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Abstract. The human visual system is well-tuned to detect faces of all
shapes and sizes. While this brings obvious survival advantages, such as
a better chance of spotting unknown predators in the bush, it also leads
to spurious face detections. “Face pareidolia’ describes the perception
of face-like structure among otherwise random stimuli: seeing faces in
coffee stains or clouds in the sky. In this paper, we study face pareido-
lia from a computer vision perspective. We present an image dataset of
“Faces in Things”, consisting of five thousand web images with human-
annotated pareidolic faces. Using this dataset, we examine the extent
to which a state-of-the-art human face detector exhibits pareidolia, and
find a significant behavioral gap between humans and machines. We find
that the evolutionary need for humans to detect animal faces, as well as
human faces, may explain some of this gap. Finally, we propose a sim-
ple statistical model of pareidolia in images. Through studies on human
subjects and our pareidolic face detectors we confirm a key prediction
of our model regarding what image conditions are most likely to induce
pareidolia. Dataset and Website: https://aka.ms/faces-in-things

Keywords: Pareidolia - Face Detection - Human Psychophysics

1 Introduction

Hamlet: Do you see yonder cloud that’s almost in the shape of a camel?
Polonius: By the Mass and ’tis, like a camel indeed.

Hamlet: Methinks it is a weasel.

Polonius: It is back’d like a weasel.

Hamlet: Or like a whale.

Polonius: Very like a whale.

— Hamlet, Act I1I, Scene i, William Shakespeare

Pareidolia is a type of visual “apophenia’, which refers to the perception of
patterns in random data. This occurs frequently in human perception as we look
at clouds, mountain skylines, and burnt toast. Pareidolia is even described in
an exchange in Hamlet [45]. When it was first described, pareidolia was seen
as an early symptom of psychosis [7,46]. Today we know pareidolia is common
among healthy humans [47] and infants [23]. It is also not confined to humans:
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Fig. 1: You print out an exciting new computer vi-
sion paper to review, but as you sit down at your
desk to start reading you knock over your coffee cup.
At first, you are annoyed, but then, you laugh! The
sight of the stain induces “pareidolia” in your brain:
rather than an unsightly blemish, you see a happy

: > ' face. In this paper we explore the phenomenon of
. . ~ face pareidolia: Why don’t we see faces all the time?
b S : / Why do we see them at all when they are clearly
\g v so different from human faces? Can a better un-
«\U’“ ” derstanding of face pareidolia help computer vision—

based face detection?

rhesus macaques, for example, have been shown to spend more time fixating on
pareidolic than non-pareidolic images, in a manner similar to humans [51].

As an intriguing phenomenon of our visual system, pareidolia presents many
opportunities in the study of the visual perception of both humans and ma-
chines. It offers a controlled setting in which to study object detection: we can
present random signals to the visual system and study what detections arise. Do
computer vision detectors exhibit similar misidentifications, and if not, why not?
Why don’t humans see pareidolic effects everywhere, in any textured region?

To help answer these questions, we introduce an annotated dataset of five
thousand pareidolic face images, called “Faces in Things”. With this dataset,
we examine whether modern computer vision face detection systems, trained to
robustly detect human faces, exhibit pareidolia. We show that a state-of-the-art
neural network trained on the popular WIDER FACE detection benchmark [62]
fails to detect pareidolic faces well, even when detection thresholds are relaxed.
By fine-tuning the same model on the Faces in Things training data we create a
simple and strong baseline for the task of pareidolic face detection, which shows
that significantly higher machine pareidolic performance is within reach.

Next, we explore how we might bridge this gap to supervised—or ultimately,
human—performance, without access to pareidolic training data? Could parei-
dolia appear in a face detector in a more natural way? The Faces in Things
dataset provides a clean testbed to explore these questions in machines. We test
a variety of different interventions ranging from image augmentation techniques
to additional sources of training data. We find one possible mechanism that
accounts for roughly half of the performance gap: when models are fine-tuned
to detect animal faces, pareidolic face detection is significantly improved. This
suggests that face pareidolia may arise in part from a more general, evolutionary
need to detect diverse faces in the natural environment.

Finally, we consider why pareidolic faces are not all around us, and why
certain textures seem to cause the effect more often. We propose two simple
mathematical models, a simple Gaussian process model, and a second deep
feature-based model, that capture important features of pareidolia. In partic-
ular, we show how these simple models both predict a “Goldilocks” zone, where
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conditions are ideal to induce pareidolia. We confirm the existence of this zone
with experiments on both human subjects and face detection models.

Through the contributions of our open-source dataset, models, and experi-
mental findings, we bring the study of the intriguing phenomenon of face parei-
dolia to the computer vision community.

