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A B S T R A C T

Direct observations of earthquake nucleation and propagation are few and yet the next
decade will likely see an unprecedented increase in indirect, surface observations that must
be integrated into modeling efforts. Machine learning (ML) excels in the presence of large
data and is an actively growing field in seismology. However, not all ML methods incorporate
rigorous physics, and purely data-driven models can predict physically unrealistic outcomes
due to observational bias or extrapolation. Our work focuses on the recently emergent Physics-
Informed Neural Network (PINN), which seamlessly integrates data while ensuring that model
outcomes satisfy rigorous physical constraints. In this work we develop a multi-network PINN
for both the forward problem as well as for direct inversion of nonlinear fault friction parame-
ters, constrained by the physics of motion in the solid Earth, which have direct implications for
assessing seismic hazard. We present the computational PINN framework for strike–slip faults
in 1D and 2D subject to rate-and-state friction. Initial and boundary conditions define the data
on which the PINN is trained. While the PINN is capable of approximating the solution to
the governing equations to low-errors, our primary interest lies in the network’s capacity to
infer friction parameters during the training loop. We find that the network for the parameter
inversion at the fault performs much better than the network for material displacements to
which it is coupled. Additional training iterations and model tuning resolves this discrepancy,
enabling a robust surrogate model for solving both forward and inverse problems relevant to
seismic faulting.

1. Context and motivation

Faults are home to a vast spectrum of event types, from slow aseismic creep, to slow-slip to megathrust earthquakes followed by
ostseismic afterslip. The Cascadia subduction zone in the Pacific Northwest, for example, hosts several types of slow earthquake
rocesses including low (and very low) frequency earthquakes, non-volcanic tremor (NVT) and slow-slip events (SSE) [1], but also
large, fast earthquakes, the last of which was a magnitude ∼9 in the year 1700 [2]. Understanding the physical mechanisms for such
iversity of slip styles is crucial for mitigating the associated hazards but major uncertainties remain in the depth-dependency of
rictional properties at fault zones, which affect fault locking and therefore rupture potential [3,4]. Direct observations of earthquake
nucleation and propagation are few and yet the next decade will likely see an unprecedented increase in indirect, surface observations
that could be integrated into modeling efforts [5].

Traditional numerical approaches for solving the partial differential equations (PDE) governing earthquake processes (e.g. finite
ifference methods) have seen incredible growth in the past century, in particular in terms of convergence theory and high-
erformance computing. Traditional methods employ a mesh (either a finite number of grid points/nodes or elements) and a range
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of time-integration schemes in order to obtain an approximate solution whose accuracy depends directly on the mesh size (with
error decreasing with decreasing node spacing or element size). This mesh dependency introduces limitations when high resolution
is needed, and while traditional methods are well-suited for solving forward problems, solving inverse problems require additional
machinery and can be prohibitively expensive [6,7]. In addition, traditional methods require models to specify initial and boundary
conditions in order to establish a well-posed problem, even when such conditions are unknown.

Machine learning (ML), on the other hand, excels in the presence of large data and is an actively growing field in seismology,
ith applications ranging from earthquake early warning (EEW) to ground-motion prediction, see for example Kong et al. [8], Lin
t al. [9], Kubo et al. [10] and references therein. However, not all ML methods incorporate rigorous physics, and purely data-
riven models can predict physically unrealistic outcomes due to observational bias or extrapolation [11]. A new Deep Learning
echnique has recently emerged called the Physics-Informed Neural Network (PINN), which seamlessly integrates sparse and/or
oisy data while ensuring that model outcomes satisfy rigorous physical constraints. PINNs do not outperform traditional numerical
ethods for forward problems (except in high-dimensional settings) [12], but they offer advantages over traditional numerical
ethods in that both forward and inverse problems can be solved in the same computational framework and solutions may be
earned even on ill-posed problems [13]. However, the majority of PINN applications are currently limited to simple mechanical
odels, forward problems and/or do not incorporate real-world observations [14–16]. Here we introduce a new, physically-rigorous
odeling framework for both forward and inverse problems that can be integrated with observational data in order to better
nderstand earthquake fault processes. This Deep Learning approach will vastly expand our computational abilities to explore and
nfer relevant parameter spaces responsible for slip complexity, and the conditions that enable the world’s largest earthquakes.
Though the PINN framework lacks the robust error analysis that comes with traditional methods, a large number of publications

ave emerged since ∼2017 which aim to customize PINNs through the use of different activation functions, gradient optimization
echniques, neural network architecture, and loss function structure [17]. Careful formulation of the loss function using the weak
orm of the PDE have been proposed for constructing deep learning analogues of Ritz [18] and Galerkin [19–21] methods which
use numerical quadrature to reduce the order of the PDE resulting in a simpler learning problem [22,23]. In tandem, statistical
learning theory has been used to deduce global error bounds for PINNs in terms of optimization error, generalization error, and
approximation error [24]. For wide but shallow networks utilizing hyperbolic tangent activation functions, the approximation error
has been shown to be bounded over Sobolev spaces [25]. Bounds on PINN generalization error have been derived for linear second-
order PDE [26] (later extended to all linear problems [27]) and some specific cases like Navier–Stokes [28]. Moreover, the abstract
framework for PINNs can leverage stability of a PDE to provide conditions under which generalization error is small whenever
training error is small for both forward and inverse problems [29,30]. More recently, a PINN-specific optimization algorithm has
achieved markedly improved accuracy over other optimization algorithms by incorporating a PDE energy into the backpropagation
step [31]. In addition to this rapid framework development, PINNs have been shown to perform well on a variety of physical
problems like Navier–Stokes [32–34], convection heat transfer [35], solid mechanics, [36,37] and the Euler equations [38]. By
constraining the network to obey physical laws, PINNs are able to operate in a small data regime and continuously approximate
solutions to PDE [39] which allows for model verification across multiple domain resolutions without needing to generate a new
approximation each time.

In this work we focus specifically on rate-and-state friction [e.g. 40], an experimentally-motivated, nonlinear friction law capable
of reproducing a wide range of observed earthquake behaviors [41] and whose increasing use in dynamic rupture and earthquake
cycle simulations has motivated the recent community benchmark exercises described in Harris et al. [42] and Erickson et al. [43].
A better understanding of the depth-dependency of rate-and-state parameters – which have a direct correlation to fault locking and
seismic rupture potential – is a fundamental task [3,4]. To address this task we develop a multi-network PINN for modeling a vertical,
strike–slip frictional fault embedded in an elastic half-space, and consider deformation in both 1D and 2D. The paper is organized
as follows: In Section 2 we first provide an overview of the physics-informed deep learning framework and PINN architecture for
general initial–boundary-value problems, in order to best describe the implementation to our application problem. In Section 3
we provide specific details of the PINN framework applied problems, first illustrated in 1D with an example forward problem, then
further developed to include inverse problems in 2D. In Section 4 we report details of our optimal network architecture and training
ethods, verifying our methods with a manufactured solution to ensure accuracy of our inversions. We conclude with a summary
nd discussion of future work in Section 5.

