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Abstract—Surveillance cameras, even with Pan, Tilt, and Zoom
(PTZ) capabilities, can only cover a limited directional range
at a time, leading to inevitable blind spots. To mitigate these
blind spots, users typically need to deploy additional cameras
or sensors (such as motion sensors and microphones) to guide
the PTZ platform’s movement for capturing intruders, incurring
additional deployment and maintenance costs. To address this
challenge, this paper introduces a novel approach that utilizes
the camera’s built-in WiFi module to detect potential intruders
and direct the PTZ platform’s movements. The approach involves
collecting WiFi Channel State Information (CSI) samples with
humans positioned at various locations, and training a machine
learning model to infer the real-time location of intruders. Given
the intensive human effort required for collecting sample data,
we developed an algorithm to optimize the selection of locations
for collecting CSI samples. The algorithm assesses each location’s
contribution to the overall success rate of capturing intruders,
thereby achieving optimal sample distribution. Our evaluation
demonstrates that our approach achieves a capture rate of
78.24%, which is up to 24% higher than baseline methods, despite
being trained with data collected from only 13% of the locations.

Index Terms—Channel State Information (CSI), Blind Spot,
WiFi Sensing, Machine Learning, Video Surveillance Systems

I. INTRODUCTION

Video surveillance systems are crucial for safeguarding both

individuals and properties, finding extensive use in various

indoor environments like offices, factories, supermarkets and

train stations. These intelligent systems deter and notify au-

thorities about unwanted intruders posing threats within the

monitored areas. Modern cameras have advanced features that

significantly enhance surveillance capabilities. First, their IP

and network connectivity enable the efficient transmission,

storage, and analysis of video data over networks such as

WiFi and Ethernet. Second, these cameras include PTZ (Pan,

Tilt, and Zoom) capabilities, allowing for remote control

to adjust the field of view and specifically focus on areas

of interest, which is essential for monitoring dynamic envi-

ronments. Lastly, they possess robust computing capabilities

that facilitate real-time video data analysis and playback,

supporting advanced functions like motion detection and the

tracking of objects or intruders, thereby elevating them from

mere recording devices to intelligent security systems.

Despite the capability of PTZ cameras to pan and tilt,

they still encounter unavoidable blind spots, as not every area

can be covered by surveillance [1]. Addressing these blind

areas cost-effectively is vital for enhancing the efficiency of

video surveillance systems. To eliminate the blind spots, a

common approach is to sense the location of intruder using

additional sensors, and redirect the camera by controlling

PTZ accordingly. Examples of this approach include using

ultrasonic [2], light sensor [3], acoustic sensor [4], and infrared

sensor [5]. However, these improvements require deploying

extra hardware, leading to increased costs and potentially more

complex integration and maintenance requirements.

In this paper, we present a novel surveillance camera system

that eliminates blind spots by sensing the intruder via the

camera’s built-in WiFi module, which is the first attempt

of its kind to the best of our knowledge. Our approach

is based on the well-established Channel State Information

(CSI) sensing, which utilizes the fine-grained changes of WiFi

signals measured as CSI to estimate the location of humans.

As shown in Fig. 1, the WiFi module periodically captures CSI

signal and uses a pre-trained CSI sensing model to estimate

the presence and location of intruder, and control the PTZ to

redirect the camera to its estimated location.

Fig. 1: Illustration of Camera Redirection

Implementing this system involves an offline phase, which

collects a set of CSI data using the camera’s WiFi module

with a human subject moving to different locations, and trains

a machine learning model. In our approach, human stands

at various locations to capture CSI data, a process we refer

to as ”Sample Distribution” throughout this paper. When the

system works online, low location estimation accuracy may

lead to the camera being directed to a wrong direction, failing

to capture the intruder. As such CSI sample collection is very

labor intensive, we develop an approach that optimizes the

sample collection process so that the failure can be minimized

with limited CSI samples.

