2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS) | 979-8-3315-1596-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICPADS63350.2024.00021

2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS)

Cover More with Less: Eliminating Blind Spots for
Surveillance Camera via Passive WiFi Sensing

Khairul Mottakin, Jinhua Guo, and Zheng Song
Dept. of Computer and Information Science, University of Michigan-Dearborn, MI, USA
{khairulm, jinhua, zhesong}@umich.edu

Abstract—Surveillance cameras, even with Pan, Tilt, and Zoom
(PTZ) capabilities, can only cover a limited directional range
at a time, leading to inevitable blind spots. To mitigate these
blind spots, users typically need to deploy additional cameras
or sensors (such as motion sensors and microphones) to guide
the PTZ platform’s movement for capturing intruders, incurring
additional deployment and maintenance costs. To address this
challenge, this paper introduces a novel approach that utilizes
the camera’s built-in WiFi module to detect potential intruders
and direct the PTZ platform’s movements. The approach involves
collecting WiFi Channel State Information (CSI) samples with
humans positioned at various locations, and training a machine
learning model to infer the real-time location of intruders. Given
the intensive human effort required for collecting sample data,
we developed an algorithm to optimize the selection of locations
for collecting CSI samples. The algorithm assesses each location’s
contribution to the overall success rate of capturing intruders,
thereby achieving optimal sample distribution. Our evaluation
demonstrates that our approach achieves a capture rate of
78.24% , which is up to 24 % higher than baseline methods, despite
being trained with data collected from only 13% of the locations.
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thorities about unwanted intruders posing threats within the
monitored areas. Modern cameras have advanced features that
significantly enhance surveillance capabilities. First, their IP
and network connectivity enable the efficient transmission,
storage, and analysis of video data over networks such as
WiFi and Ethernet. Second, these cameras include PTZ (Pan,
Tilt, and Zoom) capabilities, allowing for remote control
to adjust the field of view and specifically focus on areas
of interest, which is essential for monitoring dynamic envi-
ronments. Lastly, they possess robust computing capabilities
that facilitate real-time video data analysis and playback,
supporting advanced functions like motion detection and the
tracking of objects or intruders, thereby elevating them from
mere recording devices to intelligent security systems.
Despite the capability of PTZ cameras to pan and tilt,
they still encounter unavoidable blind spots, as not every area
can be covered by surveillance [1]. Addressing these blind
areas cost-effectively is vital for enhancing the efficiency of

video surveillance systems. To eliminate the blind spots, a
common approach is to sense the location of intruder using
additional sensors, and redirect the camera by controlling
PTZ accordingly. Examples of this approach include using
ultrasonic [2], light sensor [3], acoustic sensor [4], and infrared
sensor [5]. However, these improvements require deploying
extra hardware, leading to increased costs and potentially more
complex integration and maintenance requirements.

In this paper, we present a novel surveillance camera system
that eliminates blind spots by sensing the intruder via the
camera’s built-in WiFi module, which is the first attempt
of its kind to the best of our knowledge. Our approach
is based on the well-established Channel State Information
(CSI) sensing, which utilizes the fine-grained changes of WiFi
signals measured as CSI to estimate the location of humans.
As shown in Fig. 1, the WiFi module periodically captures CSI
signal and uses a pre-trained CSI sensing model to estimate
the presence and location of intruder, and control the PTZ to
redirect the camera to its estimated location.

Fig. 1: Illustration of Camera Redirection

Implementing this system involves an offline phase, which
collects a set of CSI data using the camera’s WiFi module
with a human subject moving to different locations, and trains
a machine learning model. In our approach, human stands
at various locations to capture CSI data, a process we refer
to as ”Sample Distribution” throughout this paper. When the
system works online, low location estimation accuracy may
lead to the camera being directed to a wrong direction, failing
to capture the intruder. As such CSI sample collection is very
labor intensive, we develop an approach that optimizes the
sample collection process so that the failure can be minimized
with limited CSI samples.

