transform the Gaussian primitives under significant deformation that is
distinct from, and perform better than prior approaches.

The scene modeling and synthesis pipeline, Feature Splatting, contains rich
semantic priors that enables easy, language-driven edits involving decomposing
a static 3D capture and associating each constituent with material properties
for physics-based dynamic synthesis. Feature-carrying 3D Gaussians serve as a
unified representation for appearance, semantics, geometry, and physics.

Our contribution is threefold:
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1. A method, feature splatting, to augment static scenes with semantics and
language-grounded physically realistic movements.

2. Techniques to the algorithmic and systems challenges towards a uni-
fied representation: an MPM-based [10] physics engine that is adapted
to Gaussian-based representation; a novel way to fuse features from mul-
tiple foundation vision 2D models for accurate decomposition.

3. A demonstration that feature splatting is an excellent editing tool that
enables automatic language-grounded scene editing.

2 Related Work

Novel View Synthesis. Recently, the computer graphics community has seen a
growing interest in using differentiable rendering to optimize scene representa-
tions for novel view synthesis [1,7,12,18,20,28]. Recent techniques can be cate-
gorized into implicit methods [1,7,18,20,28] and explicit methods [12]. The rep-
resentative work of implicit methods is Neural Radiance Fields (NeRFs), which
was proposed by [18] and learns a neural network to predict the radiance of the
scene. Later work in NeRFs advance the technique by accelerating the training
process [20], alleviating the artifacts at the boundary of the scene [28], and ad-
dressing texture aliasing [1]. For explicit scene representation methods, Gaussian
Splatting (GS) [12] is a recent method that achieves both fast training time and
high rendering quality. GS represents the scene as a collection of Gaussians that
can be explicitly manipulated. Our work is built on GS without compromising
its novel view synthesis capability, where we leverage the explicit representations
in GS to connect it with particle-based mechanics and feature distillation.

Scene Editing with Distilled Feature Fields. Various work has proposed ways to
make edits with NeRFs. Existing works mainly focus on manipulating the ap-
pearance [8,11,15,16]. For instance, Distiled Feature Fields (DFF [15]) performs
appearance editing via zero-shot open-text segmentation, in which it uses knowl-
edge distillation to embed features from 2D foundation vision models. During
rendering, DFF decomposes the scene by relating language query and distilled
features to segment affected volumes. Appearance editing such as color change or
removal can then be performed on segmented objects. NeRFShop [11] proposes
an interactive pipeline that allows user input to make geometric modifications
to NeRF. Instruct-NeRF2NeRF [8] takes a different approach to scene editing.
Instead of injecting the rendering process, Haque et al. [8] proposes to use an off-
the-shelf 2D editing method [3] to modify the images used to train NeRFs. Most
closely related to our work, ClimateNeRF [16] proposes to inject the rendering
process with physical simulation to simulate different weather effects. However,
due to the intrinsic limitation of implicit scene representation, ClimateNeRF only
supports modifying the ray marching progress in neural rendering, which limits
it to simulating ray reflection, refraction, and diffraction for weather effects. In
comparison, our method uses explicit representations to support object-centric
physical simulation, which has much broader potential applications.
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Fig. 2: Feature Splatting. Raw CLIP features are noisy and low-resolution. We
improve the quality of the feature maps by pooling within part-level masks produced by
the Segment Anything Model (SAM [14]). Jointly modeling features from DINOv2 [21]
and CLIP is an optional regularization that offers minor additional improvements.

Concurrent Work. During the preparation of this manuscript, a few concurrent
works appeared, that also studied ways to edit or simulate dynamic scenes via 3D
Gaussians. The majority of these works focus solely on segmenting the scene via
language-grounded semantics [14, 25, 30, 32]. Most closely related to our work,
Xie et al . [29], propose a similar rendering-simulation pipeline that also uses
material point methods (MPM). Semantic grounding in natural language is not
part of their proposal, and they manually select and assign material properties
to the Gaussians. The way these two works handle the rotation of Gaussians is
also different. We include results that show rotation from deformation gradients,
proposed in [29], which fails to maintain rendering quality when deformation is
large. Along the line of works that perform segmentation, Feature3DGS [32] is
most relevant to our work for its feature distillation designs to fuse 2D reference
features using priors from multiple foundation models. We consider feature dis-
tillation one component of a larger simulation, rendering, and editing pipeline,
with systems optimization techniques that speed up training by 30%.