. Physics-informed deep learning framework

The physics governing motion in many applications in science and engineering give rise to partial differential equations (PDE)
here analytic solutions can be difficult to obtain (due, e.g. to complex material properties, boundary conditions, geometry) and
e commonly turn to numerical methods. The Physics-Informed Neural Network (PINN) is a deep learning (DL) framework for
pproximating solutions to PDEs. Though this DL framework lacks the robust mathematical theory of the traditional methods,
t shows particular promise in solving problems for which traditional numerical methods are ill-suited [39]. The DL framework
roduces a closed, analytic form for the solution, which is continuous and defined at every point in the domain allowing one to
valuate the solution ‘‘off-grid’’ without having to resolve the PDE (i.e. it is mesh-free) [39]. In addition, both forward and inverse
2

roblems can be solved in the same computational setting, as will be shown in subsequent sections.
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2.1. Feed-forward deep neural networks

PINNs are extensions of a general feed-forward neural network. We let 𝐱 ∈ R𝑛 and define a weighting matrix 𝑊 ∈ R𝑚×𝑛 and
ias vector 𝑏 ∈ R𝑚. A single hidden layer of a neural network can be expressed as

𝓁(𝐱; 𝜃) = 𝜑(𝑊 𝐱 + 𝑏), where 𝜃 = (𝑊 , 𝑏), (1)

nd 𝜑 is a known (nonlinear) activation function. Deep neural networks are obtained by repeated composition of hidden layers [44].
We let positive integer 𝐿 be the deep neural network depth (i.e. number of hidden layers) and let {𝜑𝑖}𝐿𝑖=1 be a collection of

ctivation functions along with a sequence of trainable network parameters {𝜃𝑖}𝐿𝑖=0 where 𝜃𝑘 = (𝑊𝑘, 𝑏𝑘) for each 0 ≤ 𝑘 ≤ 𝐿. Here we
ssume each layer consists of 𝑚 neurons but this simplifying assumption may be omitted so long as one ensures that each weight and
ias are of the correct dimension for matrix multiplication and addition, respectively. If 𝐱 ∈ R𝑛 is the network input and network
arameters (𝑊0, 𝑏0) ∈ R𝑚×𝑛 × R𝑚, (𝑊𝑘, 𝑏𝑘) ∈ R𝑚×𝑚 × R𝑚 for 1 ≤ 𝑘 < 𝐿, and (𝑊𝐿, 𝑏𝐿) ∈ R𝑑×𝑚 × R𝑑 , then the recursive composition

𝓁0 = 𝐱, (2a)

𝓁𝑘 = 𝜑𝑘(𝑊𝑘𝓁𝑘−1 + 𝑏𝑘) for 0 < 𝑘 < 𝐿, (2b)

defines a feed-forward, deep neural network  ∶ R𝑛 → R𝑑 (of depth 𝐿 and width 𝑚) with network parameters 𝜃 by  (𝐱; 𝜃) =
𝐿𝓁𝐿−1 + 𝑏𝐿.

.2. PINN architecture

The PINN architecture is defined by extending the feed-forward deep neural network to enforce physical conditions set by an
nitial–boundary value problem (IBVP). For simplicity in the notation (as well as generality) we define this extension for a general
BVP, with specific details for our application given in the subsequent section. Consider the general operator form of an IBVP given
y

 [𝐮; 𝜆] = 𝐤, in 𝛺, (3a)

 [𝐮; 𝜆] = 𝐠, on 𝜕𝛺, (3b)

where𝛺 ⊆ R𝑛, with boundary (including internal interfaces, like faults) 𝜕𝛺. Vector 𝐮 is the unknown solution and 𝐠 is boundary data.
he source term 𝐤 encompasses external and internal body forces, and ,  are differential and boundary operators parameterized
y 𝜆.
The PINN first approximates the solution to the IBVP (3) using a feed-forward, deep neural network, i.e. we assume 𝐮(𝐱) ≈  (𝐱; 𝜃)

nd consider 𝑁𝜕 many boundary points {𝐱𝑖𝜕 , 𝐠
𝑖}𝑁𝜕𝑖=1 where 𝐠𝑖 = 𝐠(𝐱𝑖𝜕) for each 1 ≤ 𝑖 ≤ 𝑁𝜕 , and a set of 𝑁𝛺 internal collocation points

𝐱𝑖
𝛺
,𝐤𝑖}

𝑁𝛺
𝑖=1 with 𝐤𝑖 = 𝐤(𝐱𝑖

𝛺
) for 1 ≤ 𝑖 ≤ 𝑁𝛺. Throughout this work, collocation points are generated from uniform random sampling.

rom (3) we construct an objective function 𝑀𝑆𝐸 (based on the mean-square error) given by

𝑀𝑆𝐸(𝜃) =𝑀𝑆𝐸𝛺(𝜃) +𝑀𝑆𝐸𝜕(𝜃), (4)

where

𝑀𝑆𝐸𝛺(𝜃) =
1
𝑁𝛺

∑

𝑖=1

𝑁𝛺 |
|

|

[ ; 𝜆](𝐱𝑖𝛺; 𝜃) − 𝐤𝑖||
|

2
, (5a)

𝑀𝑆𝐸𝜕(𝜃) =
1
𝑁𝜕

∑

𝑖=1

𝑁𝜕 |
|

|

[ ; 𝜆](𝐱𝑖𝜕 ; 𝜃) − 𝐠𝑖||
|

2
, (5b)

are the contributions to the total loss from the PDE (3a) and boundary conditions (3b), respectively, corresponding to misfit
f the network with data. Because our objective function (4) consists of multiple competing loss functions it is referred to as
multi-objective loss. Solving (3) is done by minimizing (4) with respect to the network parameters 𝜃, typically done via an
ptimization algorithm that approximates the set of solution parameters 𝜃∗ such that 𝜃∗ = argmin𝜃𝑀𝑆𝐸(𝜃). Fig. 1 gives a schematic
epresentation of the objective function (4). Note that for the rest of this work with omit the notation specifying MSE dependency
n network parameters 𝜃 and assume this is understood.

. Learning problems for earthquakes on rate-and-state faults

In order to best illustrate the PINN computational set-up, we begin by considering a relevant problem in 1D, in order to introduce
ur methodology in a simplified framework. Here we focus on the forward problem; details of the inverse problem are included in
he subsequent section on the 2D application problem, which also includes a schematic diagram motivating the governing equations.

.1. 1D illustration

The solid Earth is governed by momentum balance and a constitutive relation defining the material rheology; in this work we
3

ssume elastic material properties. These assumptions give rise to the elastic wave equation, namely
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Fig. 1. A schematic of the PINN framework for solving the general boundary value problem from Eq. (3). Displacement approximation network  is trained
n interior and boundary subdomains which are governed by operators  and , respectively.