In particular, we introduced a new metric called Successful
Capture Rate (SCR), which quantifies the likelihood that our
system can successfully detect an intruder. We observed that a
sample collected at various locations contributes differently to
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SCR, making evenly distributing samples in space a less effi-
cient solution. For each location, considering how its distance
to the camera impacts SCR and how its nearby WiFi sensing-
signal-to-noise-ratio (SSNR [6]) impacts CSI estimation accu-
racy, we develop a model for predicting how collecting CSI
sample with human positioned at various locations impacts
SCR. Utilizing the model, we formulate the distribution of
samples as an optimization problem for maximizing SCR, and
solve it using a greedy-based algorithm.
The contribution of this paper is three folds:

e« We design and develop a novel system based on the
well-established WiFi sensing that efficiently guides the
camera to cover the intruder as well as eliminates the
blind spots.

o We analyze the problem of CSI sample distribution
and its impact on the camera accuracy and propose a
solution to maximize the camera accuracy. We formulate
the distribution of samples as an optimization problem
for SCR, a metric we introduce for measuring system’s
reliability, and develop an algorithm to solve it.

« We implement and deploy our system in real environment
and compare our sample distribution algorithm with 2
baseline approaches. Our results show that our approach
exhibits higher accuracy than the baseline approaches.

II. RELATED WORKS AND BACKGROUND

This section introduces the background for our work, as
well as existing solutions.

A. Blind Area in Surveillance Camera and Mitigation

The limited view range of surveillance cameras, typically
spanning 90 to 120 degrees, restricts their coverage and
creates blind spots that can be exploited by intruders [7],
[8]. Although PTZ cameras offer a solution by enabling
dynamic repositioning to capture images of intruders once
their location is known, identifying the precise location of an
intruder remains a challenge. Existing strategies to mitigate
the issue of blind areas in surveillance systems primarily
rely on the integration of additional sensors, specifically: 1)
Motion Sensing: Utilizing sensors that detect changes in the
physical environment to infer the presence and movement of
intruders [5]; 2) Sound Sensing: Employing audio detection
mechanisms to capture noise or vocal disturbances that may
indicate unauthorized access or activities [2], [4].

These methods typically require attaching extra sensors to
the surveillance setup, enhancing the system’s ability to detect
activities beyond the limited view of the camera. Nevertheless,
such enhancements come with increased costs due to the need
for additional hardware and possibly more complex integration
and maintenance requirements. Unlike traditional methods,
such as motion and sound sensing, our method leverages
the built-in WiFi capabilities of IP cameras, offering a cost-
effective solution to the blind area problem. Although using
WiFi to detect humans in blind spots has been explored
previously [9], our work is the first to apply it to guide the
surveillance camera to capture video of the intruder.

85

Despite advanced capabilities of smart cameras, they have
inherent limitations that prevent them from fully eliminating
blind spots in surveillance systems. Primarily, their field of
view is restricted to where they are positioned and the areas
their lenses can cover. Even with PTZ functionalities discussed
before, there are inevitable gaps that remain unmonitored
unless multiple cameras are strategically placed [10].

B. Sensing-Signal-to-Noise-Ratio (SSNR)

The SSNR, introduced by [6], quantifies the quality of a
sensing signal relative to background noise within a sensing
zone, where background noise includes any disruptive signals.
A sensing zone, typically an ellipse, is defined by the distance
between the transmitter(7'z) and receiver(Rz), which affects
its size, shape, and coverage. The placement of T'x relative to
Rz influences the ellipse’s elongation and coverage, impact-
ing the CSI model’s accuracy, particularly in distinguishing
between Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)
areas, as depicted in Fig.2. LoS represents a clear path
between T'x and Rz, allowing for direct signal transmission,
whereas NLoS involves obstructions like walls or furniture
that cause signal alterations before reaching the receiver.
A higher SSNR indicates the
wireless signals at a location
have higher sensing capabil-
ity [11], [12]. SSNR for loca-
tion ¢ is defined as:

NLoS
Region

NLoS
Region

* Normalized SSNR ~

NLoS
Region

2
deRz

(diTz : diRz)2 . )
(1) Fig. 2: SSNR Illustration

where dr. g, is the distance between the T'x and Rx; d;1,
and d;r, are the distance from location ¢ to Tx and Rx
respectively.