In particular, we introduced a new metric called Successful

Capture Rate (SCR), which quantifies the likelihood that our

system can successfully detect an intruder. We observed that a

sample collected at various locations contributes differently to
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SCR, making evenly distributing samples in space a less effi-

cient solution. For each location, considering how its distance

to the camera impacts SCR and how its nearby WiFi sensing-

signal-to-noise-ratio (SSNR [6]) impacts CSI estimation accu-

racy, we develop a model for predicting how collecting CSI

sample with human positioned at various locations impacts

SCR. Utilizing the model, we formulate the distribution of

samples as an optimization problem for maximizing SCR, and

solve it using a greedy-based algorithm.

The contribution of this paper is three folds:

• We design and develop a novel system based on the

well-established WiFi sensing that efficiently guides the

camera to cover the intruder as well as eliminates the

blind spots.

• We analyze the problem of CSI sample distribution

and its impact on the camera accuracy and propose a

solution to maximize the camera accuracy. We formulate

the distribution of samples as an optimization problem

for SCR, a metric we introduce for measuring system’s

reliability, and develop an algorithm to solve it.

• We implement and deploy our system in real environment

and compare our sample distribution algorithm with 2

baseline approaches. Our results show that our approach

exhibits higher accuracy than the baseline approaches.

II. RELATED WORKS AND BACKGROUND

This section introduces the background for our work, as

well as existing solutions.

A. Blind Area in Surveillance Camera and Mitigation

The limited view range of surveillance cameras, typically

spanning 90 to 120 degrees, restricts their coverage and

creates blind spots that can be exploited by intruders [7],

[8]. Although PTZ cameras offer a solution by enabling

dynamic repositioning to capture images of intruders once

their location is known, identifying the precise location of an

intruder remains a challenge. Existing strategies to mitigate

the issue of blind areas in surveillance systems primarily

rely on the integration of additional sensors, specifically: 1)

Motion Sensing: Utilizing sensors that detect changes in the

physical environment to infer the presence and movement of

intruders [5]; 2) Sound Sensing: Employing audio detection

mechanisms to capture noise or vocal disturbances that may

indicate unauthorized access or activities [2], [4].

These methods typically require attaching extra sensors to

the surveillance setup, enhancing the system’s ability to detect

activities beyond the limited view of the camera. Nevertheless,

such enhancements come with increased costs due to the need

for additional hardware and possibly more complex integration

and maintenance requirements. Unlike traditional methods,

such as motion and sound sensing, our method leverages

the built-in WiFi capabilities of IP cameras, offering a cost-

effective solution to the blind area problem. Although using

WiFi to detect humans in blind spots has been explored

previously [9], our work is the first to apply it to guide the

surveillance camera to capture video of the intruder.

Despite advanced capabilities of smart cameras, they have

inherent limitations that prevent them from fully eliminating

blind spots in surveillance systems. Primarily, their field of

view is restricted to where they are positioned and the areas

their lenses can cover. Even with PTZ functionalities discussed

before, there are inevitable gaps that remain unmonitored

unless multiple cameras are strategically placed [10].

B. Sensing-Signal-to-Noise-Ratio (SSNR)

The SSNR, introduced by [6], quantifies the quality of a

sensing signal relative to background noise within a sensing

zone, where background noise includes any disruptive signals.

A sensing zone, typically an ellipse, is defined by the distance

between the transmitter(Tx) and receiver(Rx), which affects

its size, shape, and coverage. The placement of Tx relative to

Rx influences the ellipse’s elongation and coverage, impact-

ing the CSI model’s accuracy, particularly in distinguishing

between Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)

areas, as depicted in Fig.2. LoS represents a clear path

between Tx and Rx, allowing for direct signal transmission,

whereas NLoS involves obstructions like walls or furniture

that cause signal alterations before reaching the receiver.

Fig. 2: SSNR Illustration

A higher SSNR indicates the

wireless signals at a location

have higher sensing capabil-

ity [11], [12]. SSNR for loca-

tion i is defined as:

SSNRi =
d2TxRx

(diTx · diRx)2
(1)

where dTxRx is the distance between the Tx and Rx; diTx

and diRx are the distance from location i to Tx and Rx
respectively.

