

1 **Mapping Lava Flows on Venus using SAR and InSAR: Hawai'i Case Study**

2

3 Authors: M.C. Brandin¹, D.T. Sandwell¹, C.L. Johnson^{2,3}, M.B. Russell²

4

5 ¹ Institute for Geophysics & Planetary Physics

6 ² Planetary Science Institute

7 ³ University of British Columbia Vancouver

8

9 **Key Points:**

10 ● Under favorable mission and instrument conditions, InSAR can detect lava flows on
11 Venus

12 ● InSAR correlation effects from thermal subsidence can be seen for several months post-
13 lava-flow-emplacement

14 ● Lava flows are more easily visible in InSAR correlation maps than in differenced SAR
15 amplitude maps

16

17 **Abstract**

18 We explore the potential for repeat-pass InSAR correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the USGS, and because Hawai'i is a SAR supersite, where space agencies have offered open radar datasets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS-2 (L-band), Sentinel-1 (C-band), and COSMO-SkyMed (X-band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post-emplacement contraction of flows. Post-emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat-pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin.

36

37 **Plain Language Summary**

38

39 Scientists are still unsure whether volcanic activity is presently occurring on Venus. Future missions to Venus may have the opportunity to detect new lava flows on Venus' surface using a process called interferometry, in which two radar images of a planet's surface over time are compared to see what's changed between them. Interferometry has been used to detect lava and volcanic activity on Earth in the past. We use Hawai'i as a natural laboratory, measuring lava flows there with interferometry, under simulated conditions of a Venus mission, to test whether it will be possible for future Venus missions to track lava flows with interferometry. From the results of our case study, we believe that future missions to Venus such as NASA's VERITAS will be able to do exactly that.

48

49 **1 Introduction**

50

51 Detection of present-day volcanic or tectonic activity on Venus would revolutionize our
52 understanding of Earth's sister planet. On Earth, heat from planetary formation and that
53 subsequently generated by radiogenic isotopes is primarily released to the surface by plate
54 tectonics/recycling (~70% Turcotte, 1995) although hotspot volcanism and lithospheric
55 conduction are also important (~30% Sleep, 1992). Venus and Earth have similar size, mass,
56 location in the solar system, and by inference, composition, so Venus must also rid itself of
57 excess heat by a combination of these three mechanisms (Solomon & Head, 1982). If the heat is
58 lost primarily by conduction then the lithosphere should be ~40 km thick to sustain an average
59 surface heat flow of ~74 mWm⁻². Topographic flexure (Johnson and Sandwell, 1994; Russell and
60 Johnson, 2021; Smrekar et al., 2023) and gravity/topography (e.g., Anderson and Smrekar, 2006)
61 studies suggest the thickness of the Venusian lithosphere is similar to that of Earth (> 80 km) so
62 conduction cannot be the dominant mechanism. Venus has arcuate trenches similar in planform
63 and cross section to subduction zones on the Earth (McKenzie et al., 1992) although there is little
64 evidence for planet-wide plate tectonics (Byrne et al., 2021) and the overall length of inferred
65 trenches on Venus is only about one third of the length of trenches on the Earth (Schubert and
66 Sandwell, 1995). Other than the potential for highly efficient episodic tectonics, or cooling
67 through lithospheric delamination (Turcotte, 1995) the remaining mechanism for heat loss is
68 volcanism. On the Earth, there is near constant volcanic activity along the seafloor spreading
69 ridges and on land volcanoes. Based on these arguments, one would expect Venus to have
70 numerous active volcanoes. Indeed a recent study estimates the frequency of volcanic activity on
71 Venus to be as high as 120 eruptions per Earth year (Byrne & Krishnamoorthy, 2022).

72

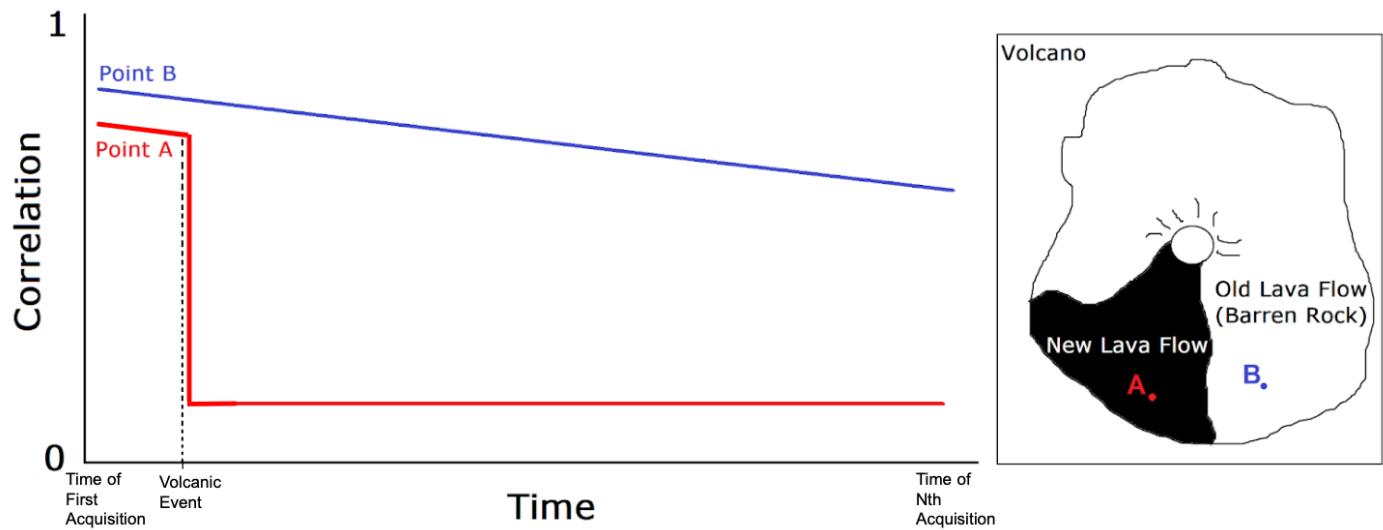
73 Synthetic Aperture Radar (SAR) images taken during NASA's Magellan
74 mission (1989–1994) (Saunders et al., 1992) indicated that Venus has an
75 extensive history of volcanism, and have enabled comprehensive
76 mapping of lava flows, the ages of which are largely unknown (Head et
77 al., 1992). The spatial crater density on the surface of Venus is low,

78 and it is not possible to obtain statistically reliable relative
79 regional surface ages (Campbell, 1999; Hauck et al., 1998; Phillips et
80 al., 1992). Based on the low number, area, and density of impact
81 craters, estimates for the average global surface age range from 300
82 Ma to ~1 Ga (McKinnon & Zahnle, 1997; Phillips et al., 1992; Schaber et
83 al., 1992). Analysis of Magellan radar emissivity data, showing variations spatially correlated
84 with individual features on the ground, suggests the youngest flows on Maat Mons are younger
85 than 60 million years old, and perhaps as young as 9 million years old (Brossier et al., 2021).
86 There is also circumstantial evidence for even more recent volcanism on Venus. Thermal
87 emissivity anomalies detected by ESA's Venus Express Mission could result from lava flows
88 younger than 250,000 years old (Smrekar et al., 2010), and these anomalies have been used to
89 map the location and extent of younger vs older lava flows (D'Incecco et al., 2016). The Venus
90 Monitoring Camera (VMC) aboard Venus Express also detected local fluctuations in surface
91 temperature on a time scale of days to months, located along the Ganiki Chasma rift zone,
92 suggesting the presence of volcanic activity related to the rift (Shalygin et al., 2015).
93 Atmospheric evidence also suggests the presence of recent volcanism, such as the episodic
94 injection of sulfur dioxide (Esposito, 1984). Recent comparisons of two Magellan SAR images
95 of Atla Regio suggest that a volcanic event occurred in the 8-month gap between acquisitions
96 (Herrick & Hensley, 2023). These observations indicate a volcanic vent increasing 4 km² in area,
97 the first direct indication of volcanic activity on the Venusian surface. Still, the exact age of
98 Venus' lava flows and the frequency with which they are emplaced now or in the past remains a
99 mystery.

100
101 Detection of present and past volcanism is a major goal of upcoming SAR missions to Venus,
102 namely NASA's VERITAS mission (X-band, Smrekar et al., 2022) and ESA's EnVision mission
103 (S-band, Ghail et al., 2017). These may have the capabilities to detect volcanism within the
104 mission lifetime using repeated SAR imagery amplitude and possibly SAR Interferometry
105 (InSAR) (Meyer & Sandwell, 2012).

106

107 The primary focus of the Magellan mission was on imaging and mapping Venus using SAR, but
108 not InSAR, as the use of amplitude and phase data for InSAR at Earth was first tested only
109 around the time of the Magellan mission (Massonnet et al., 1993), and the orbital characteristics
110 of the Magellan mission, as with most planetary missions, were not optimal for doing so.
111 Measuring changes in radar backscatter amplitude has been used to accurately detect lava flows
112 in previous terrestrial studies, including on the island of Hawai‘i (Poland, 2022; Dualeh, 2022).
113 However, only using radar backscatter amplitude differences to identify lava flows has many
114 challenges. Radar backscatter is most sensitive to the roughness of the surface at the wavelength
115 of the radar - fresh lava flows can therefore prove difficult to map, disappearing in the radar
116 image where their flow becomes smooth, and reappearing in a‘a or pahoehoe-textured areas
117 (Herrick et al., 2023). Although very large changes in the shape of the surface can be seen in
118 radar backscatter amplitude changes, such as those found by Herrick & Hensley (2023), smaller,
119 or relatively flat lava flows are difficult to detect. In short, if the surface texture remains roughly
120 the same before and after a lava flow is emplaced, it may go undetected.


121
122 Previous studies show InSAR is very effective for mapping lava flows (Zebker et al., 1996; Lu et
123 al., 2000; Rowland et al., 2003; Diettrich et al., 2012; Poland, 2022), and can be used when
124 changes cannot be distinguished in radar backscatter. InSAR measures surface change by
125 comparing radar phase between two co-registered SAR scenes collected at different times.
126 Where the surface scatterers have not changed orientation with respect to the satellite view
127 between two images, coherence will be high, but where the surface has changed in the time
128 between acquisitions, coherence will be low. The phase can be computed at a single pixel but the
129 coherence requires averaging or filtering over an area of several pixels. The coherence will
130 remain high as long as the phase variations are relatively uniform within the averaging area. **We**
131 **smooth the coherence with a Gaussian filter having 0.5 gain filter at 75 m half wavelength,**
132 **which is comparable to a 36 m boxcar filter, a commonly used length scale for multilook**
133 **averaging (Zebker & Villasenor, 1992).** Moreover, the phase of the overall interferogram can be
134 highly distorted by atmospheric phase delays while the corresponding coherence image will be
135 largely insensitive to the atmospheric distortions and more sensitive to changes in the surface
136 scatterers. This coherence is measured with a value from 0 to 1 referred to as correlation (Zebker
137 & Villasenor, 1992). On Earth, decorrelation between two SAR images of the same area is often

138 caused by water and vegetation, which causes surface changes between SAR scenes (Zebker &
139 Villasenor, 1992). Variations in the position of the satellite also affect correlation, and the larger
140 the distance between the satellite positions at different acquisition times, known as the “physical
141 perpendicular baseline,” the lower the overall correlation and its maximum possible value
142 (Gatelli et al., 1994). The length of time between acquisitions, or “temporal baseline,” also
143 lowers correlation, because of small surface changes accumulating over time (Lu & Freymueller,
144 1998).

145

146 New lava flows cause substantial decorrelation of SAR images by repaving the surface,
147 completely changing the ground's scattering properties between images collected before and after
148 flow emplacement. However, once a flow becomes inactive, and the lava completely cools and
149 subsides, its surface remains stable between image acquisitions, yielding high correlation in
150 subsequent acquisitions, at least in arid regions (Diettrich et al., 2012). It is this effect that makes
151 InSAR correlation useful in lava flow mapping, as new, active lava flows will exhibit very low
152 correlation compared to old, inactive lava flows around them (Figure 1).

