
Advancing Scalability in Decentralized Storage:
A Novel Approach to Proof-of-Replication

via Polynomial Evaluation

Giuseppe Ateniese1, Foteini Baldimtsi1, Matteo Campanelli ∗2, Danilo Francati †1, and
Ioanna Karantaidou1

1George Mason University
2Matter Labs

June 4, 2024

Abstract

Proof-of-Replication (PoRep) plays a pivotal role in decentralized storage networks, serv-
ing as a mechanism to verify that provers consistently store retrievable copies of specific data.
While PoRep’s utility is unquestionable, its implementation in large-scale systems, such as
Filecoin, has been hindered by scalability challenges. Most existing PoRep schemes, such
as Fisch’s (Eurocrypt 2019), face an escalating number of challenges and growing computa-
tional overhead as the number of stored files increases. This paper introduces a novel PoRep
scheme distinctively tailored for expansive decentralized storage networks. At its core, our
approach hinges on polynomial evaluation, diverging from the probabilistic checking preva-
lent in prior works. Remarkably, our design requires only a single challenge, irrespective of
the number of files, ensuring both prover’s and verifier’s run-times remain manageable even
as file counts soar. Our approach introduces a paradigm shift in PoRep designs, o↵ering a
blueprint for highly scalable and e�cient decentralized storage solutions.

Keywords: proof of replication, proof of space, polynomial evaluation.

∗Work done in part while a�liated with Protocol Labs.
†Work done in part while at Aarhus University, Aarhus, Denmark.

https://orcid.org/0000-0001-8184-4704
https://orcid.org/0000-0002-4639-0636

Contents

1 Introduction 1
1.1 Our Contributions . 3
1.2 Technical Overview . 4

2 Related Work 10

3 Preliminaries 10
3.1 Notation . 10
3.2 Memory-Hard Function with Input-dependent Pre-processing 11
3.3 Vector Commitments and Merkle Trees . 12
3.4 E�cient Data Structure for Univariate Polynomial Evaluation 13
3.5 Incompressibility and Polynomial Evaluation . 14
3.6 Pseudorandom Functions . 16

4 Localized (deterministic) RAM algorithms 16

5 Verifiable DS for Univariate Polynomial Evaluation 19
5.1 (Doubly-e�cient) VDS from DS and VC . 20

6 Proof-of-Replication 22
6.1 Constructions . 27

A Supporting Proofs 35
A.1 Proof of Theorem 2 . 35
A.2 Proof of Corollary 4 . 36
A.3 Proof of Theorem 3 . 36
A.4 Proof of Theorem 4 . 38
A.5 Proof of Theorem 5 . 38
A.6 Proof of Corollary 5 . 40
A.7 Proof of Theorem 6 . 41
A.8 Proof of Theorem 8 . 41
A.9 Proof of Theorem 9 . 43
A.10 Proof of Corollary 6 . 50
A.11 Proof of Theorem 10 . 51
A.12 Proof of Corollary 7 . 54

1 Introduction

In recent years, there has been a significant shift in the domain of consensus mechanisms. Tra-
ditional proof-of-work (PoW) systems [44, 33], though revolutionary in their own right, have
been scrutinized for their significant energy consumption and potential centralization due to
ASIC dominance. As a result, the cryptographic community has been driven to explore alter-
native methods that could provide similar security guarantees without the associated ecological
or centralization concerns [30, 11, 30, 50, 6, 27, 25, 19].

Proof-of-Space (PoS) [30, 11] emerged as a compelling alternative to proof-of-work, with ap-
plications ranging from spam prevention and DDoS attack resistance to Sybil-resistant blockchain
consensus protocols. The appeal of PoS lies in its eco-friendly nature and resistance to ASIC
dominance. By leveraging storage space instead of consuming massive energy, PoS o↵ers a more
egalitarian and sustainable solution compared to PoW.

Proof-of-Replication (PoRep) extends the concept of PoS by requiring the prover to store
useful replicated data that can also be retrieved by the verifier. In a PoS protocol, the prover
demonstrates to a verifier that it is dedicating a minimum amount of storage space, but the
stored data can be arbitrary. In contrast, a PoRep scheme verifies that the prover is persistently
storing retrievable copies of a specific data file or dataset. While a PoS only proves the size of
storage used, a PoRep provides stronger guarantees that the prover is dedicating unique storage
resources per replica of the data. PoRep has the useful side e↵ect of providing decentralized and
verifiable file storage, unlike PoS which wastes the dedicated space. PoRep can be conceptualized
as a fusion of (1) PoS with application-specific beneficial data, and (2) the robust guarantees of
Proof of Data Possession (PDP) [12] and Proof of Retrievability (PoR) [38], ensuring not only
the existence but also the retrievability of stored data replicas.

This practicality and robustness of PoRep make it especially attractive for real-world ap-
plications. One notable implementation is Filecoin [1], a decentralized storage network built
on top of the Interplanetary File System (IPFS). Filecoin not only capitalizes on the concept
of PoRep but elevates it as a foundational pillar. In the Filecoin ecosystem, storage providers
are incentivized through the native cryptocurrency, FIL, to reliably store users’ files. To prove
their reliability and earn these rewards, providers are audited : they must demonstrate through
PoRep that they are consistently storing retrievable replicas of client data by answering a se-
ries of challenges. This ensures that data is not merely stored but is also readily available for
retrieval, aligning with Filecoin’s vision of o↵ering a more e�cient, decentralized, and resilient
alternative to traditional data storage methods.

However, as the decentralized storage vision of Filecoin materializes, certain requirements
emerge as paramount:

1. Laconic challenges: An e�cient PoS and PoRep would necessitate compact challenges,
ideally of constant size.

2. Sublinear prover and verifier : To ensure longevity and e�ciency, the prover’s query com-
plexity on its local storage (or replica) should be minimized, preventing wear and tear from
frequent audits [2]. Also, verification should be e�cient to make these scheme applicable
in large scale systems.

3. Robust space gap: To ensure maximal security and data fidelity, the gap between data
deletion and its detection during audits must be minimized.

Fisch [31] introduces a novel construction of tight PoRep rooted in graph labeling, targeting
an asymptotic proof size of O(logN/⌘), where ⌘ represents the space gap (i.e., the di↵erence
between the amount of space the prover claims to be using and the actual space they are using).

1

Central to this, is the mechanism of stacked Depth Robust Graphs (DRGs), wherein multiple
fixed-degree DRGs are systematically layered. Such an arrangement is designed to ensure that
a slight perturbation in one layer’s data triggers a cascading recomputation in the preceding
layers. The inherent interplay between the number of DRG layers and the degree of each
graph directly impacts the e�cacy of the construction. A potential imbalance in this delicate
equation could lead to surging proof complexities, a considerable impediment, especially when
accommodating arbitrary values of ⌘. In an alternative model, Fisch [31] proposes the ZigZag
Expander DRGs. By amalgamating each DRG layer with a non-bipartite expander graph of
constant degree and intertwining their dependencies in a “zig-zag” fashion, this design promises
more streamlined data extraction. However, it calls for doubling the layer count to maintain
analogous security guarantees, a compromise that might not be universally optimal.

In the context of systems like Filecoin, where vast numbers of files are stored, the method-
ology introduced by Fisch may encounter scalability challenges. Specifically, as the number of
files escalates, the computational overhead inherent to the PoRep mechanism of [31] becomes
increasingly pronounced, making it potentially expensive in terms of both challenge generation
and runtime e�ciency for provers and verifiers.

This poses the question:

How can we develop a PoRep scheme that retains the security and robustness of
prior models, yet o↵ers improved scalability and e�ciency suitable for large-scale
decentralized storage networks?

Our primary objective is to design an optimized PoRep scheme for large-scale decentral-
ized storage networks, addressing the shortcomings of existing models. PoRep schemes have
two stages: a one-time o✏ine stage and a repeated auditing stage. Our main target for ef-
ficiency improvement is the latter. Our goals include enhanced computational e�ciency, im-
proved challenge-response mechanisms, and a reduced space gap. Central to our approach is
an auditing technique for proofs of space, anchored in polynomial evaluation. This ensures the
prover’s e�ciency stays sublinear, notably poly-logarithmic relative to the file size. To achieve
this, we employ sophisticated polynomial evaluation methods with polynomial pre-processing,
a technique detailed in [40]. This pre-processing phase yields a data structure that ensures
poly-logarithmic run-times for both provers and verifiers, allowing for a fast auditing phase.

In Table 1, we showcase the performance of the state-of-the-art protocol [31] based on the
criteria listed above.

For a single file, our scheme’s performance might align with, or slightly lag behind, Fisch’s
design as presented in [31]. This is partly due to the overheads associated with our polynomial
evaluations and pre-processing. However, our distinct advantage lies in our challenge mecha-
nism: irrespective of the number of files, our polynomial-based encoding consistently demands
only one challenge. As the file count grows, this feature becomes increasingly beneficial. In
contrast, Fisch’s design sees its number of challenges rise in direct proportion to the number
of files. This inherent trait means that both the prover’s and verifier’s run-times in Fisch’s
approach grow quadratically as more files are added (see Table 1). It is important to note that
our method, while benefiting from a data structure tailored for univariate polynomial evalua-
tion, does introduce an “expansion factor” which increases the data footprint. Yet, this mild
growth in data might be a reasonable trade-o↵ for the significant computational gains it o↵ers,
particularly in extensive systems like Filecoin where processing speed often takes precedence
over storage size. In addition, this factor is adjustable; it can be fine-tuned according to the
prover’s specific requirements, providing flexibility within the PoRep construction.

2

Table 1: This table contrasts our PoRep with [31] based on replication (i.e., memory guarantee).
Here, u � 1 represents file count, |m| = N = d · z denotes each file’s bit size, with d as
block count and z as each block’s bit size. We use O�(f(·)) to symbolize O(f(·) · poly(�)).
Columns 2-4 relate the challenge count to the malicious prover’s required memory n (in bits)
for verification. Column 5 depicts prover and verifier run-times and proof size relative to
challenge count (auditing phase), while Column 6 presents the factor � which modifies memory
for the honest prover (i.e., memory used is u · N · �). The 4th column’s (⌘)-gap, defined as
(1� ⌘)u ·N = n, denotes the di↵erence between file size u ·N and adversary’s memory bound;
a smaller gap indicates a better memory guarantee. Rows one and two (labeled “‘general
statement”) outline the construction’s security. The table’s final two rows, set by |q| = � and
z = �

1+� (for any constant � > 0), contrast replication assurances for a specified malicious
prover memory-bound (Column 3). Colored cells emphasize optimal parameters.

Scheme # Challenges
Adv.’s memory n

in bits
(⌘)-gap

where ⌘ 2 [0, 1]
Prover’s/Verifier’s

run-time and proof size
Honest prover’s

memory (�)-expansion

[31]
(general statement)

1/⌘
(of size log(d))

u(N � ⌘ ·N)
any ⌘ 2 [0, 1]

(⌘ can depend on d and u)
O�(u/⌘ · log d) O(1)

Ours § 6.1
(general statement)

1
(element from Zq)

u ·N � d · |q|� � (d · |q|� �) / (u ·N) O�(u · polylog(d)) O�

⇣
c
p
d

⌘

(for arbitrary constant c � 1)

[31]
O
�
u · ��1

�

(of size log(d))
u ·N � (d+ 1)� O

⇣�
u · ��

��1⌘
O�(u2 · log d) O(1)

Ours § 6.1
1

(of size �)
u ·N � (d+ 1)� O

⇣�
u · ��

��1⌘
O�(u · polylog(d)) O�

⇣
c
p
d

⌘

(for arbitrary constant c � 1)

1.1 Our Contributions

Our primary contribution lies in designing an optimized Proof-of-Replication (PoRep) scheme
tailored for large-scale decentralized storage networks. Our main objective is to improve the
e�ciency of the auditing phase of PoRep, i.e., provers compute proofs over time to demonstrate
memory usage and the correct storage of files. By centering our methodology around polynomial
evaluation, we ensure that as file sizes grow, our prover’s e�ciency remains consistent and
manageable. Key benefits of our system include: reduced computation during auditing, a
streamlined challenge-response mechanism, and a reduced space gap. Our methodology presents
significant benefits—particularly as the number of files grows—improving on prior work like
Fisch’s [31], where challenges increase proportionally with file count. To realize this, we have
found new solutions that tackle the limitations of current PoRep models:

• We introduce a novel auditing mechanism rooted in polynomial evaluation. This technique
streamlines the proof verification process, especially beneficial for expansive datasets. Our
core method involves encoding a message m—after appropriately “combining” it with its
identifier id—into a polynomial f(X) that appears random. We can then check the correct
storage of u messages m1, . . . ,mu by generating a single challenge x and requesting the
prover to compute y1 = f1(x), . . . , yu = fu(x) where fi(x) is the polynomial (encoding)
generated from the i-th identifier idi and i-th message mi. Drawing inspiration from
the work of Ateniese et al. [14], we demonstrate that this strategy forces a prover to keep
f1(X), . . . , fu(X) (the encoding of the messages) stored in “almost” their entirety (i.e., the
memory required to compute the correct evaluations {yi}i2[u] is approximately |f1(X)|+
. . . |fu(X)|). This allows our system to operate with just a single challenge, regardless
of the number of files, providing a notable advantage in scalability (see Sections 3.5, 6
and 6.1).

• Building on Kedlaya and Umans [40], we have developed a method to achieve poly-

3

logarithmic prover’s running time for polynomial evaluation in decentralized storage net-
works. By using a RAM data structure, polynomial evaluations are expedited, reducing
time complexities (see Section 5). This structure, however, enlarges memory by a mul-
tiplicative factor �, which can be adjusted based on prover requirements. This balances
e�cient computation time with manageable memory overhead, making polynomial eval-
uations more e�cient in our PoRep scheme.

• To achieve e�cient PoRep verification, we leverage localized RAM computation, ensuring
both the prover’s and verifier’s tasks remain poly-logarithmic in complexity. By using
Merkle trees on top of our data structure, a verifier can check the integrity of a prover’s
computation without having full access to the prover’s data structure. While this ap-
proach emphasizes the auditing phase, it is crucial to ensure honest generation of the
root digest, which can be reinforced using a SNARK proof during the encoding phase.
Our resulting authenticated data structure (see Section 5.1) for polynomial evaluation
is of independent interest: it can be seen as a succinct polynomial commitment—a key
component of SNARKs—where opening algorithm is poly-logarithmic in the degree of the
polynomial. This construction—which achieves this property trading additional storage—
is to the best of our knowledge the first of its type. All the other constructions we are
aware of require linear proving time (an incomplete list includes the works [39, 46, 41]).

Additionally, we o↵er amodular description for PoRep schemes, utilizing abstractions like
verifiable data structures and memory-hard functions. Unlike previous, more rigid frameworks,
our approach clearly delineates the interchangeable components, facilitating the creation of
variants with distinct attributes.

1.2 Technical Overview

Given the intricate nature of our solution, we provide a high-level overview of our PoRep con-
struction. It achieves laconic challenges, e�cient proving and verification complexity (e�cient
auditing), and a robust space gap (i.e., high memory guarantees) as the number of files u in-
creases. For clarity, we focus on enforcing memory usage (the replication property), sidelining
extractability. Note that extraction arises from polynomial interpolation; messages/files are
encoded into polynomials, enabling extraction via interpolating multiple evaluations.

Initially, we detail the syntax and security guarantees of PoRep. Then, we outline our single-
file approach (case u = 1). Towards the end, we delve into handling multiple files (case u � 1)
and draw comparisons with Fisch’s PoRep [31]. We assume all messages consist of d blocks of
size |p| = log(p), where p is a prime in our construction; thus, |m| = d · |p|.

Syntax and Security of PoRep Schemes. A PoRep scheme allows encoding highly com-
pressible messages (e.g., a file) into incompressible strings that represent the messages. These
schemes consist of five algorithms: Setup, Encode, Prove, Verify, and Decode. The setup al-
gorithm generates three public keys: an encoding key ek, a proving key pk, and a verification
key vk. Each key is used during a specific phase of the PoRep scheme. The Encode algorithm
computes the incompressible encoding of a message m. Given the encoding key ek, a message
m, and an identifier id for m, it outputs an encoding c and a digest h for later verification. 1

After encoding (and the publication of the digest h), the auditing phase begins. This phase
involves the execution of Prove (on the prover’s side) and Verify (on the verifier’s side). This

1An identifier is a value used to salt encodings, i.e., di↵erent encodings c1 6= c2 of identical messages m1 = m2

can be produced by using di↵erent identifiers id1 6= id2. This is fundamental in PoRep schemes to enforce a high
memory usage even when messages are maliciously chosen.

4

phase primarily ensures the prover stores the encoding c. Specifically, given a random challenge
chall, the prover runs Prove(pk, chall, c) to produce a proof ⇡ that verifies the storage of c. The
Prove algorithm is executed several times for auditing the correct storage of the encoding c and
the main objective of this work is to reduce the complexity of this phase. On the verifier’s side,
using the same challenge chall and proof ⇡, the verifier runs Verify(vk, h, chall,⇡) (where h is
associated with the prover’s encoding) to ensure the prover passed the auditing phase. Lastly,
the Decode algorithm, when provided the encoding key ek, inverts an encoding c to retrieve
the original message. Decode is executed by the prover when is asked to return the message m

encoded by c.
Informally, a PoRep must ensure: (i) the prover utilizes significant memory and (ii) encoded

messages are retrievable. These properties are termed replication and extraction.2 For a single
message (denoted by u = 1), PoRep’s replication represents the minimum memory n a prover
must use to pass verification. When u > 1, the replication concept remains, but a prover
must produce u verification proofs, and n can vary based on the number of messages u > 1.
Higher values of n indicate better replication. Additionally, we aim to enforce a memory usage
of size n that scales with the number of files u. Such enforcement necessitates limiting the
prover’s runtime, a common trait in PoRep schemes [31]. Given the trapdoorless nature of our
PoRep (no secret keys), certain constraints emerge. For instance, in a decentralized setting like
blockchains, a message m (chosen by the prover) can be highly compressible. Each block of
m = (F(k, 1),F(k, 2), . . .) is generated by evaluating a PRF F(k, ·), where k 2 {0, 1}� is a short
key. To compute a proof ⇡, the prover can regenerate blocks of m as needed. This approach
uses minimal memory since the sizes of ek, pk, id, and k aren’t related to the message’s size.
Thus, our PoRep employs a “slow” Encode algorithm. Its speed is adjustable using the time
parameter t chosen during Setup, restricting the adversary to producing proofs more quickly
than the execution time of Encode.

Conversely, PoRep’s extraction property ensures all umessages are retrievable when a prover,
holding the encodings, passes the verification phase for any number of files u. We present our
definitions in Section 6.

Enforcing Space through Polynomial Evaluation. Our starting point is the work of
Ateniese et al. [14], which leverages the evaluation of a random polynomial to build verifiable
capacity-bound functions, a specific type of space-based primitive. Let Zp be a field of order
p from which the coe�cients of the polynomial are sampled, and let Zq ✓ Zp be the subset
{0, 1, . . . , q�1} from which evaluation points are sampled. At a high level, [14] examines a setting
where a (possibly malicious) evaluator receives a randomly sampled polynomial f(X) 2 Zp[X] of
degree d�1, preprocesses f(X) to compute a memory ↵ smaller than |f(X)| (i.e., by compressing
f(X) or pre-computing and storing some evaluations of f(X) on some adversarially chosen
points (x1, x2, . . .)), and then attempts to compute y = f(x) on a randomly chosen point x 2 Zq

using only ↵ (and not f(X)). The work in [14] formally shows that the evaluator’s memory ↵

cannot be smaller than |↵| ⇡ d · |p| � d · |q| where |p| is the size of a coe�cient and |q| is the
size of the challenge point.3 Since one of PoRep’s objectives is to maximize memory usage, we
need to set (i) a large enough challenge space (e.g., |q| = !(log(�))) to guarantee security and,
(ii) q ⌧ p (e.g., |q| is sublinear in |p|) so that |↵| is maximized (high memory usage) and close
to the size of f(X) (which is |f(X)| = d · |p|). Hence, by properly setting the parameters, we
are guaranteed that evaluating f(X) requires memory close to |f(X)|. See Section 3.5 for more
details.

2The replication property corresponds to PoS (proof-of-space) in [31].
3To be precise, the memory size is |↵| = d · |p|�d · |q|��. We ignore the loss � and we write |↵| ⇡ d · |p|�d · |q|

for clarity.

5

This result forms the core idea of our PoReps. The encoding c of a message m 2 {0, 1}d·|p|
(comprising d blocks each of size |p|) concerning an identifier id (i.e., the execution of Encode(ek,
m, id)) involves combining id andm to derive a polynomial f(X) that appears randomly sampled
from Zp[X]. We achieve this by calculating f(X) = H(v, id) � m (interpreting each block of
H(v, id) �m as a coe�cient of f(X)) where H is a random oracle (RO) and v = EvalMHF(id)
is the output of a memory-hard function (MHF) (denoted by EvalMHF) that remains secure
against input-dependent pre-processing. This type of MHF abstracts functions that are “slow”
to compute in the presence of an adversary that conserves storage by omitting some of the
labels needed for output computation. An example of such functions are those based on either
stacked DRG or ZigZag Expander DRG proposed by Fisch [31], which informally ensure that
an adversary, omitting some labels associated with the last layer of the underlying DRG, will
face a high sequential runtime to compute the correct output v = EvalMHF(id).4

Using this method, we determine that an evaluator utilizing memory of size at most |↵| =
n ⇡ min{nMHF, d · |p|� d · |q|} (where ⇡ d · |p|� d · |q| is the memory-bound provided by f(X)
and nMHF is the one o↵ered by the MHF) cannot compute f(x) (on a randomly sampled x)
in parallel time tMHF where tMHF is the time-bound o↵ered by the MHF, dependent on nMHF.
This stems from the security guarantees of polynomial evaluation and MHF described earlier.5

Setting nMHF ' d · |p|� d · |q| (achievable by adjusting settings on the graph of [31] such as the
number of layers and nodes per layer of the underlying DRG), results in |↵| = n ⇡ d · |p|�d · |q|,
close to d · |p| = |m| when q ⌧ p. Thus, requesting y = f(x) will necessitate the evaluator to
use memory |↵| ⇡ |m| when restricted to a runtime shorter than tMHF.

We stress that the slow encoding algorithm Encode (which corresponds to the MHF running
time tMHF) is a necessary security feature (as in [31]) since PoRep is a trapdoor-less primitive.
A fast encoding would allow an adversary to store the original, possibly highly compressible,
message m (e.g., m = 0n) and quickly regenerate the encoded form on demand when challenged
during the audit phase. Thus, without a delay tMHF, the PoRep could not guarantee any
minimum memory usage since the original message are maliciously chosen and, thus, can be
highly compressible. Therefore, restricting the prover for proof generation in less than time
tMHF is fundamental and makes on-the-fly re-encoding impossible during audit.

Though the above solution enforces significant space usage on the prover’s side, which is
essential for the PoReps’ replication property, it presents the following challenges:

1. How can the prover e�ciently compute y = f(x) to achieve sublinear prover’s runtime?
Currently, evaluating the polynomial takes time linear in d (i.e., the number of coe�cients).