C. Channel State Information (CSI)

Fine-grained CSI is frequently used to characterize the

propagation of a WiFi signal as it comes in contact with

obstacles [13], [14]. While RSSI (Received Signal Strength

Indicator) averages the signal strength across all sub-carriers

and provides one reading for a received WiFi signal, CSI

catches changes occurring at each sub-carrier and provides

more fine-grained measurements. The number of sub-carriers

differs based on the hardware and the channel bandwidth.

For m data sub-carrier, CSI is expressed as complex number

hm, containing both amplitude(|hm|) and phase(̸ hm) values.

Due to multi-path effects such as phase shift and amplitude

attenuation, the CSI amplitude and phase values are affected

by human movements [15], which is often used to accurately

sense the behavior and location of the human subject.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

The basic workflow of our system is depicted in Fig.3.

The system comprises two main phases: 1) Offline Phase:

determining the likelihood of sampling from each location,

collecting the samples with human standing at locations, and

training an offline model; 2) Online Phase: using the offline
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model to estimate intruder localization, guiding camera focus

to the predicted location. Next we introduce the two phases in

details:

Fig. 3: Basic Workflow

1) Offline phase: We first divide the indoor room into

certain number of grids, each represents a location with a two

dimensional coordinate. We then place the devices, including

the WiFi-enabled camera and the transmitter inside the room,

and record their location coordinates. Knowing all locations

in the room and the locations of the devices, our system

gives instructions on where to collect CSI samples. A human

subject, following the instructions, stands still on the selected

locations for a certain period of time, for the system to collect

a sufficient amount of CSI samples. We also collect samples

when there is nobody in the room. Utilizing these CSI samples,

our system trains an ML model for location estimation.

2) Online phase: During the online phase, the camera period-

ically samples the CSI and uses the CSI estimation model to

determine if a person is present in the room and identify their

location. Upon detecting an individual and pinpointing their

location, our system redirects the camera to focus on that area.

Considering that a camera covers a fixed Field of View (FoV)

and the CSI estimation suffers from errors, we point the center

of the camera’s FoV to the estimated location, to maximize

the likelihood of capturing the intruder via the camera.

A. System Model

For simplicity, we consider a rectangular-shaped indoor

room. A single camera, denoted as C, is positioned at the

centroid or geometric center of the room, with FoV (C)
denoting its FoV (for IP cameras, the general range of FoV is

20.6 degrees to 90 degrees [16]). Furthermore, a transmitter

Tx, functioning as an Access Point (AP), is positioned at

one of the four corners of the room. To build the coordinate

of our system, we divide the indoor room into N × M
equal grids, with the camera’s location as (0, 0). We use

Li = (Xi, Yi) to denote the location of each grid, where

i = I = {0, 1, ...M × N}, Xi ∈ [−M/2,M/2] and

Yi ∈ [−N/2, N/2]. The location of Tx is denoted as LTx.

B. Formulating the Sample Distribution Problem

Collecting CSI data during the offline phase is labor-

intensive and requires human involvement. For the system

to be applicable in real world scenarios, the total number of

samples to be collected, denoted as K, should be small (i.e.,

K << M ∗N ).

However, collecting a smaller number of CSI impacts the

localization accuracy, and further impacts our system’s capa-

bility in capturing intruders, as depicted in Fig.4. If the intruder

is at a location L = (X,Y ) and the location estimation

model estimates the intruder’s location as L′ = (X ′, Y ′),
the surveillance camera will turn to (X ′, Y ′), with keeping

the location (X ′, Y ′) in the middle of its FoV. However,

there is a chance that the actual location (X,Y ) falls outside

the camera’s FoV, resulting in the camera failing to capture

intruder’s footage. In Fig.4, the camera is supposed to cover

location (−3,−5), but failed to do so, since ̸ LCL′ > FoV/2.

Fig. 4: Problem Illustration - Failing to Capture Intruder

(FoV is the camera’s Field of View, L is the real location of

intruder, L’ is the location estimated by our system, and C is

the location of camera.)

