
Universal Vector Commitments�

Ojaswi Acharya
UMass Amherst†

Foteini Baldimtsi
GMU‡

Samuel Dov Gordon
GMU§

Daniel McVicker
GMU¶

Aayush Yadav
GMU�

Abstract. We propose a new notion of vector commitment schemes with proofs of (non-)membership that we call
universal vector commitments. We show how to build them directly from (i) Merkle commitments, and (ii) a uni-
versal accumulator and a plain vector commitment scheme. We also present a generic construction for universal
accumulators over large domains from any vector commitment scheme, using cuckoo hashing. Leveraging the afore-
mentioned generic constructions, we show that universal vector commitment schemes are implied by plain vector
commitments and cuckoo hashing.

1 Introduction

The problem of set membership (and non-membership) is ubiquitous in modern cryptography. Applications such as
the revocation of authentication credentials, verifiable databases and cloud storage rely on e�cient proofs for set (non-
)membership [CL02, BCD+17, SMP23, ZKP17, TBP+19, BdM94, BP97]. More recently, set (non-)membership has
gained increased attention because of its role in blockchain systems [BBF19]. One could imagine, for instance, a system
where users are able to demonstrate ownership of digital assets by proving that they appear in some large public set.

Two of the most prominent mechanisms that support set (non-)membership proofs are cryptographic accumulators
and vector commitments. Briefly, a cryptographic accumulator [BdM94] is a compact representation, acc, of a set of
elements S over some domain. It allows a prover to generate a short proof of membership (resp. non-membership) for
any element that is accumulated (resp. not accumulated) in acc. A verifier can e�ciently verify such proofs without
accessing the entire set, using only the current digest acc. An accumulator is dynamic if it supports e�cient updates by
allowing changes to acc through insertion (or deletion) of elements. Furthermore, an accumulator that supports both
proofs of membership and non-membership is a universal accumulator (UA).

A vector commitment scheme (VC) [CF13] allows one to succinctly commit to an ordered sequence of n values
x = [x1 · · · xn] in a way that one can later prove that the value xi is the ith committed element. For VCs, a generalized
notion of key-value commitments (KVaC) has also been suggested [AR20]. A KVaC commits a map of key-value pairs
with unique keys, where each key is associated with only one value.

Concrete constructions for universal vector commitments. Vector commitments have so far been defined to only
support proofs of membership (i.e., a value xi is in the ith position of the commitment). However, in certain applications,
and usually for accountability reasons, one might also be interested in proving that a value is not in the commitment.
�This is a revised version of the article of the same title published in the proceedings of SCN ’24 and contains important corrections
missing from the published version.

†Email: oacharya@umass.edu. Supported by NSF #1942575
‡Email: foteini@gmu.edu. Supported by NSF #2143287 and #2247304.
§Email: gordon@gmu.edu. Supported by NSF #1942575 and #1955264.
¶Email: dmcvicke@gmu.edu. supported by NSF #1955264
�Email: ayadav5@gmu.edu. Supported by NSF #2143287, #2247304 and #1942575.

1

Supporting non-membership proofs is thus an essential feature for accountable VCs, that is missing from existing
formalizations.

Consider for example a supply chain management system where a VC is used to store various states of a product
(a case where order matters), but non-membership proofs may be needed to demonstrate that a certain product or
component is not part of the supply chain at a given point in time, which can be essential for detecting counterfeit
goods or unauthorized substitutions.

Other applications of VCs with a non-membership functionality include storage of blockchain transactions where
a user wants to prove exclusion of a token from a transaction block [Kon19], or distributed file-storage where the usual
proofs of retrievability of a file [JK07, Fis19] could be extended to also include proofs that a certain illicit file is not

being stored by the server.

1.1 Overview of our contributions

Defining universal vector commitments. In Section 3 we present the first formal definition of a universal vector

commitments (UVC) by extending the notion of vector commitment schemes to include proofs of non-membership. In
general, such proofs of non-membership would allow one to prove that a value is not at any position of the committed
vector. This is analogous to a universal accumulator where one can generate proofs for elements that are not accu-
mulated. The importance of formally defining UVC and its security properties is further emphasized by the fact that
existing constructions [Kon19] already realize the definition of UVC. However, lacking a formal treatment of UVC, the
existence of such properties was not immediately obvious, let alone the underlying security guarantees.

Concrete constructions for universal vector commitments. A straightforward way of building a UVC is to consider
a Merkle tree with number of leaves equal to the domain size of the underlying set, with non-members represented as a
leaf node with some generic null value. Indeed, this approach was made somewhat practically e�cient using a Sparse
Merkle tree (SMT) [DPP16] for the specific case of proofs of exclusion (of tokens from a transaction block) [Kon19]. In
particular, the tokens excluded from the transaction are represented as (the hash of) null nodes in a Merkle tree, and the
corresponding proof of exclusion as the Merkle path to the leaf. However, despite the use of SMT, the overall storage
requirement of this approach grows in proportion to the domain size.

Towards building secure UVC, we present two new constructions in Sections 4 and 5. Our first, more practical, con-
struction based on Merkle commitments is a translation of the ‘key accumulator’ given by Goyal and Vusirikala [GV20].
Importantly, it o�ers compact proofs of inclusion/exclusion, and is asymptotically space-optimal (among Merkle tree-
based approaches). Our second construction generalizes the previous approach to give a generic way of building UVC
from a (plain) VC and a UA, demonstrating an interesting theoretical connection between these primitives (see Fig-
ure 1).

A generic construction for universal accumulators. Given the conceptual similarities of VCs, UAs and KVaCs, one
wonders about the relationship between these primitives. Interestingly, it was shown by Boneh et al. [BBF19] that VCs
can be built from UAs. In a recent concurrent work, Fiore et al. [FKP23] gave a generic way to obtain UAs (and KVaCs)
using VCs and Cuckoo Hashing (CH), thus closing the circle on a longstanding question. In this work, we also present a
generic construction in Section 6 for (updateable) UAs from any VC, using Cuckoo Hashing. Our generic construction
thus gives one of the first UAs supporting large domains (as opposed to the one from [CF13]). Looking ahead, the
two techniques are quite similar—although, [FKP23] take the opposite approach of arriving at UAs from the KVaC
construction, whereas we build both primitives directly. More generally we observe that our VC + CH abstraction gives
many important primitives that we summarize in Figure 1. A particularly interesting observation here is that UVCs are
implied by the VC + CH abstraction; this follows as a consequence of our two aforementioned generic constructions.

Further, by appropriately instantiating our generic construction for UAs, we obtain (i) a UA from the SIS problem
that is comparably e�cient with existing lattice-based constructions and (ii) the first UA based on the standard RSA
assumption.

Lastly, we outline even more applications of the VC + CH abstraction towards building KVaCs, and verifiable
Registration-based Encryption [GV20]1 in Appendix A.
1Due to the narrow scope of this particular observation, we limit the associated discussions only to the appendix.