SSNR; =

C. Channel State Information (CSI)

Fine-grained CSI is frequently used to characterize the
propagation of a WiFi signal as it comes in contact with
obstacles [13], [14]. While RSSI (Received Signal Strength
Indicator) averages the signal strength across all sub-carriers
and provides one reading for a received WiFi signal, CSI
catches changes occurring at each sub-carrier and provides
more fine-grained measurements. The number of sub-carriers
differs based on the hardware and the channel bandwidth.
For m data sub-carrier, CSI is expressed as complex number
hum, containing both amplitude(|h,,|) and phase(Zh,,) values.
Due to multi-path effects such as phase shift and amplitude
attenuation, the CSI amplitude and phase values are affected
by human movements [15], which is often used to accurately
sense the behavior and location of the human subject.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

The basic workflow of our system is depicted in Fig.3.
The system comprises two main phases: 1) Offline Phase:
determining the likelihood of sampling from each location,
collecting the samples with human standing at locations, and
training an offline model; 2) Online Phase: using the offline
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model to estimate intruder localization, guiding camera focus
to the predicted location. Next we introduce the two phases in
details:

Offline Phase
Divide Space Place Camera,
intoNXM —>» Receiver & Online Ph
Equal Grid Transmitter nline Phase
|:‘|> . Intruder’s
Collect CvSI from K grnohcr;es;ri; = e *Rgdairrte‘i;%n
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System

Fig. 3: Basic Workflow

1) Offline phase: We first divide the indoor room into
certain number of grids, each represents a location with a two
dimensional coordinate. We then place the devices, including
the WiFi-enabled camera and the transmitter inside the room,
and record their location coordinates. Knowing all locations
in the room and the locations of the devices, our system
gives instructions on where to collect CSI samples. A human
subject, following the instructions, stands still on the selected
locations for a certain period of time, for the system to collect
a sufficient amount of CSI samples. We also collect samples
when there is nobody in the room. Utilizing these CSI samples,
our system trains an ML model for location estimation.

2) Online phase: During the online phase, the camera period-
ically samples the CSI and uses the CSI estimation model to
determine if a person is present in the room and identify their
location. Upon detecting an individual and pinpointing their
location, our system redirects the camera to focus on that area.
Considering that a camera covers a fixed Field of View (FoV)
and the CSI estimation suffers from errors, we point the center
of the camera’s FoV to the estimated location, to maximize
the likelihood of capturing the intruder via the camera.

A. System Model

For simplicity, we consider a rectangular-shaped indoor
room. A single camera, denoted as C, is positioned at the
centroid or geometric center of the room, with FoV (C)
denoting its FoV (for IP cameras, the general range of FoV is
20.6 degrees to 90 degrees [16]). Furthermore, a transmitter
Tz, functioning as an Access Point (AP), is positioned at
one of the four corners of the room. To build the coordinate
of our system, we divide the indoor room into N x M
equal grids, with the camera’s location as (0,0). We use
L; = (X;,Y;) to denote the location of each grid, where
i =7 = {0,1,..M x N}, X; € [-M/2,M/2] and
Y; € [-N/2, N/2]. The location of T'z is denoted as L.

B. Formulating the Sample Distribution Problem

Collecting CSI data during the offline phase is labor-
intensive and requires human involvement. For the system
to be applicable in real world scenarios, the total number of
samples to be collected, denoted as K, should be small (i.e.,
K << M % N).