To describe the problem, this paper introduces a new metric

named Successful Capture Rate (SCR). SCR measures the

overall probability that an intruder can be successfully cap-

tured by our system. For each location Li, ∀i ∈ I, the camera

can successfully capture the intruder if the angle ̸ LiCL′i
formed by the points Li, camera C, and the estimated location

L′i is smaller than FOV/2. Therefore, we define SCR =
∑

∀i∈I P ( ̸ LiCL′i < FoV/2), where P is the probability.

SCR depends on the locations where the K samples

are collected. For example, compared to distributing samples

evenly throughout the space, collecting samples only within

a sub-region (e.g., the top right corner of the room) leads to

poor SCR because it fails to capture intruders appearing in

other sub-regions. Without losing generality, we formulate the

sample distribution problem as to find whether or not to

collect a sample (denoted as s(i) ∈ [0, 1]) at each location

i, so that SCR can be maximized:

K∗ = {s(i)|∀i ∈ I} = argmaxSCR

= argmax
∑

∀i∈I
P ( ̸ LiCL′i < FoV/2)

s.t., s(i) = 0 or 1,
∑

s(i)∈I
s(i) = K

IV. SOLUTION

One core contribution of this work is the development of an

optimal sample distribution strategy that considers two impor-

tant factors associated with sensing: (1) how CSI localization

accuracy and the distance between the camera and the human’s

location impact SCR? (2) how the sensing capability of a

sample location and its nearby sample locations impact CSI

localization accuracy?
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A. Key Idea Behind Our Solution

1) How CSI localization accuracy and the distance between

the camera and the human’s location impact SCR?: By un-

derstanding the relationship between localization errors, FoV

constraints, and the probability of accurate location estimation,

we can evaluate how effectively the system captures intruders

within the camera’s coverage area. We define Emaxi
as the

maximum CSI localization error that still allows the camera

to capture the intruder at location i. As depicted by Fig.4, we

can calculate Emaxi
using the distance between the camera

and the sample location i, and the view range of the camera
̸ FoV/2, as follows:

Emaxi
= Di. tan( ̸ FoV/2) (2)

Considering the CSI localization error is a distribution func-

tion y = f(x), where x is the error distance and y is

the probability that the estimated location L′i falls within

that error distance, we can determine the likelihood of

an estimated location being within a specific error dis-

tance. For example, given error distances such as x =
{3m, 2.5m, 2m, 1.5m, 1m, 0.5m}, the corresponding proba-

bilities can be y = {85%, 75%, 65%, 55%, 45%, 35%}. Using

this error distribution function, we can calculate the probability

that the estimated location will fall within any maximum

tolerable error distance Emaxi
. For instance, if Emaxi

is

derived from the camera’s field of view and distance Di,

the function y = f(Emaxi
) provides the probability that the

estimated location L′i is within Emaxi
meters of the actual

location Li. We can therefore build a relationship with the

CSI localization error and the SCR and can be alternatively

expressed as:

SCR =
∑

∀i∈I
f(Emaxi

) (3)

For each location Li, f(Emaxi
) provides the probability that

an intruder falls within the camera’s field of view, and sum-

ming these probabilities across all locations yields the SCR.

However, SCR varies by location even with the same error

distance. As shown in Fig. 5, both locations, L1 and L2 have

a CSI localization error of 3m(circles indicate CSI localization

accuracy), equating to an 85% probability that the estimated

location is within 3m. Since D1 < D2, SCR1 is lower than

SCR2, suggesting a reduced capture probability at shorter

distances. This indicates that an intruder at L1 is more likely

to evade detection compared to L2 due to its closer proximity

to the camera. Therefore, placing more samples near the

camera correlates with higher SCR, prompting our approach

to increase sample density near the camera to maximize SCR.

