2024 1IEEE 100th Vehicular Technology Conference (VTC2024-Fall) | 979-8-3315-1778-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/VTC2024-Fall63153.2024.10757779

MQTT-EES: Optimizing Energy Efficiency by
Aggregating Sensing Tasks on IoT Devices

Nico Bokhari, Zhengquan Li, Zheng Song

Dept. of Computer and Information Science,

University of Michigan-Dearborn, MI, USA

{nebokha, zqli, zhesong} @umich.edu

Abstract—MQTT is a widely utilized protocol in the IoT
domain, specifically designed to minimize energy consumption
in battery-powered, energy-intensive IoT devices. With the pro-
liferation of smart home devices, there is a notable increase
in co-located IoT devices capable of publishing to the same
topic, as well as an increase in subscribers accessing diverse
data from these devices. However, the architecture of current
MQTT brokers do not effectively optimize task scheduling among
multiple potential publishers. Our observations suggest that
although aggregating sensing tasks on the same IoT device does
not significantly impact the total sensing energy consumption,
it substantially reduces communication energy costs by mini-
mizing the long-tail energy expenses associated with wireless
communications. In this paper, we introduce MQTT-EES (MQTT
Energy Efficient Scheduling), which further optimizes the energy
efficiency of MQTT by allocating sensing tasks on IoT devices
with the goals of 1) minimizing long-tail communication energy
consumption; and 2) prolonging the overall lifespan of the IoT
system. We formulate the energy consumption challenge as an
NP-hard problem and propose a greedy algorithm to tackle it.
Our simulations show that MQTT-EES reduces average energy
consumption by up to 12% and extends the overall lifespan of the
system 2.78 times compared to standard MQTT implementations.

I. INTRODUCTION

The advent of the Internet of Things (IoT) has revolution-
ized the way we interact with the world as the integration
of network, computational, and intelligent technologies into
everyday objects has transformed various domains including
smart homes, healthcare, and industrial automation. Among
the myriad of protocols facilitating this transformation, MQTT
(Message Queuing Telemetry Transport) stands out due to its
efficient, lightweight design tailored for energy-constrained
environments typical of IoT devices. These devices run an
MQTT Client software to perform sensing tasks, which involve
the capture and transfer of their environments’ data to other
applications connected on a shared MQTT network. Figure 1
exhibits an example MQTT network, which shows the MQTT
Broker, an intermediary software entity that uses a topic-
based publish-subscribe architecture to facilitate MQTT com-
munication amongst IoT devices(publishers) and subscribing
applications(subscribers).

The increase in smart-home devices has led to a surge in
MQTT networks in which IoT devices operate (and sense)
the same physical environment, thus they perform the same
sensing task, thereby transferring duplicate sets of data. Si-
multaneously, there is a growing number of applications
that subscribe to smart-home devices’ data, yet only require
one set of data. This scenario presents unique challenges,

Subscribers

Publishers

=3
O
e

s, o
MaTT
Broker
—1. CONNECT— €——1.CONMECT-

| S
Fig. 1: MQTT-Based System

[00C

including higher network traffic, which results in subscribers
experiencing higher latency. Additionally, many IoT devices
waste energy sensing and transferring the replicated data, as
well as any re-transmissions triggered by the higher network
latency. Unfortunately, current MQTT Broker implementations
lack mechanisms to distribute multiple sensing tasks amongst
co-located publishers such that the minimum amount of data
is transferred to satisfy all subscribers’ latency requirements.
As a result, these IoT systems experience inefficient energy
use and reduced system longevity.

We observed IoT systems with IoT devices that transfer
data via wireless communication, which inherently results in a
problem of tail energy consumption. Tail energy consumption
refers to the unnecessary energy consumed by a publisher after
completing a data transfer, as the publisher remains in a high-
power state for a certain tail time. Considering the unnecessary
energy consumption from uncoordinated sensing tasks, the tail
energy effect, as well as the limited battery power available
to IoT devices, 10T systems with co-located publishers risk
system shutdown.