153

154

155 Figure 1. Schematic of the correlation of InSAR image pairs over active and inactive volcanic
156 flows. The InSAR correlation of an active lava flow area of an image taken before the eruption
157 with all following images will drop dramatically after the event, and stay low for any
158 interferogram made between the first, pre-eruption acquisition and any acquisition taken after the
159 volcanic event, no matter the length of time that has transpired. In contrast, for inactive lava flow

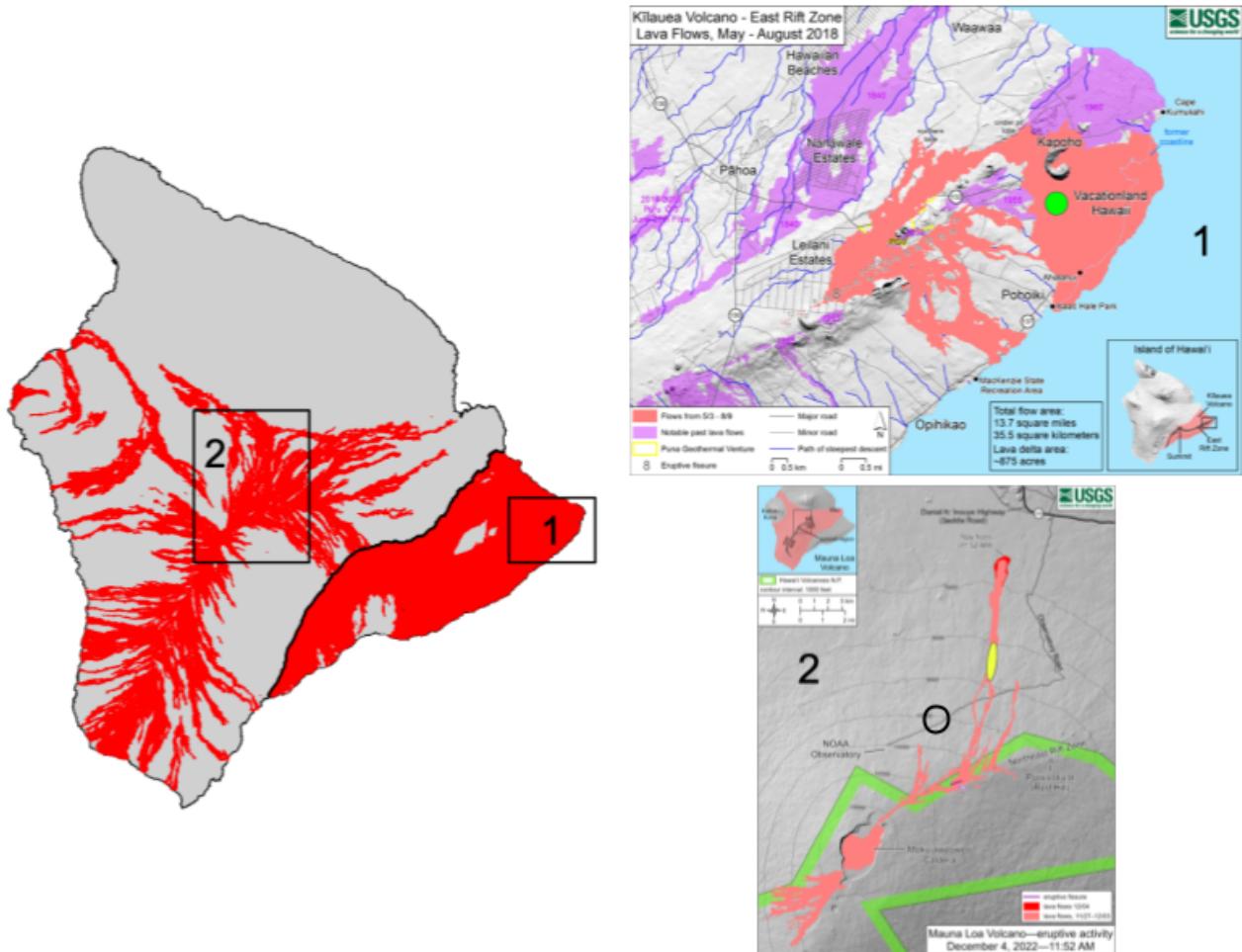
160 areas, the InSAR correlation will initially be high but decrease steadily with time in subsequent
161 interferograms due to small, accumulating changes in the surface scatterers (Lu & Freymueller,
162 1998).

163

164 Venus provides unique challenges for an InSAR mission; physical perpendicular baselines may
165 be large because of the highly eccentric orbits common to planetary missions. Furthermore,
166 Venus' slow rotational period means that the matching tracks (descending or ascending) of an
167 orbiting satellite only passes over the same location once every 243 days, constraining the
168 temporal baseline, and limiting the total number of repeat passes over the mission lifetime to ~5
169 at best (Meyer & Sandwell, 2012). Despite these challenges, NASA plans to utilize InSAR on
170 VERITAS (Smrekar et al., 2022), and there was initially discussion of using InSAR on EnVision
171 (Ghail et al., 2017). Although InSAR is no longer a planned mission activity for EnVision
172 (ESA/SCI, 2021) because no near repeat orbits are planned (ESA/SCI, 2023), repeat orbits with
173 short interferometric baselines may occur, especially at high latitudes where the orbital tracks
174 converge. In this study, we aim to inform potential future Venus InSAR efforts to detect lava
175 flows by exploring the most effective radar bands, orbits, temporal baselines, and analysis tools.

176

177 We use the Island of Hawai‘i as a natural laboratory for the following reasons: 1. It is heavily
178 studied, including other InSAR lava flow tracking experiments (Zebker et al., 1996; Mouginis-
179 Mark, 2004; Diettrich et al., 2012; Poland, 2022); 2. it is an open data supersite; and 3. it is a
180 volcanically active area with new lava flows frequently covering older emplaced flows. To
181 investigate the optimal methods for lava flow detection with InSAR, we use data from three
182 satellites, namely Sentinel-1 operating at C-Band (5.6 cm), ALOS-2 operating at L-Band (23.6
183 cm), and COSMO-SkyMed operating at X-band (3.1 cm). These satellites travel in orbits having
184 near-exact repeats, so interferometry is commonly possible. We employ two methods, InSAR
185 correlation and SAR amplitude, to investigate and monitor lava flows from two separate
186 eruptions (Figure 2).


187

188 **2 Methods**

189

190 We consider two main eruption phases on the island of Hawai‘i to characterize changes in SAR
191 amplitude and correlation. The 2018 eruption has the best temporal coverage, especially at C-
192 band. This enables us to compare amplitude and coherence changes before, during and long after
193 the eruption. The 2022 eruption at the summit of Mauna Loa provides excellent spatial mapping
194 of amplitude and coherence in L, C, and X-band.

195

196
197 Figure 2. Location and extent of the two lava flows analyzed in this paper. Left: USGS map of
198 Hawai‘i showing all lava flows in the past 1000 years in red (USGS). Boxes 1 and 2 show the
199 approximate extents of the USGS maps for the 2018 and 2022 events shown in Top Right and
200 Bottom Right respectively. Top Right: USGS map of the 2018 Kīlauea Lower East Rift Zone
201 eruption final extent (USGS, 2018). Purple shows old emplaced lava flows, pink shows the 2018
202 flow, and overlaid green oval marks the general location from which SAR amplitude and InSAR
203 correlation values were sampled over the new lava flow. Bottom Right: Published USGS map of

204 the 2022 Mauna Loa lava flow, showing extent by December 12, 2022, in pink and red (USGS,
205 2022). Overlaid yellow oval marks the general location of the area from which SAR amplitude
206 and InSAR correlation values were sampled. Overlaid black ring marks the general location from
207 which values were sampled over the older, inactive surface.

208

209 2.1 C-band analysis of the 2018 eruption

210

211 To study the May 2018 Kīlauea Lower East Rift Zone Eruption (Neal et al., 2019; Patrick et al.,
212 2019; Dietterich et al., 2021), we assembled more than 200 Sentinel-1 (C-band) SAR images
213 from both A and B satellites for times when both were operational, with a 6 to 12 day repeat pass
214 period over the Island of Hawai‘i spanning March 2018 to December 2021. We used only data
215 from a descending orbit (track 87). Using the software GMTSAR (Sandwell et al., 2016), we
216 processed all possible 20,000+ combinations of InSAR image pairs. We used a Gaussian filter
217 with a 0.5 gain at a wavelength of 120 meters for multi-look averaging amplitude, phase, and
218 coherence, and used the Shuttle Radar Topography Mission (SRTM1) 30 m data for our digital
219 elevation model (DEM) to remove the topographic phase (Farr et al., 2007).

220

221 Having assembled all InSAR pairs and calculated phase differences, radar amplitude differences,
222 and correlation, we then computed the average correlation for specific regions of interest on the
223 map for each pair. Our two main regions of interest were 1. “active lava flow areas,” consisting
224 of an old lava flow or bare ground that was largely covered by new lava during the eruption
225 event, contrasted with 2. “inactive lava flow areas,” consisting of old lava flow or bare ground
226 that was completely untouched by new lava flows for the entire duration of the data set, as
227 sketched in Figure 1. The locations of all “active” and “inactive” areas sampled are shown in
228 Figure 2.

229

230 For the 2018 eruption, our active lava flow area is the old 1955 lava flow and parts of the 1960
231 flow, which were largely devoid of vegetation before the eruption and completely covered by
232 new lava during the event (Figure 2). The presence of extensive vegetation in this area made
233 analysis difficult, as only small areas could be sampled and studied. Our inactive lava flow area
234 was an unvegetated slope of Mauna Loa, which had no new lava flows during this time period

235 (2018-2021).

236

237 For each pair of SAR images, we also computed the relative change in SAR amplitude between
238 the two images, by taking the absolute difference between them and dividing by their average to
239 normalize to 1. In the same way we sampled average correlation, we sampled the average
240 amplitude difference of each image pair, for both the active and inactive lava flow areas. No
241 radiometric or other corrections were performed on the amplitude data beforehand.

242

243 2.2 L, C, and X-band spatial and temporal analysis of the 2022 Mauna Loa eruption

244

245 The November-December 2022 eruption of Mauna Loa (Figure 2) provided an opportunity to
246 explore the strengths and weaknesses of imaging an eruption using three radar wavelengths L, C,
247 and X-band. There is little water or vegetation on the slopes of Mauna Loa, so the inherent
248 correlation of the old emplaced flows is very high at all three radar wavelengths, similar to
249 conditions expected on Venus, making this eruption an ideal case study for our method. As
250 discussed above, the orbits of the reference and repeat images must be within the critical baseline
251 to recover interferometric phase and coherence. The critical baseline (Zebker and Villasenor,
252 1992) is given as

253

254 EQUATION 1: $b_{\text{crit}} = (\lambda r) / (2R\cos^2\theta)$

255

256 where c is the speed of light, r is the slant range (~ 600 km), θ is the look angle (~ 20 -45 degrees),
257 λ is the wavelength, and R is the pulse length = 1/bandwidth. The maximum coherence of an
258 interferogram is

259

260 EQUATION 2: $\gamma = 1 - (b_{\text{perp}}/b_{\text{crit}})$

261

262 where b_{perp} is the range-perpendicular distance in space between the reference and repeat orbits.
263 For similar orbital geometry, the main factors controlling the critical baseline are the radar
264 bandwidth and the radar wavelength. The radar wavelengths of L, C, and X-band are 30-15 cm,

265 7.5-3.75 cm, and 3.75-3.5 cm, respectively, so all else being equal, the critical baseline for L-
266 band will be 4 times longer than C-band and 8 times longer than X-band.

267

268 At L-band, the 2022 eruption site was imaged only 6 times with JAXA's ALOS-2 spanning June
269 2022 to July 2023. From this limited set, we generated 15 interferograms spanning the eruption
270 and lava flow event. The perpendicular baseline of all the interferograms was well within the
271 critical baseline of ~6.5 km.

272

273 At C-band the 2022 eruption site was imaged 23 times by Sentinel-1 spanning October 2022 to
274 June 2023. Because of the relatively short perpendicular baselines, we processed 162 InSAR
275 pairs. Once again, we calculated and sampled the average correlation and average amplitude
276 difference at an active and inactive lava flow area for each InSAR pair.