2

UA
VC

(6.1)

CH

[BBF19]

+

(5.1) UVC

Fig. 1. The relationship between VCs, UAs and KVaCs.

Remark 1. VCs can also be defined to have the additional hiding property. Informally, a vector commitment is hiding if
an adversary, having seen a subset of the commitment openings, does not learn anything about the remaining committed
values. In this work, we only focus on the standard binding property of UVC and invite further inquiry into the interesting
open problem of defining and constructing hiding UVCs.

2 Preliminaries

We denote the set of all positive integers up to k as [k] := {1, . . . , k} and the set of all non-negative integers up to k as
[0, k] := {0} [[k]. We use lowercase bold-face letters to denote vectors and uppercase bold-face letters for matrices.
For a vector x, xi denotes its ith element. We summarize all important notation in Table 1.

Symbol Meaning
� security parameter
n input dimension of vector commitment
S number of accumulated elements in an accumulator
S0 maximum supported number of accumulated elements
D size of domain of individual input elements
m number of hashes in cuckoo table
` image size of cuckoo table hashes

Table 1. Our notation.

2.1 Vector Commitments

We now review the definitions of vector commitments as introduced in [CF13].

Definition 1 (Vector Commitment Scheme). A vector commitment scheme over a message space M is a tuple of

algorithms ⇧VC = (Setup,Commit,Open,Verify) defined as follows:

• Setup(1�, 1n) ! pp. Takes as input the security parameter 1� and the size of the input vector 1n where n =
poly(�), and outputs the public parameters pp. All algorithms below take pp as input, but we omit it for notational

clarity.

• Commit(x)! (com, aux). Takes as input a vector x 2Mn
, and outputs a commitment com and possibly some

auxiliary information aux.
• Open(com, x, i, aux)! ⇡. Takes as input a commitment com, an element x 2M, an index i 2 [n] and auxiliary

information aux, and outputs a proof ⇡ for x.

• Verify(com, x, i,⇡)! {0, 1}. Takes as input a commitment value com, an element x 2M, an index i 2 [n] and

a proof ⇡, and outputs 0 or 1.

A vector commitment scheme must satisfy the following properties:

• Correctness: For security parameter �, for all n = poly(�) and any input vector x = {x1, x2, . . . , xn} 2Mn, a
vector commitment scheme satisfies correctness if:

Pr

2

4Verify(com, x, i,⇡) :
pp Setup(1�, 1n)

(com, aux) Commit(x)
8i 2 [n], ⇡ Open(com, i, x, aux)

3

5 � 1� negl(�).

3

• Position binding: For security parameter � and for all n = poly(�) for all ��� adversaries A, a vector commitment
scheme is position binding if:

Pr

2

4
x, y 2M ^ x 6= y

^ Verify(com, x, i,⇡) = 1
^ Verify(com, y, i,⇡

0) = 1
:

pp Setup(1�, 1n)
(com, x, y, i,⇡,⇡

0) A(pp)

3

5  negl(�).

2.2 Universal Accumulators

An accumulator may be trapdoor-based or trapdoorless. A trapdoor accumulator is characterised by the presence of a
trusted authority known as an accumulator manager who holds some secret trapdoor information (such as a secret key)
that allows them to perform add and delete operations on the accumulated set. Reyzin et al. [RY16] additionally define
witness-holders and third-party users of the protocol. Trapdoorless accumulators, on the other hand, do not require a
secret trapdoor, thus dismissing the need for a manager. Instead, witness-holders acting as provers in the protocol must
keep track of the current accumulated set and some other auxiliary information to be able to perform add and delete
operations. In our definition below, we primarily focus on the trapdoorless setting.

We now review the definitions for cryptographic accumulators, as introduced by [BdM94] along with the universal
extension of [LLX07]. Our definition considers an updateable accumulator which allows for insertion and deletion
without the e�ciency requirement of dynamic accumulators.

Definition 2 (Updateable Universal Accumulator). An updateable universal accumulator over some domain X is

a tuple of algorithms ⇧UA = (Gen,Add,Delete,MemWitCreate,NonMemWitCreate,VerifyMem, VerifyNonMem)
defined as follows:

• Gen(1�) ! (state0, acc0). Takes input the security parameter, and outputs an initial state state0 = (S0, aux)
where S0 = ?, and acc0 is the accumulator’s initial value.

• Add(acct, statet, x) ! statet+1, acct+1. Takes as input the current accumulator value acct, state statet =
(St, aux) where St is the set of currently accumulated elements, and an element x 2 X to be added to the accu-

mulator. Outputs the new state statet+1 = (St+1, aux) and the updated accumulator value acct+1.

• Delete(acct, statet, x) ! statet+1, acct+1. Takes as input the current accumulator value acct, state statet =
(St, aux) where St is the set of currently accumulated elements, and an element x 2 X to be deleted from the

accumulator. Outputs the new state statet+1 = (St+1, aux) and the updated accumulator value acct+1.

• MemWitCreate(acct, statet, x) ! w
x
t . Takes as input the current accumulator value acct, state statet =

(St, aux) where St is the set of currently accumulated elements, and an element x 2 X . Outputs a membership

witness w
x
t for x.

• VerifyMem(acct, x, wx
t)! {0, 1}. Takes as input the current accumulator value acct, an element x 2 X and its

membership witness w
x
t , and outputs 0 or 1.

• NonMemWitCreate(acct, statet, x) ! w
x
t . Takes as input the current accumulator value acct, state statet =

(St, aux) where St is the set of currently accumulated elements, and an element x 2 X . Outputs a non-membership

witness w
x
t for x.

• VerifyNonMem(acct, x, wx
t) ! {0, 1}. Takes as input the current accumulator value acct, an element x 2 X

and its non-membership witness w
x
t , and outputs 0 or 1.

The properties satisfied by an updateable universal accumulator are as follows:

• Correctness (for positive accumulator): For security parameter�, and valuesSt = {y1, y2, . . . , yx�1, x, yx+1, . . . , yt} ✓
X for any t � 1, correctness of the membership witness requires that

Pr

2

6664

VerifyMem (acct, x, wx
t) = 1 :

(state0, acc0) Gen(1�)
8yi 2 S, (statei, acci) Add(acci�1, statei�1, yi)

w
x
t MemWitCreate(acct, statet, x)

3

7775
= 1

4

• Correctness (for negative accumulator): For security parameter �, and values {y1, y2, . . . , yt} ✓ X for any
t � 1, correctness of the non-membership witness requires that for any x 2 X

Pr

2

66666664

VerifyNonMem (acct, x, wx
t) = 1 :

(pp, state0, acc0) Gen(1�)
8i 2 [t� 1], (statei, acci) Add(acci�1, statei�1, yi)
x 2 St�1) (statet, acct) Delete(acct�1statet�1, x)

x /2 St�1 ^ yt 6= x) (statet, acct) Add(acct�1, statet�1, yt)
w

x
t NonMemWitCreate(acct, statet, x)

3

77777775

= 1

A universal accumulator is correct if it satisfies correctness for both positive and negative accumulators. In terms
of security, an accumulator should satisfy the soundness property of set binding.