Thus, this paper introduces MQTT-EES, a novel sensing
task orchestration system to optimize the energy efficiency of
MQTT. Since each device has various sensing capabilities, and
each subscriber has different latency requirements to satisfy,
there exists a finite number of task aggregations with realistic
energy limitations of IoT systems, so MQTT-EES approaches
this NP-hard problem with a greedy algorithm. Specifically,
tasks are allocated to publishers which optimize the number of
data transfers performed during tail windows. In doing so, each
publisher effectively utilizes their high energy state, thereby
minimizing their energy consumption. In this capacity, more
sensing tasks may be aggregated to all publishers, resulting in
the extension of the IoT system’s overall lifespan. The main

Nt Driddn St/ 2dsNHhidd B2OAMVERBITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

contributions of our paper are as below:

o We propose MQTT-EES, a novel task orchestration sys-
tem to improve the energy efficiency of MQTT by
aggregating tasks on IoT devices. By formulating energy
efficient task aggregation as an NP-hard optimization
problem and presenting a greedy algorithm to solve it,
MQTT-EES minimizes long-tail communication energy
consumption, and prolonging the overall lifespan of the
MQTT system.

o We evaluated MQTT-EES under simulation-based ex-
periments that incorporates different system parameters
to test diverse IoT conditions, including the number of
publishers, subscribers, topics, as well as the size of
the tail window. Our comprehensive evaluation results
that MQTT-EES significantly extends the overall lifespan
of the system 2.78 times compared to standard MQTT
implementations and reduces the average energy con-
sumption by up to 12%.

The rest of the paper is as follows. Section II provides an
overview of the MQTT protocol and its previous challenges.
Section III provides our system modeling to describe IoT
systems with co-located devices. Section IV overviews the
optimization problem and our solution’s greedy approach.
Section V showcases MQTT-EES’s results and its experiment
configurations. Section VI draws conclusions from MQTT-
EES’s results and a summary of its contributions.

II. BACKGROUND AND RELATED WORKS
A. MQTT System

Many MQTT-based systems implement energy-saving tech-
nologies given the protocol’s low CPU usage and lightweight
code footprint [1]. Unfortunately, MQTT’s re-transmission
mechanisms have been shown to increase energy consumption
under high traffic scenarios [2]. Furthermore, the protocol,
over wireless communication, is susceptible to unnecessary
tail energy consumption, especially during transmissions of
small packet sizes [3] [4] [5]. There exist studies that attempt
to decrease tail energy consumption through an additional
end-to-end communication packet attribute [6], or an addi-
tional payload of delay-tolerant data within session heartbeat
transmissions [7]; however, they both require incompatible
modifications to the latest MQTT specification [8]. MQTT’s
many-to-many communication enables multiple publishers to
transmit data over a single topic for multiple subscribers
to receive; this paradigm’s flexibility often leads to heavy
network traffic if not scheduled or balanced heedlessly. While
MQTT-EES takes issue aggregating sensing tasks across het-
erogeneous [oT devices, there exists many solutions which
aggregate the queuing or processing of sensed data through
schedulers or load-balanced network architectures to stabilize
the network’s traffic and latency.

B. MQTT System Optimization

Cloud-computing principles have emerged out of many IoT
network management solutions as clustered/bridged MQTT
Brokers and other supporting fog gateways may be created,

deployed, and destroyed dynamically. For example, [9] pro-
poses a framework that deploys additional MQTT Brokers
and load balances MQTT Client connections such that the
cloud CPU utilization stabilizes at a user-defined percentage.
Another example is [10], which dynamically spawns cloud
MQTT Brokers within close proximity of edge IoT device
nodes to maintain latency requirements of connected MQTT
Clients. While [11] is another cloud-based load-balanced IoT
solution, its ensures the QoS of mission-critical health data
in addition to maintaining the energy efficiency of a 4-tier
cloud-fog architecture. Cloud-orchestrated IoT solutions may
optimize the scalability of MQTT-based systems, but the
aforementioned solutions do not model the energy efficiency of
individual battery-powered 10T devices. Many IoT schedulers
focus on organizing data queues to best meet high priority data
QoS. [12] is novel for presenting a multi-Broker IoT scheduler
which adapts individual Broker’s input and output network
traffic to maintain stable network traffic and the delivery
of critical message types. The system’s energy consumption
model is contingent upon IoT devices which exhibit the same
sensing, processing, and transmission ability; thus, IoT devices
with heterogeneous sensing capabilities are not considered.
[13] assumes heterogeneous IoT devices while orchestrating
priority queues to ensure the delivery of highly prioritized data,
but does not model the individual devices’ energy consumption
during execution. Various solutions harness scheduling and
cloud-computing principles to optimize MQTT-based systems,
but many neglect to model IoT devices’ constrained energy
resource, and an approach to optimize heterogeneous device
utilization through tail energy reduction and task distribution.