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 + 𝑠(𝑥, 𝑡), 𝑥 ∈ [0, 1], 𝑡 ≥ 0, (6)

here 𝑢(𝑥, 𝑡) is the Earth’s material displacement, 𝑐 =
√

𝜇∕𝜌 is the wavespeed where 𝜌 and 𝜇 are the density and shear modulus, and
(𝑥, 𝑡) accounts for external and/or body forces. Here we use subscripts to denote derivatives with respect to the subscript variable.
ssumed initial and boundary conditions are given by

𝑢(𝑥, 0) = 𝑢0(𝑥), (7a)

𝑢𝑡(𝑥, 0) = 𝑣0(𝑥) (7b)

−𝜇𝑢𝑥 = 𝐹 + 𝑔0(𝑡), 𝑥 = 0, (7c)

𝑍𝑢𝑡 + 𝜇𝑢𝑥 = 𝑔1(𝑡), 𝑥 = 1, (7d)

where 𝑍 =
√

𝜇𝜌 is the shear impedance. If boundary data 𝑔0(𝑡) = 𝑔1(𝑡) = 0, Eq. (7c) corresponds to the requirement that fault shear
stress be equal to frictional strength 𝐹 , and (7d) allows waves to freely exit the domain.

In this work we consider rate-and-state dependent friction (RSF), an experimentally-motivated, nonlinear friction law, often used
n earthquake simulations for its ability to reproduce a wide range of observed seismic and aseismic behaviors [41,45,46]. In this
ontext, the frictional strength is given by

𝐹 = 𝜎̄𝑛𝑓 (𝑉 , 𝜓), (8)

here 𝑉 is the slip rate (jump in velocity across a fault interface), 𝜎̄𝑛 is the effective normal stress (normal stress minus pore fluid
ressure), and 𝑓 is a friction coefficient given by

𝑓 (𝑉 , 𝜓) = 𝑎 ln
(

𝑉
𝑉0

)

+ 𝜓, (9)

where 𝑉0 is a reference slip rate and material parameter 𝑎 is the ‘‘direct effect’’ [47]. State variable 𝜓 evolves from some initial
value 𝜓0 according to its own evolution law

𝑑𝜓
𝑑𝑡

= 𝐺(𝑉 , 𝜓) + ℎ(𝑡), (10a)

𝜓(0) = 𝜓0 (10b)

where we assume the aging law, i.e. 𝐺(𝑉 , 𝜓) = (𝑏𝑉0∕𝐷𝑐) exp (
𝑓0−𝜓
𝑏 − |𝑉 |

𝑉0
), which allows state to evolve even in the absence of slip [41],

and ℎ(𝑡) allows for the incorporation of additional source data. Here 𝐷𝑐 is the characteristic slip distance, 𝑓0 is a reference friction
coefficient for sliding at speed 𝑉0 and material parameter 𝑏 captures time-dependent ‘‘evolution’’ effects [47].

The initial–boundary value problem (IBVP) formed by the PDE (6), specified initial/boundary conditions (7) and state-evolution
Eq. (10a) correspond to specific differential and boundary operators  and  defined in (3), for example, here  = 𝜕2∕𝜕𝑡2−𝑐2𝜕2∕𝜕𝑥2.
Assuming all parameters of the IBVP are known, one can solve the forward problem for the unknown material displacement 𝑢(𝑥, 𝑡)
and state variable 𝜓(𝑡). We define neural networks  (𝑥, 𝑡; 𝜃) ≈ 𝑢(𝑥, 𝑡) and  𝜓 (𝑡; 𝜃𝜓 ) ≈ 𝜓(𝑡) to approximate the exact solutions. The
PDE, boundary and initials conditions all give rise to a term in the objective function. We refer to these terms as the component
loss functions and define them as

𝑀𝑆𝐸𝛺 = 1
𝑁𝛺
∑

|

|

|

𝑡𝑡 − 𝑐2𝑥𝑥 − 𝑠
|

|

|

2
, (11a)
4

𝑁𝛺 𝑖=1
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𝑀𝑆𝐸0 =
1
𝑁0

𝑁0
∑

𝑖=1

|

|

|

− 𝜇𝑥 − 𝐹 − 𝑔0
|

|

|

2
, (11b)

𝑀𝑆𝐸1 =
1
𝑁1

𝑁1
∑

𝑖=1

|

|

|

𝑍𝑡 + 𝜇𝑥 − 𝑔1
|

|

|

2
, (11c)

𝑀𝑆𝐸𝑢0 = 1
𝑁𝑢0

𝑁𝑢0
∑

𝑖=1

|

|

|

 − 𝑢0
|

|

|

2
, (11d)

𝑀𝑆𝐸𝑣0 = 1
𝑁𝑣0

𝑁𝑣0
∑

𝑖=1

|

|

|

𝑡 − 𝑣0
|

|

|

2
, (11e)

where 𝑁𝛺, 𝑁0, 𝑁1, 𝑁𝑢0 , 𝑁𝑣0 correspond to the number of randomly distributed collocation points in the relevant subdomains,
.e. the domain interior, left boundary (𝑥 = 0), right boundary (𝑥 = 1), and at 𝑡 = 0 (for initial displacements and velocities),
respectively. In addition to (11) we have the contributions to the total loss from the state evolution equation, namely

𝑀𝑆𝐸𝜓 = 1
𝑁𝜓

𝑁𝜓
∑

𝑖=1

|

|

|

 𝜓
𝑡 − 𝐺(𝑉 , 𝜓) − ℎ||

|

2
, (12a)

𝑀𝑆𝐸𝜓0 = 1
𝑁𝜓0

𝑁𝜓0
∑

𝑖=1

|

|

|

 𝜓 − 𝜓0
|

|

|

2
, (12b)

so that the objective function we seek to minimize is given by 𝑀𝑆𝐸 =
∑

𝜉∈𝜒 𝑀𝑆𝐸𝜉 , where subscript 𝜒 = {𝛺, 0, 1, 𝑢0, 𝑣0, 𝜓, 𝜓0} so
that the sum involves contributions from all subdomains. Minimizing the 𝑀𝑆𝐸 over the network parameters of  and  𝜓 define
proxy models which produce approximations to 𝑢 and 𝜓 .

An important detail about the network training involved in minimizing the objective function 𝑀𝑆𝐸 defined in the previous
paragraph is that the inclusion of the state evolution means we are now solving a coupled system of PDE. The coupling occurs at
the fault 𝑥 = 0, where two conditions (fault friction (7d) and state evolution (10a)) are now enforced. Because of this coupling, the
training networks  and  𝜓 both appear in the fault loss (11b) as well as in the state evolution loss (12a). This interconnectivity
may cause training to favor accuracy in the displacement network over accuracy in the state network. In particular, high temporal
variations in state evolution, variations in scale, and/or network architecture may drive the training step to favor the displacement
approximation. We found it helpful to isolate the state and displacement networks during the backpropagation step. To do this, we
define two objective functions: The state objective function consists of loss components in Eq. (12) while the displacement objective
function uses loss components from Eq. (11). Each training iteration then requires two optimization steps to update both state and
displacement networks. This setup ensures that each network is only updated by one associated objective function. We found this
approach to improve our network’s training speed and resulted in better approximations of the state variable. The particulars of
this training approach are illustrated in Algorithm 1 which provides the pseudocode for solving the 1D IBVP given by Eqs. (6) and
(7) where state evolves according to (10a).