• (Strong) Set binding: For security parameter �, for all ��� adversaries A the set-binding property with respect to
membership requires that

Pr

2

6664

VerifyMem(acct, x, wx
t) = 1 ^

VerifyNonMem(acct, x, wx
t) = 1 :

(pp, state0, acc0) Gen(1�)
(x, acct, wx

t , w
x
t) A(pp, state0, acc0)

3

7775
 negl(�),

Both notions have a natural intuitive appeal. Correctness requires that for every element in (resp. not in) the accu-
mulator, an honest prover can provide a correct witness of membership (resp. non-membership). Soundness says that,
with all but negligible probability, a dishonest prover must not be able to simultaneously provide a membership and a
non-membership witness for the same value.

For comparison, we also show the more standard soundness assumption used in prior constructions of universal
accumulators, which we refer to as weak set binding. The main di�erence is that weak binding restricts the adversary
to interacting with the accumulator via oracles, hence we may assume that the accumulator is constructed honestly
according to the protocol.

(Weak) Set binding: For security parameter � and accumulated set At, for all ��� adversaries A the set-binding
property with respect to membership requires that

Pr

2

6664

(VerifyMem(acct, x, wx
t) = 1 ^ x 62 St) _

(VerifyNonMem(acct, x, wx
t) = 1 ^ x 2 St) :

(pp, state0, acc0) Gen(1�)
(x, St, w

x
t) AAdd,Delete(pp, state0, acc0)

3

7775
 negl(�),

2.3 Cuckoo hashing

Cuckoo hashing [RP04] is a type of open-addressing technique that gives a dictionary with worst-case constant lookup
and deletion, and expected amortized constant-time insertion operations. The main idea is to maintain multiple hash-
tables, each keyed by a di�erent hash function. A value is inserted by keying into the first table and bumping any
colliding value into its keyed position in the next table. This process must be repeated for every collision, until the
values stabilize. As a value can only be one of m positions, it follows that both deletion and lookup operations can
be performed in constant time. Some additional care is necessary with insertion as the process can fail to stabilize.
This runaway condition occurs when a particular value revisits its original position at the beginning of the current
process. The resolution to this issue is to simply stash the orphaned value. This gives an expected amortized constant
run-time for insertion. We now formally describe this construction, and direct the reader to the original paper [RP04]
for a thorough analysis.

A cuckoo hash comprises of a hash table, T 2 Um`. With each chunk of length `, there is an associated hash
function hi : U ! {1 + (i � 1) · `, . . . , ` + (i � 1) · `}. For any key x 2 X ✓ U we have that x is stored in at most
one position hi(x).

5

Let hi : U ! {1 + (i� 1) · `, . . . , `+ (i� 1) · `} for i 2 [m] be hash functions associated with table T, such
that |T| = m`.

• insert(x,T)
1. If lookup(x) 6= ?, do nothing and return T.
2. For i = 1 to m do:

- If T [hi(x)] = ?, set T [hi(x)] x and return T.
- Otherwise, swap x$ T [hi(x)].

3. If x 6= ?, call insert(x,T).
4. Return T.

• delete(x,T)
1. For i 2 [m], set T [hi(x)] ? if T [hi(x)] = x.
2. Return T.

• lookup(x,T)
1. Set pos ?.
2. For i 2 [m], set pos hi(x) if T [hi(x)] = x.
3. Return pos.

Fig. 2. Cuckoo hashing

Remark 2. The recent work of Yeo [Yeo23] proposes a more direct cryptographic treatment of cuckoo hashing with the
goal of achieving negligible construction failure probability — ie., the probability that a set of n elements can not be
added into the hash table according to a randomly sampled hash function. While we do not formally state Yeo’s result
here, we find that it is readily applicable to our work.

3 Universal Vector Commitments

The definition of an universal vector commitment scheme, in addition to the usual algorithms, consists of algorithms
to prove and verify non-membership. Specifically, the ProveNonMembership algorithm takes in a commitment value
com and an element x and proves that x does not belong to any component of the vector x that corresponds to the
commitment com. Formally, we have the following definition:

Definition 3. We say a vector commitment scheme is universal if it includes additional algorithmsProveNonMembership,
VerifyNonMembership described below:

• ProveNonMembership(com, x, aux) ! ⇡x. Takes as input a commitment value com, an element x 2 M, and

auxiliary information aux and outputs a proof ⇡x that x is not an element of vector x whose commitment is com.

• VerifyNonMembership(com, x,⇡x)! {0, 1}. Takes as input a commitment value com, an element x 2M, and

a non-membership proof ⇡x and outputs 1 (accept) or 0 (reject).

The algorithms above have the following properties:

• Correctness (for non-membership): For security parameter�, any input vectorx = {x1, x2, . . . , xn} 2Mn, and
an x 2M but x 62 {x1, . . . , xn}, a vector commitment scheme with non-membership satisfies non-membership
correctness if:

Pr

2

6664

VerifyNonMembership(com, x,⇡x) = 1 :

pp Setup(1�, 1n)
com Commit(x)

⇡x ProveNonMembership(com, x, aux)

3

7775
� 1� negl(�).

• Soundness (element binding): For security parameter �, and for all ��� adversaries A, a vector commitment
scheme has element binding if:

6

Pr

2

6664

Verify(com, i, x,⇡) ^
VerifyNonMembership(com, x,⇡) = 1 :

pp Setup(1�)
(com, x, i,⇡,⇡) A(pp)

3

7775
 negl(�).

4 Universal Vector Commitments from Merkle Trees

We now describe our Merkle tree based construction with non-membership proofs over a totally ordered message space
M. This construction slightly modifies the “key accumulator” of [GV20]. Our main observation here is that this key
accumulator quite readily gives an e�cient non-membership proofs and when supplemented by a second Merkle tree to
preserve the vector-order, it gives a UVC quite readily. As previously stated, this construction is space-optimal among
Merkle tree-based approaches since it does not require leaves with null values for proving exclusion. Instead, non-
membership of a value x is demonstrated by proving that two committed values xlo, xhi such that xlo < x < xhi are
adjacent in the tree2. Thus, this construction gives a viable alternative for size and space e�cient proofs of exclusion
using Merkle commitments.

4.1 Construction

Let Hv : M ! {0, 1}� and Hs : D ! {0, 1}� be two CRHFs. We define a vector commitment scheme with non-
membership ⇧

MT

VCNM
= (Setup,Commit,Open,Verify,ProveNonMembership,VerifyNonMembership) over message

space M as follows:

• Commit
�
x =

⇥
x1 · · · xn

⇤�
! (com, aux). It creates two Merkle commitments to x as follows:

(i) Vector-ordered leaves. Using Hv, it creates a Merkle tree with each element xi of x as the leaf and computes
the corresponding root rootv.