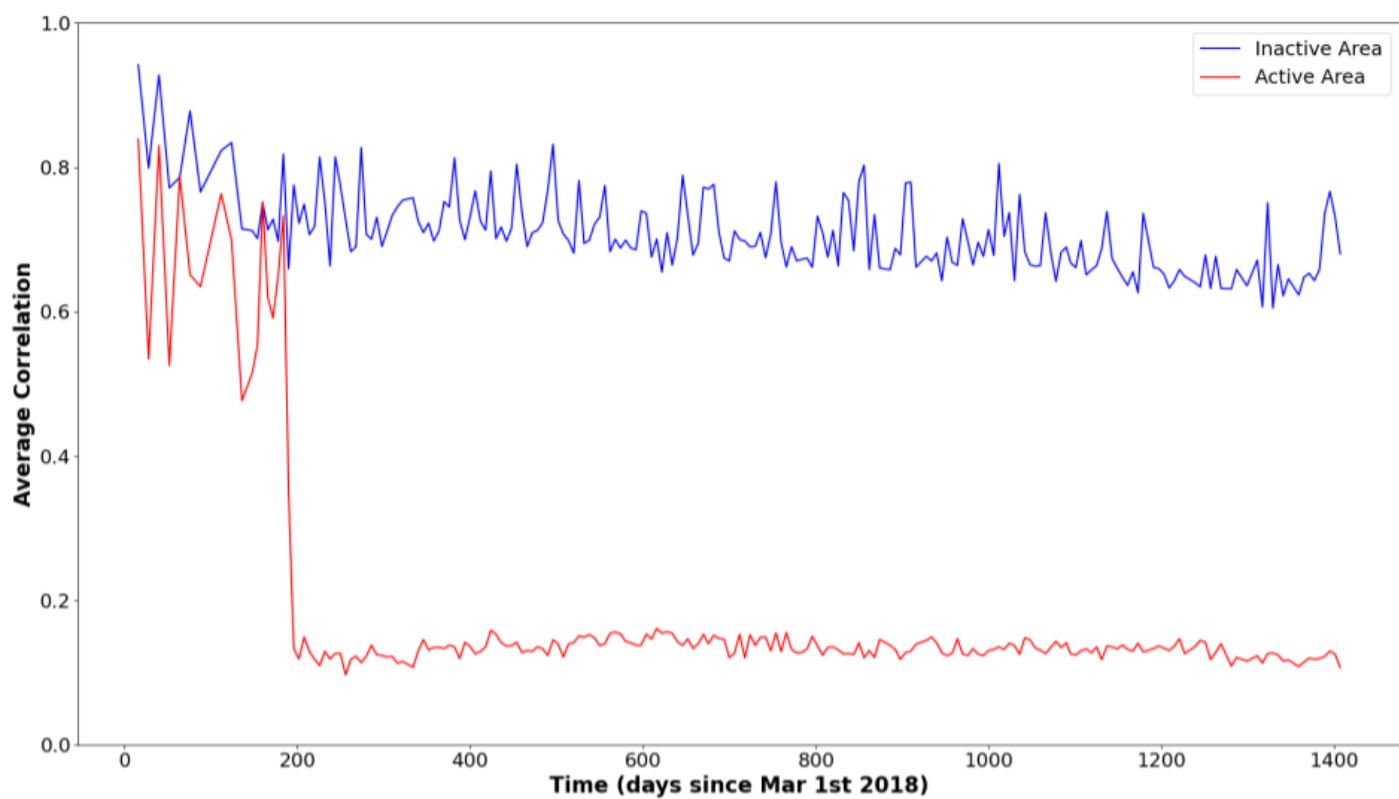
277

278 At X-band we assembled 10 images from ASI's COSMO-SkyMed, spanning October 2022 to
279 April 2023. Each sequential image pair had a temporal spacing of around 15 days. Unfortunately,
280 the repeat orbits of COSMO-SkyMed (CSK) are not normally controlled within the relatively
281 small critical interferometric baseline of around 1.3 km, so only a fraction of the interferograms
282 are usable. Many have maximum correlation far less than 1, so the correlation contrast can be
283 low. Of the 45 interferograms we processed, fewer than 15 had sufficiently high correlation to
284 distinguish surface features, with many being completely decorrelated. Still, those well-
285 correlated interferograms gave us an opportunity to compare interferograms of the 2022 eruption
286 in all three bands, L, C, and X. This also gave us a unique opportunity to test the effects of high
287 physical baselines on our detection method, as this will be a major hurdle of any Venus InSAR
288 mission.

289

290 **3 Results**

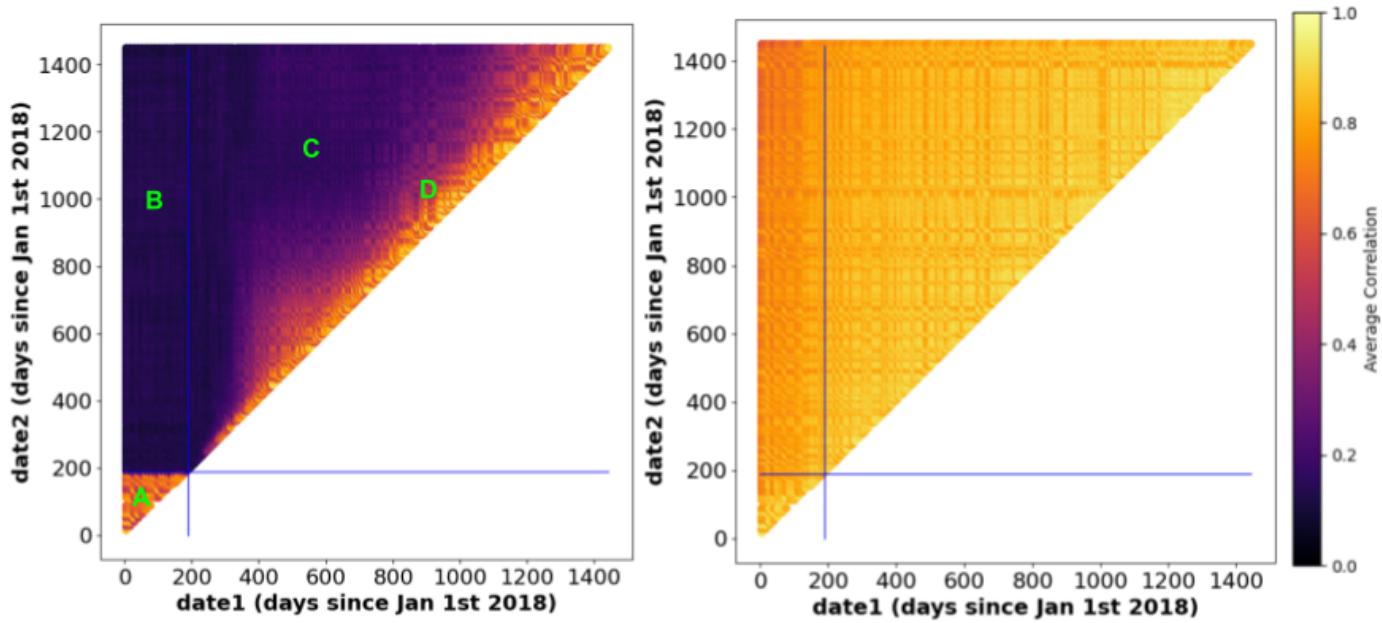
291


292 3.1 Analysis of 2018 Eruption

293

294 Our schematic (Figure 1) for how new emplacement of lava flows would affect the correlation
295 between InSAR image pairs is supported quantitatively by the Sentinel-1 data for the 2018

296 eruption, (Figure 3). The correlation of the inactive area stays high, slowly decreasing, on
297 average, in a linear fashion over several years. The correlation of the active area however, drops
298 substantially with the emplacement of new lava, and remains low more than a thousand days
299 later. Substantial noise is present due to baseline effects, and because of the presence of some
300 light vegetation and water in these areas, both of which cause rapid decorrelation in InSAR
301 images, however, neither are present on the Venusian surface. All things being equal, a higher
302 signal-to-noise ratio in such derived products might be expected from a Venus mission. Venus'
303 atmosphere may cause significant variability in the strength of the coherence signal, leading to
304 lower signal-to-noise overall (Meyer & Sandwell, 2012)


305

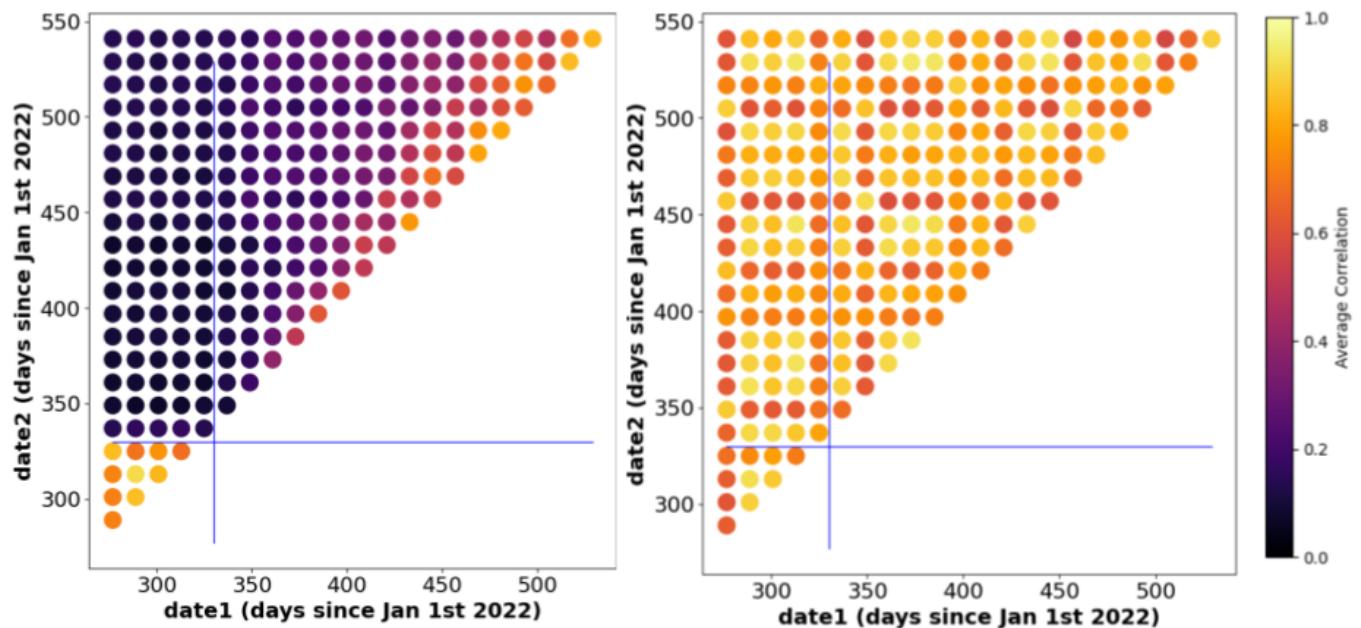
306
307 Figure 3. Average InSAR correlation over active (red) and inactive (blue) lava flow areas,
308 between one image before the 2018 eruption (March 1st 2018) and every other image in the data
309 set, showing the evolution in time of correlation in both areas. Lava emplacement occurred
310 around day 190 (July 9th 2018). Time on the x-axis refers to the date of second acquisition.
311

312 The average correlations of all possible image pairs for both the active and inactive areas is
 313 shown in Figure 4. There are three distinct types of correlation in relation to the lava flow: 1. The
 314 inactive area (Figure 4, right) has no notable correlation changes between pairs. There are some
 315 bands of relatively lower correlation believed to be caused by rainfall, which can reduce
 316 correlation (Lohman & Bürgi, 2023); 2. All interferograms spanning the event have low
 317 correlation as seen in area B of Figure 4 left; 3. There is an interesting pattern in correlation for
 318 interferograms with both acquisitions after the event. The coherence between sequential SAR
 319 images does not immediately return to the high value of ~0.8 because the surface scatters of the
 320 lava flow are still in motion. This is due to cooling and settling of the lava which can take several
 321 years depending on thickness of the flow as noted in previous studies (Diettrich et al., 2012;
 322 Stevens et al., 2001). These post-emplacement signatures can also be seen in our results for the
 323 other eruption and are discussed in more detail in section 4.1.

324

325
 326 Figure 4. Plots of average correlation over specified area for all possible InSAR pairs in the data
 327 set for 2018 eruption. Blue line marks day 190 (July 9 2018), the approximate date at which lava
 328 flows completely covered the active lava flow area sample region. Left: samples over an active
 329 lava flow area, specifically parts of the old 1955 lava flow that were completely covered by the
 330 2018 Eruption. Green letters show regions of interest representing certain snapshots of lava flow
 331 evolution which are further discussed in section 4.1. Region A, represents both acquisitions taken

332 before the eruption, B one acquisition taken before and one after, C long time-span acquisitions
333 taken after the eruption and D short time-span acquisitions taken after the eruption respectively.
334 Right: samples over inactive lava flow area.


335

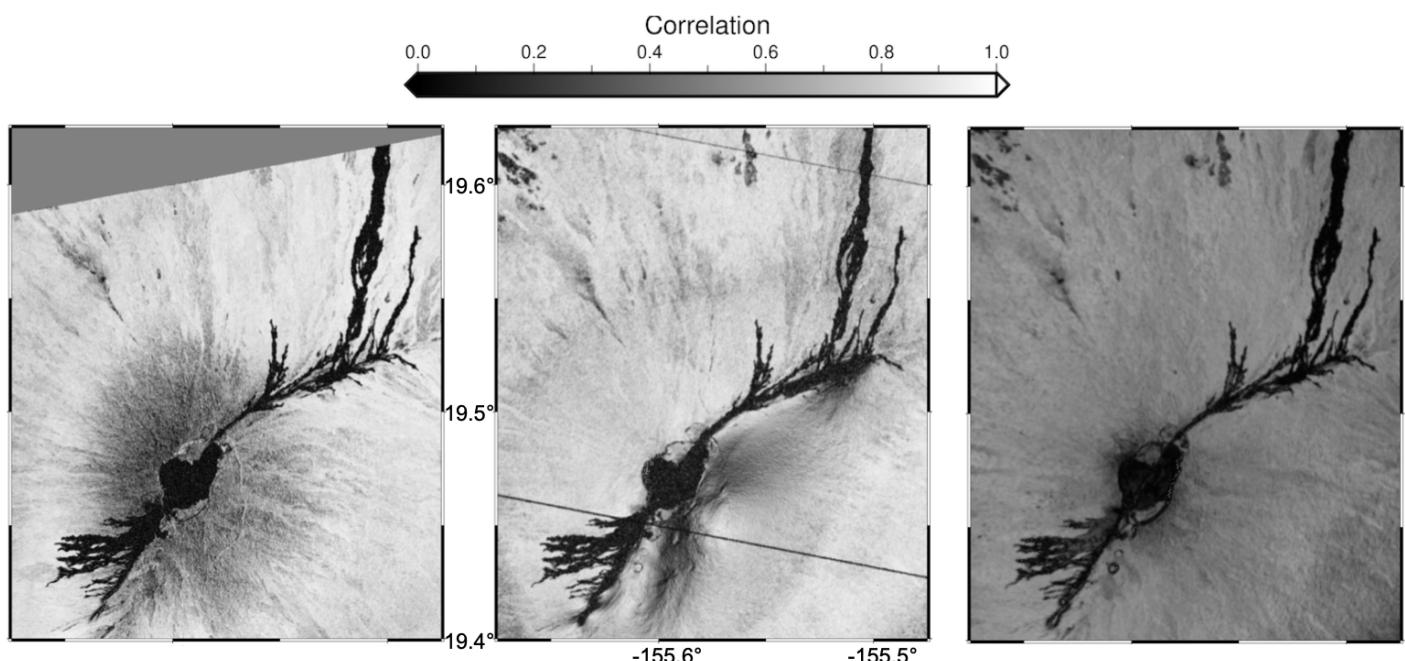
336 3.2 Analysis of 2022 Eruption

337

338 Figure 5 shows the average correlations of all possible C-band image pairs for both the active &
339 inactive areas for the 2022 eruption data set. As with the 2018 eruption, there is a clear pattern of
340 the correlation dropping and staying low after the eruption is present in the active lava flow area
341 but not the inactive area. Bands of lowered correlation in the inactive area data are, as in the
342 previous example, most likely caused by moisture and ordinary noise.