However, collecting a smaller number of CSI impacts the
localization accuracy, and further impacts our system’s capa-
bility in capturing intruders, as depicted in Fig.4. If the intruder
is at a location L (X,Y) and the location estimation
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model estimates the intruder’s location as L' = (X', Y’),
the surveillance camera will turn to (X’,Y”), with keeping
the location (X’,Y”) in the middle of its FoV. However,
there is a chance that the actual location (X,Y") falls outside
the camera’s FoV, resulting in the camera failing to capture
intruder’s footage. In Fig.4, the camera is supposed to cover
location (—3, —5), but failed to do so, since ZLCL' > FoV/2.

b A0E
F €0.0)
/< FoVi(2
7 Ll
CSI model % LEL
predicts
location (-5,-4) D
\
N Camera failed
Ly
E /\Z to cover
N location (-3,-5),
= D r due to location
(8,671 | (:3.-5 gror__,

Fig. 4: Problem Illustration - Failing to Capture Intruder
(FoV is the camera’s Field of View, L is the real location of
intruder, L’ is the location estimated by our system, and C is

the location of camera.)

To describe the problem, this paper introduces a new metric
named Successful Capture Rate (SCR). SCR measures the
overall probability that an intruder can be successfully cap-
tured by our system. For each location L;, Vi € Z, the camera
can successfully capture the intruder if the angle /L;CL]
formed by the points L;, camera C, and the estimated location
L} is smaller than FOV/2. Therefore, we define SCR =
Y ovier P(LL;CL; < FoV/2), where P is the probability.

SCR depends on the locations where the K samples
are collected. For example, compared to distributing samples
evenly throughout the space, collecting samples only within
a sub-region (e.g., the top right corner of the room) leads to
poor SCR because it fails to capture intruders appearing in
other sub-regions. Without losing generality, we formulate the
sample distribution problem as to find whether or not to
collect a sample (denoted as s(i) € [0, 1]) at each location
1, so that SCR can be maximized:

Kx = {s(?)|Vi € T} = argmax SCR

= arg max Z P(/L;,CL; < FoV/2)
vieT
s.t.,s(i) =0or1,

Y si)=K

s(i)ET

IV. SOLUTION

One core contribution of this work is the development of an
optimal sample distribution strategy that considers two impor-
tant factors associated with sensing: (1) how CSI localization
accuracy and the distance between the camera and the human’s
location impact SCR? (2) how the sensing capability of a
sample location and its nearby sample locations impact CSI
localization accuracy?
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A. Key Idea Behind Our Solution

1) How CSI localization accuracy and the distance between
the camera and the human’s location impact SCR?: By un-
derstanding the relationship between localization errors, FoV
constraints, and the probability of accurate location estimation,
we can evaluate how effectively the system captures intruders
within the camera’s coverage area. We define L), ., as the
maximum CSI localization error that still allows the camera
to capture the intruder at location 7. As depicted by Fig.4, we
can calculate E,,,;, using the distance between the camera
and the sample location ¢, and the view range of the camera
LFoV/2, as follows:

Eraz; = Di.tan(LFoV/2) 2)
Considering the CSI localization error is a distribution func-
tion y f(x), where x is the error distance and y is
the probability that the estimated location L) falls within
that error distance, we can determine the likelihood of
an estimated location being within a specific error dis-
tance. For example, given error distances such as z
{3m,2.5m,2m, 1.5m, 1m,0.5m}, the corresponding proba-
bilities can be y = {85%, 75%, 65%, 55%, 45%, 35%}. Using
this error distribution function, we can calculate the probability
that the estimated location will fall within any maximum
tolerable error distance Ej,,.,. For instance, if E,,.., is
derived from the camera’s field of view and distance D;,
the function y = f(Fyas,;) provides the probability that the
estimated location L} is within E,q,, meters of the actual
location L;. We can therefore build a relationship with the
CSI localization error and the SCR and can be alternatively
expressed as:

SCR= " f(Emas,)