2. How can the verifier e�ciently check that y
?
= f(x)? In other words, how can we make

the above scheme verifiable in sublinear time?

We discuss solutions to these problems in the subsequent paragraphs.

Achieving poly-logarithmic prover’s running time. As described in the previous para-
graph, our approach asks a (possibly malicious) prover to compute f(x) on a randomly sampled
point in Zq where f(X) = m � H(EvalMHF(id), id). To decrease the prover’s running time, we
need to make the evaluation of a polynomial e�cient. Several works [40, 43, 10, 17, 20, 54, 55,
37, 45, 35] have proposed di↵erent techniques to enable fast polynomial evaluation. This led
to the work of Kedlaya and Umans [40] which proposed a RAM data structure D that allows

4Following our abstraction, v = EvalMHF(id) concatenates the random oracle labels associated with the last
layer of the DRG as defined in [31].

5This requires selecting the minimum memory-bound |↵| = n ⇡ min{nMHF, d · |p|� d · |q|} provided by the two
to ensure both hold simultaneously.

6

computing f(x) (for any x 2 Zp) in time poly-logarithmic in the number of coe�cients d of the
polynomial f(X) 2 Zp[X] (recall that the number of coe�cients d corresponds to the number
of blocks of the encoded message). Formally, [40] shows the existence of an algorithm GenData
that, on input f(X) 2 Zp and p, outputs a data structure D. Then, an evaluator can execute
Eval(x,D) (i.e., Eval leverages the RAM access to D to read some blocks from D) to compute
y = f(x) in time poly(log(d), |p|).

We note that, to achieve a poly(log(d), |p|) evaluation time, the data structure D (output
by GenData) is larger than the size of f(X), since f(X) is pre-computed and manipulated. In
particular, the D of [40] has a multiplicative overhead which we term (�)-expansion, meaning the
size of D is |f(X)| · � (D is � times larger than the size of the original polynomial). Specifically,
the (�)-expansion of [40] is � = c

p
d · logo(1)(p) for any arbitrary constant c > 1. Thus, the

running time of an honest prover can be made poly-logarithmic in d by increasing its memory
by a multiplicative factor � = c

p
d · logo(1)(p), which is sublinear in |f(X)|. On the bright side,

the factor c
p
d (of the expansion �) can be made arbitrarily small by selecting a larger constant

c > 1. This parameter can be chosen by the prover according to its needs: c can be dynamically
increased or decreased as it is not fixed by the PoRep construction.

Poly-logarithmic verification through localized RAM computation. Until now, the
technique we have described relies on requiring the prover (who stores m) to evaluate a poly-
nomial f(X), where f(X) = m � H(EvalMHF(id), id) represents an encoding of m with respect
to the identifier id and random oracle H, on a randomly chosen point x 2 Zq. As noted at the
beginning of this section, evaluating f(X) su�ces to verify that the prover is utilizing a memory
↵ of size |↵| ⇡ d · |p|� d · |q|, which is approximately d · |p| = |m| when |q|⌧ |p|. The remaining

challenge is to enable a verifier to ascertain that y
?
= f(x).6

At first glance, one might assume that poly-logarithmic verification could be integrated
using standard techniques for verifying computations, such as SNARKs. For instance, we could
employ a SNARK (which permits e�cient verification) to have the prover generate a proof
⇡ that demonstrates y = f(x). Specifically, this could be achieved by validating that y was
honestly computed using the data structure D (retained by the prover) outlined in the previous
paragraph. However, this strategy is flawed because it would result in the prover’s running time
becoming linear in the size of the data structure D. Generating a proof with SNARKs demands
time linear to the size of the witness (of the required relation), which corresponds to the data
structure D. This would nullify the advantages gained by employing the e�cient data structure.

Our solution to verification capitalizes on the observation that we target the same poly-
logarithmic (in d) complexity for both the prover and the verifier. It might therefore be adequate
for a verifier to replicate the prover’s computation and verify that the derived result f(x) = y

0

matches y, the value produced by the prover. A significant obstacle in implementing this
strategy is that the verifier lacks access to D. To address this, we utilize Merkle trees (or any
vector commitment) atop D. Specifically, the data structure D = (D1, . . . ,D`) is segmented
into ` blocks, and h represents the root of the corresponding Merkle tree (with the tree’s height
being log(`)). We recognize that, during the computation of y, the prover will access at most
a poly-logarithmic number of blocks D0 ⇢ D from D = (D1, . . . ,D`) (recalling that D is a RAM
data structure), making its running time poly-logarithmic in d. For verification, the prover
merely needs to transmit y, the accessed blocks D0, and the associated |D0| Merkle tree openings
(⇡01, . . . ,⇡

0
|D0|). Thus, a verifier possessing the digest h can:

1. Using the openings (⇡01, . . . ,⇡
0
|D0|), verify that the received blocks D0 align with the blocks

6If the verifier cannot validate y
?
= f(x), a prover could bypass the verification without using any memory by

simply outputting a malicious ỹ 6= f(x).

7

of D.

2. Compute y
0 = f(x) by running the evaluation algorithm Eval of the data structure solely

with the received blocks D0.

3. Validate that y0
?
= y, where y is the evaluation returned by the prover.

The ensuing verification process ensures the prover’s running time remains poly-logarithmic
in d while facilitating poly-logarithmic verification. We emphasize that h must be computed
honestly to guarantee the soundness of the above verification procedure. Although this paper’s
contribution centers on the auditing phase, we implicitly presume that h is generated with
integrity. Nonetheless, we stress that the integrity of h (furnished by the prover) can be assured
by incorporating a SNARK proof during the encoding phase conducted by the prover. This
doesn’t impact the paper’s conclusions since we don’t set a specific limit on the running time of
Encode (i.e., the SNARK proof is computed and output by Encode).7 We present our verifiable
data structure in Section 5.

We term the act of conducting an accurate RAM computation using only the blocks involved
in the computation (as performed by our verification algorithm) as ”localized RAM computa-
tion”. A thorough analysis is presented in Section 4, where we demonstrate that every RAM
algorithm possesses its corresponding localized version, with the runtime being identical up to
a logarithmic factor. While the foundational concept may appear straightforward, the formal
proof is nuanced. For a comprehensive overview, we direct readers to Section 4.

Lastly, we highlight that our verifiable data structure (described above) is of independent
interest: it can be seen as a succinct polynomial commitment (based on collision resistant hash
functions) where opening algorithm is poly-logarithmic in the degree of the polynomial.

Multiple files and comparison with Fisch’s PoRep [31]. In the case of multiple messages
or files (when u > 1), a prover must provide u verifying proofs to pass the auditing. As previously
discussed, when a single message is stored, our PoRep ensures that a prover utilizes at least
n ⇡ d · |p| � d · |q| memory to pass the verification. Using a hybrid argument, we can assert
that the memory requirement when u � 1 must be at least n ⇡ u(d · |p|� d · |q|). A limitation
of this memory-bound n is that the loss increases with the number of stored files. Specifically,
if a prover can save 1 GB with u = 1, then the same prover can save up to u GB when u > 1.
This is naturally an undesirable outcome. A pertinent question arises: can we mitigate such a
loss, potentially making it independent of the number of messages u?

We demonstrate that, in contrast to [31], this is achievable by expanding the analysis on
the memory needed to evaluate a random polynomial (as outlined at the beginning of this
section) to consider the case where u > 1 for polynomial evaluations. Our findings (presented
in Section 3.5) indicate that when evaluating u random polynomials f1(X), . . . , fu(X) at the
exact same point x 2 Zq (i.e., the consistent PoRep’s challenge), the memory required for the
evaluation must be at least |↵| = n ⇡ u · d · |p| � d · |q|, approximating u · |m| when q ⌧ p.
Consequently, polynomial evaluations enable our PoRep scheme to amortize the memory loss
when multiple polynomials are evaluated.

By integrating this insight with the method introduced at the start of this section, we derive
a PoRep scheme that compels a malicious evaluator operating in a time frame shorter than
tMHF (as defined by the underlying MHF) to allocate at least n ⇡ u · |m| memory to pass the
auditing phase (i.e., computing u verifying proofs). The sole prerequisite is encoding the u

messages m1, . . . ,mu into u distinct random polynomials. Given that messages can be chosen

7Applying a SNARK at encoding time, replication can be ensured even under malicious executions of Encode.
This approach is employed in practice by Filecoin [1].

8

with malice (e.g., they could all be identical), a unique identifier idi for each mi is mandatory.
This is the sole alteration necessary to achieve the stated bound.

Regarding Fisch’s PoRep construction [31], we note that, for ⌘ 2 [0, 1], the challenge count
needed is O(1/⌘) when the prover employs memory of size |m| � ⌘ · |m| (refer to Table 1).
The memory-bound exhibits a loss that scales linearly with the message count u, meaning the
challenge count must be O(1/⌘) when u · |m|�u · ⌘ · |m|. Hence, to ensure a loss independent of
u, ⌘ must be inversely proportional to u, e.g., ⌘ = 1

u · ⌘0 for some other ⌘0 2 [0, 1]. Nevertheless,
this directly influences the challenge count of [31], causing it to rise linearly with the file count u,
leading to a challenge count of O(1/⌘) = O(u/⌘0). This, in turn, a↵ects the prover’s operational
time, making it quadratic in terms of message count, necessitating the prover to compute u

proofs, each containing u openings.
Conversely, our PoRep demands a singular challenge (a point x), while achieving a memory-

bound of n ⇡ u·|m|, and a prover’s operational time of u·poly(log(d), log(p)). For a juxtaposition
between our approach and Fisch’s PoRep security, we direct readers to Table 1.

On setting the parameters. As previously outlined, our scheme achieves a memory bound
of |↵| = n ⇡ min{nMHF, u·d·|p|�d·|q|}, where nMHF represents the memory required for encoding
(attributable to the use of the MHF), and u � 1 denotes the number of files stored. To optimize
the benefits from our polynomial evaluation technique, it is crucial to set nMHF ' u·d·|p|�d·|q|,
thereby aligning the memory bound of our PoRep with n ⇡ u · d · |p| � d · |q| as enforced by
polynomial evaluation. It becomes evident that this necessitates an a-priori bound, umax, on
the number u of files the adversary can store (see Corollary 6).8

Still, we demonstrate that if the memory required by the underlying MHF scales linearly with
the number of evaluations (a condition met by Fisch’s construction [31]), then our technique
can be adapted to support an arbitrary number of files. More formally, if the computation
of EvalMHF(id1), . . . ,EvalMHF(idu) necessitates memory proportional to u · nMHF, our PoRep
technique imposes a memory usage of |↵| = n ⇡ min{u · nMHF, u · d · |p|� d · |q|}. Consequently,
by setting nMHF � d · |p|, we eliminate the prerequisite for a predefined bound on file numbers,
achieving n ⇡ u · d · |p|� d · |q| (see Corollary 7).

To accommodate an unlimited file count, slight modifications to the encoding syntax (i.e.,
encoding the u files concurrently via Encode(ek, (mi, idi)i2[u]) = (ci, hi)i2[u]) and the use of
the RO are anticipated. Therefore, we detail the unbounded construction separately.9 We
refer the reader to Section 6.1 for more details about our constructions. We stress that our
second unbounded construction achieves the exact same security of the bounded one (reported
in Table 1) except that u is unbounded.

On the role of the Random Oracle. A principal contribution of this work is introducing a
first-of-its-kind modular (black-box) approach for constructing PoReps, necessitating a RO H to
convert the output from the (input-dependent preprocessing) MHF into a random polynomial.
In essence, H serves as a “glue” that integrates our black-box components seamlessly. We explore
eliminating the RO H by examining the MHF’s internal mechanics. For instance, using the MHF
from [31]’s encoding phase shows that its last pebbled graph layer (function output) has maximal
entropy (randomness) due to RO computation. This randomness enables direct computation of
the random polynomial, e.g., fi(X) = mi � EvalMHF(idi). Additionally, our modular framework
mandates incorporating idi within the RO input, thus computing the polynomial as fi(X) =

8Achievable by ensuring nMHF ' umax · d · |p|� d · |q|.
9For the unbounded model, the i-th file mi is encoded as fi(X) = mi�H(v1, . . . , vu, idi) (replacing H(vi, idi)),

where vj = EvalMHF(idj) for j 2 [u].

9

mi � H(EvalMHF(idi), idi), rather than fi(X) = mi � H(EvalMHF(idi)), to ensure accurate RO
programming during the proof of security.

2 Related Work

Proof-of-Space (PoS) protocols ensure provers allocate specific memory amounts, emphasizing
e�cient verification and communication. Some approaches, such as pebbling-based methods, use
directed acyclic graphs to enhance space guarantees [30, 11, 4, 50, 6, 18]. Proof-of-Replication
(PoRep) confirms that storage providers genuinely replicate data, preventing them from storing
unrelated content [48, 32, 26, 8, 24, 42, 47, 36, 23, 31]. Beyond PoS and PoRep, various other
cryptographic storage mechanisms also play crucial roles. Below, we discuss several notable
examples, highlighting their relevance and contributions.10

Proof of Data Possession (PDP): PDP schemes are fundamental in cryptographic storage,
allowing a storage provider to prove to clients that their outsourced data remains intact and
available. While they achieve the space-hardness goal of PoS for large, incompressible data, they
often involve significant communication costs, especially during the initial data transfer [12, 15,
52, 34, 9].

Proof of Retrievability (PoR): PoR protocols enable clients to ensure the integrity and
retrievability of their stored files on a server. Equipped with an extractor, these protocols allow
for the reconstruction of the file from the provided proofs [38, 51, 28, 21].

Memory-Hard Functions (MHF): These are functions designed to require considerable mem-
ory/space for computation, primarily aimed at constructing ASIC-resistant proofs-of-work.
While they demand continuous CPU utilization, their distinction from PoS is their ability
to keep provers o✏ine while still utilizing space-time [5, 7, 16, 3].

Proof of Secure Erasure (PoSE): This protocol ensures a prover’s ability to confirm the
erasure of specific memory portions. When integrated with PoS, it o↵ers a holistic solution to
secure storage and subsequent data erasure [4].

Proof of Transient Space (PoTS) and Proof of Persistent Space (PoPS): These protocols
emphasize the temporal aspect of storage, with PoPS focusing on ensuring provers allocate
space over time, verified through periodic audits. When integrated with PDP or PoR, they
underline the prover’s commitment to storage over extended periods [13, 49, 22].

3 Preliminaries

3.1 Notation

Bold capital letters (such as X) are used to denote random variables, small letters (such as x)
to denote concrete values, calligraphic letters (such as X) to denote sets, serif letters (such as
A) to denote algorithms. For a string x 2 {0, 1}⇤, we let |x| be its length; if X is a set, |X |
represents the cardinality of X . When x is chosen uniformly from a set X , we write x $ X .
We use Un to denote the uniform distribution over {0, 1}n. For an arbitrary distribution X
(e.g., non-uniform) over a set X , we write x $ X the act of sampling x from X according to
the distribution X. If A is a deterministic algorithm, we write y = A(x) to denote a run of A
on input x and output y; if A is randomized, we write y $ A(x) (or y = A(x; r)) to denote a
run of A on input x and (uniform) randomness r, and output y. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r 2 {0, 1}⇤ the computation of
A(x; r) terminates in a polynomial number of steps (in the input size).

10For a comprehensive overview, see https://proofofspace.org.

10

https://proofofspace.org

3.2 Memory-Hard Function with Input-dependent Pre-processing

Amemory-hard function (MHF) with input space X and output space Y consists of the following
polynomial-time algorithms:

Setup(1�, 1t, 1n): On input the security parameter 1�, the time parameter 1t, and the memory
parameter 1n, the randomized setup algorithm outputs the public parameter pp.

Eval(pp, x): On input the public parameters pp and an input x 2 X , the deterministic evaluation
algorithm outputs y 2 Y.

We are interested in secure MHFs even in the presence of input-dependent pre-processing.
Informally, such a flavor of MHF guarantees that it is infeasible to compute y = Eval(pp, x)
(for a random input x $ X) in parallel time complexity � (chosen on setup) with O(poly(t))
processors (i.e., the computation of y = Eval(pp, x) is non-parallelizable). This must hold even
if the adversary pre-processes the MHF by producing a string ↵ of size n (i.e., the memory
parameter chosen on setup) conditioned to the challenged input x.

Definition 1 (Input-dependent pre-processing security of MHF). Let �(�, t, n) = � be a polyno-
mial function that depends on the security parameter �, the time parameter t, and the memory
parameter n. An MHF scheme ⇧ = (Setup,Eval) with input space X and output space Y is
(✏,�, n)-secure if for every valid PPT adversary A = (A1,A2), we have

P
h
Eval(pp, x) = A2(1

�
, 1t, 1n, pp, x,↵) ^ |↵|  n

i
 ✏

where pp $ Setup(1�, 1t, 1n), x $ X , ↵ $ A1(1�, 1t, 1n, pp, x).
An adversary A = (A1,A2) is called valid if A2 runs in parallel time � with poly(t) processors.

Definition 1 establishes that computing Eval(pp, x) within parallel time � necessitates adversary
memory exceeding n, applicable to singular evaluations. Additionally, our focus extends to a
more robust class of MHFs that demonstrate linear memory scaling with the evaluation count.
Specifically, if a single evaluation mandates memory n, then processing u inputs requires memory
u · n.

Definition 2 (Input-dependent pre-processing multi-instance security of MHF). Let �(�, t, n) =
� be a polynomial function that depends on the security parameter �, time parameter t, the
memory parameter n, and the number of evaluations u. A MHF scheme ⇧ = (Setup,Eval) with
message space X and output space Y is (✏,�, n)-multi-instance-secure if for every valid PPT
adversary A = (A1,A2), for every u 2 N, then

P
h
(v1, . . . , vu) = A2(1

�
, 1t, 1n, pp, (x1, . . . , xu),↵) ^ |↵|  u · n

i
 ✏,

11

where pp $ Setup(1�, 1t, 1n), (x1, . . . , xu) $ X u, ↵ $ A1(1�, 1t, 1n, pp, (xi)i2[u]), and vi = Eval(
pp, xi) for i 2 [u].

An adversary A = (A1,A2) is called valid if A2 runs in parallel time � with poly(t) processors.

Remark 1 (On the output length of MHF with input-dependent pre-processing). In Defini-
tion 1, the auxiliary information ↵ of size at most n (e.g., the memory state) can depend on the
challenge input x $ X . This implies that the output y = Eval(pp, x) must be incompressible;
that is, it is infeasible to compress y (in polynomial time) into a string of size at most n. Other-
wise, A1 could simply compute y = Eval(pp, x) and output ↵, which is the compression of y. In

11The probability upper-bound ✏ can depend on the number of evaluations u.

11

this way, the second adversary A2 could simply decompress ↵ to recompute y, possibly bypassing
the non-parallelizable computation enforced by the MHF scheme. This is analogous to the DRG
constructions of [31], where the output is set to the labels of the last layers of the DRG, and an
adversary can delete a fraction of those labels. This also applies to the multi-instance notion
in Definition 2.

Fisch [31] presents a construction of a stacked depth-robust graph (DRG). The last layer in
the “stack” contains the sinks of the graph. All nodes in the graph are labeled. Each of these
labels is computed as a random oracle applied to the labels of the node’s parents. The results
in [31] can then be interpreted as: any adversary storing less than 80% of the sinks will need to
perform a ⌦(`) sequential computation where ` is the number of blocks of the last layer. This
allows us to instantiate Corollary 1 as follows. We define the evaluation of our MHF as the
computation of the labels of the sinks in the graph. The labels of the source nodes are defined
in terms of x, the input to the evaluation function. The setup of our MHF corresponds to the
topology of the graph.

This construction meets the criteria of both Definition 1 and the multi-instance variant of
security (Definition 2). Indeed, [31] heavily relies on random oracles. Hence, multiple evalua-
tions (on u randomly sampled inputs (x1, . . . , xu)) will be completely independent due to the
underlying random oracle. The following corollary reports the security guarantee of [31].

Corollary 1. There exists a (negl(�),⌦(`), 0.8 ·` ·z)-secure (resp. -multi-instance-secure) MHF
with input space {0, 1}� in the parallel random oracle model (parallel ROM), where ` is the
number of blocks (each of size z 2 !(log(�))) of the last layer of the DRG.12

3.3 Vector Commitments and Merkle Trees

A vector commitment (VC) scheme with message spaceM is composed of the following polynomial-
time algorithms:

Setup(1�): On input the security parameter 1�, the randomized setup algorithm outputs the
public parameters pp.

Commit(pp, (m1, . . . ,m`)): On input the public parameters pp and a sequence of ` messages
(m1, . . . ,m`) 2M`, the deterministic commit algorithm outputs a commitment c and an
auxiliary information aux.

Open(pp,m, i, aux): On input the public parameters pp, a message m 2 M, an index i 2 [`],
and an auxiliary information aux, the deterministic open algorithm outputs a proof ⇡.

Verify(pp, c,m, i,⇡): On input the public parameters pp, a message m 2M, and index i 2 [`],
and a proof ⇡, the deterministic verification algorithm outputs a decision bit b 2 {0, 1}.

A VC scheme must satisfy the standard definitions of (perfect) correctness and position binding.
Moreover, we focus on VC schemes where the running times of both Open and Verify are poly-
logarithmic in ` in the RAM model of computation.

Definition 3 (E�ciency of VC). A VC scheme ⇧ = (Setup,Commit,Open,Verify) with message
space M is e�cient if both the open algorithm Open and the verification algorithm Verify have
(worst-case) running time poly(�, log(`)) where ` is the vector length parameter given as input
to Setup. The running times of both Open and Verify are measured in the RAM model of
computation.

12The parallel time complexity of A2 corresponds to the number of parallel random oracle (parallel RO) queries
submitted by A2.

12

Definition 4 (Perfect correctness of VC). A VC scheme ⇧ = (Setup,Commit,Open,Verify)
with message space M is perfectly correct if 8� 2 N, 8` 2 N, 8(m1, . . . ,m`) 2M`

, 8i 2 [`], the
following probability holds:

P

2

4Verify(pp, c,mi, i,⇡) = 1 :
pp $ Setup(1�),

(c, aux) = Commit(pp, (m1, . . . ,m`)),
⇡ = Open(pp,mi, i, aux)

3

5 = 1

Definition 5 (Position binding of VC). A VC scheme ⇧ = (Setup,Commit,Open,Verify) with
message space M satisfies (✏)-position binding if for every PPT adversary A, we have:

P

2

4
Verify(pp, c,m, i,⇡) = 1 ^
Verify(pp, c,m0, i,⇡0) = 1 ^

m 6= m
0

:
pp $ Setup(1�),

(c,m,m
0
, i,⇡,⇡

0) $ A(1�, pp)

3

5  ✏

Merkles tree (implemented using collision-resistance hash functions) are e�cient VCs.13

Below, we report the formal corollary.

Corollary 2. Assuming a collision-resistant hash function, there exists a (negl(�))-position
binding and e�cient VC scheme with message space M = {0, 1}z (for any z � 1) and e�ciency
as defined in Definition 3. Moreover, we have that |c| = � (i.e., commitments are succinct) and
|aux| = ` · z.