In order to verify our computational framework for the 1D problem, we generate a known, manufactured solution, which
enables direct comparison with the approximate solution produced by the neural network. This approach, known as the method of
manufactured solutions [48], assumes a particular analytic solution 𝑢𝑒 and derives consistent source terms and boundary data for
the IBVP, without changing the underlying PDE and boundary operators. We manufacture 𝑢𝑒 and 𝜓𝑒 to be a solution to the IBVP
and aging law, respectively, such that

𝑢𝑒(𝑥, 𝑡) = tanh
(

0.5(𝑥 − 𝑐𝑡 + 1)
)

, (13)

𝜓𝑒(𝑡) = −
𝜇𝑢𝑒𝑥(0, 𝑡)
𝜎̄𝑛

− 𝑎 ln
( 2𝑢𝑒𝑡 (0, 𝑡)

𝑉0

)

(14)

This choice of manufactured solution defines the initial data 𝑢0 and 𝑣0, the source term 𝑠, and all boundary data, namely

𝑠 = 𝑢𝑒𝑡𝑡 − 𝑐
2𝑢𝑒𝑥𝑥, on 𝛺 × [0, 𝑇 ], (15a)

𝑔0 = 0, at 𝑥 = 0, (15b)

𝑔1 = 𝑍𝑢𝑒𝑡 + 𝜇𝑢
𝑒
𝑥, at 𝑥 = 1, (15c)

ℎ = 𝜓𝑒𝑡 − 𝐺(2𝑢
𝑒
𝑡 , 𝜓

𝑒), at 𝑥 = 0, (15d)

where, for the 1D problem, 𝑉 (𝑡) = 2𝑢𝑡(0, 𝑡), and corresponds to a commonly chosen exact solution [49,50].
Parameter values used for all studies in this work are given in Table 1. We provide Fig. 2 to illustrate how the independent

networks  and  𝜓 are used to build each component loss function and Algorithm 1 provides an outline of the implemented code.

Here we take  ∶ R2 → R and state variable network  𝜓 ∶ R → R to both be fully-connected, feed-forward networks with
hree hidden layers, 64 neurons per layer and use hyperbolic tangent activation functions. The loss function is optimized using L-
FGS [51], a quasi-Newton optimization algorithm. Minimization is done over 10 training iterations where each iteration is trained
n a random sampling of 𝑁 = 100 interior points and 50 boundary points (𝑁 = 25 points per boundary). Network weights are
5

𝑏
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Fig. 2. A schematic of the PINN framework for solving the 1D IBVP (6) (7) with rate and state friction defined by (9) and (10a). Displacement network  and
state network  𝜓 are trained separately by defining two objective functions which are differentiated by red and blue nodes, respectively, in the final layer. At
each training iteration,  is updated using component losses 𝑀𝑆𝐸𝛺 ,𝑀𝑆𝐸0, and 𝑀𝑆𝐸1 while  𝜓 is updated using just 𝑀𝑆𝐸𝜓 as an objective function.

Table 1
Parameter values used in the manufactured
solution tests.
Parameter Value

𝐿𝑥 , 𝐿𝑧 25 km
𝐻 12 km
𝐷 5 km
𝜇 32 GPa
𝜌 2.67 kg∕m3

𝛼min −0.005
𝛼max 0.015
𝑓0 0.6
𝜎̄𝑛 50 MPa
𝑉0 10−6 m∕s
𝐷𝑐 2 m

initialized using uniform Xavier initialization [52]. In Fig. 3 we show learned approximations for displacement and state compared
o their respective exact solutions. These results suggest that our neural network parameters can solve the 1D forward problem to
easonable accuracy. To further explore performance however, and since we are primarily interested in higher dimensional settings
hat enable the inversion of depth-dependent parameters, we now move to the 2D formulation.

.2. 2D application in seismic faulting

The 2D problem is obtained by first considering a bounded spatial domain in R3 defined by (𝑥, 𝑦, 𝑧) ∈ [−𝐿𝑥, 𝐿𝑥] × [−𝐿𝑦, 𝐿𝑦]×[0, 𝐿𝑧]
here 𝑧 is taken to be positive downward. We assume antiplane shear deformation, taking displacements 𝑢𝑥, 𝑢𝑧 to be zero, and assume
he out-of-plane displacement 𝑢 = 𝑢𝑦 is independent of 𝑦. Momentum balance for an elastic solid then gives rise to the elastodynamic
ave equation in 2D, namely,

𝑢𝑡𝑡 = 𝑐2𝛥𝑢 + 𝑆(𝑥, 𝑧, 𝑡), (𝑥, 𝑧) ∈ [−𝐿𝑥, 𝐿𝑥] × [0, 𝐿𝑧], 𝑡 ≥ 0, (16)

here 𝛥 =
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑧2

)

is the 2D Laplacian. Here the shear wavespeed 𝑐 =
√

𝜇∕𝜌 as in the 1D case, and 𝑆 comprises body forces.

Assumed initial conditions are given by

𝑢(𝑥, 𝑧, 0) = 𝑢0(𝑥, 𝑧), (17a)

𝑢𝑡(𝑥, 𝑧, 0) = 𝑣0(𝑥, 𝑧). (17b)

We assume 𝑧 = 0 corresponds to Earth’s surface which we take to be traction free. An RSF vertical fault is embedded at the interface
𝑥 = 0, corresponding to interface conditions

𝜏+ = −𝜏− (18a)

𝜏+ = 𝐹 (𝑉 , 𝜓). (18b)

Here the traction 𝜏 at a boundary or interface is defined with respect to the outward pointing unit normal 𝐧 by 𝜏 = 𝐧 ⋅ 𝜇∇𝑢, and
± ±
6

𝜏 = 𝜏(0 , 𝑧, 𝑡). Eq. (18a) corresponds to the requirement that the traction be ‘‘equal and opposite’’ across the fault and (18b) is a



Computer Methods in Applied Mechanics and Engineering 430 (2024) 117211C. Rucker and B.A. Erickson

b
t

Algorithm 1 Multi-network training for 1D forward problem with RSF.
1:  ← NeuralNetwork(𝑥, 𝑡; 𝜃) ⊳ initialize network parameters 𝜃 for 
2: 𝜓 ← NeuralNetwork(𝑡; 𝜃𝜓 ) ⊳ initialize network parameters 𝜃𝜓 for 𝜓

3: opt ← SetOptimizer(𝜃) ⊳ Instantiate an optimizer which only tracks parameters of 
4: 𝜓opt← SetOptimizer(𝜃𝜓 ) ⊳ Instantiate an optimizer which only tracks parameters of 𝜓

5:
6:
7: ̃ ← 𝑢0(𝑥) + 𝑡𝑣0(𝑥) + 𝑡2 (𝑥, 𝑡) ⊳ Employ hard enforcement of initial conditions
8: ̃𝜓 ← 𝜓0 + 𝑡𝜓 (𝑡)
9:
10: for 𝜉 in 𝜒 do ⊳ Loop over each subdomain and define the relevant component loss
11: function MSE𝜉 (𝑥, 𝑡)
12: output ← Condition