(ii) Sorted leaves. Let x(i) be the ith largest element of x. The commitment algorithm creates a tree with nodei :=
(0||0�||x(i)||0�) as the leaf node and interior nodes, nodel,r := (1||Hs(nodel)||� ||Hs(noder)) such that nodel
(resp. noder) is the node to the left (resp. right) of nodel,r and � 2M is the greatest value contained in (the
leaf of) its left subtree3. It then computes the corresponding root roots.

It returns the pair of root nodes (rootv, roots) =: com as the commitment and the two trees as the auxiliary data
aux.

• Open(com, i, x), aux! ⇡. It first parses com as rootv and roots, then for each of the two trees in the aux, it does
the following:
(i) Vector-ordered leaves. It reads the i

th leaf node x
0
i and outputs (?,?) if x0

i 6= x and continues otherwise. It
computes the Merkle proof ⇡v to x

0
i.

(ii) Sorted leaves. For each j 2 {i � 1, i, i + 1}, it parses the j
th leaf node, nodej as (0||0�||x0

j ||0�). If x0
i 6= x,

it outputs (?,?) and continues otherwise. It computes ⇡
s := (pathi�1, pathi, pathi+1) where each pathj

consists of the collection of nodes from nodej = nodej to roots.
It outputs ⇡ := (⇡v

,⇡
s) as the opening proof.

• Verify(com, x, i,⇡)! {0, 1}. It first parses com as rootv and roots, and ⇡ as ⇡v and ⇡
s. Then for each of the two

types of trees, it does the following:
(i) Vector-ordered leaves. It verifies that ⇡v is a valid proof for x at position i with respect to root rootv.
(ii) Sorted leaves. It parses ⇡

s as a set of three path collections. Then, for each j 2 [3], it parses pathj as
{nodej,1, nodej,2, . . . , nodej,dj} for tree depth dj (thus nodej,dj ⌘ nodej), and performs two types of checks:
� Path correctness. It checks that nodej,1 = root. Next, each node nodej,k is in turn interpreted as (bj,k||lj,k||�j,k||rj,k).

For each 1 < k < dj , it checks whether nodej,k+1 is a left or right child of its parent, i.e., whether
Hs(nodej,k+1) = lj,k or rj,k. If it is a left (resp. right) child it checks that �j,k0  �j,k (resp. �j,k0 � �j,k)
for all k0 > k. For each k < dj , it checks that bj,k = 1 and conversely that that bj,dj = 0.

2For soundness, we must also show that one of the tree stores the leaves in sorted order.
3This induces a binary search tree over the interior nodes.

7

� Adjacency check. Firstly, it checks that �1,d1 < �2,d2 = x < �3,d3 . Let  be the largest common
prefix of the three paths, i.e., node1,k = node2,k = node3,k for all k  . It checks that �1, = �1,d1 ,
and that l1, = Hs(node1,+1), and r1, = Hs(node3,+1). Finally, letting h2 := Hs(node2,+1), for
all k > , if h2 = r1, it checks that r1,k = Hs(node1,k+1), l2,k = Hs(node2,k+1) and r2,d2�1 =
Hs(node3,d3); otherwise if h2 = l1, it checks that r2,k = Hs(node2,k+1), l3,k = Hs(node3,k+1) and
l2,d2�1 = Hs(node1,d1)

4.
If any of the checks fails, it outputs 0. Otherwise it outputs 1.

• ProveNonMembership(com, x, aux)! ⇡x. It parses every leaf nodei in the sorted tree in aux as (0||0�||xi|0�).
It then performs a binary search on the xi’s, if the value x is found, it outputs ? and continues otherwise. Via
the aforementioned binary search, it finds leaf nodes nodelo and nodehi such that nodelo (resp. nodehi) contains
the greatest (resp. smallest) value smaller (resp. greater) than x. It then outputs ⇡x := (pathlo, pathhi) where each
pathj consists of the collection of nodes from nodej to root.

• VerifyNonMembership(com, x,⇡) ! {0, 1}. It first parses ⇡ as a set of two path collections. Then, for each
j 2 [2], it parses pathj as {nodej,1, nodej,2, . . . , nodej,dj} for tree depth dj (thus nodej,dj ⌘ nodej), and performs
two types of checks:
� Path correctness. It checks that nodej,1 = root. Next, each node nodej,k is in turn interpreted as (bj,k||lj,k||�j,k||rj,k).

For each 1 < k < dj , it checks whether nodej,k+1 is a left or right child of its parent, i.e., whetherHs(nodej,k) =
lj,k+1 or rj,k+1. If it is a left (resp. right) child it checks that �j,k  �j,k+1 (resp. �j,k � �j,k+1). For each
k < dj , it checks that bj,k = 1 and conversely that that bj,dj = 0.

� Adjacency check. Firstly, it checks that �1,d1 < x < �3,d3 . Let  be the largest common prefix of the two
paths, i.e., node1,k = node2,k for all k  . Check that �1, = �1,d1 , and that l1, = Hs(node1,+1), and
r1, = Hs(node2,+1). Finally, for all k > , it checks that r1,k = Hs(node1,k+1) and l2,k = Hs(node2,k+1)5.

If any of the checks fails, it outputs 0. Otherwise it outputs 1.

Remark 3. Verification of (non-)membership can be easily extended for instances where one of the paths is empty (this
occurs at the end nodes). Without loss of generality, assume that the left path, pathi�1) (resp. pathlo) is empty. Then,
the membership (resp. non-membership) verifier first performs the path correctness check for the non-empty path(s).
It then checks that �2,d2 = xi < �3,d3 (resp. x < �3,d3) and also performs the adjacency check for node2 and node3.
Lastly, the verifier must ensure that node2 (resp. nodehi) holds the smallest value in the tree by checking that every node
along the path to the root is a left child of its parent. It outputs 0 if any of the checks fail, and 1 otherwise.

Security. Below, we present our main theorems concerning the security of Construction 4.1.

Theorem 1. LetHv
be a collision-resistant hash function, then⇧

MT
VCNM = (Setup,Commit,Open,Verify,ProveNonMembership,

VerifyNonMembership), constructed as in Construction 4.1 is position binding.

Proof. If an adversary A, given the public parameters of the protocol, outputs (com, x, y, i,⇡,⇡
0) such that x 6= y and

Verify(com, x, i,⇡) = Verify(com, y, i,⇡
0) = 1

for some i 2 [n], then somewhere along the paths to x and y in the vector-ordered tree, consider two distinct
nodes nodev(x)i,k and nodev(y)i,k such that nodev(x)i,k�1 = nodev(y)i,k�1. Clearly, such a pair of nodes must exist since otherwise
rootv(x) 6= rootv(y). We can thus define adversary Av

CRHF
that uses A to break collision-resistance of Hv. Specifically,

it finds two such nodes, ⌫0 := nodev(x)i,k and ⌫1 := nodev(y)i,k and returns them. Since nodev(x)i,k�1 = node(y)i,k�1, it follows
that Hv(⌫0) = Hv(⌫1). ⇤

Theorem 2. ⇧
MT
VCNM = (Setup,Commit,Open,Verify,ProveNonMembership,VerifyNonMembership), constructed

as in Construction 4.1 is element binding.