2 Related Work

Face detection. One of the most famous early examples of face detection was
the Viola-Jones face detector [54,55]. This detector used binary Haar features
through simple-to-compute integral images and achieved greater precision and
efficiency than early neural-network-based detectors [42,43] and other feature-
based methods [39,61]. Following the deep learning breakthroughs of the 2010s,
methods transitioned from hand-crafted features to learned features, and convo-
lutional neural networks (CNNs) achieved close to human levels of performance
on ever-larger datasets [8,27-29,33,38,50,65|. For a broader survey of face de-
tection methods, we refer the interested reader to [38,64]. In our work, we use
the recent RetinaFace model [8] as a strong face detection baseline.

Neuroscience of face pareidolia. The face is a highly unique stimulus
for the human visual system [26,52]: we find faces easy to spot and difficult to
ignore. Face detection can occur in both noise and highly degraded images [5].
Prior work shows that face detection occurs in a dedicated brain region, the
Fusiform Face Area [34]. But exactly what constitutes a face for the visual
cortex and what are the mechanisms underlying pareidolia? A recent study into
the temporal dynamics of neuro-imaging data during pareidolic face viewing
showed results consistent with “a broadly-tuned face detection mechanism that
privileges sensitivity over selectivity” [58]. Pareidolic faces do more than give
the impression of the presence of faces: [48] show that they can trigger an ad-
ditional face-specific attentional process, consuming more time and processing
power than similar non-pareidolic stimuli, and even enhancing the detection of
face-pareidolic objects [49]. Analyses in [30] revealed a network of neurons in
the brain specialized to detect face pareidolia. Their results suggested that face
processing has a strong top-down component whereby sensory input with even
the slightest suggestion of a face can result in the interpretation of a face. Such
top-down information might be supportive of some form of inverse rendering
as a cognitive mechanism to explain the remarkable robustness of human per-
ception of faces in degraded viewing conditions [11]. While our dataset allows
the study of several types of face detection models, we focus our study on feed-
forward neural networks which are known to yield close to human performance
on challenging “in-the-wild” datasets [62].

Face pareidolia in computer vision. Face detection and face recogni-
tion have been core topics in computer vision for many decades, but the study
of face pareidolia—and its deep relationship with visual object representation
learning—has been relatively overlooked. Face pareidolia has some similarities
with the problem of cross-modal recognition or cross-depiction: recognizing the
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Fig. 2: Examples of face pareidolia from our “Faces in Things” dataset. Faces
in Things consists of five thousand images annotated with bounding boxes (shown
here), and facial attributes such as perceived emotion, gender, and intentionality.

same objects across different modalities irrespective of how the object is visually
depicted. This has been explored particularly in the context of detecting faces,
people and objects across modalities such as photography, different art move-
ments, cartoons and sketches [4,15,36,60]. The importance of capturing spatial
relationships for robust cross-modal detection has also been highlighted [4]. The
work of Castrejon et al. [6] showed how, when learning cross-modal scene repre-
sentations with neural networks, units would emerge in the shared representation
that tended to activate on consistent concepts, independently of the modality.
This tendency was used by Abbas & Chalup [1], who found that mid-level units
learned during human face detection could generalize to detect semantically
similar facial key-points in pareidolic images, showing promise for pareidolia to
emerge. However, the authors only evaluated the method qualitatively over a
small test set of ten images. One route to a larger dataset may be through parei-
dolic image generation, which shows promise but does not yet produce convinc-
ingly natural images [12]. Curating a larger dataset, “Totally-Looks-Like” [41] ex-
plored the perceptual judgment of image similarity between humans and CNNs,
using images which had been paired by humans as visually similar but seman-
tically disparate. They found that visual representations extracted from CNNs
such as ResNet [18] perform poorly in terms of reproducing the matching se-
lected by humans. Though this dataset is of similar size to ours (6k samples),
it is not specifically tailed towards face pareidolia and offers no bounding box
or key-point annotations. Other datasets such as COCO-Periph [17] have been
used to show that object detection behavior in CNNs and transformers diverge
from human perception in peripheral vision.

In summary, there has yet to be a computational model of how or why parei-
dolia might arise proposed in the literature. Moreover, despite the abundance of
face detection datasets [38], there is no large-scale dataset to directly support
the study of face pareidolia. A large-scale pareidolia dataset would help the com-
munity explore the mechanisms underlying pareidolia, which may in turn help
us to understand and harness human visual attention (which is drawn towards
face-like objects), reduce pareidolic false positives in face detectors, help design-
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Hard to spot? Accident or design? Emotion?
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Fig. 3: Attributes of the Faces in Things Dataset. We find that 31% of faces are
considered challenging to spot; faces are largely (31%) judged as happy; approximately
half (47%) are judged as accidental rather than by design; animals and humans are
seen in roughly equal numbers; and we observe a slight bias (16% vs 3%) towards male
over female faces, similar to biases observed in prior studies [56,57].

ers avoid or create pareidolia, improve pareidolic animation, and create systems
that better understand how humans perceive the world.