3.4 E�cient Data Structure for Univariate Polynomial Evaluation

Next, we introduce the notion of data structures (DS) for univariate polynomial evaluation. At
a high level, D is a DS for univariate polynomial evaluation if there exists a RAM algorithm
that, given a point x, reads some blocks from D (using its RAM access to D) to compute f(x)
where f(X) =

Pd
i=0 ai ·Xi 2 Zp[X] is the univariate polynomial taken into account.

More formally, let p be a prime and Zp be a field. A (possibly e�cient) data structure
(DS) for evaluation of univariate polynomials is composed of the following polynomial-time
algorithms:

GenData(f, p): On input a univariate polynomial f(X) =
Pd

i=0 ai ·Xi 2 Zp[X] (of degree d 2 N)
and a prime p 2 N, the deterministic data structure generation algorithm outputs a data
structure D.

Eval(x,D): On input a point x 2 Zp and the data structure D, the deterministic evaluation
algorithm outputs y 2 Zp.

Intuitively, correctness says that, for every prime p 2 Zp, and for every f(X) 2 Zp[X], and
for every x 2 Zp, the evaluation algorithm Eval(x,D) correctly computes f(x) when D =
GenData(f, p).

Definition 6 (Perfect correctness of DS). A DS ⇧ = (GenData,Eval) for evaluation of univari-
ate polynomials is perfectly correct if 8 prime p 2 N, 8f(X) 2 Zp[X], 8x 2 Zp, the following
probability hold:

P[f(x) = Eval(x,GenData(f, p))] = 1.
13In Merkle trees, the auxiliary information aux (output by Commit) corresponds to the intermediate hashes

of the tree. Hence, computing the opening ⇡ (for some mi 2 M at position i) requires time � · log(`) + log(|M|)
in the RAM model of computation since the evaluator needs to read log(`) intermediate hashes (from aux) each
of size � and a leaf (i.e., the sibling message of mi) of size log(|M|).

13

Naturally, a trivial DS D corresponds to the coe�cients of f(X): evaluating f(x) requires
reading the d coe�cients ai 2 Zp from D. In this paper, we are interested in DS for univariate
polynomial evaluation with non-trivial e�ciency, i.e., the computation of f(x) requires time
poly(log(d), log(p)) where p and d are the prime and the degree of the univariate polynomial
f(X) 2 Zp[X] given in input to GenData. We highlight that in order to obtain poly-logarithmic
(or any sublinear) evaluation time, the data structure generation algorithm GenData may need
to pre-process f(X) 2 Zp. Hence, the data structure D (output by GenData) may be bigger
than |f(X)| = (d+1) · log(p) where log(p) is the bit size of a coe�cient ai 2 Zp. For this reason,

the following definition of e�ciency is parametrized by � = |D|
|f(X)| . Throughout the paper, we

refer to � as the expansion factor of DS. The formal definition follows.

Definition 7 (E�ciency with (�)-expansion of DS). A DS ⇧ = (GenData,Eval) for evaluation
of univariate polynomials is e�cient with (�)-expansion if the following conditions hold:

(�)-expansion: The size of D (output by GenData(f, p)) is bounded by |f(X)|·� = (d+1) log(p)·
� where d is the degree of f(X) 2 Zp[X] and log(p) is the size of a coe�cient ai 2 Zp of
f(X). The expansion parameter � may depend on the degree d of f(X) and the bit length
log(p) of p.

E�cient evaluation: The evaluation algorithm Eval has (worst-case) running time poly(log(d),
log(p)) where d is the degree of f(X) 2 Zp[X] and log(p) is the size of a coe�cient ai 2 Zp

of f(X) (recall that f(X) and p are given as input to GenData). The running time of Eval
is measured in the RAM model of computation.

Kedlaya and Umans [40] have proposed an e�cient DS for univariate polynomial evaluation
with an expansion factor � = O(d� · logo(1)(p)) where � is an arbitrary positive constant. Below,
we report the e�ciency of their construction.

Corollary 3 ([40, Section 5] restated). For every positive constant � > 0, there exists an
e�cient DS for univariate polynomial evaluation with (�)-expansion (Definition 7) defined as
� = (d+1)� logo(1)(p), where log(p) and d are the size of the prime p and the degree of f(X) 2 Zp,
respectively.14

For completeness, we stress that the parameter � of Corollary 3 a↵ects both the size of the
data structure and the running time of the data structure’s evaluation algorithm. Concretely,
the smaller the �, the slower the evaluation. However, it also leads to a smaller data structure
size (smaller �). In other words, a small � corresponds to less pre-computation, which in turn
slows down the evaluation. Still, asymptotically speaking, [40, Section 5] demonstrated that any
constant � > 0 is su�cient to achieve poly-logarithmic evaluation complexity which is su�cient
for the scope of this work.

3.5 Incompressibility and Polynomial Evaluation

Next, we define the notion of incompressibility (w.r.t. distributions), which determines how
much a string x, sampled from a distribution X, can be compressed.

Definition 8 (Incompressibility). Let X be a distribution defined over {0, 1}n. We say that X
is (c, ✏)-incompressible if for every unbounded adversary A = (A1,A2), we have

P
h
A2(1

�
,↵) = x ^ |↵|  n� c : x $ X�,↵ $ A1(1

�
, x)

i
 ✏.

14Observe that the expansion factor � of (d + 1)� logo(1)(p) implies that the overall size of D (output by
GenData(f, p)) is at most (d + 1)1+� log1+o(1)(p). This follows by observing that |D| = |f(X)| · � = (d +
1) log(p)(d+ 1)� logo(1)(p) = (d+ 1)1+� log1+o(1)(p).

14

Observe that the above definition considers adversaries with unbounded computation. It is
known that the uniform distribution Un over {0, 1}n is (c, 1

2c)-incompressible with respect to
unbounded adversaries.

Theorem 1. For every n 2 N and for every c 2 N such that c  n, the uniform distribution
Un over {0, 1}n is (c, 1

2c)-incompressible.

We extend the above theorem to the setting of polynomial evaluation. In particular, we
demonstrate that a randomly sampled polynomial f(X) $ Zp[X] cannot be compressed in
the following sense: to compute f(x) at a randomly sampled point x with su�ciently large
probability, an adversary must have access to a su�ciently large string ↵ (which encodes f(X)
or some pre-computed evaluations of f(X)). Intuitively, this follows by observing that d + 1
evaluations (f(x1), . . . , f(xd+1)) and their corresponding points (x1, . . . , xd+1) are an encoding
of the random string a = (a0, . . . , ad) composed of the d + 1 coe�cients of the polynomial
f(X) =

Pd
i=0 ai ·Xi.15 This allows us to reduce the incompressibility of random polynomials

to the incompressibility of random strings (Theorem 1). Below, we present the formal result
whose proof appears in Appendix A.1. Also, we highlight that an analogous result has been
demonstrated in [14, Section 3], but in a di↵erent setting, yielding a di↵erent bound.

Theorem 2. Let p be a (sp + 1)-bit prime and q be a (sq)-bit prime where q  p. For every
u 2 N, let Fu

d�1,p be a distribution (over the set of univariate polynomials of degree d� 1 from
Zp[X]) which samples u polynomials f1(X), . . . , fu(X) 2 Zp[X] as follows:

• Sample (a0, . . . , au·d�1) $ Uu·d·sp and return the u univariate polynomials f1(X), . . . ,

fu(X) such that fj(X) =
Pd�1

i=0 aj·d+i · Xi 2 Zp[X] of degree d � 1 for j 2 {0} [[u � 1]
(i.e., each ai is interpreted as an element of Zp).

For every u 2 N, for every d 2 N, for every c  d(u · sp � sq) and for every unbounded
adversary A = (A1,A2), the following probability holds:

P

2

4 A2(1�, x,↵) = (f1(x), . . . , fu(x)) ^
|↵|  d(u · sp � sq)� c

:
(fi(X))i2[u] $ Fu

d�1,p,

↵ $ A1(1�, f1, . . . , fu),
x $ Zq

3

5  d� 1

|Zq|
+

1

2c
.

On the best possible (asymptotic) security guarantees of Theorem 2. Fix u = 1
in Theorem 2. We observe that the bound of |↵| presents a loss proportional to d · sq, which
depends on the size of the (single) polynomial (i.e., the degree d).16 This loss exactly corresponds
to the length of d points from Zq ✓ Zp. Intuitively, this is because the adversary A1 can compute
↵ such that it will later allow A2 to answer correctly only to some adversarially chosen points
that may be correlated to the random polynomial f(X) $ F1

d�1,p (this is because A1 computes

↵ while knowing f(X)).17 The reason behind this loss is also discussed in [14, Sec. 3].
In addition, we notice that the best possible security guarantee o↵ered by Theorem 2 is

when the adversarial advantage is small and the upper bound of |↵| is maximized (note that
the upper bound on |↵| cannot go beyond d · u · sp). In this way, we are guaranteed that the

15From (f(x1), . . . , f(xd+1)) and (x1, . . . , xd+1) it is possible to reconstruct a = (a0, . . . , ad) through Lagrange
interpolation.

16For the sake of clarity, we ignore c that does not depend on either d or u.
17By looking at the proof of Theorem 2, this loss is due to the need to encode (x1, . . . , xd) (which may be

arbitrary and correlated to f(X)) in the string ↵ output by the reduction. These points (x1, . . . , xd) are essentially
the ones on which the adversary A2 correctly computes (f(x1), . . . , f(xd)). This is required in order to allow the
reduction to correctly reconstruct a = (a0, . . . , ad�1) and contradict the (c, 1

2c)-incompressibility of Ud·sp (recall
we are assuming that u = 1).

15

adversary does not win even when it has access to a large amount of pre-computed information
(i.e., the string ↵). To this end, we choose to state Theorem 2 while taking into account that
sq (which defines the size of the (challenge) point space Zq ✓ Zp) can be both (i) significantly
smaller than sp (which defines the size of a coe�cient of the polynomials) to get a reasonably
high upper bound on |↵|, and (ii) large enough to get a significantly small (possibly negligible)
upper bound on the adversary’s advantage.

The following corollary shows that this is possible asymptotically. In particular, we can
set the upper bound of the adversary’s advantage to be exponentially small in � while keeping
the bound on |↵| asymptotically close to the optimal value u · d · sp (i.e., the best possible
security that can be achieved) by setting sp = sp(�) = �

1+� (where � is a positive constant)
and sq = sq(�) = �. Below, we present the formal corollary whose proof is in Appendix A.2.

Corollary 4. For every � 2 N, for every u = u(�) 2 poly(�), for every d = d(�) 2 poly(�),
for every (�1+� +1)-bit prime p where � > 0 is a constant, and for every (�)-bits prime q (note
that q < p by definition), we have

P

2

4 A2(1�, x,↵) = (f1(x), . . . , fu(x)) ^
|↵|  d · u · �1+� � (d+ 1) · � :

(fi(X))i2[u] $ Fu
d�1,p,

↵ $ A1(1�, f1, . . . , fu),
x $ Zq

3

5  O

✓
1

2�

◆
.

We stress that there are other combinations of parameters for sp and sq that allow for a
negligible adversarial advantage. For example, it is su�cient to set sq 2 !(log(�)) and sp = �.
However, these choices do not allow us to set the adversary’s advantage to be exponentially small
in � as achieved in Corollary 4. Thus, we choose sq = sq(�) = � and sp = sp(�) = �

1+� to set
the advantage to be at most O

�
1
2�

�
while getting an upper bound on |↵| which is asymptotically

close to d · u · sp (i.e., the best possible security that can be achieved).

3.6 Pseudorandom Functions

A pseudorandom function (PRF) scheme ⇧ = (KGen,F) with input space X and output space
Y is composed of the following polynomial-time algorithms:

KGen(1�): The randomized key generation algorithm takes as input the security parameter 1�

and outputs a key k.

F(k, x): The deterministic function evaluation algorithm takes as input a key k and an input
x 2 X , it outputs a value y 2 Y.

A PRF ⇧ is considered secure (i.e., pseudorandom) if its output distribution is indistinguishable
from the one of a truly random function.

Definition 9 (Security of PRF). A PRF ⇧ with input space X and output space Y is (✏)-secure
if for every PPT adversary A, we have:

���P
h
AF(k,·)(1�) = 1

i
� P

h
AFrnd(·)(1�) = 1

i���  ✏,

where k $ KGen(1�) and Frnd : X ! Y is a truly random function over X and Y.

4 Localized (deterministic) RAM algorithms

Consider an input x = (x1, . . . , xn) composed of n blocks where each xi can be accessed in
constant time in the RAM model of computation. Also, consider a RAM algorithm T with

16

RAM access to x that, on input y 2 {0, 1}⇤,18 performs a computation, reading only a subset
X ⇢ {x1, . . . , xn} of the blocks of x. In this section, we formally demonstrate that the exact
same computation can be executed with only y and the blocks X e↵ectively read by T (i.e., the
unread blocks are unnecessary) when T is deterministic.19 To this end, we start by introducing
the oracle notation for RAM algorithms, which will allow us to formally demonstrate the above
statement.

Oracle Notation for Deterministic algorithms in the RAM model of computation.
We focus only on deterministic RAM algorithms. Let x be a RAM accessible input composed
of multiple blocks x = (x1, . . . , xn). We denote with T[x] a RAM algorithm T with read-only
RAM access to x. Moreover, let y 2 {0, 1}⇤ be an arbitrary binary string. We denote with
T[x](y) the deterministic execution of a RAM algorithm T with read-only RAM access to x but
not to y, i.e., T must read y in its entirety. Below, we formally define how T interacts with its
RAM accessible input.

Definition 10 (Oracle abstraction for deterministic RAM algorithms). A deterministic RAM
algorithm T is an algorithm that performs computations by leveraging its RAM access to (some
of) its inputs. Let x = (x1, . . . , xn) be a read-only RAM accessible input x composed of n blocks
and y 2 {0, 1}⇤ be an arbitrary binary input string. The execution T[x](y) performs computations
over x and y where T can read parts of x by interacting with the oracle [x] as follows: T can
send a (read, i) read command (for i 2 [n]) to [x]. As a result, T receives the i-th block xi from
[x].

Definition 11 (Indexes read during a RAM computation). Let T be a deterministic RAM
algorithm, x = (x1, . . . , xn) be a read-only RAM accessible input x composed of n blocks and
y 2 {0, 1}⇤ be an arbitrary binary input string. We say that Ix,y ✓ [n] is the ordered set of
indexes read from x during the computation T[x](y) if the following conditions hold:

Completeness: Let (read, i1), . . . , (read, in0) be the read commands submitted by T to [x] during
the RAM computation T[x](y) (note that n0 may be greater than n since T can read a block
multiple times). Then, we have that ij 2 Ix,y for every j 2 [n0] where Ix,y is a set (i.e.,
no duplicate indexes).

Ordering: The set Ix,y = {i1, . . . , ik} is ordered, i.e., 8j 2 [k � 1] we have ij < ij+1 where
ij , ij+1 2 Ix,y.

Localized (deterministic) RAM algorithms. The fact that the deterministic RAM com-
putation T[x](y) computes output v by only reading the indexes Ix,y of the input x = (x1, . . . , xn)
implies that it is possible to compute v (in the RAM model) even without the blocks (xi)i2[n]\Ix,y
where x = (x1, . . . , xn). To this end, we define the notion of a localized RAM algorithm. In-
tuitively, the localized version Local.T of the deterministic RAM algorithm T is, in turn, a
deterministic RAM algorithm that is able to recompute the output of T[x](y) by taking as input
the string y and the blocks xi1 , . . . , xik read by T[x](y) from x.

Somewhat more formally, if T[x](y) = v then Local.T[x0],[map](y) = v, where Ix,y is the ordered
set of indexes read from x during the computation T[x](y) and x

0 = (x01, . . . , x
0
k) = (xi1 , . . . , xik)

is a read-only RAM accessible input. We note that the localized algorithm Local.T has access
to an additional read-only RAM accessible input map which is essentially the memory mapping

18In this section, it is su�cient to interpret y as an arbitrary binary string that needs to be read in its entirety,
i.e., RAM access to y does not give any benefit to T.

19Otherwise, the final output and the blocks read from x may also depend on the random coins of T.

17

between x
0 = (x01, . . . , x

0
k) and x = (x1, . . . , xn). In particular, map is defined asmap = (ij)ij2Ix,y

and is required to let Local.T[x0],[map](y) know that its j-th block x
0
j of x0 corresponds to the

ij-th block xij of x (held by the original computation T[x](y)).20 We formalize the notion of
localized RAM algorithms below.

Definition 12 (Localized RAM algorithms). We say that a deterministic RAM algorithm
Local.T is the localized version of the deterministic RAM algorithm T if the following conditions
hold:

Perfect correctness: For every read-only RAM accessible input x = (x1, . . . , xn), for every
arbitrary binary input y 2 {0, 1}⇤, let Ix,y = {i1, . . . , ik} be the ordered set of indexes
read from x during the RAM computation T[x](y). Then, for every k

0 � k, for every
memory mapping map = (i01, . . . , i

0
k0) ✓ [n], for every read-only RAM accessible input

x
0 = (x01, . . . , x

0
k0) such that

• map is ordered, i.e., 8j 2 [k0 � 1] then i
0
j < i

0
j+1,

• 8ij 2 Ix,y then ij 2 map,

• 8i0j 2 map, if i0j 2 Ix,y then x
0
j = xi0j

,

we have P
h
T[x](y) = Local.T[x0],[map](y)

i
= 1.

Invalid mapping: For every read-only RAM accessible input x = (x1, . . . , xn) and for every
arbitrary binary input y 2 {0, 1}⇤, let Ix,y = {i1, . . . , ik} be the ordered set of indexes
read from x during the RAM computation T. Then, for every memory mapping map =
(i01, . . . , i

0
k0) ✓ [n], for every read-only RAM accessible input x0 = (x01, . . . , x

0
k0) such that

• map is ordered, i.e., 8j 2 [k0 � 1] then i
0
j < i

0
j+1,

• 9ij 2 Ix,y such that ij 62 map,

• 8i0j 2 map then x
0
j = xi0j

,

we have P
h
Local.T[x0],[map](y) = ?

i
= 1.

Intuitively, perfect correctness says that Local.T[x0],[map](y) performs the same computation
as T[x](y) when map provides the correct mapping between x

0 and x for all the indexes Ix,y read
by T[x](y). (Observe that Definition 12 allows x

0 and map to additionally include blocks and
indexes not read by T[x]. Still, this does not a↵ect the computation of Local.T[x0],[map](y)).

On the other hand, invalid mapping says that Local.T[x0],[map](y) outputs ? when map does
not contain an index ij 62 map which, instead, is read by T[x](y). Looking ahead, this prop-
erty is fundamental to prove security of our verifiable data structure for univariate polynomial
evaluation (Section 5).

The following theorem states (whose proof appears in Appendix A.3) that any deterministic
RAM algorithm has its localized deterministic RAM algorithm. Moreover, the theorem also
explicates the running time of the localized RAM algorithm in terms of the running time of the
original one.

Theorem 3. If there exists a deterministic RAM algorithm T, then there exists a deterministic
RAM algorithm Local.T which is the localized version of T (Definition 12). In addition, for every
read-only RAM accessible input x, arbitrary binary input y, read-only RAM accessible input x0,

20This is essentially identical to how virtual memories work in practice.

18

and read-only RAM accessible memory mapping map, the running time of Local.T[x0],[map](y) is
at most t · log(|map|) where t is the running time of T[x](y). The running times of both T and
Local.T are measured in the RAM model of computation.

For the sake of clarity, in the remaining sections we drop the oracle notation [x] used to
denote a RAM accessible input. Thus, we will write Local.T(y, x) (instead of Local.T[x](y))
when it is clear that x is the RAM accessible input.

5 Verifiable DS for Univariate Polynomial Evaluation

We extend the notion of DS for univariate polynomial evaluation (introduced in Section 3.4)
by making it verifiable, i.e., making it possible to check that y = f(x). Intuitively, the syntax
of verifiable DS (VDS, in short) for univariate polynomial evaluation is analogous to that of
(non-verifiable) DS except that the evaluation algorithm produces a proof ⇡ that can later be
verified by the corresponding verification algorithm Verify. To make the verification process
work, a VDS also has some public parameters pp (taken as input by all algorithms) and a digest
h that is a succinct representative value of the data structure D.

Formally, a VDS for evaluation of univariate polynomials is composed of the following
polynomial-time algorithms:

Setup(1�): On input the security parameter 1�, the randomized setup algorithm outputs the
public parameters pp.

GenData(pp, f, p): On input the public parameters pp, a univariate polynomial f(X) =
Pd

i=0 ai ·
X

i 2 Zp[X] (of degree d 2 N) and a prime p 2 N, the deterministic data structure
generation algorithm outputs a data structure D, a digest h (of the data structure D), and
auxiliary information aux (required to compute proofs of correctness).

Eval(pp, x,D, aux): On input the public parameters pp, a point x 2 Zp, a data structure D, and
auxiliary information aux, the deterministic evaluation algorithm outputs y 2 Zp and a
proof ⇡.

Verify(pp, h, x, y,⇡): On input the public parameters pp, a digest h, a point x 2 Zp, a value
y 2 Zp and a proof ⇡, the deterministic verification algorithm outputs a decision bit
b 2 {0, 1}.

We assume that p is a prime (thus, Zp is a field of prime order) for simplicity, since our PoRep
will leverage such fields.

A VDS must satisfy the standard notions of correctness and completeness. The former says
that VDS allows one to correctly compute y = f(x), whereas the latter says that honestly
generated proofs always verify. Di↵erently from non-verifiable DS, a VDS additionally needs to
satisfy soundness in order to be considered secure. At a high level, it is infeasible for a malicious
evaluator to produce a proof ⇡ that verifies with respect to an incorrect output y 6= f(x).

Definition 13 (Perfect correctness of VDS). A VDS ⇧ = (Setup,GenData,Eval,Verify) for
evaluation of univariate polynomials is perfectly correct if 8� 2 N, 8 prime p 2 N, 8f(X)
2 Zp[X], 8x 2 Zp, the following probability holds:

P

2

4y = f(x) :
pp $ Setup(1�)

(D, h, aux) = GenData(pp, f, p)
(y,⇡) = Eval(pp, x,D, aux)

3

5 = 1

19

Definition 14 (Perfect completeness of VDS). A VDS ⇧ = (Setup,GenData,Eval,Verify) for
evaluation of univariate polynomials is perfectly complete if 8� 2 N, 8 prime p 2 N, 8f(X)
2 Zp[X], 8x 2 Zp, the following probability holds:

P

2

4Verify(pp, h, x, y,⇡) = 1 :
pp $ Setup(1�)

(D, h, aux) = GenData(pp, f, p)
(y,⇡) = Eval(pp, x,D, aux)

3

5 = 1

Definition 15 (Soundness of VDS). A VDS ⇧ = (Setup,GenData,Eval,Verify) for evaluation
of univariate polynomials (✏)-sound if for every valid PPT adversary A, the following probability
holds:

P

2

4Verify(pp, h, x, y,⇡) = 1 ^ y 6= f(x) :
pp $ Setup(1�)

(x, y,⇡, f, p) $ A(1�, pp)
(D, h, aux) = GenData(pp, f, p)

3

5  ✏.

An adversary A is called valid if p 2 N is a prime and f(X) 2 Zp[X].21

Observe that the above definition is fully adaptive even if A does not take as input the tuple
(D, h, aux). This is because GenData is deterministic.