2) How sensing capability of a sample location and its

nearby sample locations impact CSI localization accuracy?:

The sensing capability of a specific sample location, along

with that of its nearby locations, significantly influences the

accuracy of CSI localization. When a human collects a sample

from a location, it alters the error distribution and affects the

localization accuracy of neighboring locations, emphasizing

Fig. 5: Importance of assigning more samples near the camera

interdependence of sensing capabilities in environment. We

mathematically define the sensing capability of location i:

LSCi
= W1 · SSNRi +W2

(
∑

q∈N8(i)
SSNRq · ¶q

8

)

+

W3

(
∑

r∈N16(i)
SSNRr · ¶r

16

)

(4)

where N8(i) represents 8 locations immediately adjacent to

location i, fewer if i is on edge or corner. N16(i) de-

notes 16 locations in next outer layer, varying in num-

ber near edges. SSNRq and SSNRr are the SSNR val-

ues for locations q and r respectively, while ¶q and ¶r
are indicators (1 if sample has been collected from the

location, 0 otherwise). W1, W2, and W3 are weights as-

signed to SSNR of location i itself, and sum of SSNR

values for the 8 and 16 surrounding locations, respectively.

Fig. 6: Impacts of Adjacent

Locations

The Eq. 4 considers impacts on

the error distribution by inte-

grating various levels of spatial

signal information while ensur-

ing sparse sampling. The term

W1.SSNRi directly influences

the error distribution by nar-

rowing it around location i, as

higher SSNR values at i reduce

localization errors. The term

associated with W2 incorporates the signal quality from imme-

diately adjacent locations, capturing local spatial correlations

and reducing error variance through neighboring signal data,

while sparse sampling ensures these samples are not overly

concentrated, avoiding overfitting to local conditions. Lastly,

W3 term provides broader spatial context considering the next

layer of surrounding locations, which helps balance the error

distribution by accounting for wider-area signal variations and

ensuring robust localization accuracy, with sparse sampling

enhancing the model’s generalizability.

Explanation of Weight Assignment: The weights W1, W2,

and W3 are assigned based on spatial relevance, variance, and

stability, as well as signal quality correlation [17], [18]. Spatial

relevance ensures that closer locations (N8(i)) have a stronger

influence due to their proximity, but sparse sampling moder-

ates this effect to prevent overfitting. As depicted in Fig.6,

variance and stability considerations lead to higher weights

for immediate neighbors (W2) because they typically exhibit
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more stable signal qualities, while more distant neighbors

(W3) capture broader signal variations. Finally, signal quality

correlation means that SSNR values of adjacent locations are

more closely related to the SSNR at location i, and the weights

reflect this by emphasizing nearby locations while ensuring a

balanced contribution from the broader spatial context.

B. Solution Workflow

Considering the impacts outlined in IV-A, we formulated

an empirical equation that fits our requirements, which are:

prioritizing gathering samples closer to the camera and with

greater sparsity relative to neighboring samples.

SCRi ← LSCi
∗

1

Di + ϵ
(5)

The term LSCi
is responsible for distributing samples sparsely

comparing with adjacent locations. 1
Di+ϵ

term (ϵ prevents

division by 0 when Di is 0) is accountable for assigning

samples more closer to the camera. Although LSCi
term

encourages sparsity, we can optionally include penalty term

in Eq. 5 to further prevent densely clustered sample locations.

Algorithm 1 presents the pseudo-code of optimal sample

distribution. Lines 4 - 8 calculate SSNR and distance from

camera to all locations. From lines 9-28, we define a function

that employs a greedy approach to select optimal sampling

locations. The function initializes a matrix for tracking samples

and an empty list for the chosen locations. It begins by

calculating SCR for all potential locations, selecting the one

with the highest SCR as the initial point, adding it to the list,

and updating the matrix. For the remaining K − 1 locations,

it iteratively recalculates SCR and chooses new points that

increase the total SCR. This strategy ensures the locations

selected maximize the sum of SCR values, thereby optimizing

the sampling effectiveness. The function returns the list of

selected locations after K iterations. The COMPUTE SCR
function (lines 29-33) calculates the SCR for all potential

sampling locations. It first computes the sensing capability

LSC for each location using the Eq. 4. We experimentally

set W1 = 1, W2 = 0.3 and W3 = 0.1. Then, it calculates the

SCR for each location by multiplying the sensing capability

with the inverse distance from the camera to that location.

Next, we train an LSTM model with the data collected

from K locations. We then use the trained model to estimate

intruder’s location. Finally, our system calculates the minimum

rotation angle required for the camera to cover the predicted

location and determines the direction of rotation—either clock-

wise or counterclockwise.