III. SYSTEM MODEL

We consider the MQTT-EES comprised of a set of pub-
lishers P = {p1,p2,...,pm} and a set of sensing topics
T = {t1,t2,...,ty}. Each publisher p; is characterized by its
energy capacity C';, which indicates the total amount of energy
available for task executions over the observation period Tjps.
Additionally, each publisher has a specific set of sensing ca-
pabilities denoted by S; = {s;1, Sj2,...,8jn}, Where sj; =1
if publisher j is capable of sensing data for topic ¢ and 0
otherwise. The topics are defined by their sensing frequencies
fi assigned by subscribers, representing the intervals at which
the sensor data need to be read and sent to the broker within
the observation period. Let F' = {f1, fa, ..., f»} represents the
set of frequencies for all topics.

As the publisher devices usually send data to the broker
via wireless communication (e.g., WiFi and Bluetooth), which
inherently results in a problem of tail energy consumption.
Tail energy consumption here refers to the energy consumed
by a publisher after completing a data transfer. Even when
the transfer is finished, the publisher remains in a high-power
state for a certain tail time, consuming unnecessary energy.

In this case, if multiple sensing tasks happen at the same
time on a publisher, it is intuitive to consider it as a single
energy-consuming event (we assume the time of sensing the
data and sending data to the broker for each topic is constant

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

and same) as it will not trigger separate tail energy windows.
The energy consumption is related to the effective number
of task executions. Effective executions refer to the count of
task executions within the observation period 7,5 that are
considered distinct in terms of energy consumption. Due to
the tail energy effect, multiple tasks executed at the same
moment are consolidated and counted as only one effective
execution. The number of effective executions may be less
than the total number of task executions. Therefore, if MQTT-
EES can assign the topics to publishers to reduce the number
of effective executions within the observation period T;;, the
more energy can be saved.

IV. PROBLEM FORMULATION AND SOLVING
A. Problem Formulation

We aim to minimize the total energy consumption across
all publishers by intelligently assigning each sensing topic to
a single publisher. The assignment considers each publisher’s
energy capacity, sensing capabilities, and the tail energy
consumption of executing sensing tasks, with the goal of
minimizing the number of effective executions and thereby
optimizing the overall energy index.

Let x;; be a binary decision variable where z;; = 1 if
topic t; is assigned to publisher p;, and x;; = 0 otherwise.
We define a vector x; for each publisher j, encapsulating the
assignment of all topics to that publisher:

Xj = [x1j3x2j7'~~axnj]

The output of the optimization model is X' = {x;,Vj < m}.
The objective is to minimize the total energy index, which is
the sum of the individual energy indices of all publishers; each
index represents the ratio of the total energy cost of a given
publisher (including the sensing and communication cost) to
the given publisher’s remaining.

X = argmin =
g ;:1 c,

~ arg mini Sensing(x;, T, F);— Commn(x;, T, F')
J

j=1

i (D
s.t.:injzl, Vie{l,...,n}
j=1

S.t.ZCITZ‘jSSji, ViE{1,...,71},Vj€{1,...,m}

n

s.t.:inj-eing, VjE{l,...7m}

i=1
where Sensing(x;,T,F') calculate the total sensing energy
consumption for publisher j based on its assigned topics
(through x;). Commn(x;, T, F) calculates the total com-
munication energy consumption for publisher j based on
its assigned topics (through x;). The observation period is
noted as 7, and the set of all topics’ frequencies is noted as

F={fi,fo- s fa}

For the Constraints, we explain them one by one as follows:

o Assignment Constraint: Each topic must be assigned
to only one publisher who is capable of sensing it:
E;r;l Tij = 1, Vie {1,...,71}

o Sensing Capability Constraint: A topic can only be as-
signed to a publisher if the publisher has the capability to
sense it: x;; < sj;, Vie{l,...,n},Vjie{l,...,m}

o Energy Capacity Constraint: The total energy used
by a publisher for the effective executions should not
exceed its energy capacity: Y ., ;- €pe < Cj, Vj €
{1,...,m}. Here, ¢; is the estimated energy consumption
for a single execution of topic ¢, factoring in the energy
saved by batching executions due to the tail energy effect.