3 Faces in Things Dataset

To address this gap, we begin by sampling candidate pareidolic images from the
LAION-5B dataset [44]. This dataset consists of 5.85 billion CLIP-filtered image-
text pairs, of which 40% of captions contain English. We use CLIP retrieval [2]
to build a raw image set based on text queries including “pareidolia”, “faces in
things”, “accidental faces”, and “|object| looks like a face”. We download images,
check for duplicates, then downsample to 512 x 512 pixels while preserving the
aspect ratio with white-space padding. We used the VGG Image Annotation
tool [10] to manually annotate images, removing samples that contain the faces
of actual humans or animals. Some examples of annotated images are shown
in Fig. 2. Our annotations include the bounding boxes of pareidolic faces and
basic facial attributes as summarized in Fig. 3. Though beyond the scope of
the current paper, we note that these attributes could be useful for other future
studies. We divide the dataset at random into training (70%) and testing (30%)
sets. We refer to this as the 'Pareidolic’ dataset.

4 Experiments

Datasets. We use the following additional datasets. Fig. 4 shows the average
faces within our dataset (Pareidolic) and the WIDER FACE (Human), and An-
imalWeb (Animal) datasets.
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Pareidolic Human Animal

Fig. 4: The Appearance of an Average Pareidolic Face. Per-channel histogram-
equalized average images for registered pareidolic faces (our Faces in Things dataset),
human faces (samples from the WIDER FACE dataset [62]), and animal faces (Ani-
malWeb [24]). The average pareidolic face, while less distinct than human or animal,
has surprisingly clear eye, nose, and mouth features, and vertical symmetry.

WIDER FACE [62] is a popular face detection benchmark dataset with
32,203 images and 393,703 faces. It contains a high degree of variability in scale,
pose, makeup, lighting, emotion, and occlusion, organized across 61 event classes.
We use the provided 40%/10%/50% splits for training, validation, and testing.
We refer to this as the ‘Human’ dataset.

AnimalWeb [24] is a collection of 22,451 faces from 334 diverse species and
21 animal orders across biological taxonomy. These faces are captured ‘in-the-
wild” and are consistently annotated with 9 landmarks on key facial features.
We convert these landmarks to bounding boxes, by finding the tightest box that
captures the points and expanding this box’s width and height by 15%. We refer
to this as the ‘Animal’ dataset.

WIDER FACE Corruptions. To measure whether pareidolia could arise
from common data augmentations we corrupt the WIDER FACE images us-
ing the level 3 strength of the corruptions used in both the COCO-C [35] and
ImageNet-C [19] datasets. We also include a Sobel filtering corruption [13] which
has been shown to reduce a model’s dependence on texture information [22].

Models and Training. We use RetinaFace [8] which achieves state-of-the-art per-
formance on WIDER FACE easy and medium subsets and is the third-best face
detector on the hard subset, missing the top model by less than a percentage
point of Average Precision (AP). We perform experiments using both their Mo-
bileNet [21] and ResNet50 [18] backbones and use the Pytorch Retinaface [3]
repository to ensure the same experimental conditions, dataset characteristics,
and preprocessing. We use pre-trained models provided by this repository and
fine-tune them for 10 epochs with the AdamW optimizer [31] using a learning
rate of 107* and a weight decay of 5 x 10™*. We verify that fine-tuning us-
ing this strategy on the original WIDER FACE training dataset does not hurt
model performance. When fine-tuning on Faces in Things (Pareidolia), Animal-
Web (Animal), WIDER FACE (Human), and Corruption datasets we randomly
replace images in the original WIDER FACE stream of training data with data
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Fig. 5: Qualitative Analysis of Transfer Experiments. On a sample of held-out
test images, we visualize the confident (p > 10%) detections of our ground truth (red),
our model fine-tuned on human faces (blue), and our model fine-tuned on animal
faces (green). It is evident from these and Table 1 that fine-tuning on animal faces
significantly boosts the model’s ability to detect pareidolic faces.

from the target dataset 90% of the time. This allows the network to learn the new
task without catastrophic forgetting [25]. These changes to the optimizer, learn-
ing rate, number of epochs, and stream of training data are the only changes we
make to the training paradigm of [8]. Figures in this work use the MobileNet ar-
chitecture of RetinaNet unless specified otherwise. AP evaluation computations
share the same setting and parameters as [8].

4.1 Does a SOTA Face Detector Exhibit Pareidolia?

We measure the Average Precision (AP) of the MobileNet and ResNet50 Reti-
naNet architectures on the Faces in Things dataset. The first row of Table 1
shows results for existing pre-trained models, and the second row shows those
for models fine-tuned on the original WIDER FACE training data. These act as
control groups to ensure our transfer learning procedure does not interfere with
our measurement of the effects of other interventions. Though these models ex-
hibit pareidolia to a small extent, they fall far short of a model fine-tuned to
detect pareidolic faces. Fig. 5 also depicts some of these predictions with blue
boxes. On the whole, the models trained only on human faces are largely silent
across the Faces in Things dataset.