Lastly, we extend the notion of e�ciency with (�)-expansion of DS (see Definition 7) to the
setting of VDS. The only di↵erence is that (i) we consider a doubly-e�cient VDS where both
evaluation and verification run in time poly-logarithmic in the degree d of the polynomial, and
(ii) the expansion is defined as � = |D|+|aux|

|f(X)| , i.e., we consider as expansion any information

(that depends on f(X)) required for evaluation which is capable of computing y = f(x) and
its corresponding proof ⇡ (observe that the computation of ⇡ requires knowledge of aux).22 We
do not include the public parameters pp in the expansion factor since they only depend on the
security parameter.

Definition 16 (Double-e�ciency with (�)-expansion of VDS). A VDS ⇧ = (Setup,GenData,
Eval,Verify) for evaluation of univariate polynomials is doubly-e�cient with (�)-expansion if the
following conditions hold:

(�)-expansion: The size of (D, aux) (output by GenData(pp, f, p)) is bounded by |f(X)| · � =
(d+1) log(p) ·� where d is the degree of f(X) 2 Zp[X] and log(p) is the size of a coe�cient
ai 2 Zp of f(X). The expansion parameter � may depend on the security parameter �,
the degree d of f(X), and bit length log(p) of p.

E�cient evaluation and verification: Both Eval and Verify have (worst-case) running time
poly(�, log(d), log(p)) where d is the degree of f(X) 2 Zp[X] and log(p) is the size of a
coe�cient ai 2 Zp of f(X) (recall that f(X) and p are given in input to GenData). The
running time of both Eval and Verify is measured in the RAM model of computation.

5.1 (Doubly-e�cient) VDS from DS and VC

We build a doubly-e�cient VDS (Section 5 and Definition 16) from any e�cient DS for eval-
uation of univariate polynomials (Section 3.4 and Definition 7) and e�cient VC schemes (Sec-
tion 3.3 and Definition 3). At a high level, the construction leverages the fact that a verifier

21We assume that p (output by A) is a prime only because we will leverage fields of prime order when building
our PoRep scheme. Hence, this definition can be extended to any field (e.g., composite p).

22Recall that in DS the only additional information was the expansion of D introduced to handle fast evaluation.
See Definition 16.

20

can check y
?
= f(x) by using Local.EvalDS which is the (deterministic) localized RAM version

of the (deterministic) RAM evaluation algorithm of DS (see Definition 12) as described in the
technical overview (Section 1.2). The formal construction follows.

Construction 1. Consider the following ingredients:

1. A DS scheme ⇧DS = (GenDataDS,EvalDS) for evaluation of univariate polynomials. With-
out loss of generality, we assume that the output space of GenDataDS is {0, 1}`·z, i.e.,
the (read-only RAM accessible) data structure D = (D1, . . . ,D`) is composed of ` = `(d)
blocks each of size z (for some arbitrary z 2 N).23 Observe that the degree d of f(X)
(the polynomial given in input to GenDataDS) a↵ects the length of the data structure D
(see Corollary 3) and, for this reason, ` = `(d) is a function of d.

2. A deterministic RAM algorithm Local.EvalDS that is the localized version of the determin-
istic RAM algorithm EvalDS of ⇧DS (Definition 12).

3. A VC scheme ⇧VC = (SetupVC,CommitVC,OpenVC,VerifyVC) with message space {0, 1}z
where z is the block size of the output space of GenDataDS (as defined in Item 1).

We build a VDS scheme ⇧ for evaluation of univariate polynomials as follows:

Setup(1�): On input the security parameter 1�, the randomized setup algorithm outputs pp =
ppVC $ SetupVC(1

�).

GenData(pp, f, p): On input the public parameters pp = ppVC, a univariate polynomial f(X)
=

Pd
i=0 ai · Xi 2 Zp[X] of degree d, and a prime p 2 N, the deterministic data struc-

ture generation algorithm computes D = (D1, . . . ,D`) = GenDataDS(f, p) and (c, aux) =
CommitVC(ppVC, (D1, . . . ,D`)) (recall that ` = `(d)). Finally, it outputs the data structure
D, the digest h = c, and the auxiliary information aux.

Eval(pp, x,D, aux): On input the public parameters pp = ppVC, a point x 2 Zp, a data struc-
ture D, and auxiliary information aux, the deterministic evaluation algorithm proceeds as
follows:

1. Execute EvalDS(x,D) = y and let Ix,D = {i1, . . . , ik} be the ordered set of indexes read
from D during the computation EvalDS(x,D) (recall that EvalDS is a RAM algorithm.
See Definitions 10 and 11).

2. For j 2 Ix,D, compute ⇡j = OpenVC(ppVC,Dj , j, aux).

Finally, it outputs y 2 Zp and ⇡ = (Ix,D, {Dj}j2Ix,D , {⇡j}j2Ix,D).

Verify(pp, h, x, y,⇡): On input the public parameters pp = ppVC, a digest h = c, a point x 2 Zp, a
value y 2 Zp, and a proof ⇡ = (Ix,D, {Dj}j2Ix,D , {⇡j}j2Ix,D), the deterministic verification
algorithm proceeds as follows:

1. Check that |Ix,D|  ` and Ix,D = {i1, . . . , ik} is ordered. If not, return 0.

2. For j 2 Ix,D, compute VerifyVC(ppVC, c,Dj , j,⇡j) = bj.

3. Execute the localized algorithm Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y
0 where map =

(i1, . . . , ik).24

23This means that a z-bit size block of D can be read in constant time in the RAM model of computation.
24Recall that Local.EvalDS(x, (Di1 , . . . ,Dik),map) corresponds to Local.Eval

[Di1
,...,Dik

],[map]

DS
(x) using the oracle

abstraction introduced in Section 4.

21

Finally, the verification algorithm outputs 1 if y = y
0 and bj = 1 for every j 2 Ix,D.

Otherwise, it outputs 0.

Below, we report the results regarding correctness, completeness, and soundness of Construc-
tion 1. The formal proofs appear in Appendices A.4 and A.5.

Theorem 4. Let ⇧DS, Local.EvalDS, and ⇧VC be as defined in Construction 1. If ⇧DS is
perfectly correct (Definition 6) then ⇧ of Construction 1 is perfectly correct (Definition 13). If
⇧VC is perfectly correct (Definition 4) and Local.EvalDS is perfectly correct (Definition 12) then
⇧ of Construction 1 is perfectly complete (Definition 14).

Theorem 5. Let ⇧DS, Local.EvalDS, and ⇧VC as defined in Construction 1. If ⇧DS is perfectly
correct (Definition 6), Local.EvalDS satisfies the invalid mapping property (Definition 12), ⇧VC

is perfectly correct (Definition 4) and (✏VC)-position binding (Definition 5), then ⇧ from Con-
struction 1 is (` · ✏VC)-sound.

Construction 1 is doubly-e�cient if both the underlying DS and VC scheme are e�cient.
Moreover, the expansion factor of Construction 1 depends on the expansion factor of DS and
the size of aux generated by the VC scheme (observe that aux is needed to correctly compute a
proof ⇡). Below, we state the formal result whose proof is deferred to Appendix A.7.

Theorem 6. If ⇧DS is e�cient with (�DS)-expansion (Definition 7) and ⇧VC is e�cient (Def-

inition 3) then ⇧ of Construction 1 is doubly-e�cient with (�)-expansion for � = �DS +
|aux|
|f(X)| ,

where f(X) is the univariate polynomial taken into account and aux is the auxiliary information
generated by ⇧VC.

The following corollary is obtained by combining Theorem 6 and Corollaries 2 and 3 (see Ap-
pendix A.6 for the formal proof).

Corollary 5. Under the collision-resistant hash function assumption, for every positive constant
� > 0, there exists a VDS for evaluation of univariate polynomials that is (negl(�))-sound and
doubly-e�cient with (�)-expansion for � = 2(d+1)� logo(1)(p) where log(p) and d are the size of
the prime p and the degree of f(X) 2 Zp (given in input to GenData), respectively. Moreover,
we have that |h| = �, i.e., digests are succinct.

6 Proof-of-Replication

A proof-of-replication (PoRep) scheme allows a verifier to e�ciently check that a prover is using a
significant amount of space to store an arbitrary message m 2M.25 The space required to store
m must be su�ciently large even if m is highly compressible. Moreover, PoRep guarantees that
m can be retrieved if the prover passes the verification process. PoRep was previously proposed
in [31]. Our syntax and security definitions below generally capture the same properties, but
they are tailored to reflect the objectives and contributions of this work.

Formally, we define a PoRep scheme with message space M, identifier space I, and challenge
space C to consist of the following polynomial-time algorithms:26

Setup(1�, 1t, 1n): On input the security, time, and memory parameters (1�, 1t, 1n), the random-
ized setup algorithm outputs a public encoding key ek, a public proving key pk, and a
public verification key vk.

25We use the term “message” to refer to a file that needs to be stored.
26Following [31], if needed, one can consider PoRep scheme with an additional message preprocessing algo-

rithm (e.g., encryption of the message) executed by the data owner, or a polling algorithm when challenges are
structured.

22

Encode(ek,m, id): On input the public encoding key ek, a message m 2 M, and an identifier
id 2 I (for the message m), the deterministic encoding algorithm outputs an encoding c
(of the message m with associated identifier id) and a digest h (of the encoding c).

Prove(pk, chall, c): On input the public proving key pk, a challenge chall 2 C, and an encoding
c, the deterministic proving algorithm outputs a proof ⇡.

Verify(vk, h, chall,⇡): On input the public verification key vk, a digest h, a challenge chall, and
a proof ⇡, the deterministic algorithm outputs b 2 {0, 1}.

Decode(ek, c, id): On input the public encoding key ek, an encoding c, and an identifier id 2 I,
the deterministic decoding algorithm outputs m 2M.27

We require a PoRep scheme to satisfy the standard notions of correctness and completeness. The
former says that an honest execution (of PoRep’s algorithms) allows for the correct decoding of
the message, whereas the latter says that honest proofs always verify.

Definition 17 (Perfect correctness of PoRep). A PoRep ⇧ = (Setup,Encode,Prove,Verify,
Decode) with message space M, identifier space I, and challenge space C is perfectly correct if
8� 2 N, 8t 2 N, 8n 2 N 8m 2M, 8id 2 I, the following probability holds:

P

Decode(ek, c, id) = m :

(ek, pk, vk) $ Setup(1�, 1t, 1n)
(c, h) = Encode(ek,m, id)

�
= 1.

Definition 18 (Perfect completeness of PoRep). A PoRep ⇧ = (Setup,Encode,Prove,Verify,
Decode) with message space M, identifier space I, and challenge space C is perfectly complete
if 8� 2 N, 8t 2 N, 8n 2 N, 8m 2M, 8id 2 I, 8chall 2 C, the following probability holds:

P

2

4Verify(vk, h, chall,⇡) = 1 :
(ek, pk, vk) $ Setup(1�, 1t, 1n)

(c, h) = Encode(ek,m, id)
⇡ = Prove(pk, chall, c)

3

5 = 1.

In addition, we are interested in PoRep protocols that are doubly-e�cient, i.e., the running
times of both Prove and Verify are poly-logarithmic in the size |m| of m in the RAM model
of computation. This is fundamental to having a fast auditing phase (the main objective of
this work). Analogous to VDS, the encoding c may be larger than m to achieve the above
double-e�ciency property. Thus, we extend the notion of (�)-expansion to PoRep except that

� is defined with respect to |m|, i.e., � = |c|
|m| (this means that |c| = |m| · �).

Definition 19 (Double-e�ciency with (�)-expansion of PoRep). A PoRep ⇧ = (Setup,Encode,
Prove,Verify,Decode) with message space M, identifier space I, and challenge space C is doubly-
e�cient with (�)-expansion if the following conditions hold:

(�)-expansion: The size of c (output by Encode(ek,m, id)) is bounded by |m| · � where m is
the encoded message. The expansion parameter � may depend on the security parameter
� and the size |m| of m.

E�cient proving and verification: Both Prove and Verify have (worst-case) running time
poly(�, log(|m|)) where |m| is the size of the encoded message m 2 M (recall that m is
given as input to Encode). The running times of both Prove and Verify are measured in
the RAM model of computation.

We now turn to security. A PoRep must satisfy two notions, named replication and extrac-
tion, which we formally define in the remainder of this section.

27Note that Decode takes as input the encoding c. This implies that Decode is executed by the prover (i.e.,
the encoding holder) when asked to return the encoded message m.

23

G
replicate

A,⇧ (�, t, n, u)

(ek, pk, vk) $ Setup(1�, 1t, 1n)

(m1, . . . ,mu, state) $ A1(1
�, ek, pk, vk)

(id1, . . . , idu) $ Iu

8i 2 [u], (ci, hi) = Encode(ek,mi, idi)

↵ $ A2(1
�, (idi, hi, ci)i2[u], state)

chall $ C
(⇡1, . . . ,⇡u) $ A3(1

�, ek, pk, vk, (idi)i2[u], chall,↵)

If 8i 2 [u], Verify(vk, hi, chall,⇡i) = 1 ^ |↵|  n : return 1
Otherwise : return 0

Figure 1: Experiment Greplicate

A,⇧ (�, t, n, u) defining (✏,�, n, u)-replication of PoRep (Defini-
tion 20). The experiment is parametrized by the security parameter �, the time parameter
t (defining the parallel running time of Encode), the memory parameter n (defining the min-
imum memory usage, i.e., |↵|  n), and the number of messages u of the experiment. In
addition, ✏ and � = �(t) of (✏,�, n, u)-replication are the maximum advantage of the adversary
A = (A1,A2,A3) and the maximum parallel running time of A3, respectively.

Replication of PoRep. In a nutshell, a PoRep must force a prover to use memory of size n (to
store m 2M) in order to produce a proof that verifies. For any adversarially chosen message m,
an adversary cannot compress an honestly computed encoding c (output by Encode(ek,m, id))
into a string ↵ (i.e., the memory) of size n while passing the verification process. The same
guarantee must hold even if the adversary is required to store u > 1 (possibly identical) messages
(m1, . . . ,mu) and pass the verification for each of those messages. In this case, the memory
bound n = n(u) is a function of the number of messages u (optimally we would like n to scale
linearly in u).

As discussed in the technical overview, we consider trapdoorless PoRep. Thus, the above
notion cannot be achieved without restricting the behavior of the adversary (see the PRF-based
attack described in Section 1.2).

For this reason, we consider PoRep with a “slow” encoding algorithm Encode (the slowness
of Encode can be tuned by setting the time parameter t chosen during Setup), and we restrict
the adversary to produce a valid proof in less time than required to execute Encode. In the
trapdoorless setting, several works [30, 29, 11, 50, 6, 48, 31] have considered adversaries with
restricted running time. The formal definition follows.

Definition 20 (Replication of PoRep). Let �(�, t, n) = � be a polynomial function of the
security parameter �, the time parameter t, and the memory bound n, and let n(�, u) = n

be a function that depends on the security parameter � and the number of messages u 2 N.
A PoRep ⇧ = (Setup,Encode,Prove,Verify,Decode) with message space M, identifier space
I, and challenge space C satisfies (✏,�, n, u)-replication if for every valid PPT adversary A =

(A1,A2,A3), we have P
h
Greplicate

A,⇧ (�, t, n, u) = 1
i
 ✏ where Greplicate

A,⇧ is depicted in Figure 1.

An adversary A = (A1,A2,A3) is called valid if A3 runs in parallel time � with poly(t)
processors.28

Observe that both A1 and A2 are unrestricted; thus, they can perform any polynomial-time
computation (even running Encode over multiple adversarially chosen messages and identifiers).
Also, in addition to ↵, A3 takes as input anything that is not produced by Encode. This

28Notice that a winning adversary for Definition 20 must output ↵ such that |↵|  n, i.e., it tries to produce
valid proofs while saving memory.

24

means that A2 only needs to encode in ↵ (in a compressed fashion) Encode’s output. Finally, we
associate a random but public identifier id only after A1 has committed to the challenge message
m (note that both A2 and A3 take id as input). This allows Encode to have some randomness
(i.e., the identifier) which is not correlated to the chosen message m, allowing it to produce an
incompressible encoding c which is fundamental in order to achieve Definition 20.29 Practical
implementations of random identifiers in decentralized systems (such as blockchain systems) are
random beacons, hashing the last blocks of a blockchain, or hashing the message mi together
with its index i, i.e., idi = H(mi, i).

Remark 2 (On the honest execution of Encode). In Definition 20, we assume that Encode
is honestly executed. This is because the digest h is fundamental in order to have a sound
verification process (as h provides a binding guarantee on the original m). However, this setting
is not compatible with decentralized scenarios (e.g., blockchain systems) in which the prover
(which can be malicious) is entitled to run Encode. Still, we highlight that standard techniques
for verifying computations (such as SNARKs) can be used to e�ciently verify that h has been
honestly computed (note that h’s computation does not require any secret, making verification
easier).30 In other words, Encode will output a SNARK proof ⇡ to demonstrate that the encoding
has been honestly executed (note that this does not a↵ect the doubly-e�cient property of PoRep
(Definition 19) since the latter bounds the proof generation and verification of the auditing phase
which is executed only after the verification of the encoding phase). For the sake of exposition,
we choose not to deal with malicious executions of Encode since the main objective of this paper
is to propose a novel approach for the PoRep verification phase. For completeness, we stress that
Fisch’s work [31] does not assume a trusted encoding since it proposes a probabilistic verification
for checking the encoding correctness.

Memory gap of PoRep. The memory gap of PoRep is defined as the distance between
the sizes |m1| + . . . + |mu| of the u messages to be stored and the maximum parameter n for
which the PoRep satisfies replication (with respect to u messages) with negligible adversarial
advantage (formally, (negl(�),�, n, u)-replication for some �). The notion of gap is useful for
comparison between di↵erent PoRep schemes.

Definition 21 ((⌘)-gap of PoRep). A PoRep ⇧ = (Setup,Encode,Prove,Verify,Decode) with
message space M, identifier space I, and challenge space C has (⌘)-gap if ⇧ satisfies (negl(�), n,
�, u)-replication and n = (1 � ⌘)(u · log(|M|)) where log(|M|) is the length of the messages
supported by ⇧. The gap parameter ⌘ = ⌘(�, u, log(|M|)) can depend on the security parameter
�, the number of encoded messages u, and the length of the supported messages log(|M|).

Intuitively, the smaller the gap, the better the robustness of the PoRep scheme. This is
because an adversary, to pass the verification with non-negligible probability, is forced to use
memory that is close to the sizes of the u messages which it is entitled to store (where closeness
is defined by the gap parameter ⌘).

Remark 3 (On our space gap notion). We consider a scenario wherein security is maintained
against adversaries who store a fraction of the file considered insu�ciently small. Our defi-
nition intuitively encapsulates this setting. It is noteworthy that our concept of a space gap
diverges from that presented in [31], where the gap quantifies the storage discrepancy between

29If m is correlated to id, then c has no chance to be incompressible, as Encode is deterministic.
30We mention that a straightforward application of a SNARK to prove that Encode was executed correctly

would require the heuristic instantiation of an RO through the circuit of a concrete hash function. (This is a
non-standard but common technique; see [53].) This is because the RO is used both in our modular constructions
(explicitly) and in the MHF (implicitly, for common instantiations).

25

honest and dishonest providers. Moreover, the (⌘)-gap for our framework, as per Fisch’s con-
ceptualization [31], can be determined by the divergence (as specified in Definition 21) between
n (from (negl(�), n,�, u)-replication) and u · |m| · �, where � signifies the expansion coe�cient
(Definition 19) inherent to our schemes (explicitly, ⌘ is such that n = (1� ⌘)u · |m| · �). Refer
to Table 1 for more details.

Extractability of PoRep. We now turn to extraction. PoRep is extractable if there is a
universal extractor Ext that, given (ek, vk, h, id) and oracle access to the adversary, is able to
extract the encoded message m. Naturally, this must hold only when the adversary is able
to produce verifying proofs with respect to h, i.e., the digest of the encoding of m. We use a
standard definition of extraction, considering (i) universal PPT extractors, and (ii) adversaries
with noticeable (i.e., non-negligible) probability in producing verifying proofs.31

G
extract

A,Ext,⇧(�, t, n, u)

(ek, pk, vk) $ Setup(1�, 1t, 1n)

(m1, . . . ,mu, state) $ A1(1
�, ek, pk, vk)

(id1, . . . , idu) $ Iu

8i 2 [u], (ci, hi) = Encode(ek,mi, idi)

↵ $ A2(1
�, (idi, hi, ci)i2[u], state)

(m0
1, . . . ,m

0
u) $ Ext

A3(·)(1�, ek, vk, (hi, idi)i2[u])

If 8i 2 [u], m0
i = mi : return 1

Otherwise : return 0

Figure 2: Experiment defining extractability of PoRep. The extractor Ext ofGextract

A,Ext,⇧(�, t, n, u)

has oracle access to A3(·) which is defined as A3(·) = A3(1�, ek, pk, vk, (idi)i2[u], ·,↵), i.e., Ext
can only submit challenges chall 2 C to A3(·).

Below, we report the formal definition of extraction of PoRep. For the sake of clarity, we directly
define extraction in the asymptotic setting since the definition only depends on � (i.e., we do
not put any time and memory restriction on the adversary except from being polynomial in �).

Definition 22 (Extractability of PoRep). A PoRep ⇧ = (Setup,Encode,Prove,Verify,Decode)
with message space M, identifier space I, and challenge space C is extractable if there exists
an universal PPT extractor Ext such that 8� 2 N, 8t 2 poly(�), 8n 2 poly(�), 8u 2 poly(�),
8n 2 poly(�), and for every PPT adversary A = (A1,A2,A3), the following condition holds:

P
h
Greplicate

A,⇧ (�, t, n, u) = 1
i
� 1

poly(�)
=)

P
⇥
Gextract

A,Ext,⇧(�, t, n, u) = 1
⇤
� 1� negl(�), (1)

where the experiments Greplicate

A,⇧ (�, t, n, u) and Gextract

A,Ext,⇧(�, t, n, u) are depicted in Figure 1 and
Figure 2, respectively. We stress that A does not need to be valid with respect to experiment
Greplicate

A,⇧ (�, t, n, u) as defined in Definition 20 (i.e., Ext is able to extract independently from the
running time and the memory used by the adversary).

We highlight that the head of the implication (Equation (1)) implies that the adversary

passes the verification with non-negligible probability (see experiment Greplicate

A,⇧ (�, t, n, u) in Fig-

ure 2). Moreover, Ext ofGextract

A,Ext,⇧(�, t, n, u) (Figure 2) has only oracle access to A3 and no a-priori
knowledge about (m1, . . . ,mu) (the messages that Ext needs to extract).

31If the adversary passes the verification with negligible probability then extraction cannot be guaranteed.
Indeed, any adversary (even one that does not know m) can pass the verification with negligible probability by
simply guessing the verifying proof ⇡.