B. Problem Solving

We start with introducing a brute-force approach to ease the
understanding how MQTT-EES works to reduce the energy
consumption. Then we move to our greedy approach to
solve the problem more efficiently considering the constrained
resources on IoT devices.

1) Brute-Force Approach: The brute-force approach simply
explores all possible assignments of tasks (or sensing topics) to
publishers. This method evaluates every possible combination
of task-to-publisher assignments to identify the one that yields
the lowest total energy index, which is indicative of the most
energy-efficient distribution of tasks across the network of
publishers. By assessing each potential assignment, the brute-
force method ensures that no possible solution is overlooked,
thereby guaranteeing the optimal assignment that minimizes
energy consumption given the constraints of publisher capac-
ities and task requirements. For each possible assignment,
we calculate its resulted energy index for each publisher.
This requires calculating effective executions of a given topic
assignment. The following example illustrate the calculation
of effective executions.

Consider an example involving a publisher assigned three
sensing tasks over a one-minute observation period. Suppose
Task 1 has a frequency of 10 seconds, Task 2 has a frequency
of 20 seconds, and Task 3 has a frequency of 30 seconds.
Given the assumption of a zero tail duration, tasks executed
simultaneously are aggregated into a single energy-consuming
event. The execution times within the one-minute period are
as follows:

e Task 1 executes at 0, 10, 20, 30, 40, and 50 seconds.
o Task 2 executes at 0, 20, and 40 seconds.
o Task 3 executes at 0 and 30 seconds.

Here, describe how this example uses a tail window of 0,
in which tasks with the exact same time points will be
executed concurrently. In our system this tail window is held
constant. We merge the timing of all task executions into
a list {0, 0,0, 10, 20, 20, 30, 30, 40,40, 50}. Then we observe
overlaps in execution times across these tasks. At the 0-second
point, all three tasks execute simultaneously, counted as one
effective execution. Similarly, overlaps at 20 and 30 seconds,
where Task 1 and Task 2, and Task 1 and Task 3 overlap,

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

respectively, are each considered a single effective execution.
Thus, after remove the overlaps, the timing of executive task
executions is: {0, 10, 20, 30, 40, 50}.

Despite the total of 11 (6+3+2) scheduled task executions
across the three topics, the effective executions are fewer due
to the overlaps. Specifically, there are effectively 6 distinct ex-
ecution times when considering the energy efficiency achieved
through task overlaps at 0, 20, and 30 seconds. Thus, the
number of effective executions is reduced to 6, illustrating
how strategic scheduling batches tasks thereby significantly
enhance energy efficiency by minimizing the total number of
high-power states induced by sensing task executions.

2) Greedy Approach: The brute-force method exhaustively
searches through all possible assignments whose size grows
exponentially with the number of topics and publishers are
present. This inherent complexity means our problem is classi-
fied as NP-hard and hard to obtain the optimal solution within
polynomial-time. Thus, we purpose a greedy method, which
incrementally builds a solution by making locally optimal
choices at each step. This approach focuses on assigning each
task to the publisher that will incur the smallest increase in en-
ergy consumption, given the current state of task assignments
and each publisher’s remaining energy capacity.

At the core of the greedy strategy is a calculation that
estimates the energy a publisher will use if a new task
were assigned to it, considering the task’s frequency and the
observation period. By iterating over the tasks and dynamically
selecting the best publisher for each based on current energy
usage and capacity constraints, the greedy approach avoids the
explosion of possibilities faced by brute-force methods. The
result is a faster, more practical solution that, while not guar-
anteeing the absolute optimal distribution of tasks, provides
a near-optimal arrangement that significantly reduces overall
energy consumption and ensures a more balanced utilization of
publisher resources. This method is particularly advantageous
in real-time systems or those with a large number of tasks
and publishers, where computational efficiency and scalability
are critical. The following is the pseudo code of the greedy
approach:

The algorithm begins by initializing an empty mapping
for assignments to keep track of the tasks assigned to each
publisher. Besides, it sets the current energy usage (Ecurrent)
for each publisher to zero, preparing for subsequent energy
consumption calculations. Then the algorithm iterates through
each task that needs to be assigned. For each task, it evaluates
which publisher would be the best candidate based on energy
efficiency index. After determining FEjpcrease for a task with
a particular publisher, the algorithm computes a ratio (Eiu0)
of the new total energy usage to the publisher’s total energy
capacity. This ratio helps in assessing the energy efficiency
of assigning the task to the publisher. The publisher that
results in the lowest FEi., for the task is selected as ppes-
This choice indicates an optimal balance between the task’s
energy requirements and the publisher’s energy capacity. The
selected task is then assigned to ppes, the publisher’s current

Algorithm 1 Greedy Approach

1: Initialize assignments as an empty mapping of publishers to tasks
2: Initialize Feymen for each publisher as zero
3: for each task in tasks do

4: Dhest <— null
5: Enin + 00
6: for each p in P do
7 Eincrease ¢ ENERGYINCREASE(p, task.freq, T)
8: Erew < Ecurrent [Zﬁ + Elincrease
9: Eraio < p.allEnergn;/WCapacily
10: if Enew < p.allEnergyCapacity and Eryio < Emnin then
11: Doest < P
12: Emin <~ Emlio
13: end if
14: end for
15: if ppest 7 null then
16: assignments|poes).append(task)
17: Ecurrent [pbcs(] < Ecurrent [pbcal] + FElincrease
18: end if
19: end for

20: return assignments
21: function ENERGYINCREASE(p, freq, T')

22: frequencies < the frequencies of all tasks assigned to p.
23: y1 < TotalExe(frequencies, T)
24 yo < EffectiveExe(frequencies, T')

25: e; < 10 > Assume the energy of sensing one data is a constant
26: ez <+ 5 > Assume the energy of transferring one data is a constant
27: Eincrease = €1 * Y1 + €2 * Y2

28: return Ejcease

29: end function

energy usage is updated, and the assignment is recorded. This
procedure is iteratively applied to all tasks, ensuring each
is allocated in a manner that optimally utilizes the available
energy resources. Upon completing the assignments for all
tasks, the algorithm returns the final assignments mapping,
detailing how tasks have been distributed across publishers.

For the function Energylncrease, it estimate the energy
consumption increase from a new task assignment by: 1)
calculating the energy consumption of executing all the sens-
ing tasks by calculating the total executions; 2) calculating
the communication energy by first calculating the effective
executions (y) from the aggregated frequencies of assigned
tasks, reducing energy consumption by batching tasks (by
the way of listing all the timing of executing tasks in a
observation period, like we did in the brute-force approach).
We assumes a constant energy consumption for sensing the
data and transferring the data, simplifying the energy increase
estimation (Fipcrease)-

V. EVALUATION

Our simulation measured two system performance metrics,
system energy consumption and system lifespan. Simulated
MQTT environments are varied in the number of subscribers,
topics, and publishers, as well as the length of publishers’ tail
window. The default values of these components are listed in
Table I

Parameters Default Values
Publishers 8

Subscribers 8

Topics 8

Tail Window (ms) | 250

TABLE I: Default Settings for System Parameters

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

The simulation also declares other non-varied constants
for measuring both energy consumption and system lifespan,
including:

« Range of topic frequencies F' (100 — 5000ms)

o Length of Observation Period 7" (1 hour = 3,600,000

ms)

« Sensing Energy Cost per Execution (0.0005%)

o Communication Energy Cost per Execution (0.005%)

Additionally, the sensing capabilities and subscriptions for
each topic are randomly generated at the beginning of each
round, and shared among all tested scheduling algorithms.

A. System Energy Consumption

To verify the effectiveness of our scheduling , we compared
MQTT-EES with one baseline: Random Scheduling in which
the MQTT broker randomly assign the sensing tasks to the
publishers that share the corresponding sensing capabilities.
The simulation for each scheduling approach runs a 30-round
experiment per varied parameter (number of publishers, sub-
scribers, topics; size of tail window) to simulate diverse, real-
world IoT environments. The details of how these parameters
are varied are summarised in Table II. In the experiments,
when one parameter is varied, all other parameters are held
at the default values described in Table 1. Specifically, dur-
ing each round, the number of publishers, subscribers, and
topics vary from 3 to 15 through random generation. The
tail window is also varied given that IoT devices may adopt
different network interfaces that consume different tail energy
consumptions.