343

344


345 Figure 5. Plots of average correlation over active (left) and inactive (right) lava flow areas for all
346 possible InSAR pairs in the 2022 Mauna Loa eruption data set. The blue line marks day 330
347 (Nov 26 2022), the approximate date at which lava flows completely covered the active lava
348 flow area sample region.

349

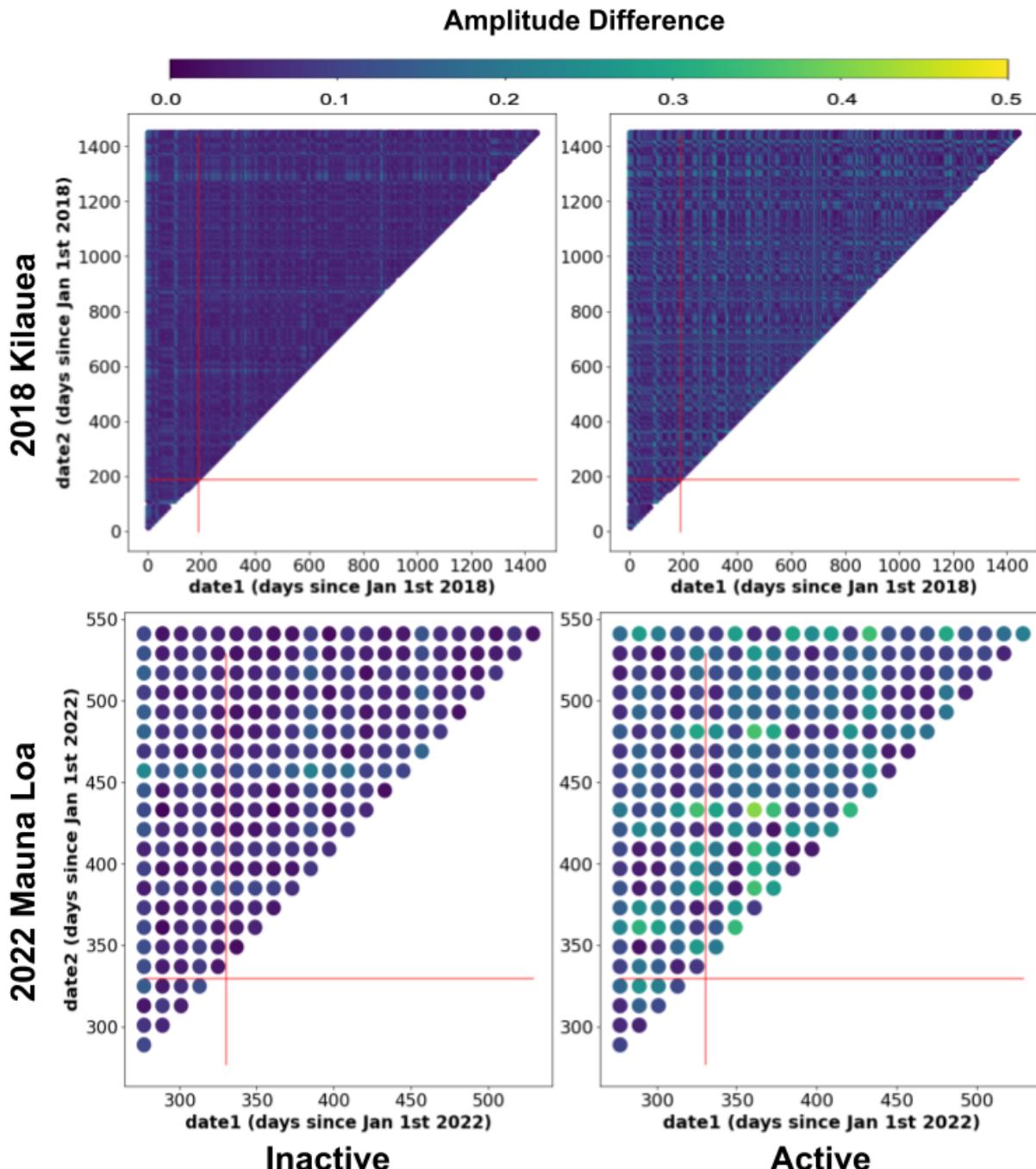
350 Figure 6 shows InSAR Correlation maps of Mauna Loa made using ALOS-2 (L-band), Sentinel-
351 1 (C-band), and CSK (X-band). All three maps were generated using images with as close to a

352 243 day temporal baseline as possible to simulate the aforementioned temporal baseline issues of
353 a Venus mission. The differences between L-band and C-band are minimal, both showing the
354 2022 lava flow clearly. A dark halo of low coherence surrounds the summit of Mauna Loa in the
355 L-band image, which is not volcanic in origin but results from the late December snowfall. The
356 same snowfall signal is visible in C-band images made around the same time. X-band has
357 significantly lower overall correlation, being far more affected by baseline effects than the other
358 two bands. However, the new lava flows are still seen via their correlation contrast with the
359 surrounding area.

360

361
362 Figure 6. Left: interferogram correlation using 2 ALOS-2 L-band SAR acquisitions, one before
363 the eruption (June 19, 2022) and one after the eruption (January 1, 2023), a temporal baseline of
364 196 days, the closest to 240 days possible with ALOS-2 data. Center: interferogram correlation
365 using 2 Sentinel-1 C-band SAR acquisitions, one about 240 days before the eruption (April 8,
366 2022) and one during (December 4, 2022), representing 2 repeat passes of a typical Venus
367 satellite. Straight lines going across the image mark the boundary of the Terrain Observation
368 with Progressive Scans (TOPS) mode radar burst, and are not signals. Right: interferogram
369 correlation using 2 CSK X-band SAR acquisitions, one during the eruption (December 2, 2022)
370 and one after (April 25, 2023), a temporal baseline of 144 days, the closest to 240 days possible
371 with our limited number of well correlated interferograms.

372

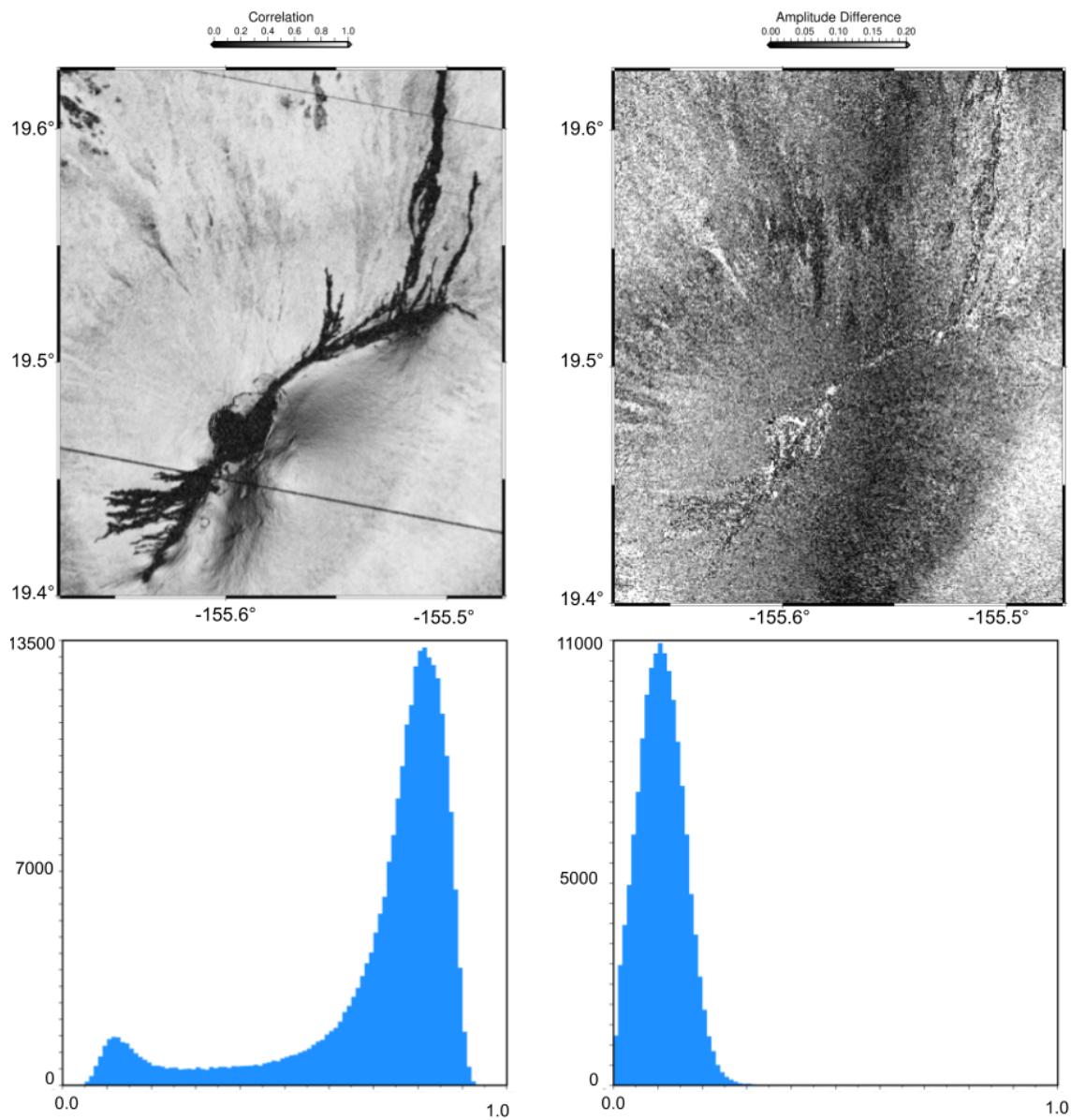

373 3.4 Amplitude Difference vs Correlation

374

375 Figure 7 shows the average amplitude differences of all possible image pairs for both the active
376 and inactive areas, for both eruptions, in the C-band.

377

378


379

380 Figure 7. Plots of average SAR amplitude differences over specified areas for all possible InSAR
 381 pairs for both eruptions. Right Column: average amplitude differences of the active lava flow
 382 areas for each of two eruptions, 2018 (top) and 2022 (bottom). Left Column: average amplitude
 383 differences of the inactive lava flow areas for each of two eruptions. Red lines show the time of
 384 the volcanic event for each data set.

385

386 For the 2018 and 2022 eruption data sets, the difference between active and inactive volcanic
387 areas is far more pronounced and temporally obvious in the average correlation data compared
388 with the amplitude difference. In all data sets, active lava flow areas appear to have larger and
389 more frequent changes in SAR amplitude than inactive areas. However, large amplitude
390 differences in all three instances do not match well in time with the date of the volcanic event - it
391 is difficult from amplitude data alone to distinguish where and when lava flow emplacement is
392 occurring, from other events that may cause a change in backscatter (eg. precipitation).
393 Conversely, differences in average correlation before and after a volcanic episode are
394 immediately noticeable, and show a clear evolution in time. As is discussed in further detail in
395 section 4.1, post-emplacement effects from the lava cooling and settling can be also clearly seen
396 in the correlation data - something that is not visible in the amplitude difference data.