3 Language-Driven Physics-Based Synthesis and Editing

We present three key components of our dynamic scene synthesis and editing
pipeline: First, a way to distill rich semantic features from vision-language models
into 3D Gaussians. Second, a way to decompose a scene into key constituents
using open-text queries. Finally, a way to ground the material properties via
language, as part of a physics-based dynamic scene synthesis procedure.

3.1 Differentiable Feature Splatting

Point and surface splatting methods [31, 33] represent a scene explicitly via a
mixture of 2D or 3D Gaussian primitives. In the case of Gaussian Splatting [12],
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(a) Input image (b) CLIP feat. (c) SAM masks (d) SAM-enhanced feat. (e) DINOv2 feat.

Fig. 3: Raw and Enhanced Feature Maps. CLIP features contain view-dependent
noise that degrades the feature splats [22]. We mask-pool with masks produced by
SAM [14], and regularization through joint modeling of DINOv2 features [21] to im-
prove its quality. Color corresponds to top three PCA vectors.

the geometry is represented as a collection of 3D Gaussian, each being the tuple
{X ,Σ} where X ∈ R3 is the centroid of the Gaussian and Σ is its covariance
matrix in the world frame. This gives rise to the probability density function

G(X , Σ) = exp−1

2
X⊤Σ−1X . (1)

To ensure Σ’s positive semi-definiteness during optimization, it is common prac-
tice to decompose it into a scaling matrix S and a rotation matrix R via
Σ = RSS⊤R⊤. The color information in the texture is encoded with a spherical
harmonics map ci = SHϕ(di), which is conditioned on the viewing direction ϕ.

Feature Splatting. Feature Splatting appends an additional vector fi ∈ Rd to
each Gaussian, which is rendered in a view-independent manner because the
semantics of an object shall remain the same regardless of view directions. The
rasterization procedure starts with culling [12] the mixture by removing points
that lay outside the camera frustum. The remaining Gaussians are projected
to the image plane according to the projection matrix W of the camera. This
projection also induces the following transformation on the covariance matrix
Σ:

Σ
′
= JWΣW⊤J⊤ , (2)

where J is the Jacobian of the projection matrix W. We can then render both
the color and the visual features with the splatting algorithm:

{F̂, Ĉ} =
∑
i∈N

{fi, ci} · αi

i−1∏
j=1

(1− αj) , (3)

where αi is the opacity of the Gaussian conditioned on Σ
′
and the indices i ∈ N

are in the ascending order determined by their distance to the camera origin.

Systems Considerations. Naïvely extending the color rasterizer in vanilla GS [12]
to rasterize high-dimensional features causes expensive training time. We per-
formed an in-depth analysis and found that the main bottleneck lies in the mem-
ory access pattern, which we addressed by designing custom CUDA kernels. The
details are presented in the appendix.
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Improving Reference Feature Quality Using Part-Priors. Our differentiable fea-
ture splatting is a generic method, where the resulting features depend on the
reference features. Though CLIP [22] is a commonly used 2D vision models to
obtain language-aligned features, naïvely splatting CLIP features results in low-
quality 3D features given the coarseness of the CLIP features (see Fig. 3 and
Fig. 7a). This issue is less pronounced in NeRF-based methods [13, 15] because
the continuous representations of NeRF serves as an implicit regularization. On
the other hand, explicit representations such as GS [12] have no such regular-
ization and are prone to overfit to noises inherited from coarse reference feature
maps.

We propose a way to improve the quality of the Gaussian features using
object priors from DINOv2 [21] and the Segment Anything Model (SAM) [14].
Consider an input image. We first use SAM to generate a set of part-level masks
{M} (see Fig. 3c). For a given binary mask M and the coarse CLIP feature map
FC , we use Masked Average Pooling (MAP) to aggregate a single feature vector

w = MAP(M,FC) =

∑
i∈FC

M(i) · FC(i)
||FC(i)||∑

i∈FC
M(i)

, (4)

where i is a pixel coordinate in the feature map. w is then assigned to all pixels
that are within the part segmentation. If a pixel belongs to multiple parts, the
pixel feature is obtained by averaging all relevant part features. This gives us a
SAM-enhanced CLIP feature map (shown in Fig. 3d).