VieZ

3

For each location L;, f(E,qz;) provides the probability that
an intruder falls within the camera’s field of view, and sum-
ming these probabilities across all locations yields the SCR.
However, SCR varies by location even with the same error
distance. As shown in Fig. 5, both locations, L; and Lo have
a CSI localization error of 3m(circles indicate CSI localization
accuracy), equating to an 85% probability that the estimated
location is within 3m. Since D1 < Do, SCR1 is lower than
SCR2, suggesting a reduced capture probability at shorter
distances. This indicates that an intruder at L; is more likely
to evade detection compared to Lo due to its closer proximity
to the camera. Therefore, placing more samples near the
camera correlates with higher SCR, prompting our approach
to increase sample density near the camera to maximize SCR.
2) How sensing capability of a sample location and its
nearby sample locations impact CSI localization accuracy?:
The sensing capability of a specific sample location, along
with that of its nearby locations, significantly influences the
accuracy of CSI localization. When a human collects a sample
from a location, it alters the error distribution and affects the
localization accuracy of neighboring locations, emphasizing
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Both L, & L, have 85% probability
that estimated locations fall within
3m error distance

«») FoV/2 =y
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Fig. 5: Importance of assigning more samples near the camera

interdependence of sensing capabilities in environment. We
mathematically define the sensin%capability of location ¢:
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where Ns(i) represents 8 locations immediately adjacent to
location 4, fewer if ¢ is on edge or corner. Nyg(i) de-
notes 16 locations in next outer layer, varying in num-
ber near edges. SSNR, and SSNR, are the SSNR val-
ues for locations ¢ and 7 respectively, while J, and I,
are indicators (1 if sample has been collected from the
location, 0 otherwise). Wy, W5, and W3 are weights as-
signed to SSNR of location ¢ itself, and sum of SSNR
values for the 8 and 16 surrounding locations, respectively.
The Eq. 4 considers impacts on
the error distribution by inte-
grating various levels of spatial
signal information while ensur-

ing sparse sampling. The term /
W1.8S N R; directly influences agg;nfn%

the error distribution by nar- T\**
rowing it around location %, as
higher SSNR values at ¢ reduce
localization errors. The term
associated with W5 incorporates the signal quality from imme-
diately adjacent locations, capturing local spatial correlations
and reducing error variance through neighboring signal data,
while sparse sampling ensures these samples are not overly
concentrated, avoiding overfitting to local conditions. Lastly,
W3 term provides broader spatial context considering the next
layer of surrounding locations, which helps balance the error
distribution by accounting for wider-area signal variations and
ensuring robust localization accuracy, with sparse sampling
enhancing the model’s generalizability.

Explanation of Weight Assignment: The weights W7, W5,
and W3 are assigned based on spatial relevance, variance, and
stability, as well as signal quality correlation [17], [18]. Spatial
relevance ensures that closer locations (Ng(4)) have a stronger
influence due to their proximity, but sparse sampling moder-
ates this effect to prevent overfitting. As depicted in Fig.6,
variance and stability considerations lead to higher weights
for immediate neighbors (W) because they typically exhibit

Current

location to
conside
Ji

*
%

Fig. 6: Impacts of Adjacent
Locations
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more stable signal qualities, while more distant neighbors
(W3) capture broader signal variations. Finally, signal quality
correlation means that SSNR values of adjacent locations are
more closely related to the SSNR at location ¢, and the weights
reflect this by emphasizing nearby locations while ensuring a
balanced contribution from the broader spatial context.

B. Solution Workflow
Considering the impacts outlined in IV-A, we formulated
an empirical equation that fits our requirements, which are:
prioritizing gathering samples closer to the camera and with
greater sparsity relative to neighboring samples.
1

SCR; Lsc.
i < SC’*DiJre

(&)

The term Lgc, is responsible for distributing samples sparsely
comparing with adjacent locations. DilJrE term (e prevents
division by 0 when D; is 0) is accountable for assigning
samples more closer to the camera. Although Lgc, term
encourages sparsity, we can optionally include penalty term
in Eq. 5 to further prevent densely clustered sample locations.
Algorithm 1 presents the pseudo-code of optimal sample
distribution. Lines 4 - 8 calculate SSNR and distance from
camera to all locations. From lines 9-28, we define a function
that employs a greedy approach to select optimal sampling
locations. The function initializes a matrix for tracking samples
and an empty list for the chosen locations. It begins by
calculating SCR for all potential locations, selecting the one
with the highest SCR as the initial point, adding it to the list,
and updating the matrix. For the remaining K — 1 locations,
it iteratively recalculates SCR and chooses new points that
increase the total SCR. This strategy ensures the locations
selected maximize the sum of SCR values, thereby optimizing
the sampling effectiveness. The function returns the list of
selected locations after K iterations. The COMPUTE_SCR
function (lines 29-33) calculates the SCR for all potential
sampling locations. It first computes the sensing capability
Lgc for each location using the Eq. 4. We experimentally
set W1 =1, Wy = 0.3 and W3 = 0.1. Then, it calculates the
SCR for each location by multiplying the sensing capability
with the inverse distance from the camera to that location.