V. IMPLEMENTATION AND EVALUATION

A. System Implementation and Deployment

System Implementation: Our system involves 1 Raspberry

Pi (RPi) camera (with horizontal FoV of 62.2 deg) attached

with a RPi 4B, working as a receiver to collect CSI data

and 1 transmitter. The RPi camera component is unable to

pant and tilt by itself. Therefore, we attached the camera with

Arducam component, which is capable of rotating horizontally

Algorithm 1 Optimal Sample Distribution

1: Input: Set of all locations L in N ×M equal grid and their coordinates (Xi, Yi)
2: Input: K, camera and receiver’s location C(0, 0) and Rx(0, 0) respectively

3: Output: Subset of locations S, where S ¦ L, |S|= K

4: Calculate SSNR Matrix SS and distance matrix D:

5: for each (i, j) in the indices of N ×M do

6: D[i][j]←
√

(Xi)2 + (Yi)2

7: SS[i][j]←
D2

Tx,Rx

(
√

(XTx−Xi)
2+(YTx−Yi)

2.

√

X2
i
+Y 2

i
)2

8: end for

9: function GREEDY SELECT LOCATIONS(SS, (Xi, Yi), K)

10: Initialize collected samples and selected locations as empty lists

11: SCR← COMPUTE SCR(SS, (Xi, Yi), collected samples)

12: Initialize best initial location to None

13: for each (i, j) in the indices of SCR do

14: Find maximum SCR sum and store (i, j) to best initial location

15: end for

16: Add best initial location to selected locations

17: Set collected samples[best initial location] to 1

18: for each k from 2 to K do

19: SCR← COMPUTE SCR(SS, (Xi, Yi), collected samples)

20: Initialize best location to None

21: for each (i, j) in the indices of SCR do

22: Find maximum SCR sum and store (i, j) to best location

23: end for

24: Add best location to selected locations

25: Set collected samples[best location] to 1

26: end for

27: return selected locations

28: end function

29: function COMPUTE SCR(SS, (Xi, Yi), collected samples)

30: Compute sensing capability LSC for all (i, j) locations using Eq.4

31: Compute SCR for all (i, j) locations using Eq.5

32: return SCR

33: end function

and vertically, as shown in Fig.7a. We selected the RPi 4B for

its widespread availability and cost-effectiveness, as well as its

capability to support 80 MHz bandwidth for WiFi networks.

However, the default firmware of its Broadcom WiFi chip does

not support CSI data capture. To overcome this, we utilized a

modified firmware developed by Nexmon [19], which enables

the capture of CSI data by transmitting it from the link layer

to the host system within frames embedded as transport layer

payloads. Additionally, a TP-Link Archer A7 router, operating

in the 5GHz band, served as a transmitter. We configured the

system to ping the router every 5ms, prompting a pong packet

response, which the RPi receives.

(a) System Implementation (b) Testbed Deployment

Fig. 7: System and Testbed Setup

System Deployment: We conducted experiments in a real

indoor setting to thoroughly assess our system’s performance.

The environment was a lab office measuring 7.5m by 6m,

equipped with few tables, chairs, several desktops and moni-

tors. This office is characterized by rich multi-path reflections

due to its furnishings. We defined a test area of 4m by 2.5m,
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which we subdivided into 160 equidistant grids, each spaced

0.25m apart, as shown in Fig.7b. We obtained the ground truth

locations using tape-measured (X,Y ) coordinates. We placed

C and Rx at (0, 0) and Tx at (−8,−5)(Refer to Fig.8).

B. Data Collection and Processing

Deploying our system, we recruited three volunteers who

each stood at one of the 160 designated locations, and col-

lected 5,000 CSI samples per volunteer from each location,

yielding total of 15,000 CSI samples per location. Complex

numbers representing CSI phase and amplitude are extracted

from the data sub-carriers [20]. The phase value of CSI was

deemed highly sensitive and was therefore discarded, with

only the absolute amplitude of CSI being retained for analysis.

The CSI data collected by the Raspberry Pi is inherently noisy.