397

398

399 Figure 8. Top Left: interferogram correlation using 2 Sentinel-1 C-band SAR before (April 8,
400 2022) and during (December 4, 2022) the eruption (same as Figure 6 left), representing 2 repeat
401 passes of a typical 243 day repeat interval at Venus. Straight lines through the image are data
402 radar burst boundaries. Bottom Left: histogram shows the bimodal distribution of correlation.
403 The low peak is the reduced correlation over new flows, and is smaller in amplitude because of
404 the relatively small area of the image taken up by new flows. Top Right: absolute amplitude
405 difference for the same pair of images, over the same geographic extent. Bottom Right:
406 histogram shows the unimodal distribution of amplitude difference.
407

408 Figure 8 shows a map of the 2022 lava flow in both correlation and amplitude difference. In
409 InSAR correlation data (Figure 8 top left), the decorrelated lava flow is clearly visible against the
410 surrounding highly correlated rock. In the SAR amplitude difference data (Figure 8 top right),
411 the lava flow is less visible, appearing similar to the surrounding surface making it more difficult
412 to ascertain what is and is not new lava emplacement. This is reflected in the histogram
413 distributions of each image. The correlation data shows a clear bimodal distribution (Figure 8
414 bottom left), meaning there is a sharp difference between low and high correlation areas. In
415 comparison, the distribution of the amplitude difference data is unimodal (Figure 8 bottom right),
416 meaning there are no sharp distinctions between different areas on the map. This amplitude also
417 has a substantially lower signal-to-noise ratio compared to the correlation data.

418

419 **4 Discussion and Conclusions**

420

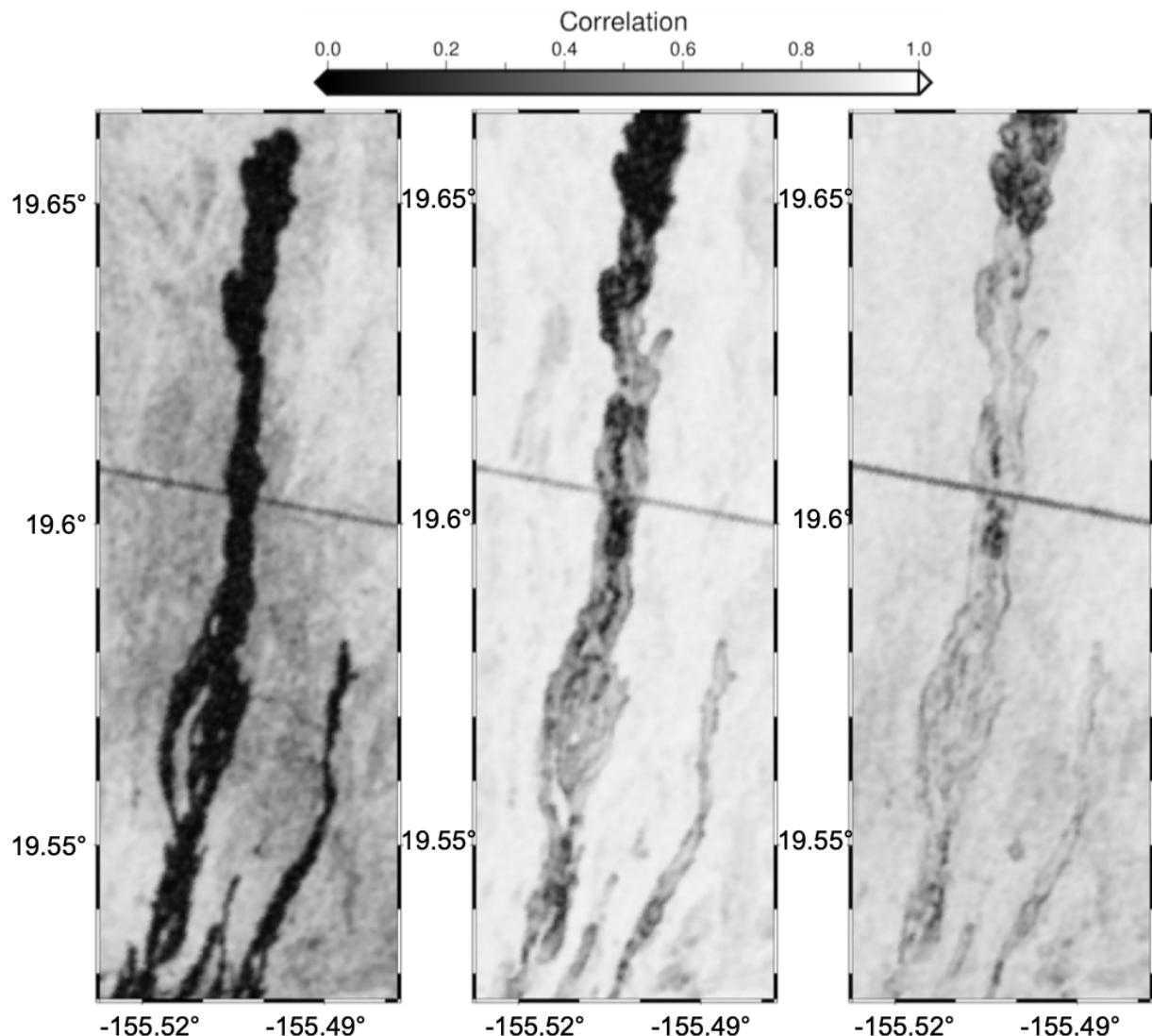
421 4.1 Post-Emplacement Signal in Correlation

422

423 Because InSAR correlation is not just a function of eruption time spans, it is not necessary to
424 detect a volcanic event during its eruption. Instead, thermal effects on correlation mean that
425 recent flows can be detected and their emplacement time constrained long after the event that
426 created them. As discussed in Diettrich et al. (2012), there is a temporal delay in the recovery of
427 high coherence. Similar delay signatures, seen in the phase of interferograms following eruptions
428 in Iceland were attributed to cooling and thermal contraction of the lava (Wittmann et al., 2017).
429 These post-emplacement effects are visible in Figure 4 and Figure 5. Here, even image pairs for
430 which both images are taken after the volcanic event have a drop in correlation that does not
431 appear in the data for the inactive area.

432

433 For both image acquisitions post-emplacement, an interferogram taken over a new lava flow will
434 have high correlation over short time intervals, but over longer time intervals the correlation will
435 rapidly decrease because of the instability of the subsiding surface (see the correlation change
436 from region D to C, Figure 4 left). However, the longer a lava flow has been emplaced, the
437 higher the stability of the surface, and therefore the smaller the resulting drop in correlation over
438 time. This can be seen along the diagonal (Figure 4, left, region D), where interferograms are


439 initially highly correlated before dropping off with time (Figure 4 left, region C), but the
440 magnitude and rate of the drop decreases the further the date of the first acquisition is from the
441 date of the eruption.

442

443 Figure 9 shows the evolution in time of the InSAR correlation of the 2022 Mauna Loa lava flow.
444 The correlation gradually recovers over time as the lava settles and cools. Even when capturing
445 both pre- and post-eruption acquisitions a couple of months later, the distinct outline of the lava
446 flow remains clearly visible, exhibiting lower correlation compared to the surrounding rock
447 (Figure 9 right). The northern, thicker and more distal part of the flow also continues to have
448 consistently lower correlation (Figure 9).

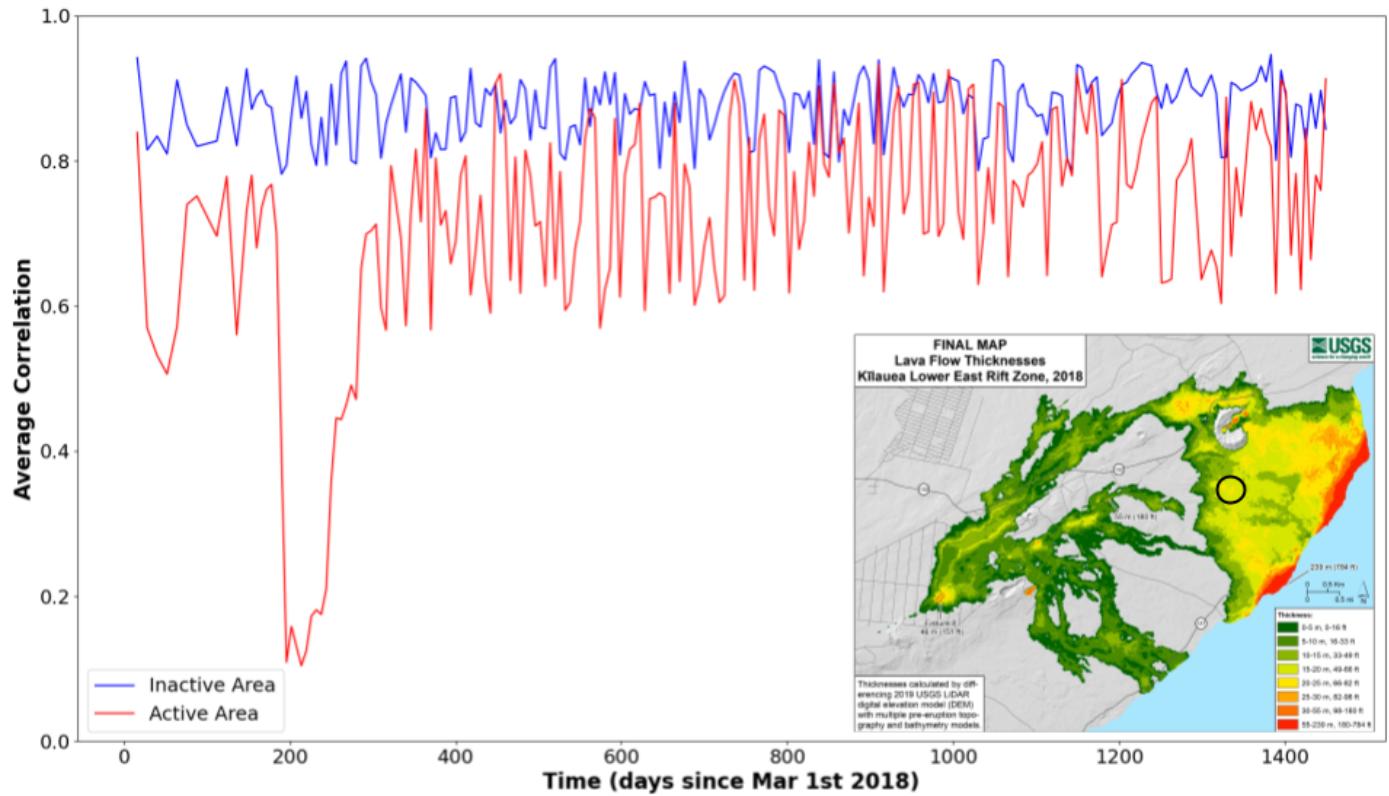
449

450

451 -155.52° -155.49° -155.52° -155.49° -155.52° -155.49°
452 Figure 9. Time evolution of InSAR correlation over 2022 lava flow. Left: InSAR correlation map
453 of Mauna Loa lava flow using two Sentinel-1 C-band SAR acquisitions, November 21 through
454 December 3, 2022. Center: InSAR Correlation map of the same area, December 27, 2022
455 through January 8, 2023. Right: InSAR Correlation map of the same area, February 1 through
456 February 12, 2023. Lines through each image mark the boundary of the TOPS mode radar burst
457 and are not signals.