[

𝜉
]

(̃ (𝑥, 𝑡), ̃𝜓 (𝑡)) ⊳ Conditions specified by equations (6), (7), (8), and (10a)
13: data ← SourceData

[

𝜉
]

(𝑥, 𝑡) ⊳ Source terms are determined in equation (15)
14: return MeanSquareError(output, data)
15:
16: for i=1 to training_iterations do
17: Loss ← 0
18: Loss𝜓 ← 0
19:
20: for 𝜉 in 𝜒 ⧵ {𝛹} do
21: 𝑥𝜉 , 𝑡𝜉 ←rand(𝑁𝜉 , 𝜉) ⊳ Generate 𝑁𝜉 randomly sampled points from subdomain 𝜉
22: Loss ← Loss + MSE𝜉 (𝑥𝜉 , 𝑡𝜉 )
23:
24: 𝑥𝛹 , 𝑡𝛹 ←rand(𝑁𝛹 , 𝛹)
25: Loss𝜓 ← MSE𝑓𝜓 (𝑥𝛹 , 𝑡𝛹 )
26:
27: ∇𝜓 ← grad(Loss𝜓 , [𝜃𝜓 ]) ⊳ Compute network gradient
28: 𝜃𝜓 ← 𝜓opt.Step(∇𝛹 ) ⊳ Update network weights using the optimization algorithm
29:
30: ∇ ← grad(Loss , [𝜃])
31: 𝜃 ← opt.Step(∇ )

Fig. 3. Comparison of results from 1D illustration showing the (a) displacement network approximation  with (b) manufactured solution 𝑢𝑒. Additionally, the
(c) state approximation network  𝜓 is plotted against the manufactured state 𝜓𝑒 along with their absolute error | 𝜓 (𝑡) − 𝜓𝑒(𝑡)|. Absolute displacement error
was averaged over 1000 randomly sampled points and measured to be | − 𝑢𝑒|avg = 1.57𝑒 − 5.

requirement that fault shear stress be equal to frictional strength 𝐹 as in the 1D case. As in the 1D illustration, 𝐹 is a nonlinear
function of the slip rate 𝑉 (𝑧, 𝑡) = 𝑢̇(0+, 𝑧, 𝑡) − 𝑢̇(0−, 𝑧, 𝑡) and an empirical state variable 𝜓(𝑧, 𝑡) the particular form of which is given
y (8). At the remote boundaries (𝑥, 𝑧) = (±𝐿𝑥, 𝐿𝑧) we assume the boundaries are non-reflecting. Next we make the assumption
hat the displacement field 𝑢(𝑥, 𝑧, 𝑡) is antisymmetric about the fault interface 𝑥 = 0, which automatically satisfies (18a), so that we
may restrict our focus to one side of the fault as in Erickson and Dunham [49] and reduce the computational redundancy. Our final
spatial domain is then 𝛺 = [0, 𝐿 ] × [0, 𝐿 ] where the fault interface now becomes a boundary, see Fig. 4. For generality (and to
7
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Fig. 4. A schematic of the 2D domain where 𝑢(𝑥, 𝑧, 𝑡) is the particle displacement in the 𝑦-direction. Out-of-plane motion is denoted with circles. The assumption
that 𝑢 is antisymmetric about 𝑥 = 0 allows us to consider the one-sided domain 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑧] to alleviate computational cost. Displacements within 𝛺
re governed by the 2D wave equation (16). The fault, Earth’s free surface, and the remaining boundaries (the remote and depth boundaries) are labeled and
ubject to conditions (19). At the rate-and-state fault (𝑥 = 0), the fault is velocity weakening (𝑎 − 𝑏 < 0) down to a seismogenic depth 𝐻 , where it transitions
ver distance 𝐷 to velocity strengthening 𝑎 − 𝑏 > 0.

id in later verification steps) we state the final boundary conditions on 𝜕𝛺 using generic data 𝑔𝑓 , 𝑔𝑠, 𝑔𝑟, 𝑔𝑑 for the fault, surface,
emote, and depth boundaries, respectively, namely

𝜏 = 𝐹 (𝑉 ) + 𝑔𝑓 (𝑧, 𝑡), 𝑥 = 0, (19a)

𝜏 = 𝑔𝑠(𝑥, 𝑡), 𝑧 = 0, (19b)

𝑍𝑢𝑡 + 𝜏 = 𝑔𝑟(𝑧, 𝑡), 𝑥 = 𝐿𝑥, (19c)

𝑍𝑢𝑡 + 𝜏 = 𝑔𝑑 (𝑧, 𝑡), 𝑧 = 𝐿𝑧, (19d)

although the Earth’s free surface and non-reflecting conditions are the far field boundaries correspond to 𝑔𝑠 = 𝑔𝑟 = 𝑔𝑑 = 0. Here
= 𝜏+, 𝑉 = 2𝑢+𝑡 and 𝑍 =

√

𝜇𝜌 is the shear impedance as in the 1D case.
For this 2D application problem we are primarily interested in the RSF parameter 𝑎−𝑏, which describes the velocity-dependence

f friction at steady state. Positive values (i.e. 𝑎 > 𝑏) correspond to stable sliding, while negative values correspond to frictional
nstabilities. Knowledge of the depth-distribution of 𝑎 − 𝑏 is therefore of central importance to understanding slip behavior and
eformation [3]. In other words, heterogeneities along fault interfaces can be characterized at least in part by velocity-weakening
rictional behavior (𝑎 − 𝑏 < 0) indicating that seismic rupture may nucleate and easily propagate, while stable regions are
haracterized by velocity-strengthening frictional behavior (𝑎 − 𝑏 > 0) that inhibits the sliding at seismogenic speeds [40]. In order
o focus our study on the inference of the depth-dependency of 𝑎 − 𝑏, we assume that the state variable is at steady state, namely
= 𝑓0 + 𝑏 ln

(

𝑉0
𝑉

)

, so that the friction coefficient reduces to the rate-dependent form

𝑓 (𝑉 ) = 𝑓0 + 𝛼 ln
(

𝑉
𝑉0

)

, (20)

where we have introduced 𝛼 = 𝑎−𝑏. This choice of rate-dependent friction is made to simplify the optimization problem by limiting
he number of trainable networks from three to two for computational ease. We assume that 𝛼 is piecewise linear with depth,
efining a shallow seismogenic zone, namely,

𝛼(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝛼min 0 < 𝑧 < 𝐻
(𝑧 −𝐻) ∗ ((𝛼max − 𝛼min)∕𝐷) + 𝛼min 𝐻 ≤ 𝑧 ≤ 𝐻 +𝐷
𝛼max 𝐻 +𝐷 < 𝑧,

(21)

here 𝐻 defines the seismogenic depth, 𝛼min and 𝛼max are constants defining the minimum and maximum values assumed by 𝛼, and
the transition distance. In this work we consider PINN solutions to both the forward and inverse problems. For forward problem
e solve for the unknown displacements 𝑢 in the IBVP (3) assuming 𝛼(𝑧) has been specified. For the inverse problems, in addition

to solving for 𝑢 we also infer the friction parameter 𝛼. In this latter case, (21) sets the data for the boundary conditions, but 𝛼 is
not assumed to be known a priori when enforcing the frictional interface condition, as will be described in the next section.