To further reduce the possibility of overfitting, we introduce a shallow MLP
with two output branches that takes in the rendered features F̂ as intermediate
features. The first branch renders the DINO [4] feature F̂D for its coherent
part-level semantics (see Fig. 3e), and the second branch renders the CLIP [22]
features F̂C .

F̂C , F̂D = MLP(F̂) , (5)

where F̂C is supervised using the SAM-enhanced CLIP feature map with cosine
loss, and F̂D is supervised using the DINOv2 [21] feature map using cosine loss.
We scale the CLIP term in the joint loss LCLIP +λ · LDINO with λ = 0.1, so the
optimization focuses on language grounding and treat DINO features as a mild
smoothing term. In sum, this would give us Gaussians with regularized CLIP
features.

3.2 Language-guided Scene Decomposition

We first perform object- and part-level open-vocabulary scene decomposition,
where we take language queries to coarsely select objects for editing (e.g., a vase
with flowers) and feature splatting automatically decouples object components
for simulation (e.g., vase is rigid and stems of flowers are elastic). We do so
by identifying Gaussians whose CLIP features more closely align with positive
queries over negative queries.
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More specifically, given a positive vocabulary (e.g., L+ = ‘bulldozer’) and
generic negative vocabularies {L−

i }Ni=0 (i.e., ‘objects’ and ‘things’), we use frozen
CLIP text encoder to obtain text embeddings for every vocabulary. Then we fol-
low standard CLIP practice [22] and compute pair-wise cosine similarity between
rasterized CLIP feature of every Gaussian and the text embeddings. A temper-
atured softmax is then applied to similarities to obtain probability distribution,
where we select Gaussians whose similarity to L+ passes a certain threshold
τ = 0.6 as the foreground object. We include segmentation results using nega-
tive text-queries in the appendix.

Basic Editing Primitives. Feature splatting supports various basic editing
primitives, which can be easily composed to achieve more complex behavior.
Let {X̂ , Σ̂} ⊆ {X ,Σ} be the set of Gaussians selected to be edited. We briefly
describe how basic editing primitives are implemented.

– Object Removal. Objects are removed by simply removing selected Gaus-
sians {X ,Σ} := {X ,Σ} \ {X̂ , Σ̂}.

– Translation. Given a displacement vector b1 ∈ R3, objects can be easily
displaced by shifting the Gaussian centroid X̂ := X̂ + b1.

– Rotation. Given a rotation matrix R1 ∈ SO(3), we modify the covariance
of selected Gaussians as Σ̂ := R1R̂ŜŜ⊤R̂⊤R⊤

1 .
– Scaling. Given an axis-aligned scaling vector s1 ∈ R3, we can scale the size

of objects via X̂ = s1X̂ , Σ̂ := R̂(s1Ŝ)(s1Ŝ)
⊤R̂⊤.

3.3 Language-Driven Physics Synthesis.

Feature splatting can automatically choose physical properties for simulation,
estimate collision surfaces, and predict gravity for simulation. Based on the ex-
plicit representation, we extend the material-point method (MPM) [26] using
Taichi [10] to augment objects with various physical properties.

Decoupling Objects for Simulation. We construct a set of vocabularies for com-
mon rigid materials such as (e.g., wood, ceramic, and steel), which can be ex-
panded with optional user inputs. Given a selected multi-part object (e.g., a vase
with flowers), we perform another round of CLIP similarity comparison to select
particles within the object that are aligned more closely to these materials. The
selected particles are considered to be rigid during simulation.

Language-grounded Collision Surface Estimation. We feed a canonical set of
queries including common planar objects (e.g., floor and tabletop) into the scene
decomposition pipeline described above to obtain Gaussians of these objects.
Then we apply RANSAC [6] to estimate these plane geometry, which are used
as collision surfaces in physics simulation. The gravitational directional vector
is estimated as the normal vector of plane geometry of “floor”.
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Taichi MPM for gaussians. Given an selected object with rigid parts, collision
surfaces, and gravity, we may simulate physics with particle mechanics. While
MPM methods [10, 26] can be directly applied to Gaussians by treating the
Gaussian centroids X as point clouds, doing so results in unsatisfactory quality.
Parallel to findings by Xie et al . [29], we find that simulating and displacing only
the surface centroids leads to issues such as 1) object collapsing on contact with
collision surfaces due to lack of internal support and 2) undesired artifacts when
objects undergo deformation.