4.2 How Might Pareidolia Emerge?

The WIDER FACE dataset is known for its diversity of lighting, pose, makeup,
emotion, and scale of faces. This fact, coupled with the results of Section 4.1
begs the question: What else do models need to experience pareidolia as humans
do? The Faces in Things dataset provides a clean and robust setting to explore
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Fig. 6: Measuring the effect of several training interventions on pareidolic
face detection The left plot shows that fine-tuning RetinaNet on animals improves
pareidolic face detection more than any other intervention. Conversely, the right plot
shows that pareidolic fine-tuning improves animal face detection performance.

the development of pareidolia in algorithms. Unlike in humans, where it is im-
possible to causally intervene on their facial training data, we can easily modify
an algorithm’s training data. This makes it possible to explore whether one can
induce pareidolia in algorithms using specific stimuli.

To this end, we investigate whether a variety of training data interventions
can induce pareidolia in algorithms. In particular, we measure the effect of adding
several data augmentations from the COCO-C [35] and ImageNet-C [19] datasets
and explore a Sobel filtering augmentation which reduces models’ dependence
on texture. Additionally, we also measure the effect of adding animal faces to
the training data. Animal faces show a far greater breadth of variation in col-
oration, structure, and appearance than human faces. Recognizing animal faces
provides many evolutionary advantages including gaze detection during hunting
and avoiding onlooking predators. The generality required to detect this wide
space of faces could yield a greater number of “false positives” that lead to the
sensation of pareidolia. Indeed, some recent studies provide some corroborat-
ing evidence for this hypothesis. Firstly, Rhesus Monkeys exhibit pareidolia [51]
showing this effect does not only occur in humans. Secondly, the experience of
pareidolia is a rapid cognitive process and not a “late re-interpretation” of input
signals [16, 58] which the authors conclude is evidence that pareidolia could be
linked to the need to quickly react to predators.

We plot the change to pareidolic face detection performance as a function
of each training intervention in the left panel of Figure 6. Of the different cor-
ruption interventions, we find that Sobel filtering, motion blur, Gaussian noise,
and fog tend to slightly improve pareidolic face detection while most other cor-
ruptions do not improve pareidolic face detection performance. Most strikingly,
the addition of animal faces to the training data roughly doubles the algorithms’
ability to detect pareidolic faces compared to the control group, closing around
half of the gap between a human-trained model and a pareidolia trained model.
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Finetuning - AP
MobileNet ResNet50
None 7.9% 2.8%
Human (Control) 9.8% 3.6%
Animal 16.7% 15.4%
Pareidolia 33.9% 27.1%

Animal + Pareidolia 36.4% 31.7%

Table 1: Effect of Fine Tuning on Pareidolic Face Detection. Our results
show that WIDER FACE-trained RetinaFace models do not detect many pareidolic
images. Fine-tuning these models on animal faces approximately doubles pareidolic face
detection rates. Interestingly, adding animal faces alongside pareidolic faces (30%/70%
split respectively) can improve performance over fine-tuning on pareidolic faces alone.

Reciprocally, the right-hand plot of Figure 6 shows that fine-tuning on pareidolic
images yields the greatest improvement in animal face detection. We further ex-
plore this phenomenon in Table 1, where we show that this effect occurs across
both MobileNet and ResNeth0 architectures. Finally, we also show that adding
a small number of animal faces (30% animal 70% pareidolic) can improve parei-
dolic face detection performance over pareidolic images alone.

To understand this effect better, Fig. 7 visualizes the inner representations
of this model across the three datasets (Human = WIDER FACE, Animal =
AnimalWeb, Pareidolic = Faces in Things). Specifically, we extract multi-scale
features from the animal and pareidolia fine-tuned RetinaNet shared feature
layer before the application of the classification and regression heads. We average
pool these features across the bounding box for each face and visualize them with
t-SNE [20]. This figure shows that RetinaNet’s representations of animal and
pareidolic faces tend to cluster together and are distinct from its representations
of human faces. This lends evidence to the relative similarity of pareidolic and
animal faces compared to human faces. We also reiterate that we filtered the
Faces in Things dataset to avoid images of real animals.

5 Modeling Pareidolia

Though many prior works have measured pareidolia, there has yet to be a simple
mathematical model that describes the high-level structure of this phenomenon.
In this section we provide two simple formal models of pareidolia and show that
they both exhibit a testable prediction: the existence of a peak in pareidolic face
detection as a function of an image’s complexity. Section 5.4 presents experi-
mental evidence of this “pareidolic peak” in both humans and machines.