Next, we train an LSTM model with the data collected
from K locations. We then use the trained model to estimate
intruder’s location. Finally, our system calculates the minimum
rotation angle required for the camera to cover the predicted
location and determines the direction of rotation—either clock-
wise or counterclockwise.

V. IMPLEMENTATION AND EVALUATION
A. System Implementation and Deployment

System Implementation: Our system involves 1 Raspberry
Pi (RPi) camera (with horizontal FoV of 62.2 deg) attached
with a RPi 4B, working as a receiver to collect CSI data
and 1 transmitter. The RPi camera component is unable to
pant and tilt by itself. Therefore, we attached the camera with
Arducam component, which is capable of rotating horizontally

Algorithm 1 Optimal Sample Distribution

1: Input: Set of all locations £ in N X M equal grid and their coordinates (X, Y;)
: Input: K, camera and receiver’s location C'(0,0) and Rz (0, 0) respectively
: Output: Subset of locations S, where S C L, |S|= K
. Calculate SSNR Matrix SS and distance matrix D:
: for each (i, j) in the indices of N x M do

2
3
4
5
6 Dl[5] + V(X:)?2 + (Y3)? ,
7
8
9

Ars Ta,Ra
SSi][5] + (\/(XTI—Xi)2+(YTz_Yi)2'\/xi2+yig)2
: end for
: function GREEDY_SELECT_LOCATIONS(SS, (X;,Y;), K)
10: Initialize collected_samples and selected_locations as empty lists
11: SCR < COMPUTE_SCR(SS, (X;,Y;), collected_samples)
12: Initialize best_initial_location to None
13:  for each (4, j) in the indices of SCR do
14: Find maximum SCR sum and store (4, j) to best_initial_location
15: end for
16: Add best_initial_location to selected_locations
17: Set collected_samples|best_initial_location] to 1
18: for each k from 2 to K do
19: SCR + COMPUTE_SCR(SS, (X;,Y;), collected_samples)
20: Initialize best_location to None
21: for each (¢, j) in the indices of SCR do
22: Find maximum SCR sum and store (%, j) to best_location
23: end for
24: Add best_location to selected_locations
25: Set collected_samples|best_location] to 1
26: end for
27: return selected_locations

28: end function

29: function COMPUTE_SCR(SS, (X, Y;), collected_samples)

30: Compute sensing capability Lgc for all (i, j) locations using Eq.4
31: Compute SCR for all (i, j) locations using Eq.5

32: return SCR

33: end function

and vertically, as shown in Fig.7a. We selected the RPi 4B for
its widespread availability and cost-effectiveness, as well as its
capability to support 80 MHz bandwidth for WiFi networks.
However, the default firmware of its Broadcom WiFi chip does
not support CSI data capture. To overcome this, we utilized a
modified firmware developed by Nexmon [19], which enables
the capture of CSI data by transmitting it from the link layer
to the host system within frames embedded as transport layer
payloads. Additionally, a TP-Link Archer A7 router, operating
in the 5GHz band, served as a transmitter. We configured the
system to ping the router every Sms, prompting a pong packet
response, which the RPi receives.