3.3. Forward and inverse problems for the 2D application

Governing Eq. (16) along with initial and boundary conditions (17), (19) provide specifics of the loss terms (5) that define the
PINN. However, there is more than one way to formulate the associated learning problem. First, one can consider either a forward
8
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or inverse problem [39]. As this work is concerned with generating approximations to both forward and inverse problems, we will
refer to the primal solution as the network approximation  to the displacement 𝑢 specified by the IBVP (3). The forward problem
is only concerned with approximating a primal solution and requires that all model parameters 𝜆 are known a priori. A solution to
he inverse problem aims to approximate the primal solution while also being tasked with learning a set of system parameters. If the
in (3) are known, the forward problem is solved and the problem reduces to an unsupervised learning task [17]. In the inverse
roblem, however, the PINN has the same loss function (5) but with minor changes: Instead of knowing the system parameters 𝜆,
e establish them as trainable networks, which we detail shortly.
In addition to specifying whether a forward or inverse problem is being solved, in either case one must also choose between

oft or hard enforcement of initial conditions [12,17,53,54]. Soft enforcement uses loss terms to learn boundary data whereas hard
nforcement encodes boundary data into a trial function to satisfy the conditions exactly. We proceed with details concerning each
f these below.

.3.1. Forward problem
As in the 1D case, we begin by supposing that  (𝑥, 𝑧, 𝑡; 𝜃) ≈ 𝑢(𝑥, 𝑧, 𝑡) for neural network  and solution 𝑢 of the IBVP (16), (17),

19). The 2D component loss functions are therefore given by

𝑀𝑆𝐸𝛺 = 1
𝑁𝛺

𝑁𝛺
∑

𝑖=1

|

|

|

𝑡𝑡 − 𝑐2𝛥 − 𝑆||
|

2
, (22a)

𝑀𝑆𝐸𝑓 = 1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

− 𝜇𝑥 − 𝜎̄𝑛𝑓 − 𝑔𝑓
|

|

|

2
, (22b)

𝑀𝑆𝐸𝑠 =
1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

|

|

|

− 𝜇𝑧 − 𝑔𝑠
|

|

|

2
, (22c)

𝑀𝑆𝐸𝑟 =
1
𝑁𝑟

𝑁𝑟
∑

𝑖=1

|

|

|

𝑍𝑡 + 𝜇𝑥 − 𝑔𝑟
|

|

|

2
, (22d)

𝑀𝑆𝐸𝑑 = 1
𝑁𝑑

𝑁𝑑
∑

𝑖=1

|

|

|

𝑍𝑡 + 𝜇𝑧 − 𝑔𝑑
|

|

|

2
(22e)

along with initial loss terms 𝑀𝑆𝐸𝑢0 ,𝑀𝑆𝐸𝑣0 (translated to 2D) from Eqs. (11d) and (11e), respectively. As in the 1D case,
summations are over randomly distributed collocation points in the interior and domain boundaries. The 2D objective function
we seek to minimize is given by 𝑀𝑆𝐸 =

∑

𝜉∈𝜒 𝑀𝑆𝐸𝜉 , where (as in the 1D case), subscript 𝜒 = {𝛺, 𝑓 , 𝑠, 𝑟, 𝑑, 𝑢0, 𝑣0} implies that the
sum is taken over all relevant subdomains.

3.3.2. Inverse problem
While the primal solution to an IBVP is desirable, replacing an assumed model parameter (which often comes with much

uncertainty) with a trainable network could leverage real-world data to physically constrain parameter distributions. The inverse
problem is derived by making a slight modification to the forward problem (22). As we are interested in learning the fault friction
parameter 𝛼, we modify the loss component (22b) to include a trainable network. Because 𝛼 is depth-variable it must be explicitly
trained on random collocation points along the fault. So in addition to the first network  (𝑥, 𝑧, 𝑡; 𝜃) ≈ 𝑢(𝑥, 𝑧, 𝑡), we introduce a
secondary network 𝛼(𝑧; 𝜃𝛼) ≈ 𝛼(𝑧). Only one loss component needs be changed from the forward problem (22), namely, component
(22b), which enforces the fault friction condition. A modified friction coefficient is considered, defined by

𝑓 = 𝑓0 + 𝛼(𝑧) ln
[

2𝑡(𝑧, 𝑡)
𝑉0

]

, (23)

which gives rise to the modified fault loss

𝑀𝑆𝐸𝑓 = 1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

− 𝜇𝑥 − 𝜎̄𝑛𝑓 − 𝑔𝑓
|

|

|

2
. (24)

Replacing loss component (22b) in the forward problem with (24) defines the inverse problem. We give a diagram of the fault
etwork for the inverse problem in Fig. 5 showing how the fault loss is used to update two networks during training. The inverse
roblem is trained over the same subdomains as the forward problem (22) but the depth coordinate for fault training data is passed
to both  and  𝛼 .

3.3.3. Soft vs. Hard enforcement of boundary conditions
Both the forward and inverse problems require that we specify initial and boundary conditions, which may be enforced in two

possible ways. Soft enforcement is done by penalizing the objective function, as the network output need not satisfy the condition
exactly (as was done in the 1D example of the previous section). Up until now, we have presented soft enforcement, as given in
(22), which shows component losses corresponding to the boundary and initial conditions. Soft enforcement does not give us any
guarantee regarding accuracy of the condition being enforced and each additional loss term in the objective function increases the
9

complexity of the optimization landscape.
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Fig. 5. Network diagram for enforcing the stress condition along the fault while also learning the depth-dependent friction parameter 𝛼. During training, the
𝑧-coordinate of a training point is passed to both  and  𝛼 .

Alternatively, we may enforce initial/boundary conditions in a manner that reduces the complexity of the network training
space by encoding such conditions into the network architecture. This approach, known as hard enforcement, requires that we
specify a trial function which automatically satisfies the initial/boundary conditions. Here we apply this technique to enforce initial
conditions, which reduces the number of constraints on the system. Let  (𝐱, 𝑡; 𝜃) be a feed-forward neural network and define the
rial function ̃ to be

̃ (𝐱, 𝑡; 𝜃) = 𝑢0(𝐱) + 𝑡𝑣0(𝐱) + 𝑡2 (𝐱, 𝑡; 𝜃) (25)

here 𝐱 = (𝑥, 𝑧), so that ̃ satisfies both initial conditions (17) exactly and is trained by training the network  . It is worth
oting that ̃ represents an approximation to displacement and consists of a static component (first two terms) that enforce the
nitial conditions exactly, and a trainable component  . The final term in Eq. (25) is quadratic in time to ensure that the trainable
omponent of ̃ (and ̃𝑡) vanishes at 𝑡 = 𝑡0. If ̃ is used in place of  in the formulation of the objective function, there is no
onger a need to include loss terms for initial displacements (11d), or initial velocities (11e) so the network can be trained on a less
restrictive set of conditions.