5.1 Gaussian Model of Pareidolia

A model of pareidolia needs to describe two processes: (1) the random process
that generates candidate images, and (2) the face detection process which deter-
mines when an image is pareidolic. We begin with a simple Gaussian model for
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Fig.7: Visualizing RetinalNet Representations across Datasets. Ani-
mal+Pareidolia fine-tuned RetinaNet representations tend to group animal and parei-
dolic faces together. This lends evidence to the hypothesis that the perception of animal
and pareidolic faces are linked. (To highlight the commonality of pareidolic animal de-
tection we note the similarity of these points to a frog.)

each. We model the image generation process as a sum of independent normal
modes, each contributing a zero-mean Gaussian of a specified variance, multi-
plied by the mode image y;. For example, as in [9,53], these modes could be the
principal components of a mean-subtracted image dataset. In this setting the
generated image, y, is a weighted sum of the normal modes:

Y= anyz where, n; ~ N(0,0;) (1)

To model our face detection process we capture the intuition of matching an
image to a template image and note that this can be generalized to distributions
of template images. In particular, the target pareidolic image is represented as
a vector, a, of statistically independent target coefficients, a;, for each mode.
The probability that this mode contributes towards the face detection, P(a;),
is the probability of detecting the pareidolic value, a;, at the ith mode. We
assume a Gaussian detection process: P(a;|y;) ~ N(a;,~;). Because each mode’s
coefficient is a zero-mean Gaussian distribution, P(y;) ~ N(0,0), we have:

Pla;) = | Plai,y:)dy; (2)

Yi

= [ P(aily:) P(y;)dy; (3)

Yi

1 _(yi*azi)z yv?
B ”
21,04 Jy,
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Fig. 8: Illustration of the proposed Gaussian model for pareidolia with three example
generating distributions. To make pareidolia likely, the generating distribution needs
a proper distribution of spatial frequencies. A process with too few spatial frequencies
(left) is likely to only generate weak face-like details (“face-ness” low). In contrast, with
too many frequencies (right), faces can be modeled with exquisite detail (“face-ness”:
high), but the likelihood of drawing any particular desired combination become vanish-
ingly small. The most likely pareidolic images form when the generating distribution
has the right spectrum (middle), enabling reasonable faces to emerge with reasonable
likelihood. In other words, this model predicts that pareidolic faces will match the low
frequencies of faces but differ in the higher frequency details.

Note that o2 is the variance of the random process generating the pareidolia,

while 42 is the variance of the likelihood term — how far a mode is allowed to

vary from the target mode value before it stops looking like the target image, a.

We can complete the square in Eq. 4 to write the product of Gaussians in

P(a;) as a single Gaussian. Integrating that Gaussian over all possible obser-

vations y; gives the probability of finding the pareidolic value a; from mode i:
1 -

Pla)= ——— ¢ 207+ 5

(ai) o T oY) (5)

5.2 Predicting Peak Pareidolia

For a given mode’s detection variance, v2, and target mode coefficient, a;, Eq. 4
allows us to find the optimal mode variance to generate pareidolia, i.e., to max-
imize P(a;). Unfortunately, we seldom have the flexibility to design a random
process one mode at a time. But we may have the option to select between image
generation processes that have different numbers of modes, M. Since each mode
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Fig. 10: Probability of pareidolia under
the feature-based example of Eq. (8) as a
function of the rate of feature detection,
Ai = Afor all 4, within the random images.
Note the low probability of pareidolia for
both feature-free (A — 0) and feature-rich
(A > 0) random images.

is independent, the probability of a pareidolic detection of the target object tem-
plate is the product of detecting the target coefficient for each of the M modes:

P(a) = HP(C%‘) (6)

We plot some predictions of our Gaussian model in Fig. 9 for a target tem-
plate with a % power spectrum (standard deviation of each mode inversely pro-
portional to mode number) on noise images of varying complexity. We note the
existence of a peak in pareidolic detection probability for random image gener-
ation processes with a mid-range number of spatial modes, as measured by the
width of Gaussian that modulates power in Fourier space. Too few modes in
the random generation process, and no image will ever have enough complex-
ity to render the target well. Too many modes and pareidolia becomes unlikely
because so many modes need to match the desired target values. Each added
mode multiplies the pareidolia probability by another small factor. In between,
there is what we call peak pareidolia. As the detection value, o, becomes more
stringent (smaller) the peak pareidolia value occurs at a larger number of modes
and becomes less probable. We illustrate this effect in Figure 8

5.3 Higher-Level Feature Model of Pareidolia

The Gaussian model for pareidolia above lays out important aspects of pareido-
lia, but relies on a naive model of object detection, the squared distance from
a template image. We assume that a more realistic model of human perception
would incorporate higher-level features and introduce a still simple, yet more
realistic, feature-based model.
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We assume that the detection of an object requires particular features to be
detected in certain spatial regions, e.g. an eye in the top left and right, a nose
in the center, and a mouth in the bottom. Such an approach has been used in
computer vision object detection algorithms, e.g. [14,59,63]. Any given object
template has some number of regions, R;, indexed by ¢, within which a given
feature, Fj, must be detected. The other features, F};, should not be detected
in region i. For a given random image where we hope to detect pareidolia, we
assume that feature existence is a spatial Poisson process. In this process, the
probability of n feature instances for any given feature i over some area B; is

ng
n;:

To detect a pareidolic instance of the object template, we must detect one
feature of the correct type, F;, in each region i of the face template, and zero
features of the wrong type, Fjj+; in each region ¢. Assuming independence of the
feature detections, and for simplicity setting all the feature detection rates to be
the same, \; = A, and all the template areas to be the same, B; = 1, we have
for the probability, P(O), of pareidolic detection of object O:

M
P(0) = [[Ate M (8)

%

For the case of M = 4, a simple detection model for two eyes, a nose, and a
mouth, we have P(0) = Ae~16* which is plotted in Fig. 10. In this feature-based
object detection model, we also find the existence of “peak pareidolia”’. Again, it
is governed by a parameter describing the complexity of the random image, in
this case a Poisson process rate parameter, A\, that governs the probability of a
feature detection per unit area. For too low a rate, the model doesn’t generate
enough features to satisfy the object template, for too high a rate, the probability
of seeing only the right features in just the right places becomes very small. In
between is the most probable rate for pareidolia.

5.4 Measuring the Pareidolic Peak in Humans and Machines

Both mathematical models of Section 5 predict the existence of a peak of parei-
dolic face detection as a function of image complexity. We show the existence of
this pareidolic peak in both humans and machines. In particular, we perform a
psychophysics experiment where human subjects view noise images of varying
complexity and report how many pareidolic faces they saw in each image, from
zero to nine. Campbell [5] demonstrated that a 12x12 array of random, binary
squares is suflicient to evoke human and animal faces. We generate noise images
of varying complexity by randomly sampling Fourier coefficients and modulat-
ing these coefficients with a zero mean o2 variance Gaussian in Fourier space.
We show some samples of these images on the x-axis of Fig. 11. Intuitively, the
Gaussian envelope in frequency space filters out most frequencies higher than o
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Fig. 11: Measuring Peak Pareidolia. Left: Subjects were asked how many faces they
see in each noise image. We plot the average number of faces detected as a function of
noise frequency (examples on x-axis), the mean over all subjects and its 95% confidence
interval in red. Right: average number of faces detected by our fine-tuned models. This
reveals the “peak pareidolia’ effect predicted in Section 5 across humans and machines.

after applying an inverse Fourier transform. We detail our image stimuli creation
method in the Supplement.

We find that humans exhibit the model-expected peak pareidolia, with a
maximum number of faces detected at a frequency filter width of 16 (Fig. 11,
left). The existence of a pareidolic peak at or near this filter width is consistent
among all subjects even for those that reported fewer faces overall. Although
response time did decrease slightly at higher frequencies, it did not fall off com-
pletely at the highest frequency levels, indicating that fewer reported faces were
not the result of subjects “giving up” on the task. We provide additional details
and analysis of this experiment in the Supplement.

Finally, we evaluate our fine-tuned models from Section 4 on the same images
to test whether machines also exhibit peak pareidolia (Fig. 11, right). In par-
ticular, we showed the models 5,000 sampled noise images of varying frequency
levels and counted the number of face detections they make with confidence
> 10%. We find the same characteristic “pareidolic peak” where models detect
the most faces in medium-complexity images.

6 Conclusion

We have taken initial steps towards the mathematical modelling of pareidolia
and build a richly annotated dataset of images for face pareidolia. We showed
through experiments on modern face detectors that detecting animal faces may
partly explain the emergence of pareidolia in a complex vision system. The Faces
in Things dataset can help the community address other questions about how
and why pareidolic behavior emerges, a hallmark of humans’ robust recogni-
tion system. We hope that our findings and dataset will spark further study of
pareidolia and its potential use to improve computer vision systems.
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A Appendix

A.1 Additional Information on Frequency-Dependent Noise
Generation

To generate noise of different frequencies for our experiments we leveraged the
fact that low frequency information is localized close to the origin in the Fourier
transform of an image. To this end, we can generate a random noise images by
randomly sampling images in the Fourier space, filtering them, and transforming
back to image space. Specifically, we modulate a random Fourier spectra by a
Gaussian centered at 0 with a variable width. The width controls the frequency
of the noise created. Larger width images let more frequencies pass through in
Fourier space, and the resulting image has higher frequency patterns.

Level 1 Level 2 Level 3

Fig. 12: Different frequency noise levels used in human experiments from Fig. 11.