458

459 If both SAR acquisitions are taken before the eruption, the correlation of the resulting
460 interferogram will be very high (see region A, Figure 4 left). If one acquisition is taken before
461 the eruption and the other acquisition taken any time after the eruption, the InSAR correlation
462 will be very low (see Figure 3, Figure 4 left region B, and Figure 9 left). If the first acquisition is

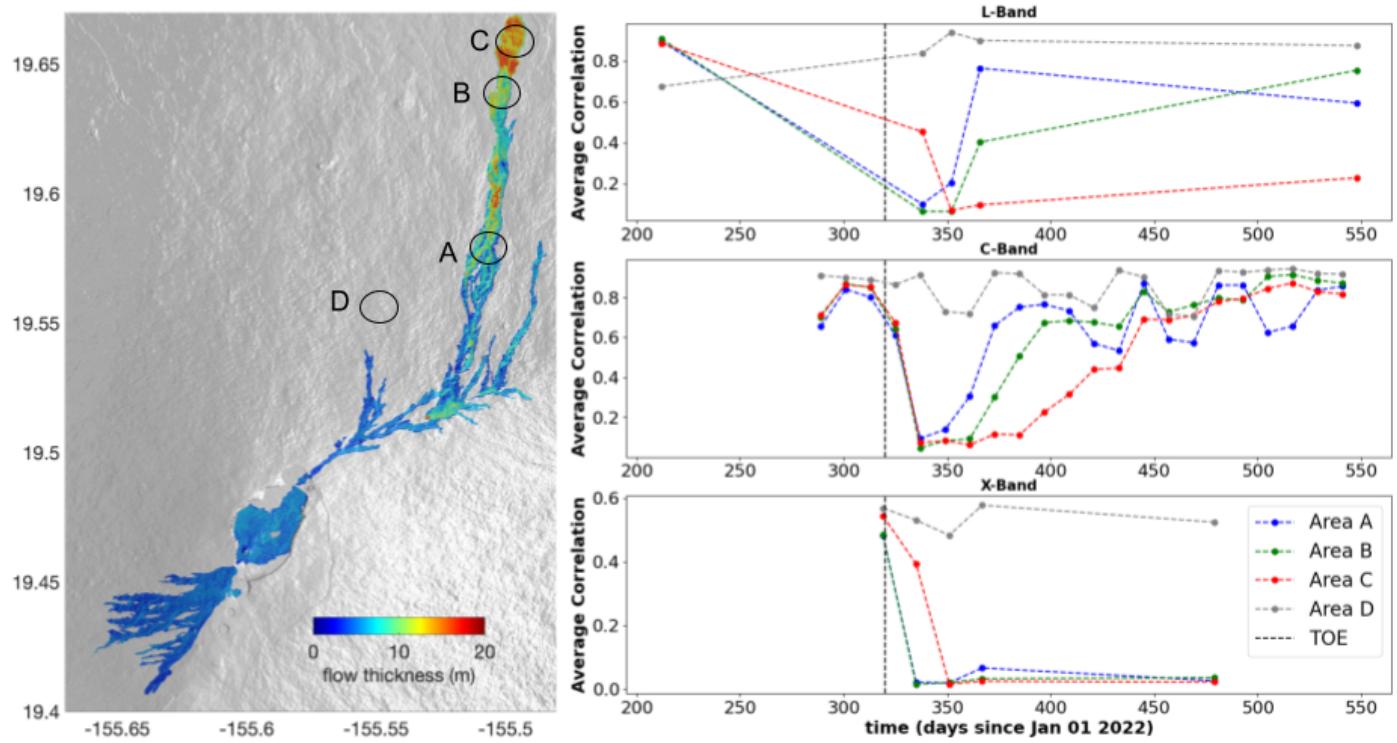

463 taken relatively shortly after the eruption and second acquisition taken long after, then the
464 resulting InSAR correlation will be low, though higher than the previous scenario (see region C,
465 Figure 4 left, and Figure 9 center). If both the first and second acquisitions are taken long after
466 the eruption, then the correlation will be higher as the new lava flow becomes more and more
467 stable. Long time scale cooling effects on correlation would only be seen if the time between
468 acquisitions was great, but short temporal baselines would show high correlation (see region D,
469 Figure 4 left).

470

471 It is therefore important to know how quickly a lava flow settles and stops having any effect on
472 InSAR correlation. How long a lava flow takes to become stable is dependent on its thickness, its
473 rate of thermal subsidence, and the wavelength of the radar band detecting the change.

474 Whittmann et al. (2017) used InSAR phase to detect an exponential decay time in the thermal
475 subsidence of 4-6 years following eruptions in Iceland having a thickness of 8-30 m. The
476 thickness of the 2022 Mauna Loa flow is similar, ranging from 5-25 m and up to 40 m in some
477 areas (NASA Earth Observatory 2022), meaning the thermal subsidence time of this flow should
478 be similar.

479



480

481 Figure 10. Average InSAR correlation for sequential interferograms over active (red) and
 482 inactive (blue) lava flow areas, between sequential images in the 2018 data set (C-band),
 483 showing the evolution in time of correlation in both areas. Lava emplacement occurred around
 484 day 190 (July 9, 2018). Inset: USGS lava flow thickness map for the 2018 eruption (USGS,
 485 2020). Black circle shows the general location of the active lava flow area.

486

487 As shown by Diettrich et al. (2012), there is a linear relation between the length of time an
 488 emplaced lava flow is decorrelated in sequential InSAR data, and the lava thickness. This
 489 relation is also dependent upon the band of radar used - the post-emplacement change in
 490 coherence differs among wavelengths because of their different sensitivities to phase change
 491 rates caused by the settling of the flow. Though the results of Diettrich et al. (2012) were done
 492 using L-band, our own C-band results from the 2018 eruption fit broadly well with their linear
 493 model. Our active lava flow area for the 2018 eruption had a lava flow thickness of around 10-15
 494 m and took around 175-200 days to recover sequential InSAR correlation (Figure 10). This
 495 duration of decorrelation vs lava flow thickness value is the same as that predicted by the model
 496 of Diettrich et al. (2012).

499 Figure 11: Evolution of average correlation of sequential interferograms over multiple areas of
500 the 2022 Mauna Loa eruption event for 3 different bands. Lava emplacement around day 330.
501 Left: lava flow thickness map for the 2022 Mauna Loa eruption (NASA/JPL, 2022). Lava flow
502 thickness map generated using UAVSAR and TanDEM-X (Lundgren, Bagnardi, & Dietterich,
503 2019). Circles A, B, C, and D represent sample areas, each with different flow thicknesses: 10,
504 15, 20, and 0 (no lava) meters respectively. Right: Average correlation vs time for areas A, B, C,
505 and D from (top) ALOS-2 data L-band, (center) Sentinel-1 data C-band, and (bottom) CSK data
506 X-band data. The cyan line on all 3 subplots represents the time of emplacement (TOE).

508 Figure 11 shows the evolution of correlation of sequential interferograms versus time for various
509 lava thicknesses for each radar band. Slight, episodic decreases in correlation can be seen,
510 particularly in the C-band area D sample data, which are most likely due to noise and not
511 weather, as area D is too far from the summit of Mauna Loa to be covered by snowfall. For all
512 lava thicknesses, longer wavelengths have shorter durations of decorrelation. X-band
513 decorrelation signatures possibly remain for longer than at L-band or C-band, however it is

514 difficult to state this for certain due to the paucity of X-band data. L-band has the shortest
515 decorrelation duration, at just ~30 days for Area A. This is due to the same phase changes
516 corresponding to smaller line-of-sight ground motions. As expected, for all bands, increased lava
517 thickness leads to longer duration of decorrelation, as the thicker the lava flow is, the longer it
518 takes to cool and settle. This is most notable in the C-band, where area A exhibited high
519 correlation after ~50 days, area B after ~75 days, and area C did not achieve high correlation
520 until ~150 days post-emplacement.

521

522

523 4.2 Relevance to Future Venus Missions

524

525 Our results from Hawai'i indicate that InSAR correlation is more informative than SAR
526 amplitude differences for detecting and mapping lava flows, because differences in correlation
527 can more readily distinguish between volcanically active and inactive surfaces. The occurrence
528 of a new lava flow will have a far larger effect on correlation than on amplitude because any new
529 lava flow changes the random scattering properties of the surface and will cause a change in
530 InSAR coherence. Amplitude difference primarily detects changes in the overall statistical
531 roughness properties of the surface, which stay largely the same for similar types of lava flows.
532 Furthermore, on Earth, InSAR correlation also allows the detection of post emplacement signals,
533 which can last several months or even years depending on lava flow thickness and radar
534 wavelength, as discussed in section 4.1.

535

536 The following considerations are critical to a future Venus mission. First, any relevant scenarios
537 from our analyses of data over Hawai'i must fit with the necessarily large temporal baselines.
538 Second, use of InSAR correlation for lava flow detection on Earth is most effective in arid areas
539 and the application to Venus requires consideration of any environmental factors that could
540 decrease coherence on the Venus surface, especially over time scales on the order of several
541 months to years. Third, identification of volcanic activity via detection of post-emplacement
542 signals is dependent on the cooling and subsidence rate of new flows, that in turn depend on
543 surface conditions, the likely thicknesses of lava flows, and the radar wavelength used (Section

544 4.1). Finally, physical baselines and decorrelation from atmospheric disturbances need to be
545 considered in future InSAR studies at Venus. We discuss each of these considerations below.

546

547 As noted in the introduction, same-look, repeat-pass SAR acquisitions at Venus will be separated
548 in time by at least \sim 240 days, 1 Venus sidereal day. Therefore for Venus, one should not expect
549 to detect any scenarios that require observations taken within a short temporal baseline (e.g., see
550 region D, Figure 4 left and Figure 9). If the first SAR acquisition is around the time of an
551 eruption, then the second SAR acquisition will be at minimum several months post
552 emplacement. The resulting interferogram would have low correlation within the lava flow, and
553 higher correlation outside the lava flow.

554

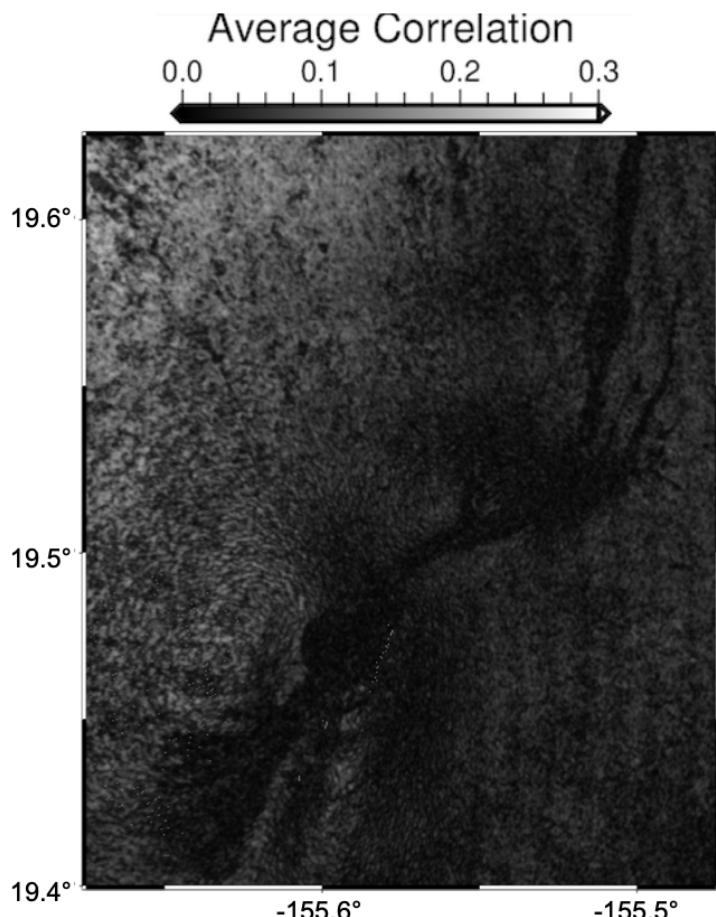
555 Changes in the radar properties of the Venus surface relevant to InSAR analyses could also result
556 from changes in the cm-scale morphology of flows (fresh or ancient) that in turn occur because
557 of chemical weathering or wind erosion (e.g. Herrick et al., 2023), and/or changes in radar
558 emissivity from surface-atmosphere chemical interactions. The latter have been known since
559 early during the Magellan mission to occur over the limited surface area of the planet at altitudes
560 corresponding to planetary radii greater than \sim 6054 km (e.g. Pettengill et al., 1992; Schaeffer and
561 Fegley, 2004). More generally, chemical reactions that could occur anywhere on the planet and
562 affect radar emissivity or cm-scale roughness are the topic of considerable recent analog
563 experimental and theoretical work (e.g. Dyar et al., 2021; Filiberto et al., 2020; Santos et al.,
564 2023). These studies are motivated by the implications of weathering for identification of major
565 compositional units (felsic versus mafic) and weathering state (fresh versus weathered) across
566 the planetary surface via near-IR emissivity (e.g. Smrekar et al., 2010). The timescales over
567 which chemical weathering occurs are currently unclear and estimates range from a few hours
568 (Filiberto et al., 2020), to days (Santos et al., 2023) to up to 0.5 Ma to affect a \sim 30 micron-thick
569 surface layer (Dyar et al., 2021). From a radar perspective however, these time scales are either
570 much shorter (Filiberto et al., 2020; Santos et al., 2023) or much longer (Dyar et al., 2021) than
571 the \sim 240 day interval between SAR acquisitions. If we consider a fresh flow superimposed on an
572 older flow, short time scale reactions would not affect the old (presumably already somewhat
573 altered) flow, but change the fresh flow almost instantly after emplacement but have little overall
574 subsequent effect. Radar detection of a post-emplacement signal over time scales of hundreds of

575 days would then be dominated by thermal considerations rather than chemical weathering. From
576 a pragmatic perspective, both VERITAS and EnVision will carry spectrometers that will
577 measure near-IR emissivity. Detection of less-weathered (hence potentially active) regions via
578 such measurements (e.g. Dyar et al., 2023) could help identify high priority targets for InSAR
579 studies.

580

581 Venusian surface conditions, namely the much higher ambient temperature and different
582 atmospheric conductive properties, mean that Venusian lava flows will cool and settle at
583 different rates than they do on Earth. According to Snyder (2002), lava on the surface of Venus
584 takes 30-40% longer to cool than on Earth, because of the thermal convective properties of CO₂
585 in Venus' atmosphere, assuming similar lava composition and initial temperature. Considering
586 this, a lava flow similar to the 2022 Mauna Loa eruption occurring on Venus would continue to
587 thermally subside for 5-8 years post emplacement. The actual thicknesses of lava flows on Venus
588 are uncertain, but are unlikely to be substantially thinner than on Earth. Using the model of
589 Diettrich et al. (2012), as well as our own analysis, along with the results of Snyder (2002), we
590 predict that a lava flow on Venus similar to the 2022 Mauna Loa eruption, with a thickness of 5-
591 40 m, would remain decorrelated in InSAR for 160-650 days post-eruption depending on
592 thickness, in the L-band at least, and significantly longer in the X-band. This remains only a
593 rough estimate, since the surface temperature on Venus is much higher than on Earth. This
594 means that even if VERITAS' first SAR acquisition is not made until 1.5-2 Earth years after an
595 eruption, an eruption similar to the Mauna Loa 2022 lava flow may still be visible in InSAR
596 correlation data. InSAR correlation thus also allows for the detection of post emplacement
597 signals which can last several months or even years depending on lava flow thickness, and radar
598 wavelength.