We build our gaussian-oriented material-point method (GS-Taichi-MPM)
based on Taichi [10], which supports realistic physical simulation of various
types of materials (e.g., rigid, elastic, granular (sand), and liquid). Our method
goes beyond simple point-based physics simulation and makes use of gaussian-
specific information, such as isotropic opacity and Gaussian covariances for vol-
ume preservation and covariance modification during deformation, to address
the two aforementioned challenges.

– Implicit Volume Preservation. One of the open challenges in simulating
physics from a few real-world images is volume preservation. For instance,
without volume preservation, a volleyball simulated to hit the ground would
collapse upon collision. Hence, we propose an implicit volume preservation
technique using the opacity and covariances of gaussians. Specifically, we
first densify surface points by sampling points on disks of surface gaussians
using covariance and opacity information following [27]. With densified sur-
face points, we then fill transparent supporting particles extending from the
centroid of the object to the surface. The transparency of filled particles is
intended to enforce identical rendering quality at T = 0 for a smooth and
continuous transition from static scene to dynamics.

– Estimating Rotation. When the object undergoes deformation, artifacts
may manifest without correcting the rotational component of the covariance
matrix. Notably, Xie et al . [29] noted a similar issue and attempted to use
the deformation gradient F of MPM to update Gaussian covariances. With
slight abuse of the Σ notation, let F = UΣV ⊤ be the per-particle defomra-
tion gradient and its SVD factorization, rotation from deformation can be
estimated as R1 = V U⊤. However, deformation gradients capture mostly lo-
cal deformation, and we empirically find that this approach fails when elastic
objects undergo large deformation (see Fig. 7b).
We propose to estimate the rotation matrix for elastic objects using nor-
mals. Since Gaussian splatting does not estimate normals due to challenges
in sparse reconstruction [12], we use an alternative NN-based approach. In
particular, for every Gaussian to be simulated, we find two of its nearest
neighbors. The centroids of these three Gaussians form a plane, and we use
the rotation of the plane normal throughout the object dynamics as a proxy.
Compared to rotation from deformation, our approach yields fewer artifacts
when objects undergo large deformation (see Fig. 7b).
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T=0 (input static view) T=1 T=2 T=3

SimPhysics(“A vase with flowers”, {elastic})

SimPhysics(“Sculpture”, {elastic})

SimPhysics(“Lego bulldozer”, {sand})

Remove(“Chair”); SimPhysics(“Soccer”, {elastic})

Fig. 4: Physics-based Dynamic Scene Synthesis. Rich semantic features in Fea-
ture Splatting enable semi-automatic assignment of material properties for synthesiz-
ing dynamic scenes from a single static 3D capture. We can use simple text queries
to manipulate the physical property of specific objects and materials. From top to
bottom: changing the elasticity, turning solid into granular material, modeling volume-
dependent deformation in a falling volleyball. For the best illustration with ani-
mations and moving cameras, please refer to videos on the project website.

4 Experiments

We provide qualitative results on language-driven editing and dynamic synthe-
sis, and quantitative comparisons against radiance-field based approaches when
applicable.

Datasets. We use the deep blending dataset [9] and the Mip-NeRF360 [2]
dataset, where we compute the camera intrinsics, extrinsic, and sparse point
clouds using colmap [23, 24]. Following LERF [13], we evaluate the localization
capability of feature splatting with 72 objects using language query in five local-
ization scenes from LERF [13]. Finally, we collect a custom dataset to demon-
strate the capability of our method to perform physical simulations. The custom
data sequences are captured using the main camera of an iPhone 15 Pro with
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(a) Input Image

(d) Input Image

(b) Removal

(e) Rotation

(c) Scaling

(f) Translate + Clone

Fig. 5: Feature Splatting Editing Primitives.: We can remove, scale, rotate, trans-
late, and clone objects in the scene using language.

intrinsics, extrinsic, and initial sparse point cloud computed by colmap. We plan
to release the custom dataset to aid future research.

Metrics. For physics editing, since there are no ground truth images or pre-
vious baselines to compare to, we focus on qualitative comparisons. To evaluate
the localization accuracy, we follow the same evaluation protocol as LERF [13]
and compute localization accuracy on testing views. We also evaluate how much
different components in our systems contribute to training efficiency. Finally, we
report PSNR and cosine feature rendering loss on training and validation views
to validate necessity for fusing multiple models and show that feature splatting
does not interfere with rendering quality.