4This checks that if the middle path is to the right of node·,, then the first path is comprised of nodes going rightward, the second
path is comprised of nodes going leftward and the third path ends in a node to the immediate right of the middle node. This is
similarly extended to the case when the middle path is to the left of node·,

5This checks whether the first path is comprised of nodes going rightward, and the second path is comprised of nodes going leftward.

8

Proof. Assuming collision resistance ofHs, the proof essentially follows from the path correctness and adjacency check
of the membership and non-membership proofs. Concretely, suppose an adversary A, given the public parameters of
the protocol, outputs (com, x, i,⇡,⇡) such that

Verify(com, i, x,⇡) = VerifyNonMembership(com, x,⇡) = 1

for some i 2 [n]. Parsing ⇡ as (⇡v
,⇡

s), observe that the paths in ⇡
s and ⇡ must be contained within a single Merkle

tree, otherwise the the collision-resistance of Hs is broken. Thus, one of two cases must hold:

• Case I. (x 2 x) : In this case A must find two adjacent leaf nodes node�1, node+1 in the tree such that x�1 < x <

x+1 for a valid proof of non-membership. However, if such a pair of values existed then either the adjacency check
fails during membership verification, or the leafs are not in sorted order. In the latter case, the path correctness
condition is violated, as the � values will violate the total order over the induced binary search tree on the interior
nodes. Thus if A is able to find such a pair of nodes, membership verification will fail.

• Case II. (x /2 x) : In this case, A simply can not produce a valid middle path such that �2,d2 = x. Thus it can not
produce a successful proof of membership.

Thus we conclude that such an adversary A can not exist. ⇤

It follows that Construction 4.1 is a secure vector commitment scheme with non-membership.

E�ciency analysis. Assuming the size of the message space, |M| = 2�, the total amount of storage needed to hold the
full tree is O(n�) which is asymptotically optimal. Further, both membership and non-membership proofs are of size
O(log n). Verification for a proof of (non-)membership requires checking the correctness conditions for all O(log n)
nodes, as well as adjacency conditions between pairs of paths in timeO(log n). The time to verify is thus alsoO(log n).

5 Universal Vector Commitments from Universal Accumulators

We now describe our generic construction of an universal vector commitment, assuming a universal accumulator and
a vector commitment scheme without non-membership. We present the construction below.

The main idea is straightforward — the commitment to a vector of values according to ⇧
Gen

UVC
consists of, both, a

commitment according to ⇧VC as well as the accumulated value of x according to ⇧UA. The opening of a commitment
for some value xi 2 x requires opening it to the position i and demonstrating that xi is in the accumulated set.
For non-membership of a value, the committer simply provides a proof that the value is not in the accumulated set.
Intuitively, this scheme has non-membership soundness as the set-binding of the underlying accumulator ensures that
a dishonest committer cannot simultaneously open a commitment to a value and also disprove that it was accumulated.
This technique actually generalizes the construction from the previous section with the sorted tree (equivalently, the
key accumulator of [GV20]) acting as the UA and the vector-ordered tree acting as the VC.

5.1 Construction

Let ⇧UA be a universal accumulator scheme with strong set binding and ⇧VC a vector commitment scheme with strong
position binding. We define a vector commitment scheme with non-membership⇧Gen

UVC
= (Setup,Commit,Open,Verify,

ProveNonMembership,VerifyNonMembership) as follows:

• Setup(1�, 1n) ! pp. It obtains the parameters for the vector commitment as pp
VC
 VC.Setup(1�, 1n), and

initialises the universal accumulator, (state0, acc0) UA.Gen(1�). It outputs the protocol’s public parameters
pp := (pp

VC
, state0, acc0).

• Commit
�
x =

⇥
x1 · · · xn

⇤
, aux = (state0, acc0)

�
! com. It creates a commitment to the vector x as com0

VC.Commit(pp
VC

,x). Then, for each i 2 [n], it accumulates xi as (statei, acci) UA.Add(acci�1, statei�1, xi).
Finally it returns com := (com0

, accn) as the full commitment and auxiliary value aux := staten.

9

• Open(com, i, xi, aux = staten) ! ⇡. It parses com as (com0
, accn). It then runs the vector commitment

opening algorithm ⇡VC VC.Open(com0
, i, xi) as well as the accumulator membership algorithm ⇡UA

UA.MemWitCreate(accn, staten, xi). It returns the opening full proof ⇡ := (⇡VC,⇡UA).
• Verify(com, xi, i,⇡) ! {0, 1}. It parses ⇡ as (⇡VC,⇡UA), and com as (com0

, accn). It returns the outcome of
VC.Verify(com0

, i, xi,⇡VC) ^ UA.VerifyMem(accn, xi,⇡UA).
• ProveNonMembership(com, x, aux) ! ⇡x. It parses com as (com0

, accn). It then creates an accumulator non-
membership proof ⇡x UA.NonMemWitCreate(accn, staten, x) and outputs it.

• VerifyNonMembership(com, x,⇡x)! {0, 1}. It parses ⇡ as (⇡VC,⇡UA), and com as (com0
, accn). It returns the

outcome of UA.VerifyNonMem(accn, x,⇡x).

Security. Below, we present our main theorems concerning the security of Construction 5.1.

Theorem 3. Let ⇧UA be a universal accumulator and ⇧VC be a vector commitment, then ⇧
Gen
UVC = (Setup, Commit,

Open, Verify, ProveNonMembership, VerifyNonMembership), constructed as in Construction 5.1 is position binding.

Proof. If an adversary A, given the public parameters of the protocol, outputs (com, x, y, i,⇡,⇡) such that x 6= y and

Verify(com, x, i,⇡) = Verify(com, y, i,⇡) = 1

for some i 2 [n], then an adversary AVC can use A to break the position binding property of ⇧VC, since for the
above equality to hold, we must have that

VC.Verify(com0, x, i,⇡) = VC.Verify(com0, y, i,⇡) = 1 . ⇤

Theorem 4. Let ⇧UA be a universal accumulator and ⇧VC be a vector commitment, then ⇧
Gen
UVC = (Setup, Commit,

Open, Verify, ProveNonMembership, VerifyNonMembership), constructed as in Construction 5.1 is element binding.

Proof. Suppose an adversary A, given the public parameters of the protocol, outputs (com, x, i,⇡,⇡) such that

Verify(com, i, x,⇡) = VerifyNonMembership(com, x,⇡) = 1

for some i 2 [n], then an adversary AUA can use A to break set binding property of ⇧UA, since we must have that

UA.VerifyMem(com1, x,⇡) = UA.VerifyNonMem(com1, x,⇡) . ⇤

Thus, given a universal accumulator ⇧UA, and a vector commitment ⇧VC, Construction 5.1 is a secure vector
commitment scheme with non-membership.