26

Remark 4 (Alternative Syntax of PoRep). We explore an alternative version of PoRep ca-
pable of encoding multiple (u) messages concurrently. In this variant, the encoding of each
message, denoted as ci, may rely on the identifiers of other messages. Formally, given an en-
coding key ek, u identifiers (id1, . . . , idu), and u messages (m1, . . . ,mu), the encoding function
Encode(ek, (idi)i2[u], (mi)i2[u]) produces u encodings (ci)i2[u] and u digests (hi)i2[u]. Proof gener-
ation and verification processes remain individualized for each encoding, i.e., Prove(pk, chall, ci) =
⇡ and Verify(vk, hi, chall,⇡) = b. Decoding any single encoding ci necessitates all u identifiers
used in the encoding phase, i.e., Decode(ek, ck, (idi)i2[u]) = mk. This PoRep variant’s secu-
rity definitions, as introduced earlier, are appropriately extended. In Section 6.1, we present a
PoRep construction based on this syntax, achieving an improved memory bound n for (✏,�, n, u)-
replication.

6.1 Constructions

Next, we present two PoRep constructions. At a high level, our first construction compels a
prover to utilize memory n ⇡ min{nMHF, u · |m|}, where nMHF is the memory bound imposed
by the MHF, and u is the number of messages stored. To enforce the optimal memory bound
of ⇡ u · |m|, this framework mandates setting nMHF � u · |m|, achievable with an established
a-priori maximum for the message count umax (this approach is denoted as the bounded PoRep).

Subsequently, we outline an unbounded PoRep that attains n ⇡ min{u · nMHF, u · |m|}.
Therefore, it can ensure the optimal memory usage of ⇡ u · |m| regardless of the bounds on
u, by simply adjusting nMHF � |m|. This latter construction adheres to the alternative syntax
highlighted in Remark 4.

First Construction: Bounded Number of Messages We devise a bounded PoRep scheme
leveraging a single-instance MHF with input-dependent preprocessing, VDS, and a hash function
H, modeled as a RO.

Construction 2 (Bounded PoRep). Consider the following ingredients:

1. A prime p of (sp + 1)-bits and a prime q of (sq)-bits where q  p (by definition Zq ✓ Zp

when q  p), sp(�) = sp and sq(�) = sq are two polynomials in the security parameter.
We assume that sq is at least !(log(�)) w.l.o.g.

2. An MHF scheme ⇧MHF = (SetupMHF,EvalMHF) with input space XMHF and output space
YMHF, and a VDS ⇧VDS = (SetupVDS,GenDataVDS,EvalVDS,VerifyVDS) for evaluation of
univariate polynomials.

3. A hash function H : YMHF ⇥ XMHF ! {0, 1}d·sp modeled as a RO.

We build a PoRep scheme ⇧ with message space M = {0, 1}d·sp (for any d < q), identifier space
I = XMHF, and challenge space C = Zq, as follows:

Setup(1�, 1t, 1n): On input the security, time, and memory parameters (1�, 1t, 1n), the random-
ized setup algorithm outputs a public encoding key ek = (ppMHF, ppVDS), a public proving
key pk = ppVDS, and a public verification key vk = ppVDS where ppMHF $ SetupMHF(
1�, 1t, 1n) and ppVDS $ SetupVDS(1

�).

Encode(ek,m, id): On input the public encoding key ek = (ppMHF, ppVDS), a message m 2
{0, 1}d·sp, and an identifier id 2 I (for the message m), the deterministic encoding al-
gorithm computes v = EvalMHF(ppMHF, id) and r = H(v, id). In addition, it computes

27

r �m = f(X) 2 Zp[X] (i.e., r �m is interpreted as a random polynomial f(X) of de-
gree d � 1 from Zp[X]) and (h,D, aux) = GenDataVDS(ppVDS, f, p). Finally, it returns
c = (D, aux) and h.

Prove(pk, chall, c): On input the public proving key pk = ppVDS, a challenge chall = x 2 C,
and the encoding c = (D, aux), the deterministic proving algorithm outputs a proof ⇡ =
(y,⇡0) = EvalVDS(ppVDS, x,D, aux).

Verify(vk, h, chall,⇡): On input the public verification key vk = ppVDS, a digest h, a challenge
chall = x 2 C, and a proof ⇡ = (y,⇡0), the deterministic verification algorithm outputs
b = VerifyVDS(ppVDS, h, x, y,⇡

0).

Decode(ek, c, id): On input the public encoding key ek = (ppMHF, ppVDS), an encoding c =
(D, aux), and an identifier id 2 I, the deterministic decoding algorithm proceeds as follows:

• For every i 2 [d], compute (yi,⇡i) = EvalVDS(ppVDS, i,D, aux) (recall that d < q thus
d 2 Zq = C).32

• Compute a polynomial f 0(X) 2 Zp[X] of degree d � 1 by running Lagrange interpo-
lation on the points (1, . . . , d) and the evaluations (y1, . . . , yd).

Finally, it outputs m = H(EvalMHF(ppMHF, id), id)� f
0(X).

Correctness, completeness, and double-e�ciency trivially follow from that of VDS, so we omit
the proof.

Theorem 7. Let ⇧VDS be as defined in Construction 2. If ⇧VDS is perfectly correct (Defini-
tion 13) and doubly-e�cient with (�)-expansion (Definition 16), then ⇧ of Construction 2 is
perfectly correct, perfectly complete, and doubly-e�cient with (�)-expansion.

As for replication and extraction, we establish the following results (Theorems 8 and 9) whose
proofs appear in Appendices A.8 and A.9.

Theorem 8. Let ⇧VDS be as defined in Construction 2. If ⇧VDS is (negl(�))-sound (Defini-
tion 5), then ⇧ of Construction 2 is extractable.

Theorem 9. Let sp(�) = sp, sq(�) = sq, p, q, ⇧MHF, ⇧VDS, and H be as defined in Construc-
tion 2. For every � 2 N, d 2 N, u 2 N, c 2 N such that c < d(u · sp � sq), under

• the existence of an (✏PRF)-secure ⇧PRF = (KGenPRF,FPRF) scheme with input space YMHF⇥
XMHF and output space {0, 1}d·sp (Definition 9),

• (✏MHF,�MHF, nMHF)-security of ⇧MHF (Definition 1),

• (✏VDS)-soundness of ⇧VDS (Definition 15),

then ⇧ of Construction 2 satisfies (✏,�MHF, n, u)-replication (Definition 20) in the ROM for
n = min{nMHF, d(u · sp � sq) � c}, and ✏ = ✏PRF + u · qH · ✏MHF + u

|XMHF| + u · ✏VDS + d�1
|Zq | +

1
2c

where qH is the number of queries submitted to the RO H.
32We set d < q to guarantee that the challenge space C contains at least d challenges required for re-computing

f(X) using Langrange interpolation.

28

Remark 5 (On the Need of Assuming PRFs in Theorem 9). Surprisingly, Theorem 9 holds
under the existence of a secure PRF even if Construction 2 does not involve a PRF at all.
The reason behind the need of a PRF is due to the combination of the ROM with experiments
(defining the security of a primitive) in which a multi-stage adversary is restricted to sharing a
state of bounded size. Examples of such experiments are Definitions 1 and 20 and Theorem 2 in
which there is a first adversary that passes to a second adversary a pre-computed state ↵ (i.e., the
memory) which is bounded by some parameter n � |↵|. For the sake of concreteness, consider
a multi-stage reduction A0 = (A01,A

0
2) that wins against the MHF experiment of Definition 1 by

using (in a black-box fashion) a multi-stage algorithm A = (A1,A2,A3) against the replication
experiment of Definition 20 (this is exactly Lemma 11 of the proof of Theorem 9). In order
to correctly simulate A’s view, A0 must answers to all the RO queries consistently. To do so,
A must share a state which contains the mapping between the inputs/outputs of the simulated
RO. However, A01 and A02 can only share a state |↵|  n whereas A may submit any a-priori
unknown number of RO queries which may require more than n bits to be stored. This means
that A02 (the one that receives |↵| from A01) may fail in replying consistently to the RO queries
if A submits a particular query twice (submit the same query to both A01 and A02). To overcome
this problem, we use a PRF that allows A0 to compress the inputs/outputs of the RO by sharing
a short PRF key k between A01 and A02. In this way, A01 and A02 can answer consistently by
replying with F(k, x) when they receive a RO query x. This is exactly why we need a PRF to
prove Theorem 9 (see Lemma 11 of Theorem 9 for more details about the proof).

The following corollary (see Appendix A.10 for the formal proof) demonstrates that Con-
struction 2 enforces a memory usage of n = d(u · sp� sq)� c (the bound due to our polynomial
evaluation technique) if there is an a-priori bound umax on the number of messages u ((this
allows setting nMHF � d(u · sp � sq) � c in Theorem 9). The corollary also reports the (⌘)-gap
of Construction 2.

Corollary 6. Consider an a-priori known upper bound umax 2 poly(�) on the number of mes-
sages and let u  umax be the number of messages stored by a prover. Under the collision-
resistant hash function assumption, for every positive constant �1, �2 > 0, and for every d 2
poly(�), there exists a PoRep scheme with message space {0, 1}d·�1+�1 (i.e., |m| = d · �1+�1),
identifier space {0, 1}�, and challenge space {0, 1}� that satisfies (negl(�),�, n, u)-replication,
extraction, and double-e�ciency with (�)-expansion in the parallel ROM, where n = d · u ·
�
1+�1� (d+1) ·� ⇡ u · |m|, � = 2 ·d�2 ·�o(1)(1+�1), and � = ⌦(`), where ` is the number of blocks

of the last layer of the DRG of the underlying MHF scheme. The (⌘)-gap of the aforementioned

PoRep scheme is defined as ⌘ = O

⇣
1

u·��1

⌘
.

Second construction: unbounded number of messages. Next, we propose a construc-
tion that supports an unbounded number of messages u. This construction follows the syntax
defined in Remark 4 and requires a multi-instance MHF (Definition 2) and an RO H that
supports inputs of arbitrary (polynomial) size.

Construction 3 (Unbounded PoRep). Consider the following ingredients:

1. Let p, q, sp, sq, ⇧MHF, and ⇧VDS be as defined in Construction 2,

2. A hash function H : {0, 1}⇤ ! {0, 1}d·sp supporting inputs of arbitrary (polynomial) size,
modeled as a RO.33

33A RO with input space {0, 1}n can be generically transformed into one supporting inputs of arbitrary (poly-
nomial) length by using a Merkle tree hashing style.

29

We build a PoRep scheme ⇧ with message space M = {0, 1}d·sp (for any d < q), identifier space
I = XMHF, and challenge space C = Zq, as follows:

Setup(1�, 1t, 1n), Prove(pk, chall, c), and Verify(vk, h, chall,⇡): As defined in Construction 2.

Encode(ek, (mi)i2[j], (idi)i2[j]): On input the public encoding key ek = (ppMHF, ppVDS), j mes-

sages (mi)i2[j] 2 {0, 1}d·sp·j (for some arbitrary j 2 N), and j identifiers (idi)i2[j] 2
Ij, the deterministic encoding algorithm computes vi = EvalMHF(ppMHF, idi) and ri =
Hu(v1, . . . , vj , idi) for i 2 [j]. In addition, for i 2 [j], it computes ri�mi = fi(X) 2 Zp[X]
and (hi,Di, auxi) = GenDataVDS(ppVDS, fi, p). Finally, it outputs j encodings (ci)i2[j] (each
encoding one of the j messages) and j digests (hi)i2[j] where ci = (Di, auxi).

Decode(ek, ck, (idi)i2[j]): On input the public encoding key ek = (ppMHF, ppVDS), an encoding
ck = (Dk, auxk) (for k 2 [j]), and j identifiers (idi)i2[j] 2 Ij,34 the deterministic decoding
algorithm proceeds as follows:

• For every i 2 [d], compute (yi,⇡i) = EvalVDS(ppVDS, i,Dk, auxk).

• Compute a polynomial f 0(X) 2 Zp[X] of degree d � 1 by running Lagrange interpo-
lation on the points (1, . . . , d) and the evaluations (y1, . . . , yd).

• For i 2 [j], compute vi = EvalMHF(ppMHF, idi).

Finally, it outputs mk = H(vi, . . . , vj , idk)� f
0(X).

Below, we report the (✏,�, n, u)-replication of Construction 3 (proof appears in Appendix A.11).
Correctness, completeness, double-e�ciency, and extraction are identical to that of Construc-
tion 2, and we refer the reader to Theorems 7 and 8 for more details.

Theorem 10. Let sp(�) = sp, sq(�) = sq, p, q, ⇧MHF, ⇧VDS, and H as defined in Construc-
tion 3. For every � 2 N, d 2 N, u 2 N, c 2 N such that c < d(u · sp � sq), under the

• the existence of an (✏PRF)-secure ⇧PRF = (KGenPRF,FPRF) scheme supporting inputs of
arbitrary (polynomial) size and output space {0, 1}d·sp (Definition 9),35

• (✏MHF,�MHF, nMHF)-multi-instance-security of ⇧MHF (Definition 2), and

• (✏VDS)-soundness of ⇧VDS (Definition 15),

then ⇧ of Construction 2 satisfies (✏,�MHF, n, u)-replication (Definition 20) in the ROM, for
n = min{u · nMHF, d(u · sp � sq) � c} and ✏ = ✏PRF + qH · ✏MHF + u

|XMHF| + u · ✏VDS + d�1
|Zq | +

1
2c ,

where qH is the number of queries submitted to the RO H.

Both arguments of the minimum function minu · nMHF, d(u · sp � sq)� c = n (as specified
in Theorem 10) scale with u. This allows Construction 3 to enforce the same replication of Con-
struction 2 even if the number of messages u is unbounded. We report the formal corollary whose
proof appears in Appendix A.12.

Corollary 7. The exists a PoRep scheme as defined in Corollary 6 where its (negl(�),�, n, u)-
replication holds for every (unbounded) u 2 poly(�).

34For correct decoding, the j identifiers must match those used during the execution of Encode, including idk

associated with mk, which generated the encoding ck. Additionally, it is implicitly assumed that k is known
during the decoding process.

35A PRF with input space {0, 1}n can be generically transformed into one supporting inputs of arbitrary
(polynomial) length by using a Merkle tree evaluation-style.

30

Acknowledgements

The authors thank Rosario Gennaro for valuable discussions and insights regarding the au-
thenticated data structure. Giuseppe Ateniese was supported by a gift from Protocol Labs
and partially by IARPA via the ReSCIND program; Foteini Baldimtsi was supported by NSF
#2143287 and #2247304; Danilo Francati was partially supported by the Carlsberg Founda-
tion under the Semper Ardens Research Project CF18-112 (BCM); Ioanna Karantaidou was
supported by a Protocol Labs Fellowship.

References

[1] Filecoin whitepaper (2017), https://filecoin.io/filecoin.pdf

[2] E↵ects of chia mining on hard drives (2023), https://platinumdatarecovery.com/blog/
chia-crypto-mining-can-kill-your-ssd-or-hard-drive

[3] Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-bound
functions. ACM Transactions on Internet Technology (TOIT) 5(2), 299–327 (2005)

[4] Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond hellman’s
time-memory trade-o↵s with applications to proofs of space. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II 23. pp. 357–379. Springer (2017)

[5] Alwen, J., Blocki, J.: E�ciently computing data-independent memory-hard functions. In:
Annual International Cryptology Conference. pp. 241–271. Springer (2016)

[6] Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On the com-
plexity of scrypt and proofs of space in the parallel random oracle model. In: Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II 35. pp. 358–387. Springer (2016)

[7] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard functions.
In: Proceedings of the forty-seventh annual ACM symposium on Theory of computing. pp.
595–603 (2015)

[8] Armknecht, F., Barman, L., Bohli, J.M., Karame, G.O.: Mirror: Enabling proofs of data
replication and retrievability in the cloud. In: 25th USENIX security symposium (USENIX
security 16). pp. 1051–1068 (2016)

[9] Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of
retrievability. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 831–843. ACM
Press (Nov 2014). https://doi.org/10.1145/2660267.2660310

[10] Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse multivariate polynomial interpola-
tion of straight-line programs. Journal of Symbolic Computation 75, 4–24 (2016)

[11] Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When space is of the
essence. In: Security and Cryptography for Networks: 9th International Conference, SCN
2014, Amalfi, Italy, September 3-5, 2014. Proceedings 9. pp. 538–557. Springer (2014)

31

https://filecoin.io/filecoin.pdf
https://platinumdatarecovery.com/blog/chia-crypto-mining-can-kill-your-ssd-or-hard-drive
https://platinumdatarecovery.com/blog/chia-crypto-mining-can-kill-your-ssd-or-hard-drive

[12] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.:
Provable data possession at untrusted stores. In: Proceedings of the 14th ACM conference
on Computer and communications security. pp. 598–609 (2007)

[13] Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of storage-time: E�ciently checking
continuous data availability. NDSS (2020)

[14] Ateniese, G., Chen, L., Francati, D., Papadopoulos, D., Tang, Q.: Verifiable capacity-
bound functions: A new primitive from kolmogorov complexity: (revisiting space-based
security in the adaptive setting). In: Boldyreva, A., Kolesnikov, V. (eds.) Public-Key
Cryptography – PKC 2023. vol. 13941 LNCS, pp. 63–93. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-31371-4 3

[15] Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and e�cient provable data
possession. In: Proceedings of the 4th international conference on Security and privacy in
communication netowrks. pp. 1–10 (2008)

[16] Biryukov, A., Khovratovich, D.: Tradeo↵ cryptanalysis of memory-hard functions. In:
International Conference on the Theory and Application of Cryptology and Information
Security. pp. 633–657. Springer (2015)

[17] Bluestein, L.: A linear filtering approach to the computation of discrete fourier
transform. IEEE Transactions on Audio and Electroacoustics 18(4), 451–455 (1970).
https://doi.org/10.1109/TAU.1970.1162132

[18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Annual inter-
national cryptology conference. pp. 757–788. Springer (2018)

[19] Borge, M., Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Proof-of-
personhood: Redemocratizing permissionless cryptocurrencies. In: 2017 IEEE European
Symposium on Security and Privacy Workshops, EuroS&P Workshops 2017, Paris, France,
April 26-28, 2017. pp. 23–26. IEEE (2017). https://doi.org/10.1109/EuroSPW.2017.46

[20] Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points.
Journal of Complexity 21(4), 420–446 (2005)

[21] Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram. Journal
of Cryptology 30, 22–57 (2017)

[22] Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Annual international con-
ference on the theory and applications of cryptographic techniques. pp. 451–467. Springer
(2018)

[23] Cook, S.A.: An observation on time-storage trade o↵. In: Proceedings of the fifth annual
ACM symposium on Theory of computing. pp. 29–33 (1973)

[24] Curtmola, R., Khan, O., Burns, R., Ateniese, G.: Mr-pdp: Multiple-replica provable data
possession. In: 2008 the 28th international conference on distributed computing systems.
pp. 411–420. IEEE (2008)

[25] Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and applica-
tions to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 23–41. Springer, Heidelberg (Feb 2019). https://doi.org/10.1007/978-3-030-
32101-7 2

32

[26] Damg̊ard, I., Ganesh, C., Orlandi, C.: Proofs of replicated storage without timing assump-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
355–380. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26948-7 13

[27] David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Heidelberg (Apr / May
2018). https://doi.org/10.1007/978-3-319-78375-8 3

[28] Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification.
In: Theory of Cryptography: 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings 6. pp. 109–127. Springer (2009)

[29] Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Advances in Cryptology–
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 14-18, 2005. Proceedings 25. pp. 37–54. Springer (2005)

[30] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In: Annual
Cryptology Conference. pp. 585–605. Springer (2015)

[31] Fisch, B.: Tight proofs of space and replication. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 324–348. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17656-3 12

[32] Fisch, B., Bonneau, J., Benet, J., Greco, N.: Proofs of replication using depth robust
graphs. Blockchain Protocol Analysis and Security Engineering 2018 (2018)

[33] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-
662-46803-6 10

[34] Hanling, M., Anthoine, G., Dumas, J.G., Maignan, A., Pernet, C., Roche, D.S.:
Poster: Proofs of retrievability with low server storage. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2601–2603. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3363266

[35] Van der Hoeven, J.: The truncated fourier transform and applications. In: Proceedings
of the 2004 international symposium on Symbolic and algebraic computation. pp. 290–296
(2004)

[36] Hopcroft, J., Paul, W., Valiant, L.: On time versus space and related problems. In: 16th
Annual Symposium on Foundations of Computer Science (sfcs 1975). pp. 57–64. IEEE
(1975)

[37] Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications. Journal of
complexity 14(2), 257–299 (1998)

[38] Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Ning, P., De
Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007. pp. 584–597. ACM Press
(Oct 2007). https://doi.org/10.1145/1315245.1315317

[39] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and
their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194.
Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-3-642-17373-8 11

33

[40] Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM
Journal on Computing 40(6), 1767–1802 (2011)

[41] Lee, J.: Dory: E�cient, transparent arguments for generalised inner products and polyno-
mial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043,
pp. 1–34. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/978-3-030-90453-1 1

[42] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-o↵s in a
pebble game. Journal of the ACM (JACM) 29(4), 1087–1130 (1982)

[43] Lin, W.K., Mook, E., Wichs, D.: Doubly e�cient private information retrieval and fully
homomorphic ram computation from ring lwe. In: Proceedings of the 55th Annual ACM
Symposium on Theory of Computing. pp. 595–608 (2023)

[44] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009), http://www.
bitcoin.org/bitcoin.pdf

[45] Nüsken, M., Ziegler, M.: Fast multipoint evaluation of bivariate polynomials. In: European
Symposium on Algorithms. pp. 544–555. Springer (2004)

[46] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2 13

[47] Paul, W.J., Tarjan, R.E.: Time-space trade-o↵s in a pebble game. Acta Informatica 10,
111–115 (1978)

[48] Pietrzak, K.: Proofs of catalytic space. Cryptology ePrint Archive (2018)

[49] Rabaninejad, R., Abdolmaleki, B., Malavolta, G., Michalas, A., Nabizadeh, A.: storna:
Stateless transparent proofs of storage-time. Cryptology ePrint Archive (2023)

[50] Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Theory of Cryptography:
14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016,
Proceedings, Part I 14. pp. 262–285. Springer (2016)

[51] Shacham, H., Waters, B.: Compact proofs of retrievability. Journal of cryptology 26(3),
442–483 (2013)

[52] Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 325–336. ACM Press
(Nov 2013). https://doi.org/10.1145/2508859.2516669

[53] Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
e�ciency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg
(Mar 2008). https://doi.org/10.1007/978-3-540-78524-8 1

[54] Van Der Hoeven, J., Lecerf, G.: On the bit-complexity of sparse polynomial and series
multiplication. Journal of Symbolic Computation 50, 227–254 (2013)

[55] Van Der Hoeven, J., Schost, É.: Multi-point evaluation in higher dimensions. Applicable
Algebra in Engineering, Communication and Computing 24(1), 37–52 (2013)

34

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

A Supporting Proofs

A.1 Proof of Theorem 2

Fix u 2 N and c  d(u · sp � sq). Assume there exists a PPT adversary A = (A1,A2) such that

P

2

4 A2(1�, x,↵) = (f1(x), . . . , fu(x)) ^
|↵|  d(u · sp � sq)� c

:
(f1(X), . . . , fu(X)) $ Fu

d�1,p,

↵ $ A1(1�, f1, . . . , fu),
x $ Zq

3

5 (2)

>
d� 1

|Zq|
+

1

2c
= ✏.