Fig. 2 to Fig. 5 compares the average energy consumption
(i.e., the overall energy consumption divided by the number
of system publishers) of MQTT-EES and Random Scheduling
under different system configurations. To present the average
energy reduction in using MQTT-EES over Random Schedul-
ing, Fig. 6 plots the distribution of average energy reduction as
a result of subtracting MQTT-EES’s average energy consump-
tion from Random Scheduling over each system parameter.

Parameter p Variance Range of Parameter p

Publishers 3<p<15
Subscribers 3<p<15
Topics 3<p<15

Tail Window (ms) | p € {100, 250, 500, 1000}

TABLE II: Value Range for Varied System Parameters

—]
= Random

50 4

40 4

30 4

Average Energy Consumption (%)

104

4 6 8 10 12 14
Number of Publishers

Fig. 2: Average Energy Consumption(%) vs # of Publishers

o IS w w s B
=) o & & &

Average Energy Consumption (%)

—
o

-
5}

4 6 8 10 12 14
Number of Topics

Fig. 3: Average Energy Consumption(%) vs # of Topics

e EES

e Random

30

251

204

Average Energy Consumption (%)

10 4

4 6 8 10 12 14
Number of Subscribers

Fig. 4: Average Energy Consumption(%) vs # of Subscribers

NN EES
EE Random

w
&

w
=]

N
]

o
&

Average Energy Consumption (%)
- ~
=3 S

100 250 500
Tail Window (ms)

v

Fig. 5: Average Energy Consumption(%) vs. Tail Window

As the number of publishers increase in Fig. 2, the average
energy consumption decreases for both MQTT-EES and Ran-
dom Scheduling since both approaches distribute sensing tasks
among all capable publishers. Since the number of sensing
tasks is set to a default constant, adding more publishers
further divides the sensing tasks, thereby decreasing energy
consumption per publisher.

As the number of topics varies, the number of sensing tasks
varies, which is evident in Fig. 3. As the number of topics
increase, both scheduling approaches allocate more sensing
tasks to a default number of publishers. In this capacity, each
device in the simulated IoT system is allocated more sensing
tasks, thereby increasing the number the executions, resulting
in an increase in per-device energy consumption.

Fig. 4 shows that the average energy consumption increases
as the number of subscribers increases. We attribute this to a
simulation specific phenomenon in which the number of sub-
scriptions on a topic increases as the number of subscribers in-
creases. While the individual topic frequencies in F’ remain the

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

minimum latency requirements collected from the subscribers
upon subscription, additional subscriptions result in a higher
likelihood that the minimum latency requirement approaches
the minimum value in the range of topic frequencies.

In Fig. 5, a wider tail window (i.e 1000ms) considers
more sensing tasks as running concurrently, thereby decreasing
the number of executions which results in decreased energy-
consumption. In contrast, a smaller tail window (i.e 100 ms)
requires sensing tasks to occur relatively close together in
time which restricts the number of sensing tasks that may
run concurrently. As less sensing tasks run concurrently, the
number of executions increase, resulting in an increase in
average energy consumption.

12 1

10 +

T

Energy Reduction (%)

| T
2 i L

T
Subscribers

T T T
Publishers # Topics Tail Window (ms)

Fig. 6: Average Energy Reduction(%) between MQOTT-EES and
Random Scheduling across all experiments

In Fig. 6, we visualize the distribution of energy reductions
as a result of subtracting MQTT-EES’s average energy con-
sumption from Random Scheduling. In summary, MQTT-EES
outperformed Random Scheduling in all parameters configura-
tions, with an reduction of 12% in terms of the average energy
consumption.