599


600 The use of InSAR correlation to detect new flows during or post-emplacement does not appear
601 limited by radar wavelength, as pronounced decorrelation appears in all three bands we tested.
602 Shorter bands have the benefit of post-emplacement signals lasting longer, while longer bands
603 have the benefit of higher overall correlation. ESA's EnVision, although not currently planned to
604 perform InSAR, possesses a radar that is InSAR capable. This SAR instrument will utilize S-
605 band (9.4 cm), between the C-band and L-band tested in this paper (ESA/SCI, 2021). NASA's

606 VERITAS, which is planned to perform some InSAR, will be on the boundary between X and C
607 bands (3.8 cm) and be more similar to terrestrial C-band satellites in terms of performance
608 (Smrekar et al., 2022).

609

610 As expected, large physical perpendicular baselines remain the largest hurdle in a potential
611 Venus InSAR mission. Large physical perpendicular baselines have a far larger effect on InSAR
612 correlation than temporal baselines, making the highly elliptical orbit of a Venus mission a
613 greater challenge than the long time spans between repeat acquisitions. Distinguishing between
614 uncorrelated, new lava flows and correlated, old inactive surfaces is more difficult when the
615 overall correlation threshold is lowered by large baselines. X-band in particular is very sensitive
616 to this issue, as smaller wavelengths lead to smaller critical baselines. An example of a poorly
617 correlated X-band interferogram can be seen in Figure 12.

618

619

620 Figure 12: interferogram correlation using 2 CSK X-band SAR acquisitions, focused on the
621 summit of Mauna Loa. First image acquisition on October 14, 2022, second image acquisition on
622 January 18, 2023, with a perpendicular baseline of around 747 m.

623

624 Even though the image is poorly correlated, evidence of new lava flows emplaced on older lava
625 flows can still be seen, though it is difficult to distinguish from baseline-related noise. Still, even
626 one repeat pass with a reasonable perpendicular baseline would allow for the detection of newly
627 emplaced lava flows, and potentially the age and thickness of flows. VERITAS, and, depending
628 on the final reconstructed spacecraft trajectories, EnVision could potentially perform repeat pass
629 SAR observations with moderately low physical perpendicular baselines over a few select
630 regions of the Venusian surface, allowing for InSAR correlation analysis of such areas (Hensley
631 et al., 2022; ESA/SCI, 2023).

632

633 There is a benefit to using longer wavelength radars for InSAR, as longer wavelengths have
634 longer critical baselines, allowing InSAR to be done at higher physical perpendicular baselines,
635 which lessens the need for precise orbit control. As high physical perpendicular baseline to
636 critical baseline ratios have a detrimental effect on InSAR correlation, we believe that longer
637 radar wavelengths are optimal for our lava detection method. Longer radar wavelengths also
638 travel more easily through Venus' atmosphere, reducing the impact of attenuation on the signal
639 to noise of the correlation signal (Duan et al., 2010; Meyer & Sandwell, 2012). A higher radar
640 bandwidth also linearly increases the length of the critical baseline, however higher bandwidth
641 radar produces a higher volume of data, requiring the satellite to have a faster data downlink.

642

643 Finally, the thick and turbulent atmosphere of Venus may affect the InSAR phase severely
644 (Meyer & Sandwell, 2012), creating complications to detect phase signals, for instance thermal
645 subsidence with the method of Whittmann et al. (2017). However, as long as atmospheric phase
646 distortions occur over length scales greater than the multilook averaging length scale (\sim 150 m),
647 the correlation signals would survive (Meyer & Sandwell, 2012). Alternatively, if the
648 atmospheric phase distortions occur over length scales less than the multilook averaging length
649 scale, coherence will be diminished.

650

651 The potential use of InSAR correlation to detect and track lava flows on Venus should be given
652 more attention. The recent discovery of modern-day volcanic activity on Venus (Herrick &
653 Hensley, 2023) comes at a time of renewed scientific interest in Earth's sister planet, with
654 VERITAS and EnVision planned to perform detailed SAR imaging of Venus in the next
655 decades. InSAR, although not a priority for these upcoming missions, can provide indisputable
656 evidence for volcanic activity because, as we have shown, InSAR correlation can be used to
657 accurately detect and map these lava flows, even with only post-emplacement data acquisitions.

658

659 **Data Availability Statement**

660

661 Sentinel-1 image and orbital data was accessed via the ESA's Copernicus Open Data Hub via the
662 Alaska Satellite Facility Vertex Data Search (ASF/ESA, 2022). CSK data was accessed from the
663 Hawai'i Volcanoes Supresite via the ESA Geohazard Exploration Platform (GEO-GNSL, 2023).
664 ALOS-2 data was accessed via an individual proposal to JAXA (JAXA, 2022), and was the only
665 dataset we used in this paper which is not open access. Our DEM was generated using the
666 SRTM1 model, as accessed through the GMTSAR website's DEM generator (Sandwell &
667 Xiaohua, 2022).

668

669 **Acknowledgements**

670

671 MB and DS were supported by the NASA Earth Surface and Interior program under grants
672 80NSSC19K1043 and 80NSSC23K0744. CLJ and MBR acknowledge support from the NASA
673 EnVision VenSAR Science Team program. We would like to thank Hannah Dietrich for her
674 help in accessing lava flow thickness data and Xiahou Xu for his help with GMTSAR technical
675 issues. We thank Richard Ghail, Mike Poland, and Paul Lundgren for comments that greatly
676 improved the manuscript.

677

678 **References**

679 Anderson, F. S., & Smrekar, S. E. (2006). Global mapping of crustal and litho-spheric thickness
680 on venus. *Journal of Geophysical Research: Planets*, 111(E8). Retrieved from

681 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JE002395> doi:
682 <https://doi.org/10.1029/2004JE002395>

683 ASF/ESA. (2022). Copernicus sentinel data, retrieved from ASF DAAC. Retrieved from
684 <https://ASF.alaska.edu>

685 Brossier, J., Gilmore, M. S., Toner, K., & Stein, A. J. (2021). Distinct mineralogy and age of
686 individual lava flows in Atla Regio, Venus derived from magellan radar emissivity. *Journal of*
687 *Geophysical Research: Planets*, 126 (3), e2020JE006722. Retrieved from
688 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JE006722> (e2020JE006722
689 2020JE006722) doi: <https://doi.org/10.1029/2020JE006722>

690 Byrne, P. K., Ghail, R. C., Sengör, A. C., James, P. B., Klimczak, C., & Solomon, S. C. (2021).
691 A globally fragmented and mobile lithosphere on venus. *Proceedings of the National Academy*
692 *of Sciences*, 118(26), e2025919118.

693 Byrne, P. K., & Krishnamoorthy, S. (2022). Estimates on the frequency of volcanic eruptions on
694 venus. *Journal of Geophysical Research: Planets*, 127(1), e2021JE007040. Retrieved from
695 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007040> (e2021JE007040
696 2021JE007040) doi: <https://doi.org/10.1029/2021JE007040>

697 Campbell, B. A. (1999). Surface formation rates and impact crater densities on venus. *Journal of*
698 *Geophysical Research: Planets*, 104(E9), 21951-21955. Retrieved from
699 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1998JE000607> doi:
700 <https://doi.org/10.1029/1998JE000607>

701 Darby, D.M., Helbert, J., Cooper, R.F., Sklute, E.C., Maturilli, A., Mueller, N.T., Kappel, D.,
702 Smrekar, S.E., Surface weathering on Venus: Constraints from kinetic, spectroscopic, and
703 geochemical data, *Icarus*, Volume 358, 2021, 114139, ISSN 0019-1035,
704 <https://doi.org/10.1016/j.icarus.2020.114139>.
705 (<https://www.sciencedirect.com/science/article/pii/S0019103520304802>)

706 Dietterich, H. R., Poland, M. P., Schmidt, D. A., Cashman, K. V., Sherrod, D. R., & Espinosa, A.
707 T. (2012). Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with

708 synthetic aperture radar coherence. *Geochemistry, Geophysics, Geosystems*, 13 (5). Retrieved
709 from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GC004016> doi:
710 <https://doi.org/10.1029/2011GC004016>

711 Dietterich, H.R., Diefenbach, A.K., Soule, S.A. *et al.* Lava effusion rate evolution and erupted
712 volume during the 2018 Kīlauea lower East Rift Zone eruption. *Bull Volcanol* **83**, 25 (2021).
713 <https://doi.org/10.1007/s00445-021-01443-6>

714 D'Incecco, P., Müller, N., Helbert, J., & D'Amore, M. (2017). Idunn Mons on Venus: Location
715 and extent of recently active lava flows. *Planetary and Space Science*, 136, 25-33. Retrieved
716 from <https://www.sciencedirect.com/science/article/pii/S003206331630112X> doi:
717 <https://doi.org/10.1016/j.pss.2016.12.002>

718 Dualeh, E. W. (2022, September). Potential of synthetic aperture radar backscatter for
719 monitoring volcanic eruptions. Retrieved from <https://etheses.whiterose.ac.uk/31768/>

720 Dualeh, E. W., Ebmeier, S. K., Wright, T. J., Albino, F., Naismith, A., Biggs, J.,
721 ... Roca, A. (2021). Analyzing explosive volcanic deposits from satellite-based radar
722 backscatter, Volcán de Fuego, 2018. *Journal of Geophysical Research: Solid Earth*, 126 (9),
723 e2021JB022250. Retrieved from
724 [https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB022250\(e2021JB022250
725 2021JB022250\) doi: <https://doi.org/10.1029/2021JB022250>](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB022250(e2021JB022250)

726 X. Duan, M. Moghaddam, D. Wenkert, R. L. Jordan and S. E. Smrekar, "X band and model of
727 Venus atmosphere permittivity," in *Radio Science*, vol. 45, no. 02, pp. 1-19, April 2010, doi:
728 10.1029/2009RS004169. keywords: {Atmospheric modeling;Venus;Atmospheric
729 measurements;Permittivity;Polarization;Dielectric constant},

730 ESA/SCI. (2021). EnVision assessment study report (yellowbook). , 127, 1-111. Retrieved from
731 <https://sci.esa.int/s/WepGERw>

732 ESA/SCI. (2023). EnVision definition study report (redbook). , 1-175. Retrieved from
733 <https://www.cosmos.esa.int/web/envision/links>

734 Esposito, L. W. (1984). Sulfur dioxide: Episodic injection shows evidence for active venus
735 volcanism. *Science* , 223 (4640), 1072-1074. Retrieved from
736 <https://www.science.org/doi/abs/10.1126/science.223.4640.1072> doi: 10.1126/
737 science.223.4640.1072

738 Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., . . . Alsdorf, D. (2007).
739 The shuttle radar topography mission. *Reviews of Geophysics*, 45 (2). Retrieved from
740 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183> doi:
741 <https://doi.org/10.1029/2005RG000183>

742 Filiberto, J., Trang, D., Treiman, A. H., Gilmore, M.S., Present-day volcanism on Venus as
743 evidenced from weathering rates of olivine. *Sci. Adv.* **6**, eaax
744 7445(2020).DOI:[10.1126/sciadv.aax7445](https://doi.org/10.1126/sciadv.aax7445)

745 Gatelli, F., Monti Guamieri, A., Parizzi, F., Pasquali, P., Prati, C., & Rocca, F. (1994). The
746 wavenumber shift in sar interferometry. *IEEE Transactions on Geoscience and Remote Sensing*,
747 32(4), 855-865. doi: 10.1109/36.298013

748 GEO-GSNL (2023). Hawaiian Volcanoes Supersite. Retrieved from <http://geo-gsnl.org/supersites/permanent-supersites/hawaiian-volcanoes-supersite/>
749

750 Ghail, R., Wilson, C., Widemann, T., Bruzzone, L., Dumoulin, C., Helbert, J., . . . Burtz, L.-J.
751 (2017). EnVision: understanding why our most earth-like neighbor is so different.

752 Hauck II, S. A., Phillips, R. J., & Price, M. H. (1998). Venus: Crater distribution and plains
753 resurfacing models. *Journal of Geophysical Research: Planets*, 103(E6), 13635-13642. Retrieved
754 from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JE00400> doi:
755 <https://doi.org/10.1029/98JE00400>

756 Head, J. W., Crumpler, L. S., Aubele, J. C., Guest, J. E., & Saunders, R. S.
757 (1992). Venus volcanism: Classification of volcanic features and structures, associations, and
758 global distribution from magellan data. *Journal of Geophysical Research: Planets*, 97(E8),
759 13153-13197. Retrieved from

760 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE01273> doi:
761 <https://doi.org/10.1029/92JE01273>

762 Hensley, S., *et al.*, "Planned Differential Interferometric SAR Observations at Venus by the
763 VERITAS Mission," *IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing
764 Symposium*, Kuala Lumpur, Malaysia, 2022, pp. 12-15, doi:
765 10.1109/IGARSS46834.2022.9884339.