For the noise levels shown in Fig. 12 we use a width of 2/°v*/~2, We include
the following pseudo-code to be precise:

import numpy as np
from scipy.fftpack import fft2, fftshift, ifft2
def generate_noise(width, size):
modes = np.randn(size, size)
dft = fft2(modes)
gauss = fftshift(np.exp((-xx ** 2 - yy ** 2) / (2 * width
** 2)))
return np.real(ifft2(dft * gauss))
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A.2 Human Psychophysics Experiment Setup

In the main experiment, 14 subjects (6 female, 8 male) were shown noise images
filtered as described in A.1 at resolution 1024x1024. At each of 9 filter widths, 10
random noise pulls were created, making 90 unique images. Each unique image
was repeated 3 times, for a total of and 270 presentations per subject. The images
were shown in random order, which was different for each subject. Subjects were
split into two groups of 7 subjects, with the two groups view different sets of 90
unique images. Experiments were performed in PsychoPy, and the experimental
code both for generating and displaying experimental stimlui is available at
https://github.com /vdutell /pareidolicNoise.

Subjects were seated in a dimly-lit room in front of a laptop with screen
resolution 2500x1664, with the 1024x1024 image subtending the entire screen
vertically, with grey padding on the horizontal edges (except for 2 additional
subjects in the control experiment described below, where image subtended half
screen height). Subjects were instructed to sit at a comfortable distance from
the screen (approximately 30 inches), and were asked to count the number of
faces seen in each noise image, and report the number from [0-9] on the lap-
top keyboard, reporting 9 if they saw 9 or more. There were no time-outs, no
response feedback, and subjects were instructed to self-pace. The experiment
took approximately one hour to complete. Subjects were told that there were no
“correct” answers, and instructed to count any face, animal or human as long as
they “felt they saw some kind of face”. Subjects were allowed to take breaks as
needed.

All participants provided informed consent prior to participation, in com-
pliance with the Common Rule (45 CFR 46), and this study was assessed as
exempt from review by the Institutional Review Board, pursuant to 45 CFR
46.101(b)(2). Participants took between 45-90 minutes complete the study and
were paid $20 for their participation. Subjects were not excluded for having cor-
rective lenses, but confirmed to be able to see the screen clearly. One subject
reported having vision issues beyond using corrective lenses (possible prosopag-
nosia, see below).

For the analysis, trials were removed where subjects responded in less than
100 milliseconds (likely to be a mistake), as well as trials where the subject took
more than 2 minutes to respond (likely to be taking a break). No subjects were
removed due to outlying or erroneous data. Subjects’ time to completion varied
from approximately 45-90 minutes.

We analyze the effect of different psychophysical conditions with mixed effects
ANOVA for all 16 subjects using image seed group, gender, image field of view
(FOV) as between-subject factors, and Gaussian filter width as a within-subject
factor. Uncorrelated p-values are reported for the two ANOVA analyses (image
seed and gender). FOV ANOVA is omitted due to unbalanced sample sizes (14
and 2). No significant differences were found in responses for the two subject
groups that were shown image sets from two different random seeds (p > 0.2,
Fig. 13, Left). This indicates that peak pareidolia is not an artifact of a ‘lucky
draw’ from the random image set generated.


https://github.com/vdutell/pareidolicNoise
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In addition to the peak in number of faces reported, we also found that
subject’s response time (RT) mirrored a similar curve for low to medium filter
widths. However, for the largest filter widths shown, the RT curve did not fall off
as steeply as the pareidolia curve (Fig. 13, Right). This indicates that subjects
took time to look for faces in high frequency data and did not simply ‘give up’
on the task.

A.3 Additional Human Psychophysics Results
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Fig. 13: Left: Pareidolia reported for two subject groups with different random seed
images shows no significant difference between groups. Right: Response time (RT)
mirrors number of faces for small to medium filter widths, but does not fall off as
sharply. Plots report +1 standard deviation.
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Fig. 14: Left: Pareidolia by subject. Right: Female and Male subjects both demonstrate
peak pareidolia, and do not show significant differences. Plot reports +1 standard
deviation.
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Furthermore, no significant differences were found between male and female
subjects (p > 0.8, Fig 14, Right). We note that previous work found females
have stronger pareidolic-like neural responses [37]. Interestingly, one subject
self-reported having difficulty recognizing face identity (possible undiagnosed
prosopagnosia), yet still demonstrated peak pareidolia, though reported fewer
faces than most other subjects (Fig. 13, Left, Subject ID 326).
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Fig. 15: Left: Human Contrast Sensitivity Function for 1024x1024 image shown at
full screen height Field of View (full FOV, blue), and at half size (half FOV, orange).
Right: Peak pareidola measured in humans for stimuli viewed at full and half FOV.
Full Screen data for 14 subjects, Half screen data for two subjects. Plot reports +1
standard deviation.

Despite finding similar peak pareidolia between humans and and machines,
one unaccounted difference between their visual systems is in the Contrast Sen-
sitivity Function (CSF). The CSF describes the attenuation of spatial frequency
sensitivity for humans at frequencies below and above around 10 cycles per de-
gree (cpd). We calculate the CSF for the range of our experiment assuming the
viewing distance of 30 inches, and the scotopic-mesiopic viewing conditions of
our setup using the CSF equation from [32]. We plot this for the full screen
viewing experiment in Figure 15, Left, blue line.