- —
E TestArea . RPi working
N (@5x4m § X

columns / RPi Camera
with Arducam
&

-

(a) System Implementation (b) Testbed Deployment

Fig. 7: System and Testbed Setup

System Deployment: We conducted experiments in a real
indoor setting to thoroughly assess our system’s performance.
The environment was a lab office measuring 7.5m by 6m,
equipped with few tables, chairs, several desktops and moni-
tors. This office is characterized by rich multi-path reflections
due to its furnishings. We defined a test area of 4m by 2.5m,
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which we subdivided into 160 equidistant grids, each spaced
0.25m apart, as shown in Fig.7b. We obtained the ground truth
locations using tape-measured (X,Y") coordinates. We placed
C and Rz at (0,0) and Tz at (—8, —5)(Refer to Fig.8).

B. Data Collection and Processing

Deploying our system, we recruited three volunteers who
each stood at one of the 160 designated locations, and col-
lected 5,000 CSI samples per volunteer from each location,
yielding total of 15,000 CSI samples per location. Complex
numbers representing CSI phase and amplitude are extracted
from the data sub-carriers [20]. The phase value of CSI was
deemed highly sensitive and was therefore discarded, with
only the absolute amplitude of CSI being retained for analysis.
The CSI data collected by the Raspberry Pi is inherently noisy.
To mitigate this, we employed the Least-square smoothing
filter [21], which effectively smooths the CSI data while
preserving the integrity of the waveform. After smoothing
amplitude values of CSI, we averaged every five consecutive
samples to produce a total of 3,000 CSI samples for each 160
locations with further reduced noise levels. Then the denoised
and smoothed data were used to train and test LSTM models.

C. Baseline Sample Distribution Approaches

To the best of our knowledge, no existing state-of-the-art
WiFi-based technique exists for guiding the camera’s PTZ
component to eliminate blind spots. Therefore, we imple-
mented 2 strawman baseline approaches for comparison.

Baseline 1: Uniform distribution sampling approach:
Baseline 1 represents the scenario where samples are collected
at equal or regular intervals throughout the space, a method
most commonly employed for data collection in indoor spaces
for localization purposes [22]. In this baseline, we evaluate
the performance of detecting intruders using a uniformly
distributed sampling approach against our method of uneven
sampling. Our system provides the flexibility to the user to
collect samples from any number of K locations. For our
sampling approach, we utilized Algorithm 1 to select the K
optimal locations that achieve the highest SCR. Fig.8a, 8b
and 8c show the uniform distribution of K = 10,15 and 20
samples respectively across the 160 location grids. Similarly,
Fig.8g, 8h and 8i exhibit sampling using our approach.

Baseline 2: SSNR based sampling approach: Baseline
2 involves selecting sample locations based on their sensing
capabilities relative to the positions of Rz and 7'z, without
considering the impact on nearby areas. Similar to Baseline-
1, we compare the accuracy of our system with this base-
line. Fig.8d, 8e and 8f exhibit sample distribution approach
of Baseline-2, clearly showing a tendency to allocate more
samples in and around the LoS regions.

D. Model Training

During data collection phase, we collected data from all
160 locations with volunteers standing on each location. For
Baseline-1, 2 and our approach, we trained and tested 3 LSTM
models using data from only K = 20 locations, as illustrated
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in Fig.8c, 8f and 8i respectively. The reason behind selecting
K = 20 is detailed in the next subsection. We divided the
samples from these 20 locations into 3 parts: 60% for training,
10% for validation and 30% for testing the model. Each LSTM
model includes 3 stacked layers with 256 hidden units each, a
linear layer with inputs of 256 and outputs of 2, and a Softmax
layer. We trained the models with a learning rate of 0.001 for
up to 265 epochs, using Mean Square Error (MSE) for loss
and the Adam optimizer. A 0.5 dropout rate is applied in the
LSTM layers to prevent overfitting.

E. Performance Results

We emphasize that achieving high accuracy in the camera
capturing model is possible with limited sample collection.
This is due to the camera’s FoV, which allows a certain
degree of localization error to capture the intruder. From our
extensive experiments, we found that K = 20 is the least
number among the 160 locations to achieve a good camera
capturing accuracy (SCR accuracy). Fig.10a illustrates how
the greedy approach, as detailed in Algorithm 1, incrementally
maximizes the Total SCR through iterations to select the
K best locations, resulting in a normalized Total SCR of
54.2147. This value signifies that, by collecting data from only
20 (only 13%) of the 160 sample locations, our system can
achieve a maximum normalized Total SC'R of 54.2147%.