To mitigate this, we employed the Least-square smoothing

filter [21], which effectively smooths the CSI data while

preserving the integrity of the waveform. After smoothing

amplitude values of CSI, we averaged every five consecutive

samples to produce a total of 3,000 CSI samples for each 160

locations with further reduced noise levels. Then the denoised

and smoothed data were used to train and test LSTM models.

C. Baseline Sample Distribution Approaches

To the best of our knowledge, no existing state-of-the-art

WiFi-based technique exists for guiding the camera’s PTZ

component to eliminate blind spots. Therefore, we imple-

mented 2 strawman baseline approaches for comparison.

Baseline 1: Uniform distribution sampling approach:

Baseline 1 represents the scenario where samples are collected

at equal or regular intervals throughout the space, a method

most commonly employed for data collection in indoor spaces

for localization purposes [22]. In this baseline, we evaluate

the performance of detecting intruders using a uniformly

distributed sampling approach against our method of uneven

sampling. Our system provides the flexibility to the user to

collect samples from any number of K locations. For our

sampling approach, we utilized Algorithm 1 to select the K
optimal locations that achieve the highest SCR. Fig.8a, 8b

and 8c show the uniform distribution of K = 10, 15 and 20
samples respectively across the 160 location grids. Similarly,

Fig.8g, 8h and 8i exhibit sampling using our approach.

Baseline 2: SSNR based sampling approach: Baseline

2 involves selecting sample locations based on their sensing

capabilities relative to the positions of Rx and Tx, without

considering the impact on nearby areas. Similar to Baseline-

1, we compare the accuracy of our system with this base-

line. Fig.8d, 8e and 8f exhibit sample distribution approach

of Baseline-2, clearly showing a tendency to allocate more

samples in and around the LoS regions.

D. Model Training

During data collection phase, we collected data from all

160 locations with volunteers standing on each location. For

Baseline-1, 2 and our approach, we trained and tested 3 LSTM

models using data from only K = 20 locations, as illustrated

in Fig.8c, 8f and 8i respectively. The reason behind selecting

K = 20 is detailed in the next subsection. We divided the

samples from these 20 locations into 3 parts: 60% for training,

10% for validation and 30% for testing the model. Each LSTM

model includes 3 stacked layers with 256 hidden units each, a

linear layer with inputs of 256 and outputs of 2, and a Softmax

layer. We trained the models with a learning rate of 0.001 for

up to 265 epochs, using Mean Square Error (MSE) for loss

and the Adam optimizer. A 0.5 dropout rate is applied in the

LSTM layers to prevent overfitting.

E. Performance Results

We emphasize that achieving high accuracy in the camera

capturing model is possible with limited sample collection.

This is due to the camera’s FoV, which allows a certain

degree of localization error to capture the intruder. From our

extensive experiments, we found that K = 20 is the least

number among the 160 locations to achieve a good camera

capturing accuracy (SCR accuracy). Fig.10a illustrates how

the greedy approach, as detailed in Algorithm 1, incrementally

maximizes the Total SCR through iterations to select the

K best locations, resulting in a normalized Total SCR of

54.2147. This value signifies that, by collecting data from only

20 (only 13%) of the 160 sample locations, our system can

achieve a maximum normalized Total SCR of 54.2147%.

Localization Error Comparison: We tested the 3 LSTM

models by calculating location error distribution. The CDF

shown in Figure 10b reveals that our approach achieved an

80th percentile error of 0.88m, compared to 1.41m for the

Baseline-1 model. This represents a nearly 37% reduction in

location error, significantly enhancing the camera’s ability to

capture intruders. Fig.10b indicates that Baseline-2 exhibits an

80th percentile error of 1.07m, while our system demonstrates

a lower error of 0.88m. This represents a 17% reduction in

error compared to Baseline-2.

Accuracy Comparison: We assessed and compared the

accuracy of our system with both the baselines by having a

volunteer stand at each location 10 times and recording how

often the camera successfully detected them. The heatmaps

in Figures 9a and 9c display the accuracy at each location,

demonstrating that our system achieved approximately 24%

higher accuracy than Baseline-1. Fig.9b and 9c demonstrate

that our system can capture an intruder with an accuracy that

is 18.6% higher than that of Baseline-2. This improvement is

due to our system taking into account both the distance from

the camera and the sensing impacts on surrounding locations.