Fix (f1(X), . . . , fu(X)) $ Fu
d�1,p, ↵ $ A1(1�, f1, . . . , fu), and the random coins r2 2 {0, 1}⇤

of A2. Let Xf1,...,fu,↵,r2 be the set of points for which the adversary A2, on input (1�,↵) and
random coins r2, is able to correctly compute (f1(x), . . . , fu(x)), i.e.,

Xf1,...,fu,↵,r2
def
= {x : x 2 Zq such that (f1(x), . . . , fu(x)) = A2(1

�
, x,↵; r2)}.

It is easy to see that
|Xf1,...,fu,↵,r2

|
|Zq | > ✏; otherwise, Equation (2) does not hold. Hence, we

have that |Xf1,...,fu,↵,r2 | > ✏ · |Zq| = d � 1 + |Zq |
2c > d � 1. This means that Xf1,...,fu,↵,r2 ✓ Zq

contains at least d distinct points with probability ✏ where the probability is taken over choices
of (f1(X), . . . , fu(X)) $ Fu

d�1,p, ↵ $ A1(1�, f1, . . . , fu), and random coins r2 $ {0, 1}⇤.
We leverage this observation to build an adversary A0 = (A01,A

0
2) that contradicts the (c,

1
2c)-

incompressibility of Uu·d·sp (Theorem 1). Without loss of generality, we assume that both A01
and A02 have hardcoded r2 $ {0, 1}⇤. A0 = (A01,A

0
2) are defined as follows:

A01(1
�
, a): On input the security parameter 1� and string a = (a0, . . . , au·d�1) 2 {0, 1}u·d·sp , A01
proceeds as follows:

1. Compute ↵ $ A1(1�, f1, . . . , fu) where fj(X) =
Pd�1

i=0 aj·d+i ·Xi 2 Zp[X] for every
j 2 {0} [[u� 1].

2. Compute (in time |Zq|) the set Xf1,...,fu,↵,r2 . Note that this is possible since A01 is
unbounded and has r2 hardcoded.

3. Output ↵0 = (↵, x1, . . . , xd) where x1, . . . , xd 2 Xf1,...,fu,↵,r2 .

A02(1
�
,↵
0): On input the security parameter 1� and ↵

0 = (↵, x1, . . . , xd), A02 proceeds as follows:

1. For every i 2 [d], compute (yi,1, . . . , yi,u) $ A2(1�, xi,↵; r2).

2. For every j 2 {0}[[u�1], compute (aj·d, . . . , aj·d+d�1) using Langrange interpolation
over the evaluations y1,j , . . . , yd,j and the points x1, . . . , xd (recall that p is of size
(sp + 1). This guarantees that each ai of size sp can be correctly reconstructed).

3. Output a = (a0, . . . au·d�1).

First, it is easy to see that A01 outputs a string ↵
0 of the correct size since

|↵0| = |↵|+ |x1|+ . . .+ |xd|  d(u · sp � sq)� c+ d · sq = u · d · sp � c.

Second, we know that Xf1,...,fu,↵,r2 contains d points with probability ✏ and, by definition
of Xf1,...,fu,↵,r2 , the evaluations (y1,j , . . . , yd,j)j2[u] are correct, i.e., yi,j = fj(xi) for every i 2 [d]
and for every j 2 [u]. Since f1(X), . . . , fu(X) are all univariate polynomials of degree d� 1, the
Lagrange interpolation correctly reconstructs the corresponding coe�cients of each polynomial.
In turn, this implies that A02 outputs the correct string a = (a0, . . . , au·d�1). Hence, A0 = (A01,A

0
2)

retains the same advantage of A = (A1,A2) which is greater than 1
2c (independently from the

choices of d and q. See Equation (2)). This concludes the proof.

35

A.2 Proof of Corollary 4

The corollary follows by setting c = c(�) = �, sp = sp(�) = �
1+�, sq = sq(�) = �, and observing

that d�1
|Zq | 

poly(�)
2�

2 O(1
2�
), 1

2c = 1
2�
, and

|↵|  d(u · sp � sq)� c = d · u · sp � (d · sq + c) = d · u · �1+� � (d · �+ �)

= d · u · �1+� � (d+ 1) · �.

A.3 Proof of Theorem 3

This proof relies on the oracle abstraction defined in Definition 10. This is because, the lo-
calized version Local.T[x0],[map](y) of a deterministic RAM algorithm T[x](y) is essentially the
execution of T[·](y) where the (oracle) RAM accessible input (denoted as [·]) is simulated by
Local.T[x0],[map](y) using its oracle access to both x

0 and map, and intercepting the all (read, i)
read commands issued by T[·](y) (as defined in Definition 10).

Formally, consider the following construction.

Construction 4. Let T be a deterministic RAM algorithm. We build the localized version
Local.T of T as follows.

Local.T[x0],[map](y): On input an arbitrary binary string y 2 {0, 1}⇤, a RAM accessible input
x
0 = (x01, . . . , x

0
k0), and a RAM accessible memory mapping map = (i01, . . . , i

0
k0), the local-

ized deterministc RAM algorithm Local.T executes T[·](y) (the notation [·] indicates that
Local.T will simulate the access to the read-only RAM input) and, until T stops or it
outputs a value v, it proceeds as follows:

1. When T submits a read command (read, ij), Local.T leverages its read-only RAM
access to map to execute a binary search over map to identify the index c which is
the location of ij into map. If such an index c does not exist (i.e., ij 62 map), Local.T
outputs ? and terminates.

2. Local.T sends the read command (read, c) to [x0] and receives x
0
c as a result. Then,

Local.T returns x
0
c to T as the answer of the read command (read, ij).

3. Local.T waits for the next read command of T and re-executes Items 1 to 3.

Finally, Local.T outputs the same value v output by T[·](y).

We now demonstrate that Local.T of Construction 4 satisfies perfect correctness and invalid
mapping. Lastly, we demonstrate the running time of Local.T.

Lemma 1. The localized version Local.T (Construction 4) of the deterministic RAM algorithm
T is perfectly correct (Definition 12).

Proof. Fix the read-only accessible input x = (x1, . . . , xn) and an arbitrary binary input of T.
Also, consider Ix,y, k0, map, and x

0 = (x01, . . . , x
0
k0) as defined in the perfect correctness property

of Definition 12. Then, we have the following conditions:

1. map is ordered, i.e., 8j 2 [k0] then i
0
j < i

0
j+1,

2. 8ij 2 Ix,y then ij 2 map,

3. 8i0j 2 map if i0j 2 Ix,y then x
0
j = xi0j

.

36

From Item 1, we conclude that Local.T of Construction 4 can correctly execute the binary search
onmap. Moreover, by definition, T will submit only read commands (read, ij) such that ij 2 Ix,y.
In turn, by combining the above with Item 2, we conclude that Local.T will never return ? since
ij will be in map. Let c be the index of ij (of the read command (read, ij)) indentified by Local.T
after running the binary search on map. By leveraging, Item 3 we have that x0c = xij which is

the correct value expected by T. Hence, it must be that T[x](y) = v = Local.T[x0],[map](y). This
concludes the proof.

Lemma 2. The localized version Local.T (Construction 4) of the deterministic RAM algorithm
T satisfies the invalid mapping property (Definition 12).

Proof. Fix the read-only accessible input x = (x1, . . . , xn) and an arbitrary binary input of T.
Also, consider Ix,y, k0, map, and x

0 = (x01, . . . , x
0
k0) as defined in the invalid mapping property

of Definition 12. Then, we have the following conditions:

1. map is ordered, i.e., 8j 2 [k0] then i
0
j < i

0
j+1,

2. 9ij 2 Ix,y such that ij 62 map,

3. 8i0j 2 map then x
0
j = xi0j

.

As usual, Item 1 implies that Local.T of Construction 4 can correctly execute the binary search
on map. Moreover, by definition, T will submits only read commands (read, ij) such that
ij 2 Ix,y. Now, fix a generic m-th read command (read, ij) submitted by T. We can identify
the following two cases:

• If ij 2 map then Local.T will return x
0
c to T as the answer of the read command (read, ij)

where c is the index of ij indentified by Local.T (after running the binary search on map).
By leveraging, Item 3, we have x0c = xij which is precisely the value that T expects to see.
Hence, the computation of T and Local.T can continue as expected.

• If ij 62 map (note that ij 2 Ix,y also holds since, by definition, T will only submit read
commands (read, ij) such that ij 2 Ix,y) then the binary search, executed by Local.T, will
not find an index c. In turn, Local.T will output ? and terminate. Observe that this
case must happen (i.e., there exists an m

0-th read command query (read, ij) such that
ij 62 map) since we know that 9ij 2 Ix,y such that ij 62 map (Item 2).

By combining the above observations, we conclude that Local.T[x0](y) will output ?. This
concludes the proof.

Lemma 3. For every read-only RAM accessible input x, arbitrary binary input y, read-only
RAM accessible input x0, and read-only RAM accessible memory mapping map, the running time
of Local.T[x0],[map](y) (Construction 4) is at most t · log(|map|) where t is the running time of
T[x](y). Running times of both T and Local.T are measured in the RAM model of computation.

Proof. Assume that the running time of T[x](y) is t in the RAM model of computation. This
implies that T[x](y) submits at most t read command queries to its read-only RAM accessible
input x. Without loss of generality, assume T[x](y) only submits read command queries and
does not perform any internal computation (this is fine to assume since Local.T[x0],[map](y) will
produce an overhead only when a read command query is submitted by T[x](y)). For every
read command query submitted by T[x](y), Local.T[x0],[map](y) executes a binary search over
map which requires (worst-case) time log(|map|) in the RAM model of computation. Hence, the
overall running time of Local.T[x0],[map](y) will be at most t · log(|map|).

Theorem 3 follows by combining Lemmas 1 to 3.

37

A.4 Proof of Theorem 4

First, regarding perfect correctness of ⇧, the value y, output by Eval(pp, x,D, aux), is computed
as y = EvalDS(x,D) where D = GenDataDS(f, p). As a consequence, perfect correctness of ⇧
simply follows from the perfect correctness of ⇧DS.

Second, regarding perfect completeness of ⇧, fix an honestly generated output (y,⇡) pro-
duced by Eval(pp, x,D, aux) where ⇡ = (Ix,Dx,D

, {⇡j}j2Ix,D) as defined in Construction 1 (recall
that Ix,D is the ordered set of indexes read from the data structure D during the RAM compu-
tation EvalDS(x,D). See Item 1). On verification, Verify(pp, h, x,⇡) proceeds as follows:

1. It checks |Ix,D|  ` and Ix,D = {i1, . . . , ik} is an ordered set. If Eval(pp, x,D, aux) is
honestly executed then these conditions hold by definition (observe that D is composed
of ` blocks so Ix,D cannot be bigger than `).

2. It computes VerifyVC(ppVC, c,Dj , j,⇡j) = bj for j 2 Ix,D. Since ⇧VC is perfectly correct,
we have that bj = 1 for every j 2 Ix,D.

3. It executes Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y
0 where Ix,D = {i1, . . . , ik} and map =

(i1, . . . , ik). By definition, we have that Ix,D = {i1, . . . , ik} is the ordered set of in-
dexes read from x during the computation EvalDS(pp, x,D). Hence, we conclude that
Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y

0 = y = EvalDS(x,D) by leveraging the perfect
correctness of the localized computation Local.EvalDS of EvalDS (see Definition 12).

Observe that the final output of Verify(pp, h, x,⇡) is 1 if y0 = y and bj = 1 for every j 2 Ix,D.
Hence, by combining the two above observations, we conclude that ⇧ is perfectly complete.

A.5 Proof of Theorem 5

Suppose that ⇧ is not (` · ✏VC)-sound, i.e, there exists a valid PPT adversary A such that

P

2

4 Verify(pp, h, ex, ey, e⇡) = 1 ^
ey 6= f(ex) :

pp $ Setup(1�)
(ex, ey, e⇡, f, p) $ A(1�, pp)

(D, h, aux) = GenData(pp, f, p)

3

5 > ` · ✏VC. (3)

Fix the output (ex, ey, e⇡) of A where e⇡ = (eI, {eD1, . . .
eDn}, {e⇡1, . . . , e⇡n}) and eI = {ei1, . . . , ein}.

Through the proof, we assume the following:

1. n  ` 2 N and eI is an ordered set; otherwise, the verification Verify(pp, h, ex, ey, e⇡) would
output 0, contradicting Equation (3) (see Construction 1).

2. p 2 N is a prime and f(X) 2 Zp[X]. This is because A is valid with respect to Definition 15.

Lemma 4. For every j 2 [n], the following probability holds:

P

2

4 VerifyVC(ppVC, c, eDj , eij , e⇡j) = 1 ^
Deij 6=

eDj
:

pp $ Setup(1�)
(ex, ey, e⇡, f, p) $ A(1�, pp)

(D, h, aux) = GenData(pp, f, p)

3

5  ✏VC,

where e⇡ = (eI, {eD1, . . .
eDn}, {e⇡1, . . . , e⇡n}), eI = {ei1, . . . , ein}, h = c, pp = ppVC, and D =

(D1, . . . ,D`).

Proof. Suppose that the above probability does not hold. We build a PPT adversary AVC that
breaks the (✏VC)-positional binding of ⇧VC. AVC proceeds as follows:

38

1. Receive ppVC from the challenger.

2. Send ppVC to A.

3. Receive (ex, ey, e⇡, f, p) from A where e⇡ = (eI, {eD1, . . .
eDn}, {e⇡1, . . . , e⇡n}) and eI = {ei1, . . . , ein}.

4. Compute (D, h, aux) = GenData(ppVC, f, p) where D = (D1, . . . ,D`).

5. Output (h,Deij ,
eDj , eij ,⇡eij , e⇡j) where ⇡eij = OpenVC(ppVC,Deij ,

eij , aux).

It is easy to see that AVC correctly simulates the view of A. Conditioned to a correct simulation,
we observe the following:

1. VerifyVC(ppVC, h,Deij ,
eij ,⇡eij) = 1 where h = c = CommitVC(ppVC, (D1, . . . ,D`)). This fol-

lows from the perfect correctness of ⇧VC.

2. VerifyVC(ppVC, h, eDj , eij , e⇡j) = 1 and Deij 6=
eDj with probability at least ✏VC. This because,

by definition, A has an advantage ✏VC in outputting (ex, ey, e⇡, f, p) such that VerifyVC(ppVC, c,
eDj , eij , e⇡j) = 1 and Deij 6=

eDj .

By combining the above observations, we conclude that AVC breaks positional binding with
probability greater than ✏VC. This concludes the proof.

Lemma 5. The following probability holds:

P

2

664 Local.EvalDS(ex, (D01, . . . ,D0n),map) = ? :

pp $ Setup(1�),
(ex, ey, e⇡, f, p) $ A(1�, pp),

(D, h, aux) = GenData(pp, f, p),
9ij 2 ID,ex s.t. ij 62 map

3

775 = 1,

where ID,ex = {i1, . . . , ik} is the set of ordered indexes read from x during the (honestly exe-

cuted) deterministic RAM computation EvalDS(ex,D), e⇡ = (eI, {eD1, . . . ,
eDn}, {e⇡1, . . . , e⇡n}), eI =

{ei1, . . . , ein}, h = c, pp = ppVC, map = (ei1, . . . , ein), and (D01, . . . ,D
0
n) = (Dei1 , . . . ,D ein).

Proof. Observe that the following conditions hold:

• map is ordered since it is computed from eI which in turn is an ordered set; otherwise,
Verify(pp, h, ex, ey, e⇡) would output 0, contradicting Equation (3).

• By definition, Lemma 5 assumes that 9ij 2 ID,ex such that ij 62 map.

• By definition, Lemma 5 assumes that 8eij 2 map we have D0j = Deij .

By leveraging the above conditions, the Lemma 5 follows by using the invalid mapping property
(Definition 12) of the localized deterministic RAM algorithm Local.EvalDS of EvalDS.

Lemma 6. The following probability holds:

P

2

664Local.EvalDS(ex, (D01, . . . ,D0n),map) = f(ex) :

pp $ Setup(1�)
(ex, ey, e⇡, f, p) $ A(1�, pp)

(D, h, aux) = GenData(pp, f, p)
6 9ij 2 ID,ex s.t. ij 62 map

3

775 = 1,

where ID,ex = {i1, . . . , ik} is the set of ordered indexes read from x during the (honestly exe-

cuted) deterministic RAM computation EvalDS(ex,D), e⇡ = (eI, {eD1, . . . ,
eDn}, {e⇡1, . . . , e⇡n}), eI =

{ei1, . . . , ein}, h = c, pp = ppVC, map = (ei1, . . . , ein), and (D01, . . . ,D
0
n) = (Dei1 , . . . ,D ein).

39

Proof. Observe that the following conditions hold:

• map is ordered since it is computed from eI which in turn is an ordered set; otherwise,
Verify(pp, h, ex, ey, e⇡) would output 0, contradicting Equation (3).

• By definition, Lemma 6 assumes that 6 9ij 2 ID,ex such that ij 62 map (or equivalently
8ij 2 ID,ex we have ij 2 map).

• By definition, Lemma 6 assumes that 8eij 2 map we have D0j = Deij . Moreover, in combi-

nation with the above condition, we can also conclude that 8eij 2 map we have if eij 2 ID,ex
then D0j = Deij .

By leveraging the above conditions, Lemma 6 follows by using the perfect correctness (Defini-
tion 12) of the localized deterministic RAM algorithm Local.EvalDS of EvalDS.

To conclude the proof of Theorem 5, we need to observe the following:

1. By leveraging ` times Lemma 4, we conclude that 9j 2 [n] such that Deij 6=
eDj with

probability probability at most ` · ✏VC. By combining this observation with Equation (3),
we obtain that (Dei1 , . . . ,D ein) = (eD1, . . . ,

eDn).

2. Conditioned to (Dei1 , . . . ,D ein) = (eD1, . . . ,
eDn), if 9ij 2 ID,ex such that ij 62 eI, then also map

(computed by the verification algorithm Verify) is such that 9ij 2 ID,ex where eij 62 map

(this because map is computed from eI). In turn, by leveraging Lemma 5 we conclude
that the localized deterministic RAM computation Local.EvalDS (of EvalDS) will output
y
0 = ?. By definition, this can not happen since y

0 = ? 6= f(ex) and, in turn, this would
require Verify(pp, h, ex, ey, e⇡) to output 0, contradicting Equation (3). Hence, it must be
that 6 9ij 2 ID,ex such that ij 62 eI.

3. On the other hand, conditioned to (Dei1 , . . . ,D ein) = (eD1, . . . ,
eDn), if 6 9ij 2 ID,ex such

that ij 62 eI, then also map (computed by the verification algorithm Verify) is such that

6 9ij 2 ID,ex where eij 62 map (this is because map is computed from eI). Similarly to the
previous case, by leveraging Lemma 5 we conclude that the localized deterministic RAM
algorithm Local.EvalDS (of EvalDS) will output Local.EvalDS(ex, (eD1, . . . ,

eDn),map) = y
0 =

f(ex) = EvalDS(ex,D). Finally, Verify(pp, h, ex, ey, e⇡) = 1 (as defined in Equation (3)) implies
that y = y

0. Hence, we conclude that y = f(ex) which contradicts Equation (3) (which
says y 6= f(ex)).

Theorem 5 follows from the combination of Items 1 to 3 above (which in turn they leverage Lem-
mas 4 to 6).

A.6 Proof of Corollary 5

By leveraging Corollary 3 we have that the size |D| of D (output by GenData) is |f(X)| · �DS,
where �DS = (d+1)� logo(1)(p). In addition, Corollary 2 implies that |aux| = ` · z = |f(X)| · �DS

since ` = `(d) corresponds to the number of blocks of D when each block (of D) is of size z

(see Construction 1). Finally, by leveraging Theorem 6 we conclude that

� = �DS +
|aux|
|f(X)| = 2 · �DS = 2(d+ 1)� logo(1)(p).

Regarding the size of digest, we can observe that h = c and |c| = � (see Corollary 2) where c is
generated by ⇧VC.

40

A.7 Proof of Theorem 6

We prove each e�ciency property individually.

(�)-expansion: This property is straigthforward. Since |D| = |f(X)| · �DS + |aux|, we obtain
that

� =
|D|+ |aux|
|f(X)| = �DS +

|aux|
|f(X)| ,

where �DS is the expansion factor of the underlying ⇧DS and aux is the auxiliary informa-
tion output by ⇧VC.

E�cient of evaluation and verification: As for evaluation, we can observe that Eval pro-
ceeds as follows:

1. It executes EvalDS(x,D) and computes the ordered set of indexes Ix,D. Since ⇧DS

is e�cient (see Definition 7), we obtain that both EvalDS(x,D) and the computation
of Ix,D requires time poly(log(d), log(p)). Observe that the running time for com-
puting Ix,D holds since EvalDS(x,D) runs in time poly(log(d), log(p)) which, in turn,
is an upper-bound on the number of indexes read. In addition, ordering Ix,D has
a logarithmic multiplicate overhead which is absorbed by the asymptotic notation
poly(log(d), log(p)).

2. It computes |Ix,D| 2 poly(log(d), log(p)) openings ⇡j by executing |Ix,D| times the
opening algorithm OpenVC. Since ⇧VC is e�cient (Definition 3), computing these
|Ix,D| openings requires time poly(�, log(d), log(p)).36

On the other hand, as for verification, Verify proceeds as follows:

1. It checks that Ix,D  ` and that Ix,D is ordered. Since Ix,D is upper-bounded by the
(worst-case) running time of EvalDS, we conclude that these steps require (worst-case)
time poly(log(d), log(p)).

2. It executes |Ix,D| times the verification algorithm VerifyVC. As usual ⇧VC is e�cient.
Thus, the overall (worst-case) running time of this step is poly(�, log(d), log(p)).

3. Finally, it executes the localized computation Local.EvalDS(x, (Di1 , . . . , ,Dik),map)
where |map| = |Ix,D| 2 poly(log(d), log(p)) since EvalDS runs in time poly(log(d),
log(p)). By combining Theorem 3 with the above observation, we have that the
localized RAM algorithm Local.EvalDS has (worst-case) running time poly(log(d),
log(p)).

To conclude, the (worst-case) running times of both Eval and Verify are poly(�, log(d),
log(p)) in the RAM model of computation.

This implies that Construction 1 is doubly-e�cient.

A.8 Proof of Theorem 8

Consider the following extractor ExtA3(·) (with oracle access to A3 as defined in experiment
Gextract

A,⇧,Ext(�, t, n, u) of Definition 22):

ExtA3(·)(1�, ek, (hi, idi)i2[u]): On input the security parameter 1�, the public encoding key ek =
(ppMHF, ppVDS), the public verification key vk = ppVDS, u pairs of digests and identifiers

36Recall that ` = `(d) is a polynomial function that depends on d. Thus, log(`) = O(log(d)).

41

(hi, idi)i2[u] (each corresponding to a message mi that Ext needs to extract), and oracle
access to the adversary A3(·),37 the extractor proceeds as follows:

1. Initialize yi,j = ? for every i 2 [u] and j 2 [d].

2. For every j 2 [d] and for every q 2 [trials] where trials(�) 2 !(log(�)) (note that trials
depends on the security parameter �):

(a) Send challj,q $ C to A3 and receive the answer (⇡i,j,q)i2[u] where ⇡i,j,q = (yi,j,q,
⇡
0
i,j,q) (recall that A3 will reply with u proofs, one for each message).