4.1 Dynamic Scene Synthesis Results

We present synthesized dynamic scenes that involves elastic deformation, loose,
granular materials, and volume-preserving deformations with a volleyball in Fig-
ure 4. These results are produced by selecting from a bank of preset material
properties using sparse, text labels in natural language. Our physics-based syn-
thesis pipeline creates realistic movements that reflects either the underlying
material, or during editing, the intent of the user.

Realistic, Physic-Based Dynamics. Using features from large-scale 2D
vision models [14, 21, 22], feature splatting is capable of not only segmenting
objects for editing, but also ground physical properties of components within
objects using language. In the second sequence, given the text prompt ‘a vase
with flowers’, the flowers sway as if it were blown with winds, but the vase
remains still as it is considered as rigid materials by feature splatting. The fourth
sequence emphasizes volume preservation, where the elastic ball is internally
filled and bounces off the ground.
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(a) Original (b) “Golden Flower” (c) “pink Flower” (d) Van gogh 
Sun Flower

Fig. 6: Language guided appearance editing. we optimize the SH coefficients via cosine
similarity between CLIP embedded language and image feature.

Spatial consistency. Conceptually, our method synthesizes views that are
consistent across different camera viewports and timesteps of the physical sim-
ulations. For all sequences in Fig. 4, feature splatting is able to synthesize 3D-
consistent views. When objects are removed or deformed from their original
places, the regions that were originally occluded are nicely synthesized.

Temporal continuity. Our physical editing approach leverages differen-
tiable physics simulation engine [10] and our volume preservation technique fills
the interior of gaussians using transparent particles. Combined, our technique
enforces a smooth and continuous transition from static scenes to object dy-
namics, where the rendered views are consistent with vanilla GS [12] at T = 0.
Compared to some previous scene-editing methods that use black-box genera-
tion models [8], our synthesis process offers both temporal consistency and great
explainability.

Real-time Efficiency. Feature splatting maintains the ability to perform
real-time rasterization, similar to Gaussian splatting [12]. The bottleneck of our
physics simulation pipeline is the Taichi physics simulation engine, which runs at
an approximate average of 30 fps on a desktop-grade GPU. Our feature splatting
pipeline is optional during inference. Thus, with computed particle trajectory,
images can be synthesized at approximately 100 fps.

4.2 Editing Appearance and Geometry

With the unified representation of feature splatting that hosts geometry, texture,
and semantics, we demonstrate how to interact with objects in the scene via basic
editing primitives and language-guided appearance editing.

Geometric Editing. We showcase geometry editing using feature splatting,
highlighting object removal, scaling, rotation, translation, and cloning, as illus-
trated in Fig. 5. With our open-vocabulary scene decomposition design that fuses
features from multiple pre-trained models, these geometric operations are fully
automatic and the editing results are artifact-free, which is of great potential for
practical applications.

Appearance Editing. Thanks to the unified representations in feature
splatting, editing the appearance of object is also straightforward. In Fig 6,
we demonstrate the capability to edit the appearance of objects using CLIP
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(a) Rendered RGB

(b) Reference CLIP heatmap

(c) Rendered regularized heatmap

(a) Ablations of multi-
model regularization.
Without regulariza-
tion, rendered features
completely overfit to
reference CLIP features
with artifacts.

(a) Deformation-based Rotation (b) Ours Rotation

(c) Zoomed-in View of (a)

(d) Zoomed-in View of (b)
(b) Ablations of covariance rotation techniques. Though both methods
perform similarly when the deformation is small, artifacts can emerge
if we use rotations from deformation when the object undergoes large
rotation and displacement.

Fig. 7: Ablations of the regularization effects of fusing features from multiple pre-
trained models and our rotation estimation technique.

guidance. We train a scene using feature splatting then update only the SHs of
the selected Gaussian centroids using cosine loss between rendered image and
CLIP with text prompt: “A photo of an Adj. flower”. As demonstrated, feature
splatting excels in both color and style editing while preserving the background
in just 2,500 iterations.

4.3 Ablations

We provide quantitative results on the impact of the system improvements, and
ablation studies on our proposed techniques on feature splatting and the physics-
based dynamic synthesis.