F. Sensitivity Analysis of Variable Sampling Size

In our experiments and analyses so far, we started with

an equal number of CSI samples (15,000) from optimally

selected locations. To explore how changes in the number of

CSI samples affect system accuracy, we partitioned our test

environment into two areas: (1) LoS and (2) NLoS and camera-

nearby regions, as depicted in Fig.11a (with dark and light

grids representing NLoS and LoS regions, respectively). We

collected 25,000 CSI samples from NLoS regions and 15,000
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(a) Baseline-1: 10 Sample Distribution (b) Baseline-1: 15 Sample Distribution (c) Baseline-1: 20 Sample Distribution

(d) Baseline-2: 10 Sample Distribution (e) Baseline-2: 15 Sample Distribution (f) Baseline-2: 20 Sample Distribution

(g) Our Approach: 10 Sample Distribution (h) Our Approach: 15 Sample Distribution (i) Our Approach: 20 Sample Distribution

Fig. 8: 10, 15 and 20 Sample Distribution for Baseline-1 (a,b,c), Baseline-2 (d,e,f) and Our Approach (g,h,i)

(a) Baseline-1 Avg. SCR Accuracy = 54.25 (b) Baseline-2 Avg. SCR Accuracy = 63.62 (c) Our Model Avg. SCR Accuracy = 78.24

Fig. 9: Location-wise SCR Accuracy for Models Trained with 20 Samples. Rx at (0,0) and LTx=(-8,-5)

from LoS regions to train an LSTM model (LM1). Conversely,

we gathered 15,000 CSI samples from NLoS regions and

25,000 from LoS regions to train another LSTM model (LM2).

After testing both models across all 160 locations, we found

that LM1 achieved an accuracy of 85.06%, which is around

5% higher than that of LM2, as shown in Fig.11b. These

results suggest that collecting a greater number of CSI samples

from NLoS and camera-nearby locations, as opposed to LoS

regions, can significantly enhance accuracy.

G. Discussion and Limitation

As far as we know, our approach represents the first attempt

to guide a camera’s PTZ component using passive WiFi

sensing to eliminate blind spots. Our evaluations indicate that

our method achieves high accuracy compared to other baseline

models. Additionally, it significantly reduces the extensive

manual effort required for data collection. We also recognize

some of its limitations. Similar to other passive WiFi sensing

applications like gesture recognition and patient monitoring,
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(a) Maximizing SCR for K=20;
Total SCR = 54.2147

(b) Comparison of Localization
Error

Fig. 10: Normalized SCR and Location Error Comparison

(a) Higher Sampling Rate for
NLoS & Camera Nearby

Locations
(b) LM1 Accuracy = 85.06, LM2

Accuracy = 80.81

Fig. 11: Model Accuracy for LoS, and NLoS and Camera-

nearby Locations

our approach is also affected by rich multipath environments.

Its accuracy significantly decreases when multiple persons

stand closely together at the same time. Our approach is

limited to horizontal camera rotation, which can sometimes

pose challenges in fully capturing the intruder. For future

work, we aim to integrate sensing and communication using

advanced protocols to optimize data transfer and enhance real-

time surveillance coverage. Additionally, we will thoroughly

explore the impact of a location on surrounding areas to better

understand spatial relationships, applying these insights to

scenarios where indoor location data is crucial.

VI. CONCLUSION

In this paper, we introduced a novel approach to eliminate

blind spots in surveillance cameras utilizing WiFi sensing to

guide their PTZ movements. Our method optimally selects

a minimal number of sample locations from the surveillance

area, informed by our empirical analysis, thereby achieving

high accuracy in intruder detection. Implemented using Rasp-

berry Pi and a Pi camera, our system demonstrated a signif-

icant improvement in efficiency, attaining a 78.24% accuracy

rate in intruder capture while collecting data from only 13%

of the locations—up to 24% more accurate than baseline

methods. This success underscores our claim of ”covering

more areas with less data,” marking a substantial progress in

surveillance technology.
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