766 Herrick, R. R., Bjonnes, E. T., Carter, L. M., Gerya, T., Ghail, R. C., Gillmann, C., . . . others
767 (2023). Resurfacing history and volcanic activity of venus. *Space Science Reviews*, 219(4), 29.

768 Herrick, R. R., & Hensley, S. (2023). Surface changes observed on a venusian volcano during
769 the magellan mission. *Science*, 379(6638), 1205-1208. Retrieved from
770 <https://www.science.org/doi/abs/10.1126/science.abm7735> doi: 10.1126/science.abm7735

771 JAXA. (2022). Advanced land observing satellite-2 “DAICHI-2” (ALOS-2) research and
772 application project. Data retrieved from G-Portal <https://gportal.jaxa.jp/gpr/search?tab=1>

773 Johnson, C. L., & Sandwell, D. T. (1994, 11). Lithospheric flexure on Venus. *Geo- physical
774 Journal International*, 119(2), 627-647. Retrieved from <https://doi.org/10.1111/j.1365-246X.1994.tb00146.x> doi: 10.1111/j.1365-246X.1994.tb00146.x

776 Lohman, R.B., Bürgi, P.M., Soil moisture effects on InSAR - A correction approach and
777 example from a hyper-arid region, *Remote Sensing of Environment*, Volume 297, 2023, 113766,
778 ISSN 0034-4257, <https://doi.org/10.1016/j.rse.2023.113766>.
779 (<https://www.sciencedirect.com/science/article/pii/S0034425723003176>)

780 Lu, Z., & Freymueller, J. T. (1998). Synthetic aperture radar interferometry coherence analysis
781 over Katmai volcano group, Alaska. *Journal of Geophysical Re- search: Solid Earth*, 103(B12),
782 29887-29894. Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JB02410> doi: <https://doi.org/10.1029/98JB02410>

784 Lu, Z., Mann, D., Freymueller, J. T., & Meyer, D. J. (2000). Synthetic aperture radar
785 interferometry of Okmok volcano, Alaska: Radar observations. *Journal of Geophysical Research:
786 Solid Earth*, 105(B5), 10791-10806. Retrieved from

787 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JB900034> doi:
788 <https://doi.org/10.1029/2000JB900034>

789 Lundgren, P. R., Bagnardi, M., & Dietterich, H. (2019). Topographic changes during the 2018
790 Kīlauea eruption from single-pass airborne InSAR. *Geophysical Research Letters*, 46.
791 <https://doi.org/10.1029/2019GL083501>

792 Massonnet, D., & Rabaute, T. (1993). Radar interferometry: limits and potential. *IEEE*
793 *Transactions on Geoscience and Remote Sensing*, 31(2), 455-464. doi: 10.1109/36.214922

794 McKenzie, D., Ford, P. G., Johnson, C., Parsons, B., Sandwell, D., Saunders, S.,
795 & Solomon, S. C. (1992). Features on venus generated by plate boundary processes. *Journal of*
796 *Geophysical Research: Planets*, 97(E8), 13533-13544. Retrieved from
797 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE01350> doi:
798 <https://doi.org/10.1029/92JE01350>

799 McKinnon, W. B., Zahnle, K. J., Ivanov, B. A., & Melosh, H. (1997). Cratering on venus:
800 Models and observations. *Venus II: Geology, geophysics, atmosphere, and solar wind*
801 environment, 969.

802 Meyer, F. J., & Sandwell, D. T. (2012). Sar interferometry at venus for topography and change
803 detection. *Planetary and Space Science*, 73(1), 130-144. Retrieved from
804 <https://www.sciencedirect.com/science/article/pii/S0032063312002978> (Solar System science
805 before and after Gaia) doi: <https://doi.org/10.1016/j.pss.2012.10.006>

806 Mouginis-Mark, P. (2004). Remote sensing studies of kilauea volcano, hawaii, as an aid to
807 understanding volcanic processes on mars, venus and io. In *Agu fall meeting abstracts* (Vol.
808 2004, pp. V32A-01).

809 NASA Earth Observatory (2022). Sizing up mauna loa's lava flows. Retrieved from
810 <https://earthobservatory.nasa.gov/images/150736/sizing-up-mauna-loas-lava-flows>

811 NASA/JPL (2022). Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawai'i.
812 Retrieved from <https://www.jpl.nasa.gov/images/pia25526-airborne-nasa-radar-maps-mauna-loa-lava-changes-in-hawaii>

814 Neal, C. A., *et al.*, The 2018 rift eruption and summit collapse of Kīlauea Volcano. *Science* 363,
815 367-374 (2019). DOI:10.1126/science.aav7046

816

817 Patrick, M. R., *et al.*, Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. *Science*
818 366, eaay9070 (2019). DOI:10.1126/science.aay9070

819 Pettengill, G. H., P. G. Ford, and R. J. Wilt (1992), Venus surface radiothermal emission as
820 observed by Magellan, *J. Geophys. Res.*, 97(E8), 13091–13102, doi:10.1029/92JE01356.

821 Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N., &
822 Grimm, R. E. (1992). Impact craters and Venus resurfacing history. *Journal of Geophysical*
823 *Research: Planets*, 97(E10), 15923-15948. Retrieved from
824 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE01696> doi:
825 <https://doi.org/10.1029/92JE01696>

826 Rowland, S. K., Harris, A. J., Wooster, M. J., Amelung, F., Garbeil, H., Wilson, L., & Mouginis-
827 Mark, P. J. (2003). Volumetric characteristics of lava flows from interferometric radar and
828 multispectral satellite data: the 1995 Fernandina and 1998 Cerro Azul eruptions in the western
829 galapagos. *Bulletin of Volcanology*, 65, 311–330.

830

831 Russell, M. B., & Johnson, C. L. (2021). Evidence for a locally thinned lithosphere associated
832 with recent volcanism at Aramaiti Corona, Venus. *Journal of Geophysical Research: Planets*,
833 126(8), e2020JE006783. Retrieved from
834 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JE006783> (e2020JE006783
835 2020JE006783) doi: <https://doi.org/10.1029/2020JE006783>

836 Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). GMTSAR: An InSAR
837 processing system based on generic mapping tools.

838 Sandwell, D. S., Xiaohua, X., & Guns, K. (2022). Topex satellite geodesy. Retrieved from
839 <https://topex.ucsd.edu>

840 Santos, A. R., Gilmore, M. S., Greenwood, J. P., Nakley, L. M., Phillips, K., Kremic, T., &
841 Lopez, X. (2023). Experimental weathering of rocks and minerals at Venus conditions in the
842 Glenn Extreme Environments Rig (GEER). *Journal of Geophysical Research: Planets*, 128,
843 e2022JE007423. <https://doi.org/10.1029/2022JE007423>

844 Saunders, R. S., Spear, A. J., Allin, P. C., Austin, R. S., Berman, A. L., Chandee, R. C., . . .
845 Wall, S. D. (1992). Magellan mission summary. *Journal of Geophysical Research: Planets*,
846 97(E8), 13067-13090. Retrieved from
847 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE01397> doi:
848 <https://doi.org/10.1029/92JE01397>

849 Schaber, G. G., Strom, R. G., Moore, H. J., Soderblom, L. A., Kirk, R. L., Chadwick, D. J., . . .
850 Russell, J. (1992). Geology and distribution of impact craters on venus: What are they telling us?
851 *Journal of Geophysical Research: Planets* , 97 (E8), 13257-13301. Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE01246> doi:
852 <https://doi.org/10.1029/92JE01246>

854 Schaefer, L., Fegley, B., Heavy metal frost on Venus, *Icarus*, Volume 168, Issue 1, 2004, Pages
855 215-219, ISSN 0019-1035, <https://doi.org/10.1016/j.icarus.2003.11.023>.
856 <https://www.sciencedirect.com/science/article/pii/S0019103503004020>

857 Schubert, G., & Sandwell, D. (1995). A global survey of possible subduction sites on venus.
858 *Icarus*, 117(1), 173-196. Retrieved from
859 <https://www.sciencedirect.com/science/article/pii/S0019103585711505> doi:
860 <https://doi.org/10.1006/icar.1995.1150>

861 Shalygin, E. V., Markiewicz, W. J., Basilevsky, A. T., Titov, D. V., Ignatiev, N. I., & Head, J.
862 W. (2015). Active volcanism on venus in the ganiki chasma rift zone. *Geophysical Research
863 Letters*, 42(12), 4762-4769. Retrieved from
864 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064088> doi:
865 <https://doi.org/10.1002/2015GL064088>

866 Sleep, N. H. (1992). Hotspot volcanism and mantle plumes. *Annual Review of Earth and
867 Planetary Sciences*, 20(1), 19–43.

868 Smrekar, S., Hensley, S., Nybakken, R., Wallace, M. S., Perkovic-Martin, D., You, T.-H., . . .

869 Mazarico, E. (2022). VERITAS (venus emissivity, radio science, InSAR, topography, and

870 spectroscopy): A discovery mission. , 1-20. doi: 10.1109/AERO53065.2022.9843269

871 Smrekar, S. E., Ostberg, C., & O'Rourke, J. G. (2023). Earth-like lithospheric thick- ness and

872 heat flow on Venus consistent with active rifting. *Nature Geoscience*, 16(1), 13–18.

873 Smrekar, S. E., Stofan, E. R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., . . .

874 Drossart, P. (2010). Recent hotspot volcanism on venus from virtis emissivity data. *Science*,

875 328(5978), 605-608. Retrieved from <https://www.science.org/doi/abs/10.1126/science.1186785>

876 doi: 10.1126/science.1186785

877 Solomon, S. C., & Head, J. W. (1982). Mechanisms for lithospheric heat transport on venus:

878 Implications for tectonic style and volcanism. *Journal of Geophysical Research: Solid Earth*,

879 87(B11), 9236–9246.

880 Stevens, N. F., Wadge, G., Williams, C. A., Morley, J. G., Muller, J.-P., Murray, J. B., & Upton,

881 M. (2001). Surface movements of emplaced lava flows measured by synthetic aperture radar

882 interferometry. *Journal of Geophysical Research: Solid Earth* , 106 (B6), 11293-11313.

883 Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JB900425> doi:

884 <https://doi.org/10.1029/2000JB900425>

885 USGS. (Date Unknown). The Island of Hawai‘i with lava flows erupted in approximately the

886 past 1,000 years shown in red. Located on the southeastern side, Kīlauea Volcano is 90%

887 covered with young flows. Retrieved from <https://www.usgs.gov/media/images/island-hawai-i-lava-flows-erupted-approximately>

889 USGS. (2011). July 2007 eruption - flow field map. Retrieved from

890 <https://www.usgs.gov/node/278436>

891 USGS. (2018). map of kilauea volcano’s lower east rift zone. Retrieved from

892 <https://www.usgs.gov/media/images/map-kilauea-volcanos-lower-east-rift-zone>

893 USGS. (2020). November 23, 2020 - kilauea 2018 lower east rift zone lava flow thicknesses.

894 Retrieved from <https://www.usgs.gov/node/278815>

895 USGS. (2022). December 4, 2022 - mauna loa eruption map. Retrieved from
896 <https://www.usgs.gov/maps/december-4-2022-mauna-loa-eruption-map>

897 Turcotte, D. L. (1995). How does venus lose heat? *Journal of Geophysical Research: Planets*,
898 100(E8), 16931–16940.

899 Wittmann, W., Sigmundsson, F., Dumont, S., & Lavallée, Y. (2017). Post- emplacement cooling
900 and contraction of lava flows: InSAR observations and a thermal model for lava fields at hekla
901 volcano, iceland. *Journal of Geo- physical Research: Solid Earth* , 122 (2), 946-965. Retrieved
902 from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013444> doi:
903 <https://doi.org/10.1002/2016JB013444>

904 Zebker, H. A., Rosen, P., Hensley, S., & Mouginis-Mark, P. J. (1996, 06). Analysis of active
905 lava flows on Kilauea volcano, Hawaii, using sir-c radar correlation measurements. *Geology*,
906 24(6), 495-498. Retrieved from [https://doi.org/10.1130/0091-7613\(1996\)024<0495:AOALFO>2.3.CO;2](https://doi.org/10.1130/0091-7613(1996)024<0495:AOALFO>2.3.CO;2) doi: 10.1130/0091-
907 7613(1996)024(0495:AOALFO)2.3.CO;2
908 7613(1996)024(0495:AOALFO)2.3.CO;2

909 Zebker, H. A., Villasenor, J., et al. (1992). Decorrelation in interferometric radar echoes. *IEEE*
910 *Transactions on geoscience and remote sensing*, 30(5), 950–959.