6 Universal Accumulators from Vector Commitments

We give a generic technique for obtaining a universal accumulator from a vector commitment scheme using cuckoo
hashing. At a high level, the idea is to use a vector commitment on a cuckoo hash table containing elements from the set
S being accumulated. A proof of membership for some element x 2 S is then a commitment opening to the position
of x in the cuckoo hash table, and a proof of non-membership for some element x /2 S is a commitment opening to all

positions that x could have been in the cuckoo hash table.
The resulting universal accumulator has the same membership proof size as the underlying vector commitment

scheme while non-membership proofs are a factor ofm larger (typically a small constant). Similarly, both prover and ver-
ifier computation is asymptotically the same as that of the vector commitment scheme. Notably, if the underlying vector
commitment scheme supports sub-vector openings or batch proofs, the membership proofs for the accumulator scheme
can also trivially be aggregated or batched respectively. Unfortunately, this does not translate to non-membership proofs
as the proofs grow linearly with the number of aggregated (resp. batched) proofs.

10

6.1 Construction

Let ⇧VC be a vector commitment scheme over the message space M, let H : D !M \ {0} be a CRHF over some
domain D, and let H = {hi : M \ {0} ! {1 + (i � 1) · `, . . . , ` + (i � 1) · `} | 8i 2 [m]} be a family of public
hash functions associated with a cuckoo hash ⇧CH = (lookup, insert, delete). Then we define an updateable universal
accumulator scheme as follows:

• Setup(1�, 1`, 1m) ! pp. It sets up the public parameters for the pp VC.Setup(1�) and outputs pp. All
algorithms below take pp as input but we omit it for notational clarity.

• Gen(1�) ! (state0, acc0). It creates an empty cuckoo table T0 := 0`·m and defines the set, S0 := ?, to be
accumulated. It creates the initial commitment acc0 VC.Commit(T0), and outputs the initial state state0 :=
(T0, S0) and acc0.

• Add(acct, statet, x)! statet+1, acct+1. It updates St+1 := St[{x}, Tt+1 := CH.insert(H(x),Tt) and sets the
new state statet+1 := (St+1,Tt+1). Finally it computes the new accumulation value acct+1 VC.Commit(Tt+1)
and outputs statet+1, acct+1.

• Delete(acct, statet, x) ! statet+1, acct+1. It updates St+1 := St \ {x}, Tt+1 := CH.delete(H(x),Tt)
and sets the new state statet+1 := (St+1,Tt+1). Finally it computes the new accumulation value acct+1
VC.Commit(Tt+1) and outputs statet+1, acct+1.

• MemWitCreate(acct, statet, x) ! wx. If x 62 St, it sets wx to ? and returns. Otherwise, it looks up the index
i CH.lookup(H(x),Tt) for x in the Cuckoo Hash, and sets wx VC.Open(pp, acct, i) and outputs it.

• VerifyMem(acct, x, wx
t)! {0, 1}. It returns the outcome of

_

i2[m]

VC.Verify(pp, acct, hi(H(x)),H(x), wx) .

• NonMemWitCreate(acct, statet, x)! wx. If x 2 St, it sets wx to ? and returns. Otherwise, it sets

wx :=
[

i2[m]

(Tt[hi(H(x))],VC.Open(pp, acct, hi(H(x)))) .

• VerifyNonMem(acct, x, wx)! {0, 1}. It parses wx as {(yi,⇡i)mi=1}. and returns the outcome of
^

i2[m]

VC.Verify(pp, acct, hi(H(x)), yi,⇡i) = 1 ^ H(x) 6= yi .

It should be noted that in our universal accumulator construction, we do not formally describe a mechanism for up-
dating an existing proof for some element. Instead, proof updates are done by re-running the witness creation algorithms
on the new accumulator value. While we do not rule it out entirely, an e�cient proof update is nonetheless challenging
in our generic construction for the simple reason that when an element is added into the set, a new commitment to the
updated table must be generated and every opening proof is now with respect to this new commitment.

Security. Below, we present our main theorems concerning the security of Construction 6.1.

Theorem 5. Let ⇧VC= (Setup, Commit, Open, Verify) is a vector commitment and H be a family of hash functions,

then⇧ = (Gen,Add,Delete,MemWitCreate,VerifyMem,NonMemWitCreate,VerifyNonMem) constructed as given

in Construction 6.1 is a universal accumulator.

Proof. As a lemma, we first argue that the values inserted and deleted from the cuckoo table Ti at each time i 2 [t]
form a one-to-one correspondence with the elements added and removed from the accumulated set Si at the same time.
If not, i.e. we have some i, j 2 [t] such that yi 6= yj yet H(yi) = H(yj), then we have a break in the CRHF.

To show the correctness of VerifyMem, suppose the accumulator currently represents state St, and x 2 St. This
implies there exists an j 2 [t] such that the operation performed was Add(pp, accj�1, statej�1, x) and for any k 2 [t]
such that the operation was Delete(pp, acck�1, statek�1, x), k < j. Thus H(x) has been inserted into the CH table and
not been removed. Recall that once an element is inserted into a cuckoo table, it always exists at a location defined by

11

its image under some hash hi, with future operations only swapping which of the m hashes it uses. This implies there
exists some i 2 [m] such that position i in Tt is H(x), which is the value returned by CH.lookup(H(x),Tt). By the
correctness of ⇧VC, VC.Verify(pp, acct, hi(H(x)),H(x), wx) = 1 with probability 1� negl(�). Hence by union bound
VerMem(pp,acct,x, MemWitCreate(pp,acct,statet,x)) accepts with probability bounded below by 1� negl(�).

Our proof of correctness for VerifyNonMem proceeds similarly: x 62 S implies there is no i, j such that position j

of Tt = hi(H(x)). By the correctness of VC.Verify, VC.Verify(pp, acct, hi(H(x)), yi,⇡i) = 1 with all but negligible
probability for each i 2 [m], thus VerifyNonMem accepts with all but negligible probability.

We now argue our accumulator is strong set binding. Suppose an adversary is able to provide x, acct, wx
t , and

w
x
t which breaks the set binding property. From the correctness of VerifyMem, there exists an i 2 [m] such that

VC.Verify(pp, acct, hi(H(x)),H(x), wx
t) = 1. From the correctness of VerifyNonMem, wx

t includes (yi,⇡i) such that
VC.Verify(pp, acct, hi(H(x)), yi,⇡i) = 1 and yi 6= H(x). This violates the position binding property of ⇧VC. ⇤

E�ciency analysis. One can easily verify that our public parameter and membership proof sizes are exactly the same
as the parameter and proof size of the vector commitment scheme over a vector of m · ` elements. Note that since each
element is from the image of a CRHF H(·), the size |M| of each element is O(�) rather than O(log |D|). As for our
nonmembership proof, we output m copies of a vector commitment opening along with elements from the VC message
space, hence the size is O(m · V), where V is the size of a single VC opening proof over Mm`. Thus, we achieve our
claimed domain-independence.