4. 2D verification, validation and applications

When computational methods for physical problems are used to address science questions, verification is an essential first step
to ensure credible results [42,43]. While validation with observational data is the focus of future work, we must first verify that
our physics-informed deep learning framework is able to solve both forward and inverse problems to reasonable accuracy.

4.1. Verification with the method of manufactured solutions

As in the 1D case, we verify the PINN framework by generating a known, manufactured solution 𝑢𝑒 which solves the IBVP (3),
(17), (19). We take

𝑢𝑒(𝑥, 𝑧, 𝑡) = tanh
(

(𝑥 + 𝑧 + 𝑐𝑡)∕20
)

, (26)

which defines the initial data 𝑢0 and 𝑣0, the source term 𝑆, and all boundary data, which for the forward problem is

𝑆 = 𝑢𝑒𝑡𝑡 − 𝑐
2𝛥𝑢𝑒, on 𝛺 × [0, 𝑇 ], (27a)

𝑔𝑓 = −𝜇𝑢𝑒𝑥 − 𝜎̄𝑛𝑓
(

2𝑢𝑒𝑡
)

, at 𝑥 = 0, (27b)

𝑔𝑠 = −𝜇𝑢𝑒𝑧, at 𝑧 = 0, (27c)

𝑔𝑟 = 𝑍𝑢𝑒𝑡 + 𝜇𝑢
𝑒
𝑥, at 𝑥 = 𝐿𝑥, (27d)

𝑔𝑑 = 𝑍𝑢𝑒𝑡 + 𝜇𝑢
𝑒
𝑧, at 𝑧 = 𝐿𝑧. (27e)

The parameters used are given in Table 1 whose values align with other recent works with similar model set-ups [50,55], and
we default to this parameter set unless stated otherwise. Note that in the case of the inverse problem, 𝛼min and 𝛼max define the
manufactured exact solution 𝛼𝑒(𝑧), which is used only to set the data in (27b); 𝛼(𝑧) is a learned parameter through the use of
the network  𝛼 . In all scenarios we consider, we take the primal network  ∶ R3 → R and friction network  𝛼 ∶ R → R to
both be fully-connected, feed-forward networks with three hidden layers and 128 neurons per layer. The wave Eq. (16) requires
10

isplacements to be sufficiently smooth with respect to the input but no such requirement is imposed on the friction parameters.
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Algorithm 2 Multi-network training for solving the inverse problem
1:  ← NeuralNetwork(𝑥, 𝑧, 𝑡; 𝜃) ⊳ 𝜃 initial network parameters for 
2:  𝛼 ← NeuralNetwork(𝑧; 𝜃𝛼 ) ⊳ 𝜃𝛼 initial network parameters for  𝛼

3: 𝜃 ← [𝜃, 𝜃𝛼 ]
4:
5: ̃ ← 𝑢0(𝑥, 𝑧) + 𝑡𝑣0(𝑥, 𝑧) + 𝑡2 (𝑥, 𝑧, 𝑡) ⊳ Employ hard enforcement of initial conditions
6:
7: for 𝜉 in 𝜒 do ⊳ Loop over each subdomain and define the relevant component loss
8: function MSE𝜉 (x, z, t)
9: output ← Condition

[

𝜉
]

(̃ (𝑥, 𝑧, 𝑡),  𝛼 (𝑧))
10: data ← SourceData

[

𝜉
]

(𝑥, 𝑧, 𝑡)
11: return MeanSquareError(output, data)
12:
13: for i=1 to training_iterations do
14: Loss ← 0
15:
16: for 𝜉 in 𝜒 do
17: 𝐱𝜉 ←rand(𝑁𝜉 , 𝜉) ⊳ Generate 𝑁𝜉 randomly sampled points from subdomain 𝜉
18: Loss ← Loss + 𝑀𝑆𝐸𝜉 (𝐱𝜉 )
19:
20: ∇ ← grad(Loss, [𝜃])
21: 𝜃 ← OptimizerStep(∇) ⊳ Update network weights using the optimization algorithm

Thus we use hyperbolic tangent activation functions for the displacement network but use linear units in the friction network. We
found that the friction network performed well when we used both Rectified Linear Unit (ReLU) and Sigmoid Linear Unit (SiLU)
together. We use ReLU activation for the outer hidden layers and a SiLU activation on the interior layer. Algorithm 2 is a sketch of
the implemented code used to solve the inverse problem with hard enforcement of initial conditions.

 and (in the case of the inverse problem)  𝛼 are trained by minimizing the MSE (the sum of component MSE given in (22))
where all loss functions are optimized using L-BFGS [51], a quasi-Newton optimization algorithm. Minimization is done over 30
training iterations where each iteration is trained on a mini-batch of 𝑁 = 400 interior points and 400 boundary points (𝑁𝑏 = 100
points per boundary). Additionally, if soft enforcement of initial conditions is used, we sample 400 additional interior points (200
for displacements and 200 for velocities). After the 30 training iterations are complete we evaluate each of the component loss
functions using 1000 randomly sampled points. Likewise we generate the same number of sample points for  and  𝛼 and use
their respective manufactured solutions to compute the relative 𝓁2−norm of their errors, namely,

‖

‖

 − 𝑢𝑒‖
‖

2
1, rel =

∑𝑁
𝑖=1 | (𝑥𝑖, 𝑧𝑖, 𝑡𝑖) − 𝑢𝑒(𝑥𝑖, 𝑧𝑖, 𝑡𝑖)|

2

∑𝑁
𝑖=1 |𝑢𝑒(𝑥𝑖, 𝑧𝑖, 𝑡𝑖)|

2
, (28)

‖

‖

𝛼 − 𝛼𝑒‖‖
2
1, rel =

∑𝑁𝑏
𝑖=1 |

𝛼(𝑧𝑖) − 𝛼𝑒(𝑧𝑖)|
2

∑𝑁𝑏
𝑖=1 |𝛼

𝑒(𝑧𝑖)|
2

. (29)

All collocation points are drawn uniformly from the space–time domain and are resampled at each training iteration. This choice
f sampling method, in addition to being simple to implement, has been shown to perform well compared to fixed residual point
ethods (e.g. uniformly-spaced grids, uniform random points, or Latin hypercube sampling for which collocation points are not
esampled) [56].
Network weights are initialized using uniform Xavier initialization [52]. Variation due to weight initialization involving

andomization is accounted for by averaging error data across 50 trained solutions. Table 2 presents error data for the forward and
nverse problems where both hard and soft enforcement of initial conditions are considered for each. As the table illustrates, for both
he forward and inverse problems, hard enforcement of initial conditions are accompanied with a smaller 𝓁2-errors after 30 training
terations, which is most likely due at least in part to the fact that hard enforcement means that the network approximation satisfies
he initial conditions exactly. Also illustrated in the table, is that all component mean-square errors (MSE) are lower for the soft
nforcement of initial conditions compared to hard enforcement. Soft enforcement uses two additional loss components (i.e. those
nforcing initial conditions) which results in a more biased model, or a lower variance model (i.e. the MSE is less sensitive to
raining data). The trade off between bias and variance (introduced via randomness in weight initialization and collocation points)
ay account for such lower MSE when using soft enforcement (which involves lower variances) and averaging over 50 trained
odels.
Next we test network performance across various subdomains and resolutions. Let  be a displacement network trained to solve

the inverse problem using hard enforcement of initial conditions. This time, errors are measured with respect to the continuous
𝐿2-norm