System Optimization. Here we ablate the efficiency of our engineering
contributions. For baseline, we trivially extend the vanilla GS [12] implemen-
tation to render N -dim features instead of 3-dim RGB values. The results are
presented in Table. 1. Due to the prohibitively expensive memory requirement
of baseline after densification, we compute the timing in the table by training
only 1,000 iterations on provided sequences in the DB dataset [9].

Our optimized implementation has better timing than our baseline imple-
mentation and Feature-3DGS [32]. In comparison, feature splatting generally
requires less than 1 hour on average for training, whereas Feature3DGS [32]
empirically measured to require 6 hours. We believe that the efficiency of our
feature training implementation can facilitate future research.
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Table 1: Timing ablation of our optimization
techniques. Feature splatting reduces the train-
ing time by over 60% compared to the baseline
even when the feature dimension is the same.
Half2 stands for half2 compiler intrinsics, GBuf
stands for shared gradient buffer, and IMem is
interleaved memory access.

Feat. Dim. Half2 GBuf IMem Time

768

- - - 3.21
✓ - - 1.96(-38.9%)
✓ ✓ - 1.54(-52.0%)
✓ ✓ ✓ 1.21(-62.3%)

256 Feature-3dgs [32] 0.61
✓ ✓ ✓ 0.41

32 (Ours) ✓ ✓ ✓ 0.06(-97.1%)
0 Color-only GS [12] 0.05

Table 2: Comparison of local-
ization accuracy between OWL-
ViT [19], LERF [13], and fea-
ture splatting. Our method per-
forms best on 2D localization and
can directly localizing objects in
3D, which is not possible for
LERF [13].

Loc. Space Method Accuracy

2D
OWL-ViT [19] 54.8%
LERF [13] 80.3%
Ours-CLIP-only 73.0%
Ours-CLIP-DINO 71.4%
Ours (full) 81.7%

3D LERF [13] -∗

Ours 50.7%

Fusing Features from Multiple Models. In Fig. 7a, we provide qualita-
tive comparisons of heatmap generated by comparing text queries and rendered
features to ablate the effectiveness of fusing multiple pre-trained vision models.
We can see that the powerful ability of Gaussian splatting causes the guassian
scene representation to overfit reference features, which results in the model fit-
ting high-frequency details of reference features including imperfections in the
coarse reference feature map. In comparison, with DINO regularization tech-
nique, the model learns a smooth feature representation that adheres to the
boundary of objects, which is desirable. The overfitting without regularization is
further quantitatively validated in Table. 3, where the unregularized model has
better CLIP feature rendering on training views, but worse on validation views.

Rotating Gaussian Primitives. We compare against the scheme proposed
by [29] in Fig. 7b without the additional regularization applied at modeling
time. We observe that when the sculpture undergoes large deformation, the
Gaussians rotated according to the deformation gradients technique from [29]
exhibit obvious surface artifact. Our approach produce fewer artifacts without
additional processing, nor modification to the modeling procedure.

Volume Preservation. We ablate the effect of our implicit volume preser-
vation method in Fig. 8. For the bouncing ball scene, if the ball is simulated only
using the centroids of Gaussians without densified surface and internal support
particle, the ball collapses upon collision with the floor under the effect of grav-
ity, as shown in the image with zoomed-in view in the red box. On the other
hand, our infilling technique enables correct physics where the ball bounces off
the ground. (Better shown in videos on the project website).

Localization. In Table. 2, we compare the 2D localization ability of fea-
ture splatting given text prompts. We use the localization dataset provided by
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Fig. 8: Ablations of volume
preservation. Without particles for
internal support, elastic objects
collapse and break upon collision
(in red box); whereas correct sim-
ulated physics leads to a bouncing
ball (in green box).

Table 3: Comparison of rendering quality and
accuracy of rendered feature maps of feature
splatting on collected datasets with 10% holdout
views. Conceptually, feature splatting does not in-
terfere with color rendering. LCTRAIN indicates
CLIP feature loss for training views, LCVAL for
validation views.

Method PSNR↑ LCTRAIN LCVAL ↓ FPS

Vanilla GS [12] 26.45 N/A N/A 129
Ours w/o DINO 26.48 0.029 0.048 102
Ours 26.47 0.032 0.046 102

LERF [13] and follow the evaluation protocol in LERF [13]. On the 2D set-
ting, our full method achieves better accuracy than LERF, whereas removing
DINOv2 [21] or SAM [14] reduces the accuracy, validating the need to fuse fea-
tures. This is consistent with our findings in Table. 3. The performance drop
when moving from 2D to 3D is expected because the scene includes many more
candidates occluded from a single view. This introduces false positives not cov-
ered by the labels.