By applying the result of [Yeo23], we can build a cuckoo table with negligible failure probability (and hence an
accumulator with all but negligible correctness) using m = O

⇣q
�

log S0

⌘
hashes, each containing ` = O(S0) cells.

In practice, it is su�cient to set m to some small constant, e.g. m = 2. However, this leads to failure probability
1

poly(�) ; by including a definition of the cuckoo hash functions along with the accumulator rather than as a one-time
setup, we may use the standard strategy of resampling the hash functions and creating a new table whenever a failure
occurs. With this we achieve the desired correctness probability at the cost of larger (expected) runtime and O(�)
additional accumulator size. Note that allowing the accumulator to use (potentially maliciously-chosen) hash functions
does not break the security of the accumulator, as strong soundness only relies on the hashes being public deterministic
functions. At worst, adversarially-chosen cuckoo hashes reduces the e�ciency of insert and delete operations.

Optimizing for small domains. Our above construction and analysis assumes that logD � �. In smaller domains
where this is not the case, it is concretely more e�cient to omit the CRHF and instead operate directly on M = D.
More precisely, we define our cuckoo table T as a vector over D and during insert, delete, and lookup we use x as
input rather than H(x). This adds a factor of logD to our accumulator and proof sizes, leading to the results claimed
in Table 2.

6.2 Instantiations

Scheme Binding |acc| |wx| |wx|
[YAY+18] Weak logD logS logD logS logD
[dCP23] Strong logD log2 S0 logD log2 S0 logD
[GV20] Strong logD logS logD logS logD

Our Claim (1) Strong logD logS0 logD logS0 logD
Table 2. Comparison of universal accumulator schemes with public setup from SIS assumption. For brevity we omit terms derived
from the security parameter �.

By appropriately instantiating our generic construction, we show that one can obtain an e�cient universal accumu-
lators from SIS and standard RSA.

To briefly summarize the VC of [LLNW16]: it is a Merkle Tree using a hash function derived from a public random
matrix, with an additional step at each layer to ensure the output is “small” in terms of the SIS problem. We may make
our construction dynamic by adding the improvements of [LNWX17], which note that an update to one element of
the input only requires updates to proofs holding nodes on that element’s path to the root. The output of the hash (and

12

thus the size of the accumulator) is a single element from the domain, and an opening proof is logS domain elements.
Verification consists of recomputing the root hash from the opened element and the siblings along the path to the root.
For our instantiation, our domain is fixed-size due to the CRHF. The input size is the total number of cells in the cuckoo
table rather than the total number of accumulated elements, i.e. O(m`) = O(S0) instead of O(S). So,

Claim 1. Together with the vector commitment of [LLNW16] (or [LNWX17]) based on the SIS assumption, we have a

universal accumulator based on SIS.

In Table 2 we compare our instantiations with the state-of-the-art lattice-based universal accumulators [YAY+18,
dCP23, GV20]. Our instantiations have competitive accumulated values and proof sizes for both membership and non-
membership.

Now, to briefly summarize the VC of [CF13]: given a large semiprime modulus N we have n bases s1 to sn and
exponents e1 to en corresponding to the indices in our VC. The commitment stores values mi 2 M as sµi

i , and the
commitment c is the product of these values. An opening proof for µi is the eth

i root mod N of ⇡i = ⇧j 6=is
µj

j , yielding
the simple verification algorithm c = s

µi
i · ⇡ei

i . The construction supports batch updates for both commitments and
proofs for the same cost as one update, thus our instantiation can easily support updating all changes to the cuckoo table
as a result from a single add or delete with no additional overhead. So,

Claim 2. Together with the vector commitment of [CF13] based on the standard RSA assumption, we have a universal

accumulator based on standard RSA.

6.3 Generically Upgrading to VC to UVC

Finally, we observe that there is a compiler from any plain vector commitment scheme to an universal vector commit-
ment scheme:

Claim 3. Let ⇧VC be a vector commitment scheme, and let ⇧UA be a universal accumulator built using ⇧VC using

Construction 6.1. Then the Construction 5.1 using ⇧VC and ⇧UA is a secure universal vector commitment scheme.

This construction’s opening proof consists of a ⇧VC opening proof plus a ⇧UA membership proof, which as dis-
cussed in section 6 is itself a single ⇧VC opening proof. The non-membership proof is a single ⇧UA non-membership
proof, which as discussed in section 6 is m⇧VC opening proofs, and m = 2 for typical parameters. Thus our compiler
adds non-membership proofs with just a factor of 2 overhead on the original commitment scheme for both proof types.

13

Bibliography

[AR20] Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commitments for blockchains and be-
yond. In Advances in Cryptology – ASIACRYPT 2020: 26th International Conference on the Theory and

Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020, Pro-

ceedings, Part III, page 839–869, Berlin, Heidelberg, 2020. Springer-Verlag.
[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to

IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,

Part I, volume 11692 of LNCS, pages 561–586, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin, Kai Samelin,
and Sophia Yakoubov. Accumulators with applications to anonymity-preserving revocation. In 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 301–315, 2017.
[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital signa-

tures. In Tor Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, pages 274–285. Springer
Berlin Heidelberg, 1994.

[BP97] Niko BariÊ and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, pages 480–494. Springer
Berlin Heidelberg, 1997.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, Public-Key Cryptography – PKC 2013, pages 55–72, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to e�cient revocation of
anonymous credentials. In Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in

Computer Science, pages 61–76, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
[dCP23] Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent setup and

from sis. In Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,

Part III, page 287–320, Berlin, Heidelberg, 2023. Springer-Verlag.
[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. E�cient sparse merkle trees. In Billy Bob Brumley and

Juha Röning, editors, Secure IT Systems, pages 199–215, Cham, 2016. Springer International Publishing.
[Fis19] Ben Fisch. Tight proofs of space and replication. In Yuval Ishai and Vincent Rijmen, editors, EURO-

CRYPT 2019, Part II, volume 11477 of LNCS, pages 324–348, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.

[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based encryp-
tion and key-value map commitments for large spaces. In Jian Guo and Ron Steinfeld, editors, Advances

in Cryptology – ASIACRYPT 2023, pages 166–200, Singapore, 2023. Springer Nature Singapore.
[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-

based encryption: Removing private-key generator from IBE. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718, Panaji, India, November 11–14, 2018.
Springer, Heidelberg, Germany.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 621–651,
Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[JK07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning, Sabrina
De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages 584–597, Alexandria,
Virginia, USA, October 28–31, 2007. ACM Press.