(b) If Verify(vk, hi, challj,q,⇡i,j,q) = 1 for every i 2 [u], set yi,j = yi,j,q and xj = challj,q
for every i 2 [u].

3. If 9i 2 [u] and j 2 [d] such that yi,j = ?, the extractor aborts and outputs ?.
4. For every i 2 [u], use Lagrange interpolation over the points (xj)j2[d] and the evalu-

ations (yi,j)j2[d] to compute f
0
i(X) 2 Zp[X].

5. Finally, return (m01, . . . ,m
0
u) where mi = f

0
i(X)� H(Eval(ppMHF, idi), idi) for i 2 [u].

It is easy to see that the extractor runs in polynomial-time since u 2 poly(�), d 2 Zp[X], and
trials = !(log(�)).

We now prove the following lemmas with respect to A3(·) and the aforementioned extractor
ExtA3(·).

Lemma 7. For every PPT adversary A = (A1,A2,A3) we have

P
h
Greplicate

A,⇧ (�, t, n, u) = 1
i
� 1

poly(�)
=)

P
h
ExtA3(·)(1�, ek, vk, (hi, idi)i2[u]) 6= ?

i
� 1� negl(�).

Proof. Let ⌫(�) be a non-negligible probability such that

P
h
Greplicate

A,⇧ (�, t, n, u) = 1
i
� ⌫(�).

Recall that the above implies that the probability that A3 returns at least one proof (among
the u) that does not verify is at most 1� ⌫(�) which, in turn, is non-negligible (this is because
⌫(�) is non-negligible). The probability that ExtA3(·)(1�, ek, vk, (hi, idi)i2[u]) = ? is bounded as
follows:

P
h
ExtA3(·)(1�, ek, vk, (hi, idi)i2[u]) = ?

i
= P[9i 2 [u], 9j 2 [d], yi,j = ?] =

P[9i 2 [u], 9j 2 [d], 8q 2 [trials],Verify(vk, hi, challj,q,⇡i,j,q) = 0].

It is easy to see that the last probability is at most (1 � ⌫(�))trials = (1 � ⌫(�))!(log(�)) which
is negligible. In turn, this implies that ExtA3(·)(1�, ek, vk, (hi, idi)i2[u]) 6= ? with probability at

least 1� (1� ⌫(�))!(log(�)) = 1� negl(�). This concludes the proof.

Lemma 8. P[8j1 2 [d], 8j2 2 [d] \ {j1}, xj1 6= xj2] � 1� negl(�).

Proof. The lemma follows by simply observing that:

• for every j 2 [d], xj corresponds to a randomly sampled challenge challj,q $ C (for some
q 2 [trials]), and

37Recall that the extractor can only submit challenges to the adversary A3 as defined in Definition 22

42

• C = Zq and q is a (sq)-bits prime were sq 2 !(log(�)) (see Item 1 of Construction 2), then
|C| = |Zq| = 2!(log(�)).

Since Ext runs in polynomial-time (i.e., it samples at most poly(�) challenges from C) and |C| is
of size super-polynomial in the security parameter �, then the probability of sampling the same
point twice (i.e., 9j1 2 [d], 9j2 2 [d] \ {j1} such that xj1 = xj2) is negligible. This concludes the
proof.

Lemma 9. If ⇧VDS is (negl(�))-sound then 8i 2 [u], 8j 2 [d], 8q 2 trials we have

P[Verify(vk, hi, challj,q,⇡i,j,q) = 1 ^ yi,j,q 6= fi(challj,q)]  negl(�), (4)

where fi(X) = mi � H(Eval(ppMHF, idi), idi) for every i 2 [u].

Proof. Observe that Verify(vk, hi, challj,q,⇡i,j,q) = 1 only if VerifyVDS(ppVDS, hi, challj,q,⇡
0
i,j,q) = 1

(see Construction 2). Thus, if there exists i 2 [u],j 2 [d], q 2 trials for which Equation (4) does
not hold (i.e., the probability is non-negligible) then we would contradict the (negl(�))-soundness
of ⇧VDS (recall that u, d 2 poly(�) and trials 2 !(log(�))). The proof is standard so we omit it
(the proof is similar to that of Lemma 14 of the proof of Theorem 9).

The lemmas above imply the following:

• By leveraging Lemma 7, the extractor does not abort (i.e., it outputs ?) with overwhelm-
ing probability. This also implies that for every i 2 [u], for every j 2 [u], we have yi,j 6= ?
and Verify(vk, hi, challj,q,⇡i,j,q) = 1 (for the corresponding q 2 trials) where challj,q = xj .

• Conditioned to the above, we have that yi,j = fi(xj) for every i 2 [u], for every j 2 [d]
with overwhelming probability (this follows by leveraging Lemma 9).

• Lastly, by leveraging Lemma 8 we have that points (x1, . . . xd) are all di↵erent with over-
whelming probability (Lemma 8).

Hence, the above observations imply that the Lagrange interpolation (executed by Ext) com-
putes the correct polynomial f 0i(X) = fi(X) = mi � H(EvalMHF(ppMHF, idi), idi). Thus, Ext
correctly extracts the messages (m01, . . . ,m

0
u) = (m1, . . . ,mu) with overwhelming probability.

This concludes the proof.

A.9 Proof of Theorem 9

Consider the following hybrid experiments (defined in the random oracle model):

H0(�, t, n, u): This hybrid experiment is identical to the adaptive experimentGreplicate

A,⇧ (�, t, n, u)
of PoRep.

H1(�, t, n, u): Identical to H0(�, t, n, u) except that the challenger simulates the majority of the
random oracle queries using the PRF scheme ⇧PRF. More in detail, the challenger com-
putes k $ KGenPRF(1�) and samples the u challenge random identifier (id1, . . . , idu) $ Iu

in advance. Then, on input a query (v0, id0) 2 YMHF ⇥ XMHF for the random oracle H(·),
the challenger proceeds as follows:

• If v0 6= vi = EvalMHF(ppMHF, idi) or id0 6= idi for every i 2 [u], the challenger returns
FPRF(k, (v0, id

0)) (instead of a random value).

• Otherwise, if there exists i 2 [u] such that v0 = vi = EvalMHF(ppMHF, idi) and id0 = idi,
the challenger returns a random value r

0 $ {0, 1}d·sp .

43

H2(�, t, n, u): Identical to H1(�, t, n, u) except that the challenger aborts if the adversary A3

(i.e., the third adversary) submits the random oracle query (v0, id0) 2 YMHF ⇥ XMHF

such that v
0 = vi = Eval(ppMHF, idi) for some i 2 [u], i.e., the challenger aborts if

(Eval(ppMHF, idi), id
0) 2 QA3,H (for some id0 and i 2 [u]) where QA3,H is the set of ran-

dom oracle queries submitted by A3 and idi is the i-th challenge random identifier which
is sampled at random from I.38 Observe that if A1 and A2 submit (Eval(ppMHF, idi), id

0)
(for some id0 and i 2 [u]) to the random oracle, the challenger does not abort.

H3(�, t, n, u): Identical to H2(�, t, n, u) except that the challenger aborts if the adversary A1

(i.e., the first adversary) submits the random oracle query (v0, id0) such that id0 = idi for
some i 2 [u], i.e., the challenger aborts if (v0, idi) 2 QA1,H (for some v

0 and i 2 [u]) where
QA1,H is the set of random oracle queries submitted by A1 and idi is the i-th challenge
random identifier which is sampled at random from I in advance.

H4(�, t, n, u): Identical to H5(�, t, n, u) except that the challenger changes its strategy for com-
puting f1(X), . . . , fu(X) and answering to the random oracle query (v0, id0) such that
v
0 = vi = EvalMHF(ppMHF, idi) and id0 = idi (for some i 2 [u]), where idi is the i-th chal-

lenge random identifier which is sampled in advance. More formally, let Fu
d�1,p (where p

is a (sp+1)-bits prime) be a distribution over univariate polynomials of degree d�1 from
Zp[X] that samples u polynomials f1(X), . . . , fu(X) 2 Zp[X] as follows:

1. Sample (a0, . . . , au·d�1) $ Uu·d·sp .

2. Return u univariate polynomials f1(X), . . . , fu(X) such that fj(X) =
Pd�1

i=0 aj·d+i·Xi

for every j 2 [u� 1] [{0} (i.e., each binary string ai is interpreted as an element of
Zp).

The challenger proceeds as follows:

• The challenger samples (id1, . . . , idu) $ Iu and (f1(X), . . . , fu(X)) $ Fu
d�1,p.

• The challenger starts the experiment H4(�, t, n, u).

• When A1(1�, ek, pk, vk) outputs (m1, . . . ,mu,�), the challenger runs vi = EvalMHF(
ppMHF, idi) and sets H(vi, idi) = ri = fi(X)�mi for every i 2 [u].

• Then, the challenger continues the execution of H4(�, t, n, u) which is identical to
H3(�, t, n, u) except that the challenger will use f1(X), . . . , fu(X) and H(v1, id1), . . . ,
H(vu, idu) programmed as described defined above.

H5(�, t, n, u): Identical toH4(�, t, n, u) except that the outcome of the experimentH5(�, t, n, u)
is set to 0 if there exists i 2 [u] such that yi 6= fi(chall) where ⇡i = (yi,⇡0i) is the i-th proof
output by the adversary A3.

Lemma 10. If ⇧PRF is (✏PRF)-secure then

H0(�, t, n, u) ⇡✏PRF H1(�, t, n, u).

Proof. Assume there exists a PPT distinguisher A = (A1,A2,A3) that distinguishes between
H0(�, t, n, u) and H1(�, t, n, u) with advantage greater than ✏PRF. Then, we build APRF that
breaks the (✏PRF)-security of ⇧PRF. APRF is defind as follows:

1. Compute (ek, pk, vk) $ Setup(1�, 1t, 1n) where ek = (ppMHF, ppVDS), pk = vk = ppVDS.

38When the challenger decides to abort, the experiment continues as usual but the final outcome is set to 0.

44

2. For every i 2 [u], sample idi $ I, ri $ {0, 1}d·sp , and compute vi = EvalMHF(ppMHF, idi).

3. Execute A1(1�, ek, pk, vk) and answer the incoming random oracle queries as follows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that vi 6= v
0 or

idi 6= id0 for every i 2 [u], APRF forwards (v0, id0) to its oracle and returns the answer.

(b) On the other hand, on input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such
that vi = v

0 and idi = id0 for some i 2 [u], APRF returns ri.

4. Eventually, A1(1�, ek, pk, vk) outputs (m1, . . . ,mu, state).

5. For every i 2 [u], compute hi and ci = (Di, auxi) where fi(X) = ri�mi and (Di, hi, auxi) =
GenDataVDS(ppVDS, fi, p).

6. Execute A2(1�, (idi, hi, ci)i2[u], state) and answer the incoming random oracle queries as
in Item 3.

7. Eventually, A2(1�, (idi, hi, ci)i2[u], state) outputs ↵.

8. Sample chall $ C.

9. Execute A3(1�, ek, pk, vk, (idi)i 2 [u], chall,↵), and answer the incoming queries as in Item 3.

10. Finally, output whatever is returned by A3(1�, ek, pk, vk, (idi)i2[u], chall,↵).

It is easy to see that, in the random oracle model, APRF correctly simulates the view of A =
(A1,A2,A3). Hence, APRF retains the same advantage ✏PRF of A = (A1,A2,A3). This concludes
the proof.

Lemma 11. If ⇧MHF is (✏MHF,�MHF, nMHF)-secure (Definition 1) then for every valid PPT
distinguisher A = (A1,A2,A3) we have that

H1(�, t, n, u) ⇡u·qH·✏MHF
H2(�, t, n, u).

A distinguisher A = (A1,A2,A3) is called valid if A3 runs in parallel time �MHF with poly(t)
processors (as defined in Theorem 9).

Proof. Assume there exists a valid PPT distinguisher A = (A1,A2,A3) that distinguishes be-
tween H1(�, t, n, u) and H2(�, t, n, u) with advantage greater than u · qH · ✏MHF. Let E be the
event defined as follows:

|↵|  n ^ 9i 2 [u], (v0, id0) 2 QA3,H such that EvalMHF(ppMHF, idi) = vi = v
0
,

where QA3,H is the set of random oracle queries submitted by A3 and ↵ is the memory output
by A2. Let E⇤0 and E⇤1 be the events that describe A = (A1,A2,A3) outputting b = 1 interacting
with experiments H1(�, t, n, u) and H2(�, t, n, u), respectively. Then, the advantage of A can
be rewritten as follows:

��P[E⇤0]� P[E⇤1]
�� =��P[E⇤0|E] · P[E] + P[E⇤0|¬E] · P[¬E]� P[E⇤1|E] · P[E]� P[E⇤1|¬E] · P[¬E]

�� =
P[E] ·

��P[E⇤0|E]� P[E⇤1|E]
��+ P[¬E] ·

��P[E⇤0|¬E]� P[E⇤1|¬E]
�� > u · qH · ✏MHF.

We observe that P[E⇤0|¬E]�P[E⇤1|¬E] = 0 when ¬E occurs (this is because, conditioned to ¬E,
the hybrids H1(�, t, n, u) and H2(�, t, n, u) are identical). Hence, it must be that

P[E] � P[E] ·
��P[E⇤0|E]� P[E⇤1|E]

�� > u · qH · ✏MHF, i.e., (5)

45

the probability of E occurring is greater than u · qH · ✏MHF.
By leveraging the fact that P[E] > u·qH·✏MHF, we build an adversary AMHF = (AMHF,1,AMHF,2)

that breaks the (✏MHF,�MHF, nMHF)-security of ⇧MHF. Recall that the validity of A = (A1,A2,A3)
guarantees A3 runs in parallel time �MHF with poly(t) processors (as required in Definition 1).
Without loss of generality, we assume that both AMHF,1 and AMHF,2 have hardcoded ppVDS $

SetupVDS(1
�), k $ KGenPRF(1�), ri $ {0, 1}d·sp for every i 2 [u], chall $ C, i⇤ $ [u], idi $ I

for every i 2 [u] \ {i⇤}, and j
⇤ $ [qH].39

AMHF = (AMHF,1,AMHF,2) is defined as follows:

AMHF,1(1�, 1t, ppMHF, id
⇤): On input the security parameter 1�, the time parameter 1t, the public

parameters ppMHF, and the input id⇤ 2 XMHF, AMHF,1 proceeds as follows:

1. Set idi⇤ = id⇤.

2. For every i 2 [u], compute vi = EvalMHF(ppMHF, idi).

3. Execute A1(1�, ek, pk, vk) where ek = (ppMHF, ppVDS) and pk = vk = ppVDS.

4. Answer the incoming random oracle queries (submitted by A1) as follows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that vi 6= v
0 or

idi 6= id0 for every i 2 [u], AMHF,1 returns r0 = FPRF(k, (v0, id
0)).

(b) On the other hand, on input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF

such that vi = v
0 and idi = id0 for some i 2 [u], AMHF,1 returns ri.

5. Eventually, A1(1�, ek, pk, vk) outputs (m1, . . . ,mu, state).

6. For every i 2 [u], compute hi and ci = (Di, auxi) where fi(X) = ri � mi and
(Di, hi, auxi) = GenDataVDS(ppVDS, fi, p).

7. Execute A2(1�, (idi, hi, ci)i2[u], state) and answer the incoming random oracle queries
(submitted by A2) as defined in Item 4.

8. Finally, return ↵ output by A2(1�, (idi, hi, ci)i2[u], state).

AMHF,2(1�, 1t, ppMHF, id
⇤
,↵): On input the security parameter 1�, the time parameter 1t, the

public parameters ppMHF, the input id⇤ 2 XMHF, and the pre-computed string ↵, AMHF,2

proceeds as follows:

1. Set idi⇤ = id⇤.

2. Execute A3(1�, ek, pk, vk, (idi)i2[u], chall,↵).

3. Answer the incoming random oracle queries (submitted by A3) as follows:

(a) On input the j-th random oracle query (v0j , id
0
j) 2 YMHF⇥XMHF such that j 6= j

⇤,
AMHF,2 returns r0 = FPRF(k, (v0j , id

0
j)).

(b) On the other hand, on input the j-th random oracle query (v0j , id
0
j) 2 YMHF ⇥

XMHF such that j = j
⇤, AMHF,2 stops and outputs v0j .

Observe that AMHF is valid with respect to the MHF experiment (see Definition 1). Indeed,
AMHF,2 satisfies the following condition: AMHF,2 has the same running time of A3 which, in turn,
runs in parallel time �MHF with poly(t) processors.

Assume thatE holds (i.e., |↵|  n^9i 2 [u] and (v0, id0) 2 QA3,H such that EvalMHF(ppMHF, idi) =
vi = v

0). First, we have that |↵|  n  nMHF as desired. Second, suppose that A3 queries (vi, id
0)

(for some id0) to the random oracle during the j-th query (v0j , id
0
j) (i.e., v

0
j = vi). Conditioned to

E and j
⇤ = j, it is easy to see that AMHF,2 correctly simulates A3’s view until the j

⇤-th oracle
query. Moreover, conditioned to E, we have that

39Observe that qH is unknown but upper-bounded by poly(�).

46

• i
⇤ = i (i.e., the input idi⇤ = id⇤ corresponds to the i-th idi such that (vi, id

0) 2 QA3,H where
vi = EvalMHF(ppMHF, idi)) happens with probability 1

u .

• Conditioned to i
⇤ = i, j

⇤ = j (i.e., the case for which AMHF,2 wins against the MHF
experiment) happens with probability 1

QA3,H
 1

qH
.

By combining Equation (5) and the above observations, we conclude that AMHF = (AMHF,1,

AMHF,2) is valid (with respect to the MHF experiment) and has an advantage of at least P[E] ·
1

qH·u = ✏MHF. This concludes the proof.

Lemma 12. H2(�, t, n, u) ⇡ u
|X

MHF
|
H3(�, t, n, u).

Proof. The only di↵erence between these two hybrid experiments is that the challenger aborts
when A1 submits a random oracle query (v0, id0) such that idi = id0 for some i 2 [u], where
idi is the i-th challenge random identifier sampled by the challenger. Since A1 does not know
the value of id1, . . . , idu (which are only revealed to A2) we have that A1 submits a random
oracle query (v0, id0) such that id0 = idi (for some i 2 [u]) with probability at most u

|XMHF| . This
concludes the proof.

Lemma 13. H3(�, t, n, u) ⌘ H4(�, t, n, u).

Proof. It is easy to see that these two hybrids are identically distributed. This is because A1 does
not submit a random oracle query (v0, id0) such that id0 = idi (for some i 2 [u]) where idi is the
challenge random identifier sampled by the challenger (see definition of H3(�, t, n, u)). Hence,
the challenger of H4(�, t, n, u), which samples (f1(X), . . . , fu(X)) $ Fu

d�1,p and programs the
random oracle as H(vi, idi) = H(Eval(ppMHF, idi), idi) = ri = fi(X) �mi only after it receives
m1, . . . ,mu from A1 (as defined in H4(�, t, n, u)), is equivalent to the challenger of H3(�, t, n, u).
Moreover, since ri = fi(X) �mi (for every i 2 [u]), we have that the output of the encoding
algorithm is correctly distributed. This is because fi(X) = H(Eval(ppMHF, idi), idi) � mi =
ri �mi = fi(X)�mi �mi = fi(X). This concludes the proof.

Lemma 14. If ⇧VDS is (✏VDS)-sound then

H4(�, t, n, u) ⇡u·✏VDS
H5(�, t, n, u).

Proof. Assume there exists a valid PPT distinguisher A = (A1,A2,A3) that distinguishes be-
tween H4(�, t, n, u) and H5(�, t, n, u) with advantage greater than u · ✏VDS. Let E be the event
that there exists i 2 [u] such that Verify(vk, hi, chall,⇡i) = 1 ^ yi 6= fi(chall) where ⇡i = (yi,⇡0i)
is the proof output by A3. Also, let E⇤0 and E⇤1 be the events that A = (A1,A2,A3) outputs
b = 1 when interacting with experiments H4(�, t, n, u) and H5(�, t, n, u), respectively. Then,
the advantage of A can be rewritten as follows:

��P[E⇤0]� P[E⇤1]
�� =��P[E⇤0|E] · P[E] + P[E⇤0|¬E] · P[¬E]� P[E⇤1|E] · P[E]� P[E⇤1|¬E] · P[¬E]

�� =
P[E] ·

��P[E⇤0|E]� P[E⇤1|E]
��+ P[¬E] ·

��P[E⇤0|¬E]� P[E⇤1|¬E]
�� > u · ✏VDS.

We observe that P[E⇤0|¬E]�P[E⇤1|¬E] = 0 when ¬E occurs (this is because, conditioned to ¬E,
the hybrids H5(�, t, n, u) and H5(�, t, n, u) are identical). Hence, it must be that

P[E] � P[E] ·
��P[E⇤0|E]� P[E⇤1|E]

�� > u · ✏VDS, i.e., (6)

the probability of E occurring is greater than u · ✏VDS.
By leveraging the fact that P[E] > u · ✏VDS, we build an adversary AVDS that breaks the

(✏VDS)-soundness of ⇧VDS. AVDS is defined as follows:

47

1. Sample (f1(X), . . . , fu(X)) $ Fu
d�1,p and i

⇤ $ [u].

2. Send fi⇤(X) to the challenger (i.e., AVDS will play the VDS’s experiment with respect to
fi⇤(X)).

3. Receive ppVDS, Di⇤ , hi⇤ , auxi⇤ from the challenger (computed by the challenger using
fi⇤(X)).

4. For every i 2 [u], sample idi $ I and compute vi = EvalMHF(ppMHF, idi).

5. Compute ppMHF $ SetupMHF(1
�
, 1t, 1n) and k $ KGenPRF(1�).

6. Set ek = (ppMHF, ppVDS), pk = vk = ppVDS, and ci⇤ = (Di⇤ , auxi⇤).

7. For every i 2 [u] \ {i⇤}, compute hi and ci = (Di, auxi) where (Di, hi, auxi) = GenDataVDS(
ppVDS, fi, p).

8. Execute A1(1�, ek, pk, vk) and answer the incoming random oracle queries as follows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that id0 6= idi for
every i 2 [u], AVDS returns r0 = FPRF(k, (v0, id

0)).

(b) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that id0 = idi for
some i 2 [u], AVDS aborts.

9. Eventually, A1(1�, ek, pk, vk) outputs (m1, . . . ,mu, state).

10. For every i 2 [u], set H(vi, idi) = ri = fi(X)�mi.

11. Execute A2(1�, (idi, hi, ci)i2[u], state) and answer the incoming random oracle queries as
follows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that v
0 6= vi or

id0 6= idi for every i 2 [u], AVDS returns r0 = FPRF(k, (v0, id
0)).

(b) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that v
0 = vi and

idi = id0 for some i 2 [u], AVDS returns ri.