Because our model posits that high frequencies disrupt pareidolia by making
mode alignment unlikely, we explored whether the human CSF, which reduces
sensitivity to high frequencies, might explain the results. To determine if the
CSF had a measurable effect on the human pareidolia results in our experi-
mental setup, we ran two additional subjects in the same experiment, but with
images presented at half the screen width, and therefore with half Field of View
(FOV). This increased the Nyquist frequency from 33cpd to 55¢pd (screen mon-
itor limit). The Human CSF for this range of frequencies is shown in Figure
15, Left, orange line. We find that for the two subjects tested, results trend to
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similarly to the full FOV condition (Figure 15, Right) demonstrating that peak
pareidolia is not solely caused by the human CSF.

A.4 Additional Annotation Details

Each image in the Faces in Things dataset is annotated by the following series
of questions:

1. Is there a face?
(Yes / No / Several)
2. If Yes / Several: draw bounding box over face(s)
3. Is the face difficult to spot?
(Easy / Medium / Hard)
4. Was the face generated by accident, or by design?
(Accident / Design)
5. What emotion does the face show?
(Neutral / Happy / Sad / Surprised / Angry / Disgusted / Scared / Other)
6. What does the face most resemble?
(Human-Baby, Human-Child, Human-Adult, Human-Older, Alien, Animal,
Cartoon, Robot, Other)
7. What gender do you think the face is?
(Neutral / Female / Male)
8. Is this example of pareidolia amusing?
(No / Somewhat / Yes)
9. How common is this type of face pareidolia?
(Uncommon / Somewhat / Common)

For consistency, a single annotator was tasked with annotating raw data until
a set of five thousand face-containing images had been collected. Data was then
manually checked by the authors to correct errors, confirm the reasonableness
of the annotations and to flag any faces that were considered unsafe for viewing.
Duplicates were automatically detected and removed by thresholding the simi-
larity between or DINOv2 class tokens at 0.85. We note that the subjectivity of
this task and that the annotations represent a biased view of the dataset from
a single annotator’s perspective. While it would be interesting to annotate the
same data with multiple annotators to build a distribution of answers and model
this subjectivity, it was outside the scope of our current project and we leave it
as a direction for future work.
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A.5 Additional Average Face Renderings

(a). . .
(b)“ E .

Pareidolic Human Animal

Fig.16: The Appearance of an Average Pareidolic Face. Shown here are the
(a) raw average and (b) per-channel histogram-equalized average images for registered
pareidolic faces (our Faces in Things dataset), human faces (samples from the WIDER
FACE dataset [62]), and animal faces (AnimalWeb [24]). The average pareidolic face,
while less distinct than human or animal, has surprisingly clear eye, nose, and mouth
features, and vertical symmetry.
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A.6 Average Faces across Different Conditions

Out of curiosity, we plot in Fig. 17 the histogram-equalized averages for faces in
our dataset that have been classified as Happy (31% of the data) or otherwise
(Neutral / Sad / Surprised / Angry / Disgusted / Scared / Other).

Happy Human Accidental

All

Non-Happy Non-Human By Design

Fig. 17: Average faces from the Faces in Things dataset that fit certain label criteria.

A.7 Why focus on Pareidolia?

Many computer vision researchers are inspired by the human visual system and
its ability to robustly recognize patterns in the world. Face pareidolia is fas-
cinating because it is a human visual representation phenomenon that is not
well understood. Our dataset, models, and experimental analyses shed light on
how and why it might arise. These contributions may help the community to:
better understand and harness human visual attention (which is drawn towards
face-like objects), reduce pareidolic false positives in face detectors, help design-
ers avoid or create pareidolia, improve pareidolic animation, and create systems
that understand how we perceive the world.
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A.8 Analyzing the Viola-Jones face detector.

Additional Psychophysics Results
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Fig. 18: Fitting our Gaussian model (green) to human data. The Viola-Jones face
detector also shows peak pareidolia (purple).

We perform a set of additional experiments with the Viola-Jones face detector
and find that it also displays a “pareidolic peak” as seen in in Figure 18.

A.9 Fitting the Gaussian model of Pareidolia to human
experiments.

We fit our Gaussian model to human data in Figure 18. The fit parameters
(0 = 6) are similar to the flot of Figure 9 plots (o = 10).
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A.10 Simultaneous Classification and Detection.

True Labels
Animal

5.4% 85.0%

Pareidolic

Human Animal Pareidolic
Predicted Labels

Fig. 19: Simultaneous face detection and classification. Block structure shows similar-
ity between animal and pareidolic faces.

We show a simultaneous classification analysis in Figure 19. We thank the
reviewer as this further quantifies our findings that models are more likely to
confuse animal and pareidolic faces with each other than with human faces.
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