[Kon19] Georgios Konstantopoulos. Plasma cash: Towards more e�cient plasma constructions, 2019.
[LLNW16] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-based

accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In Marc Fischlin

and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 1–31, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with e�cient nonmembership proofs.
In Jonathan Katz and Moti Yung, editors, Applied Cryptography and Network Security, pages 253–269,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group signatures: Achieving
full dynamicity with ease. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, Applied

Cryptography and Network Security, pages 293–312, Cham, 2017. Springer International Publishing.
[RP04] Flemming Friche Rodler Rasmus Pagh. Cuckoo hashing. Journal of Algorithms, 51:122–144, 2004.
[RY16] Leonid Reyzin and Sophia Yakoubov. E�cient asynchronous accumulators for distributed pki. In Vassilis

Zikas and Roberto De Prisco, editors, Security and Cryptography for Networks, pages 292–309, Cham,
2016. Springer International Publishing.

[SMP23] Daria Schumm, Rahma Mukta, and Hye-young Paik. E�cient credential revocation using cryptographic
accumulators. In 2023 IEEE International Conference on Decentralized Applications and Infrastructures

(DAPPS), pages 127–134, 2023.
[TBP+19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Trian-

dopoulos, and Srinivas Devadas. Transparency logs via append-only authenticated dictionaries. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,

November 11-15, 2019, pages 1299–1316. ACM, 2019.
[YAY+18] Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, and Qiuliang Xu. Lattice-based universal accumulator

with nonmembership arguments. In Willy Susilo and Guomin Yang, editors, Information Security and

Privacy, pages 502–519, Cham, 2018. Springer International Publishing.
[Yeo23] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robustness and applications. In Helena

Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 197–230,
Cham, 2023. Springer Nature Switzerland.

[ZKP17] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. An expressive (zero-knowledge) set ac-
cumulator. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France,

April 26-28, 2017, pages 158–173. IEEE, 2017.

15

A More Generic Constructions from Cuckoo Hashing

As we previously asserted — the vector commitment and cuckoo hashing abstraction turns out to be quite useful for
building many related primitives. This is also summarized in the figure below.

UA
VC

UVC

(6.1)

KVaC

RBE

(A.2)

CH

[BBF19]

+

[FKP23]

(5.1)

WE+
[FKP23]

[FKP23]

vRBE

(A.1),

[AR20]

Fig. 3. Extended relationship between VCs, UAs, KVaCs and (v)RBEs.

In this section, we outline high-level constructions for Key-Value Commitments [AR20] and Verifiable Registration-
based Encryption Scheme [GV20]. Since these are essentially observations on exiting work, we do not give formal
definitions of these objects and instead direct the reader to the cited literature.

A.1 Dynamic Key-Value Commitments

The universal accumulator construction in Construction 6.1 can be generalized further to obtain commitments for
key-value maps. In particular, we can once again leverage the cuckoo hashing technique in a manner identical to Con-
struction 6.1 while modifying CH.insert to insert a key-value pair x = (k, v) 2 K⇥ V according to key k as shown in
Figure 4. Then, if all keys are unique, updates can be performed by changing the value in the appropriate data field and
generating a fresh commitment. The rest of the protocol behaves identically6.

The definition in [AR20] requires that a secure KVaC must satisfy key binding. Informally it says that it should be
infeasible for any polynomially bounded adversary with oracle access to Add, Delete and Update, to come up with an
honestly generated commitment and either two certificates to di�erent values under the same key, or a certificate for a
value under a key not in the map. We claim the the above construction satisfies this property.

Claim 4. Let ⇧VC be a vector commitment scheme, then the KVaC construction outlined above is key binding.

Sketch. Note that it is impossible, by construction, for an adversary to come up with two proofs for di�erent values
under the same key k (with respect to some honestly generated commitment) given it can only perform a single insertion
under any k. Additionally, proving membership of a value under some key that has not been inserted would amount to
breaking position binding of the VC. So the KVaC is key binding under insertion.

A.2 Verifiable Registration-based Encryption

Registration-based Encryption was introduced by Garg et al. [GHMR18] as an alternative to Identity-based Encryption
wherein a trusted central authority is responsible for generating the user’s secret. In an RBE, users instead generate
their own keys and register themselves (with their public keys) with a central authority known as the key curator, who
in turn maintains the system state and its public parameters for all registered users. Thus, an RBE facilitates a public
6This is basically also the construction in [FKP23] where they use two VCs to store k and v separately whereas we store a single
(k, v) tuple.

16

Let hi : U ! {1 + (i� 1) · `, . . . , `+ (i� 1) · `} for i 2 [m] be hash functions associated with table T, such
that |T| = m`.

• insert(k, v,T)
1. If lookup(k) 6= ?, do nothing and return T.
2. For i = 1 to m do:

- If T [hi(k)] = ?, set T [hi(k)] (k, v) and return T.
- Otherwise, swap (k, v)$ T [hi(k)].

3. If (k, v) 6= ?, call insert(k, v,T).
4. Return h1(k),T.

• delete(k,T)
1. For i 2 [m], set T [hi(k)] ? if T [hi(k)] = (k, ·).
2. Return T.

• lookup(k,T)
1. Set pos ?.
2. For i 2 [m], set pos hi(k) if T [hi(k)] = (k, ·).
3. Return pos.

Fig. 4. Modified cuckoo hashing

key infrastructure where parties can send encrypted messages knowing only each others’ public keys (and identities),
and the public parameters of the system. To decrypt a message, the user must posses the corresponding secret key and
a piece of opening information that is retrievable via the curator. Besides requiring traditional semantic security for
encryption, an RBE scheme must have compact public parameters, both encryption and decryption should be sublinear
in n, the number of registered users.

Verifiable RBEs were proposed by Goyal and Vusirikala [GV20] to introduce accountability to the RBE curator. The
requirement in a vRBE is that a malicious curator must be able to prove unique registration (resp. non-registration) for
every registered (resp. unregistered) user. This is accomplished with the help of two algorithmsPreProve andPostProve
that respectively capture the case of proving that a user is not yet registered and that a user has been (uniquely) registered.
While Goyal and Vusirikala give a Merkle Tree based construction (their curator is essentially what we use in Section 4),
it is clear with hindsight that more generally, verifiability in RBE schemes can be achieved somewhat generically if the
curator uses a UA to store the public keys.

Fiore et al. [FKP23] gave an RBE construction from VC, CH and an RBE scheme. For security, they additionally
require a new primitive called witness encryption for vector commitments (VCWE). A VCWE encrypts a message using
a VC and a value x at index i in the committed vector. Decryption is performed via an opening proof for (x, i) with
respect to the commitment. The registration mechanism in their RBE proceeds by inserting the users’ identities into a
CH and committing to it with the VC (notice here the resemblance with our UA construction). To encrypt a message, a
user runs the VCWE with respect to the receiver’s identity and position in the table. Using the opening proof for their
identity in the CH as the opening information, the receiver is able to decrypt the ciphertext successfully7.

A straightforward observation is that their registration process is also our UA construction from Section 6. Impor-
tantly for our purposes, this means that their curator readily gives a vRBE when instantiated as per our Construction
6.1, where the pre- and post-registration proofs are the non-membership and membership proofs respectively and the
soundness of pre- and post-registration verifiability follow from the soundness of the UA.

7We have omitted many technical details here as they would be redundant. Please see [FKP23] for the construction.

17