12. Eventually, A2(1�, (idi, hi, ci)i2[u], state) outputs ↵.

13. Sample chall $ C.

14. Execute A3(1�, ek, pk, vk, (idi)i2[u], chall,↵) and answer the incoming random oracle queries
as follows:

(a) On input the random oracle query (v0, id0) 2 YMHF⇥XMHF such that v0 6= vi for every
i 2 [u], AVDS returns r0 = FPRF(k, (v0, id

0)).

(b) On input the random oracle query (v0, id0) 2 YMHF⇥XMHF such that v0 = vi for some
i 2 [u], AVDS aborts.

15. Finally, output (chall, yi⇤ ,⇡0i⇤) where ⇡i⇤ = (yi⇤ ,⇡0i⇤) is the i
⇤-th proof output of A3(1�,

ek, pk, vk, (idi)i2[u], chall,↵).

It is easy to see that AVDS correctly simulates the views of both A1, A2, and A3. Assume that E
happens and let i 2 [u] be an index such that yi 6= fi(chall). Conditioned to E and i

⇤ = i (which
happends with probability 1

u), we have that yi⇤ 6= fi⇤(chall) and Verify(vk, hi⇤ , chall,⇡i⇤) = 1
which, in turn, implies that VerifyVDS(ppVDS, hi⇤ , chall,⇡

0
i⇤) = 1. By combining Equation (6)

with the observations above, we conclude that AVDS’s advantage is at least P[E] · 1
u = ✏VDS.

This concludes the proof.

48

Lemma 15. P
⇥
H5(�, t, n, u) = 1

⇤
 d�1

|Zq | +
1
2c .

Proof. Assume there exists a valid PPT adversary A = (A1,A2,A3) such that

P
⇥
H5(�, t, n, u) = 1

⇤
>

d� 1

|Zq|
+

1

2c
. (7)

Then, we build an adversary A0 = (A01,A
0
2) that contradicts Theorem 2. Without loss of

generality, we assume that both A01 and A02 have hardcoded (ek, pk, vk) $ Setup(1�, 1t, 1n),
k $ KGenPRF(1�), idi $ I for i 2 [u], where ek = (ppMHF, ppVDS) and pk = vk = ppVDS.
A0 = (A01,A

0
2) is defined as follows:

A01(1
�
, f1, . . . , fu): On input the security parameter 1� and u univariate polynomials f1(X), . . . ,
fu(X) 2 Zp[X] of degree d� 1, A01 proceeds as follows:

1. For every i 2 [u], compute vi = EvalMHF(ppMHF, idi).

2. Execute A1(1�, ek, pk, vk) and answer to the incoming random oracle queries as fol-
lows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that id0 6= idi
for every i 2 [u], A01 returns r0 = FPRF(k, (v0, id

0)).

(b) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that id0 = idi
for some i 2 [u], A01 aborts.40

3. Eventually, A1(1�, ek, pk, vk) outputs (m1, . . . ,mu, state).

4. For every i 2 [u], set H(vi, idi) = ri = fi(X)�mi and compute (hi, ci) = Encode(ek,mi,

idi) using the fact that H(vi, idi) = ri = fi(X)�mi.

5. Execute A2(1�, (idi, hi, ci)i2[u], state) and answer the incoming oracle queries as fol-
lows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that v0 6= vi or
id0 6= idi for every i 2 [u], A01 returns r0 = FPRF(k, (v0, id

0)).

(b) On input the random oracle query (v0, id0) 2 YMHF⇥XMHF such that v0 = vi and
idi = id0 for some i 2 [u], A01 returns ri.

6. Eventually, return ↵ which is the output of A2(1�, (idi, hi, ci)i2[u], state).

A02(1
�
, x,↵): On input the security parameter 1�, a point x 2 Zq, and a string ↵, A02 proceeds
as follows:

1. Execute A3(1�, ek, pk, vk, (idi)i2[u], x,↵) and answer the incoming random oracle queries
as follows:

(a) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that v0 6= vi for
every i 2 [u], A02 returns r0 = FPRF(k, (v0, id

0)).

(b) On input the random oracle query (v0, id0) 2 YMHF ⇥ XMHF such that v0 = vi for
some i 2 [u], A02 aborts.41

2. Finally, output (y1, . . . , yu) where ⇡i = (yi,⇡0i) is the i-th proof output by A3(1�,
ek, pk, vk, (idi)i2[u], x,↵).

40Note that this first aborting condition is fundamental for concluding the proof correctly. This is because, at
this point, A0

1 does not know m1, . . . ,mu (which are chosen by A1). Hence, A0
1 would not be able to program the

random oracle output of H(vi, idi) = fi(X)�mi for i 2 [u].
41Note that this second aborting condition is fundamental for concluding the proof correctly. This is because

A
0
2 can simulate A3’s view without knowing r1, . . . , ru, f1(X), . . . , fu(X), and m1, . . . ,mu which are too large to

be encoded into ↵.

49

First, observe that, conditioned to H5(�, t, n, u) = 1, we have that yi = fi(x) for every i 2 [u].
Second, by the winning condition of the experiment, if A = (A1,A2,A3) wins then we have ↵

such that |↵|  n and
n = min{nMHF, d(u · sp � sq)� c}.

Hence, by combining Equation (7) and the above arguments, we conclude that A0 = (A01,A
0
2)

is valid and outputs (f1(x), . . . fu(x)) with probability greater than d�1
|Zq | +

1
2c . This contra-

dicts Theorem 2 and concludes the proof.

Theorem 9 follows by combining Lemmas 10 to 15. This concludes the proof.

A.10 Proof of Corollary 6

The corollary follows by plugging Corollaries 1, 4 and 5 into Theorems 8 and 9 and Definition 19,
and observing that

• under the collision resistance assumption (or the RO), there exists an (negl(�))-secure
PRF scheme,

• u, d 2 poly(�) thus u · qH · ✏MHF, u · ✏VDS,
u

|XMHF| =
u
2�

(of Theorem 9) are negligible,

• by setting sp, sq, and c as defined in Corollary 4 (see also the corresponding proof) then
d�1
|Zq | +

1
2c  O(1

2�
) and d(u · sp � sq)� c = d · u · �1+�1 �O(d · �) ⇡ u · |m| (of Theorem 9),

• by leveraging Corollary 1 we have that � = ⌦(`) and nMHF = 0.8 · ` · z where ` is the
number of blocks (each of size z) of the last layer of the DRG of the underlying MHF. By
setting

either z � d(umax · sp � sq)� c

0.8 · ` ⇡ umax · |m|
0.8 · ` or ` � d(umax · sp � sq)� c

0.8 · z ⇡ umax · |m|
0.8 · z ,

42

we obtain that nMHF � d(umax · sp � sq) � c. That, in turn, implies n = min{nMHF, d(u ·
sp � sq)� c} (of Theorem 9) equal to d(u · sp � sq)� c since u  umax,

• the (�)-expansion of Construction 2 is exactly the (�)-expansion of the underlying VDS
scheme (see Theorem 7) and Construction 2 leverages polynomials of degree d � 1 from
Zp[X] where p is of sp = �

1+�1 bits (according to our choice of parameters); thus � =

2 · d�2 · logo(1)(p) = 2 · d�2 · �o(1)(1+�1) for any choice of positive constant �2 > 0.

Lastly, as for the (⌘)-gap, it follows by observing that n = min{nMHF, d(u · sp � sq)� c} =
d(u · sp� sq)� c (as defined above), d(u · sp� sq)� c = d · u · �1+�1 � (d+1) · � (for sp = �

1+�1 ,
sq = �, and c = � as defined in Corollary 4. See also the corresponding proof), and

d · u · �1+�1 � (d+ 1) · � = (1� ⌘)(u · d · �1+�1) =)

⌘ = 1� d · u · �1+�1 � (d+ 1) · �
u · d · �1+�1

=) ⌘ =
(d+ 1) · �
u · d · �1+�1

2 O

✓
1

u · ��1

◆
,

where we used the fact that sp = �
1+�1 , sq = �, and c = � in Corollary 4 (see also the

corresponding proof).

42Note that if we set ` � (umax·sp�sq)�c
0.8·z , we have less flexibility in tuning the time bound � = ⌦(`) which

depends on `.

50

A.11 Proof of Theorem 10

Consider the following hybrid experiments (defined in the random oracle model):

H0(�, t, n, u): This hybrid experiment is identical to the adaptive experimentGreplicate

A,⇧ (�, t, n, u)
of PoRep.

H1(�, t, n, u): Identical to H0(�, t, n, u) except that the challenger simulates the majority of the
random oracle queries using the PRF scheme ⇧PRF. More in detail, the challenger com-
putes k $ KGenPRF(1�) and samples the u challenge random identifier (id1, . . . , idu) $ Iu

in advance. Then, on input a query w 2 {0, 1}⇤ for the random oracle H(·) (recall the RO
supports inputs of arbitrary polynomial size), the challenger proceeds as follows:

• Interpret w as w = (v01, . . . , v
0
j , id

0) (for some j 2 N) where id0 2 I and v
0
i 2 YMHF

for i 2 [j]. Also, let u the number of messages chosen by the adversary (which are
know at this point) and (id1, . . . idu) the challenge random identifiers sampled by the
challenger.

• If j 6= u _ 9i 2 [j], v0i 6= vi = EvalMHF(ppMHF, idi) _ 8i 2 [j], id0 6= idi, the challenger
returns FPRF(k, (v01, . . . , v

0
j , id

0)) (instead of a random value).

• Otherwise, if j = u ^ 8i 2 [j], v0i = vi = EvalMHF(ppMHF, idi) ^ 9i 2 [j], id0 = idi, the
challenger returns a random value r

0 $ {0, 1}d·sp .

H2(�, t, n, u): Identical to H1(�, t, n, u) except that the challenger aborts if the adversary A3

(i.e., the third adversary) submits a random oracle query w = (v0i, . . . , v
0
j , id

0) such that j =
u ^ 8i 2 [u], v0i = vi = Eval(ppMHF, idi), i.e., the challenger aborts if (EvalMHF(ppMHF, id1),
. . . ,EvalMHF(ppMHF, idu), id

0) 2 QA3,H (for some id0) where QA3,H is the set of random
oracle queries submitted by A3 and idi is the i-th challenge random identifier which is
sampled at random from I.43 Observe that if A1 and A2 submit (EvalMHF(ppMHF, id1), . . . ,
EvalMHF(ppMHF, idu), id

0) (for some id0) to the random oracle, the challenger does not abort.

H3(�, t, n, u): Identical to H2(�, t, n, u) except that the challenger aborts if the adversary A1

(i.e., the first adversary) submits the random oracle query w = (v01, . . . , v
0
j , id

0) (for
some j 2 N) such that id0 = idi for some i 2 [u], i.e., the challenger aborts if w =
(v01, . . . , v

0
j , idi) 2 QA1,H (for some (v01, . . . , v

0
j) and i 2 [u]) where QA1,H is the set of ran-

dom oracle queries submitted by A1 and idi is the i-th challenge random identifier which
is sampled at random from I in advance.

H4(�, t, n, u): Identical to H3(�, t, n, u) except that the challenger changes its strategy for com-
puting f1(X), . . . , fu(X) and answering to the random oracle queries w = (v0i, . . . , v

0
j , id

0)
such that j = u^8i 2 [u], v0i = vi = Eval(ppMHF, idi)^9i 2 [j], id0 = idi, where idi is the i-th
challenge random identifier. More formally, let Fu

d�1,p (where p is a (sp + 1)-bits prime)
be a distribution over univariate polynomials of degree d � 1 from Zp[X] that samples u
polynomials f1(X), . . . , fu(X) 2 Zp[X] as follows:

1. Sample (a0, . . . , au·d�1) $ Uu·d·sp .

2. Return u univariate polynomials f1(X), . . . , fu(X) such that fj(X) =
Pd�1

i=0 aj·d+i·Xi

for every j 2 [u� 1] [{0} (i.e., each binary string ai is interpreted as an element of
Zp).

The challenger proceeds as follows:

43When the challenger decides to abort, the experiment continues as usual but the final outcome is set to 0.

51

• The challenger samples (id1, . . . , idu) $ Iu and (f1(X), . . . , fu(X)) $ Fu
d�1,p.

• The challenger starts the experiment H4(�, t, n, u).

• When A1(1�, ek, pk, vk) outputs (m1, . . . ,mu,�), the challenger runs vi = EvalMHF(
ppMHF, idi) and sets H(v1, . . . , vu, idi) = ri = fi(X)�mi for every i 2 [u].

• Then, the challenger continues the execution of H4(�, t, n, u) which is identical to
H3(�, t, n, u) except that the challenger will use f1(X), . . . , fu(X) and H(v1, . . . , vu, id1),
. . . ,H(v1, . . . , vu, idu) programmed as described defined above.

H5(�, t, n, u): Identical toH4(�, t, n, u) except that the outcome of the experimentH5(�, t, n, u)
is set to 0 if there exists i 2 [u] such that yi 6= fi(chall) where ⇡i = (yi,⇡0i) is the i-th proof
output by the adversary A3.

Lemma 16. If ⇧PRF is (✏PRF)-secure then

H0(�, t, n, u) ⇡✏PRF H1(�, t, n, u).

Proof. The proof of Lemma 16 is similar to that of Lemma 10, so we omit it.

Lemma 17. If ⇧MHF is (✏MHF,�MHF, nMHF)-secure (Definition 2) then for every valid PPT
distinguisher A = (A1,A2,A3) we have that

H1(�, t, n, u) ⇡qH·✏MHF
H2(�, t, n, u).

A distinguisher A = (A1,A2,A3) is called valid if A3 runs in parallel time �MHF with poly(t)
processors (as defined in Theorem 10).

Proof. Assume there exists a valid PPT distinguisher A = (A1,A2,A3) that distinguishes be-
tween H2(�, t, n, u) and H3(�, t, n, u) with advantage greater than qH · ✏MHF. Let E be the event
defined as follows:

|↵|  n ^ 9(v01, . . . , v0j , id0) 2 QA3,H such that j = u ^ 8i 2 [u],EvalMHF(ppMHF, idi) = vi = v
0
i,

where QA3,H is the set of random oracle queries submitted by A3 and ↵ is the memory computed
by A2. Also, let E⇤0 and E⇤1 be the events that describe A = (A1,A2,A3) outputting b = 1 when
interacting with experiments H1(�, t, n, u) and H2(�, t, n, u), respectively. Then, the advantage
of A can be rewritten as follows:

��P[E⇤0]� P[E⇤1]
�� =��P[E⇤0|E] · P[E] + P[E⇤0|¬E] · P[¬E]� P[E⇤1|E] · P[E]� P[E⇤1|¬E] · P[¬E]

�� =
P[E] ·

��P[E⇤0|E]� P[E⇤1|E]
��+ P[¬E] ·

��P[E⇤0|¬E]� P[E⇤1|¬E]
�� > qH · ✏MHF.

We observe that P[E⇤0|¬E]�P[E⇤1|¬E] = 0 when ¬E occurs (this is because, conditioned to ¬E,
the hybrids H1(�, t, n, u) and H2(�, t, n, u) are identical). Hence, it must be that

P[E] � P[E] ·
��P[E⇤0|E]� P[E⇤1|E]

�� > qH · ✏MHF, i.e., (8)

the probability of E occurring is greater than qH · ✏MHF.
By leveraging the fact that P[E] > qH ·✏MHF, we build an adversary AMHF = (AMHF,1,AMHF,2)

that breaks the (✏MHF,�MHF, nMHF)-parallel-security of the non-amortizable MHF ⇧MHF. Recall
that the validity of A = (A1,A2,A3) guarantees A3 runs in parallel time �MHF with poly(t)
processors (as required in Definition 2). Without loss of generality, we assume that both AMHF,1

52

and AMHF,2 have hardcoded ppVDS $ SetupVDS(1
�), k $ KGenPRF(1�), ri $ {0, 1}d·sp for every

i 2 [u], chall $ C, and i
⇤ $ [qH].44

AMHF = (AMHF,1,AMHF,2) is defined as follows:

AMHF,1(1�, 1t, ppMHF, (id
⇤
1, . . . , id

⇤
u)): On input the security parameter 1�, the time parameter

1t, the public parameter ppMHF, and u inputs (id⇤1, . . . , id
⇤
u) 2 X u

MHF
, AMHF,1 proceeds as

follows:

1. For every i 2 [u], compute vi = EvalMHF(ppMHF, id
⇤
i).

2. Execute A1(1�, ek, pk, vk) where ek = (ppMHF, ppVDS) and pk = vk = ppVDS.

3. Answer the incoming random oracle queries (submitted by A1) as follows:

(a) On input the random oracle query w 2 {0, 1}⇤, interpret w = (v0i, . . . , v
0
j , id

0) (for
some j 2 N) where id0 2 I and v

0
i 2 YMHF for i 2 [j].

(b) If j 6= u _ 9i 2 [j], v0i 6= vi = EvalMHF(ppMHF, id
⇤
i) _ 8i 2 [j], id0 6= id⇤i , AMHF,2

returns FPRF(k, (v01, . . . , v
0
j , id

0)).

(c) Otherwise, if j = u ^ 8i 2 [j], v0i = vi = EvalMHF(ppMHF, id
⇤
i) ^ 9i 2 [j], id0 = id⇤i ,

AMHF,2 returns ri.

4. Eventually, A1(1�, ek, pk, vk) outputs (m1, . . . ,mu, state).

5. For every i 2 [u], compute hi and ci = (Di, auxi) where fi(X) = ri � mi and
(Di, hi, auxi) = GenDataVDS(ppVDS, fi, p).

6. Execute A2(1�, (idi, hi, ci)i2[u], state) and answer the incoming random oracle queries
(submitted by A2) as defined in Item 3.

7. Finally, return ↵ output by A2(1�, (idi, hi, ci)i2[u], state).

AMHF,2(1�, 1t, ppMHF, (id
⇤
1, . . . , id

⇤
u),↵): On input the security parameter 1�, the time parameter

1t, the public parameters ppMHF, the u inputs (id⇤1, . . . , id
⇤
u) 2 X ⇤

MHF
, and the pre-computed

string ↵, AMHF,2 proceeds as follows:

1. Execute A3(1�, ek, pk, vk, (id
⇤
i)i2[u], chall,↵).

2. Answer the incoming random oracle queries (submitted by A3) as follows:

(a) On input the i-th random oracle query wi, interpret wi = (v01,i, . . . , v
0
j,i, id

0
j) (for

some j 2 N).
(b) If i 6= i

⇤, AMHF,3 returns r0 = FPRF(k, (v01,i, . . . , v
0
j,i, id

0
j)).

(c) If i = i
⇤, AMHF,3 stops and outputs (v01,i, . . . , v

0
j,i).

Observe that AMHF is valid with respect to the MHF experiment (see Definition 2) since AMHF,2

has the same running time of A3 which, in turn, runs in parallel time �MHF with poly(t) proces-
sors.

Assume that E holds (i.e., |↵|  n^9(v01, . . . , v0j , id0) 2 QA3,H such that EvalMHF(ppMHF, idi) =
vi = v

0
i for every i 2 [u]). First, we have |↵|  n  nMHF as desired. Second, suppose that

A3 queries (v1, . . . , vu, id
0) (for some id0) to the random oracle during the i-th query wi =

(v01,i, . . . , v
0
u,i, id

0
i) (i.e., (v

0
1,i, . . . , v

0
u,i) = (v1, . . . , vu)). Conditioned to E and i

⇤ = i, it is easy to
see that AMHF,2 correctly simulates A3’s view until the i⇤-th oracle query. Moreover, conditioned
to E, we have that i

⇤ = i (i.e., the case for which AMHF,2 wins against the MHF experiment)
happens with probability 1

QA3,H
 1

qh
. By combining Equation (8) and the above observations,

we conclude that AMHF = (AMHF,1,AMHF,2) is valid (with respect to the non-amortizable MHF
experiment) and has an advantage of at least P[E] · 1

qH
= ✏MHF. This concludes the proof.

44Observe that qH is unknown but upper-bounded by poly(�).

53

Lemma 18. H2(�, t, n, u) ⇡ u
|X

MHF
|
H3(�, t, n, u).

Proof. The proof of Lemma 18 is identical to that of Lemma 12, so we omit it.

Lemma 19. H3(�, t, n, u) ⌘ H4(�, t, n, u).

Proof. It is easy to see that these two hybrids are identically distributed. This is because A1

does not submit a random oracle query w = (v01, . . . , v
0
j , id

0) (for some j 2 N) such that id0 = idi
(for some i 2 [u]) where idi is the challenge random identifier sampled by the challenger. Hence,
the challenger of H4(�, t, n, u), which samples (f1(X), . . . , fu(X)) $ Fu

d�1,p and, for every i 2
[u], it programs the random oracle as H(v1, . . . , vu, idi) = H(Eval(ppMHF, id1), . . . ,Eval(ppMHF,

idu), idi) = ri = fi(X)�mi only after it receivesm1, . . . ,mu from A1 (as defined inH4(�, t, n, u)),
is equivalent to the challenger of H3(�, t, n, u). Moreover, since ri = fi(X)�mi (for every i 2
[u]), we have that the output of the encoding algorithm is correctly distributed. This is because
fi(X) = H(Eval(ppMHF, id1), . . . ,Eval(ppMHF, idu), idi)�mi = ri�mi = fi(X)�mi�mi = fi(X).
This concludes the proof.

Lemma 20. If ⇧VDS is (✏VDS)-sound then

H4(�, t, n, u) ⇡u·✏VDS
H5(�, t, n, u).

Proof. The proof of Lemma 20 is similar to that of Lemma 14, so we omit it.

Lemma 21. P
⇥
H5(�, t, n, u) = 1

⇤
 d�1

|Zq | +
1
2c .

Proof. The proof of Lemma 21 is similar to that of Lemma 15, so we omit it.

Theorem 10 follows by combining Lemmas 16 to 21. This concludes the proof.

A.12 Proof of Corollary 7

The proof is similar to that of Corollary 6 (Appendix A.10). The only di↵erence is that we set

either z � d · sp
0.8 · ` =

|m|
0.8 · ` or ` � d · sp

0.8 · z =
|m|

0.8 · z ,

to obtain u ·nMHF � d(u ·sp�sq)�c which, in turn, implies n = min{u ·nMHF, d(u ·sp�sq)�c} =
d(u · sp � sq)� c. The rest of the proof is identical.

54

	Introduction
	Our Contributions
	Technical Overview

	Related Work
	Preliminaries
	Notation
	Memory-Hard Function with Input-dependent Pre-processing
	Vector Commitments and Merkle Trees
	Efficient Data Structure for Univariate Polynomial Evaluation
	Incompressibility and Polynomial Evaluation
	Pseudorandom Functions

	Localized (deterministic) RAM algorithms
	Verifiable DS for Univariate Polynomial Evaluation
	(Doubly-efficient) VDS from DS and VC

	Proof-of-Replication
	Constructions

	Supporting Proofs
	Proof of thm:random-poly-evaluation
	Proof of coroll:random-poly-evaluation
	Proof of thm:ram-to-loc
	Proof of thm:correctness-completeness-vds-constr
	Proof of thm:soundness-vds-constr
	Proof of coroll:vds
	Proof of thm:efficiency-vds-constr
	Proof of thm:extraction-pous
	Proof of thm:adaptive-security-pous
	Proof of coroll:pous
	Proof of thm:adaptive-security-pous-linear
	Proof of coroll:pous-linear