‖

‖

 − 𝑢𝑒‖
‖

2
2,𝛬 = ∫𝛬

| (𝑥, 𝑧, 𝑡) − 𝑢𝑒(𝑥, 𝑧, 𝑡)|2 𝑑𝜆, (30)

and we consider error accumulation across 𝛺, [0, 𝑇 ] and 𝛺̂ = 𝛺× [0, 𝑇 ], the spatial, temporal and space–time domains, respectively.
The integral in (30) is approximated using Simpson’s composite quadrature rule which converges to the exact integral with rate
11
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Table 2
Errors in the 𝓁2-norm and MSE (loss) associated with hard and soft enforcement of initial conditions for both the forward and
inverse problem. Each term is computed over 1000 randomly sampled points and averaged across 50 trained solutions. Error
ratios are computed by dividing soft enforcement error by the hard enforcement error.
Errors Forward problem Inverse problem

Soft Hard Error ratio Soft Hard Error ratio
‖

‖

 − 𝑢𝑒‖
‖1, rel 1.364e−02 7.148e−03 1.908e+00 2.931e−02 1.633e−02 1.795e+00

‖

‖

𝛼 − 𝛼𝑒‖‖1, rel 2.977e−01 7.220e−02 4.123e+00
𝑀𝑆𝐸𝑃𝐷𝐸 1.149e−03 8.883e−03 1.293e−01 1.133e−03 6.675e−03 1.697e−01
𝑀𝑆𝐸𝑓 2.633e−03 4.115e−02 6.399e−02 8.579e−03 1.615e−01 5.311e−02
𝑀𝑆𝐸𝑠 8.393e−05 7.868e−04 1.067e−01 1.251e−04 6.545e−04 1.911e−01
𝑀𝑆𝐸𝑑 8.216e−05 2.115e−03 3.885e−02 4.681e−04 7.199e−03 6.502e−02
𝑀𝑆𝐸𝑟 1.195e−05 3.233e−04 3.698e−02 1.064e−04 8.074e−04 1.318e−01
𝑀𝑆𝐸𝑢0 1.703e−04 3.722e−04
𝑀𝑆𝐸𝑣0 6.308e−04 1.375e−03

Fig. 6. (a) 2D displacement plot for a PINN trained to solve the inverse problem using hard enforcement of initial conditions compared to (b) the manufactured
displacements. (c)𝐿2-errors for displacement in space, time, and spacetime (along with 𝐿2-errors for the friction parameter) are computed on a uniform grid
using Simpson’s rule as a quadrature. Errors are then recorded over several mesh refinements.

(𝑘4), where 𝑘 is the quadrature grid size (i.e. the subinterval length). To account for variations in the trained network, we average
errors over points outside of the domain of integration. For example, the average temporal error given by

‖

‖

 − 𝑢𝑒‖
‖2,[0,𝑇 ] =

1
𝑁𝑇

𝑁𝑡
∑

𝑘=1

[

∫[0,𝑇 ]
|

|

|

 (𝑥𝑘, 𝑧𝑘, 𝑡) − 𝑢𝑒(𝑥𝑘, 𝑧𝑘, 𝑡)
|

|

|

2
𝑑𝜆(𝑡)

]1∕2
(31)

measures expected error accumulation (over time) given 𝑁𝑇 randomly sampled spatial points.
Fig. 6 shows displacement plots for the trained network and the exact solution at final time 𝑇 = 1 in addition to network 𝐿2-error

approximations for displacement in space, time and space–time (along with an 𝐿2-error approximation of the friction parameter)
for increasingly higher grid resolution used in the numerical quadrature. The errors remain relatively constant with decreasing
subinterval size, suggesting that the quadrature approximation is approaching the actual 𝐿2-error, and that the PINN approximation
maintains good accuracy even when evaluated on higher-resolution grids. Fig. 7(a) shows network component loss functions against
training iteration, revealing a non-monotonic decrease across all components. This behavior is likely due to how data is batched
during training with smaller batches tending towards smaller, less accurate loss updates while larger batches tend towards fewer,
more accurate loss updates [57,58]. Fig. 7(b) illustrates convergence of the inferred parameter 𝛼 = 𝑎−𝑏 to the exact distribution 𝛼𝑒.
Here we show iterations 1 and 30 merely because after the first iteration the inferred parameter performs well and does not vary
significantly.

5. Summary and future work

We have presented a computational framework for physics-informed neural networks (PINNs) for solving the elastodynamic wave
equation with a rate-and-state frictional fault boundary in both 1D and 2D. We consider both forward and inverse problems, with
the latter obtained by extending to a multi-network architecture in order to learn depth-dependent friction parameters alongside
deformations in the Earth’s crust. We verified the computational framework by applying the method of manufactured solutions to
probe various error measurements. We show that in general, hard enforcement of boundary conditions result in trained networks
that better approximate displacements and friction parameters but tend to be worse at minimizing component loss functions when
compared to soft enforcement. We found that a PINN defined by hard enforcement of initial conditions produces reasonable
approximations for displacements and the desired friction parameter distribution. Though the network is mesh-free, the 𝐿2-error
12

yields near constant values across various quadrature grids, suggesting that the PINN provides a reasonable approximation to the
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Fig. 7. 2D inversion results showing (a) convergence of loss components and (b) convergence of the inferred parameter approximation.

olution even when evaluated on increasingly finer grids. Moreover, although the network requires sufficient training iterations to
roperly learn displacements, the desired friction parameter is learned within the first couple of iterations. This suggests that PINNs
ay be a highly effective tool in inferring subsurface friction properties along faults, constrained by both physics and observational
urface data.
While the PINN is shown to perform well when learning the state variable in 1D, and inferring depth-dependency of RSF

arameter 𝑎− 𝑏 at steady-state in 2D, we plan to explore the capabilities of the 2D framework with non-steady-state-evolution. This
xtension requires additional networks in the 2D setting in order to approximate the state variable, and two inference networks to
apture the empirical parameters 𝑎 and 𝑏 (which become separated across governing equations), and/or networks to learn other
rictional parameters, such as 𝐷𝑐 , whose scaling from laboratory values to actual fault zones is the subject of many studies [e.g.59].
pproaching such a problem may be aided by a better understanding of the PINN dependence on problem configuration as well as
etwork architecture. Additionally, it would be worthwhile to investigate methods which hybridize PINNs with traditional numerical
ethods similar to the discrete time PINN in Raissi et al. [39]. And finally, with a PINN solution that can handle learning full rate-
nd-state fault friction in 2D (and eventually 3D), we would be ready to compare model outcomes against community benchmark
roblems concerning dynamic rupture simulations [42] and sequences of earthquakes and aseismic slip [43].
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