B. System Lifespan

The system lifespan was evaluated under default parameters
with three approaches. As illustrated in Fig. 7 , MQTT-EES
lasts 3.41 hours until 1 publisher’s simulated battery is reduced
to 0. When compared to the lifespans of standard MQTT and
Random Scheduling, MQTT-EES increases an [oT system’s
lifespan by 278% and 142% respectively. The improvement
is confirmed by our approach’s assertion that scheduled tasks
are aggregated onto a single publisher given it consumes the
least energy upon task execution. MQTT-EES differs from
the standard MQTT implementation as it assigns a task to
all publishers that are capable of doing so.

VI. CONCLUSION

In this paper, we purposed MQTT-EES, designed to op-
timize energy efficiency in IoT environments. Our approach
can reduce average energy consumption by 12% and extends
system lifespan by 2.78 times compared to standard MQTT
implementations. These improvements are achieved through
strategic task allocation and a greedy algorithm that tackles
the NP-hard problem of energy optimization among co-located

351 = EES

EEE Random
. MQTT

3.0

Z5H

2.0 4

1.5

1.0

Average System Lifespan (Hours)

0.5

0.0 -

EES Random
Algorithm

MQTT

Fig. 7: Average System Lifespan(Hr) vs 3 Algorithms

IoT devices. These impressive results not only demonstrate
substantial energy savings and enhanced system longevity but
also suggest broader implications for sustainability in IoT.

VII. ACKNOWLEDGEMENT

This research is supported by NSF through the grant

#2104337. REFERENCES

[1] S. Jiwangkura, P. Sophatsathit, and A. Chandrachai, “Mqtt of iot
classification in energy saving,” in proceeding of 11th International
Conference on Data Mining, Computers, Communication and Industrial
Applications (DMCCIA-2017), Kuala Lumpur, 2017.

[2] J. Toldinas, B. Lozinskis, E. Baranauskas, and A. Dobrovolskis, “Mqtt
quality of service versus energy consumption,” in 2019 23rd interna-
tional conference electronics. 1EEE, 2019, pp. 1-4.

[3] D.-H. Mun, M. Le Dinh, and Y.-W. Kwon, “An assessment of internet
of things protocols for resource-constrained applications,” in 2016 IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1. IEEE, 2016, pp. 555-560.

[4] Y. Li, Y. Wang, and T. Lan, “Mobile ad prefetching and energy
optimization via tail energy accounting,” IEEE Transactions on Mobile
Computing, vol. 18, no. 9, pp. 2117-2128, 2018.

[5] N. Ferraz Junior, A. A. Silva, A. E. Guelfi, and S. T. Kofuji, “Per-
formance evaluation of publish-subscribe systems in iot using energy-
efficient and context-aware secure messages,” Journal of Cloud Com-
puting, vol. 11, no. 1, p. 6, 2022.

[6] Y. Im and M. Lim, “E-mqtt: End-to-end synchronous and asynchronous
communication mechanisms in mqtt protocol,” Applied Sciences, vol. 13,
no. 22, p. 12419, 2023.

[71 T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “etrain:
Making wasted energy useful by utilizing heartbeats for mobile data
transmissions,” in 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems. 1EEE, 2015, pp. 113-122.

[8] O. Standard, “Mgqtt version 5.0, Retrieved June, vol. 22, p. 2020, 2019.

[9] L. M. Pham, N.-T.-T. Le, and X.-T. Nguyen, “Multi-level just-enough
elasticity for mqtt brokers of internet of things applications,” Cluster
Computing, vol. 25, no. 6, pp. 3961-3976, 2022.

[10] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware
mqtt middleware for edge computing applications,” in 20/8 [EEE
International Conference on Cloud Engineering (IC2E). 1EEE, 2018,
pp- 191-197.

[11] N. Singh and A. K. Das, “Energy-efficient fuzzy data offloading for
iomt,” Computer Networks, vol. 213, p. 109127, 2022.

[12] S. Abdullah and K. Yang, “An energy-efficient message scheduling
algorithm in internet of things environment,” in 2013 9th International
Wireless Communications and Mobile Computing Conference (IWCMC).
IEEE, 2013, pp. 311-316.

[13] E. L. de Caldas Filho, R. L. Rocha, C. J. Abbas, L. M. E. Martins, E. D.
Canedo, and R. T. de Sousa, “Qos scheduling algorithm for a fog iot
gateway,” in 2019 Workshop on Communication Networks and Power
Systems (WCNPS). 1EEE, 2019, pp. 1-6.

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