5 Conclusion

Limitation. One limitation of feature splatting is artifacts in the background
that may arise after object removal or displacement. Though this is a trivial
extension from existing works [5], feature splatting currently does not perform
inpainting after object removal, which may result in artifacts under certain cir-
cumstances.

In conclusion, we proposed feature splatting that enables language-guided
interaction for Gaussian splatting. We demonstrate the success and effectiveness
of feature splatting for physic simulations, geometry, and appearance editing.
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A Language-Driven Appearance Editing via CLIP

We apply classifier guidance and directly optimize the appearance of select ob-
jects using gradients from the vision model in CLIP. We start with a batch of
rendered 2D images. Then to localize parts of the scene that we would like to
change, we build a mask m by computing pixel-wise scores. We compute the
gradient for each pixel via the cosine similarity loss between the embedding of
the current view I and the text query L:

LCLIP(I, L) = 1− ⟨embimg(I), embtext(t)⟩. (6)

A notable benefit that Feature Splatting has over NeRF-based edits, is that
local changes won’t affect the entire scene. Distilled Feature Fields, for instance,
require joint supervision with the original RGB images during editing, because
modification of the neural network tends to affect the scene in a global manner.
Therefore, conceptually, feature splatting converges faster for local edits since it
updates only local parts of the scene.

B Implementation Details

B.1 Systems Considerations

Naive attempts at storing additional high-dimension semantic features in 3D
Gaussians lead to a dramatic slowdown in the modeling stage [17]. Upon close
inspection, we discovered that a sub-optimal memory access pattern is the bot-
tleneck. The original Gaussian splatting code base writes the gradients directly
to the global GPU DRAM during the backward pass. This parasitic effect is espe-
cially pronounced when the feature dimension is large because multiple gradient
paths compete for limited access to the same DRAM slot.

Gradient Buffer in the L1 Cache. We resolve this problem by introducing a
gradient buffer in the GPU L1 cache. We divide the images into 16 x 16 tiles.
Each buffer has a size of 256, which means that each pixel can access this cache in
an interleaved fashion. This significantly reduces the number of global memory
access to the DRAM.

FP16 Tensors and Half2 Arithmetics. We replace the standard FP32 tensors
with half-precision FP16 tensors, reducing the feature memory usage by half.
We further improve by using the Half2 intrinsic functions. This CUDA compiler
feature ‘squeezes’ two FP16 numbers into a single FP32 CUDA register, which
further improves memory and arithmetic utilization.

We provide ablations on each of these techniques in the experiment. We plan
to release our code as a reference implementation to facilitate future research
that requires rasterizing any additional properties with Gaussian splatting.
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B.2 Staged Feature Splatting Pipeline

The original Gaussian splatting trains for 30,000 iterations to capture all fine-
grained texture details of the scene. However, for scene editing purposes, it is
often redundant to optimize for such a long period for features. We empirically
find that the semantics of large objects quickly emerge after a few hundred train-
ing iterations, and part-level semantics are well captured after a few thousand
iterations. Therefore, to both improve the efficiency of feature splatting and to
regularize features, we optimize features only for Nfeat (Nfeat = 2, 500). For new
Gaussians that are cloned/split from existing ones during adaptive densification,
we copy the features of the source Gaussians to the new Gaussians.

B.3 Post-processing for Scene Decomposition

Thanks to the explicit representation, we present two optional post-processing
steps to reduce false positives and false negatives for this selection process, which
is comparable to the closing and opening morphological operations. To avoid
false negatives on object boundary, we apply a KNN operation to select non-
selected Gaussians whose neighbors are mostly foreground objects. To filter out
false positive noises, which are common on the boundary of the scene (such as
the sky) where Gaussians are not well-reconstructed, we apply a clustering step
using DBSCAN to filter out scattered Gaussians.

In addition, optionally, the user can include additional object-specific nega-
tive vocabularies for better differentiation. If such vocabularies are provided, we
simply carry out the open-vocabulary segmentation described in the main paper
for the additional negative vocabularies, and perform a set subtract to remove
Gaussians selected by the negative vocabularies from the selected foreground
Gaussians.
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