Localization Error Comparison: We tested the 3 LSTM
models by calculating location error distribution. The CDF
shown in Figure 10b reveals that our approach achieved an
80th percentile error of 0.88m, compared to 1.41m for the
Baseline-1 model. This represents a nearly 37% reduction in
location error, significantly enhancing the camera’s ability to
capture intruders. Fig.10b indicates that Baseline-2 exhibits an
80th percentile error of 1.07m, while our system demonstrates
a lower error of 0.88m. This represents a 17% reduction in
error compared to Baseline-2.

Accuracy Comparison: We assessed and compared the
accuracy of our system with both the baselines by having a
volunteer stand at each location 10 times and recording how
often the camera successfully detected them. The heatmaps
in Figures 9a and 9c display the accuracy at each location,
demonstrating that our system achieved approximately 24%
higher accuracy than Baseline-1. Fig.9b and 9c demonstrate
that our system can capture an intruder with an accuracy that
is 18.6% higher than that of Baseline-2. This improvement is
due to our system taking into account both the distance from
the camera and the sensing impacts on surrounding locations.

E. Sensitivity Analysis of Variable Sampling Size

In our experiments and analyses so far, we started with
an equal number of CSI samples (15,000) from optimally
selected locations. To explore how changes in the number of
CSI samples affect system accuracy, we partitioned our test
environment into two areas: (1) LoS and (2) NLoS and camera-
nearby regions, as depicted in Fig.11a (with dark and light
grids representing NLoS and LoS regions, respectively). We
collected 25,000 CSI samples from NLoS regions and 15,000
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from LoS regions to train an LSTM model (L M;). Conversely,
we gathered 15,000 CSI samples from NLoS regions and
25,000 from LoS regions to train another LSTM model (L Ms).
After testing both models across all 160 locations, we found
that LM, achieved an accuracy of 85.06%, which is around
5% higher than that of LM, as shown in Fig.11b. These
results suggest that collecting a greater number of CSI samples
from NLoS and camera-nearby locations, as opposed to LoS
regions, can significantly enhance accuracy.

Avg. SCR Accuracy = 63.62 using Baseline-2 Model
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(c) Our Model Avg. SCR Accuracy = 78.24

G. Discussion and Limitation

As far as we know, our approach represents the first attempt
to guide a camera’s PTZ component using passive WiFi
sensing to eliminate blind spots. Our evaluations indicate that
our method achieves high accuracy compared to other baseline
models. Additionally, it significantly reduces the extensive
manual effort required for data collection. We also recognize
some of its limitations. Similar to other passive WiFi sensing
applications like gesture recognition and patient monitoring,
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our approach is also affected by rich multipath environments.
Its accuracy significantly decreases when multiple persons
stand closely together at the same time. Our approach is
limited to horizontal camera rotation, which can sometimes
pose challenges in fully capturing the intruder. For future
work, we aim to integrate sensing and communication using
advanced protocols to optimize data transfer and enhance real-
time surveillance coverage. Additionally, we will thoroughly
explore the impact of a location on surrounding areas to better
understand spatial relationships, applying these insights to
scenarios where indoor location data is crucial.

VI. CONCLUSION

In this paper, we introduced a novel approach to eliminate
blind spots in surveillance cameras utilizing WiFi sensing to
guide their PTZ movements. Our method optimally selects
a minimal number of sample locations from the surveillance
area, informed by our empirical analysis, thereby achieving
high accuracy in intruder detection. Implemented using Rasp-
berry Pi and a Pi camera, our system demonstrated a signif-
icant improvement in efficiency, attaining a 78.24% accuracy
rate in intruder capture while collecting data from only 13%
of the locations—up to 24% more accurate than baseline
methods. This success underscores our claim of “covering
more areas with less data,” marking a substantial progress in
surveillance technology.
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