
MQTT-EES: Optimizing Energy Efficiency by

Aggregating Sensing Tasks on IoT Devices

Nico Bokhari, Zhengquan Li, Zheng Song

Dept. of Computer and Information Science, University of Michigan-Dearborn, MI, USA

{nebokha, zqli, zhesong}@umich.edu

Abstract—MQTT is a widely utilized protocol in the IoT
domain, specifically designed to minimize energy consumption
in battery-powered, energy-intensive IoT devices. With the pro-
liferation of smart home devices, there is a notable increase
in co-located IoT devices capable of publishing to the same
topic, as well as an increase in subscribers accessing diverse
data from these devices. However, the architecture of current
MQTT brokers do not effectively optimize task scheduling among
multiple potential publishers. Our observations suggest that
although aggregating sensing tasks on the same IoT device does
not significantly impact the total sensing energy consumption,
it substantially reduces communication energy costs by mini-
mizing the long-tail energy expenses associated with wireless
communications. In this paper, we introduce MQTT-EES (MQTT
Energy Efficient Scheduling), which further optimizes the energy
efficiency of MQTT by allocating sensing tasks on IoT devices
with the goals of 1) minimizing long-tail communication energy
consumption; and 2) prolonging the overall lifespan of the IoT
system. We formulate the energy consumption challenge as an
NP-hard problem and propose a greedy algorithm to tackle it.
Our simulations show that MQTT-EES reduces average energy
consumption by up to 12% and extends the overall lifespan of the
system 2.78 times compared to standard MQTT implementations.

I. INTRODUCTION

The advent of the Internet of Things (IoT) has revolution-

ized the way we interact with the world as the integration

of network, computational, and intelligent technologies into

everyday objects has transformed various domains including

smart homes, healthcare, and industrial automation. Among

the myriad of protocols facilitating this transformation, MQTT

(Message Queuing Telemetry Transport) stands out due to its

efficient, lightweight design tailored for energy-constrained

environments typical of IoT devices. These devices run an

MQTT Client software to perform sensing tasks, which involve

the capture and transfer of their environments’ data to other

applications connected on a shared MQTT network. Figure 1

exhibits an example MQTT network, which shows the MQTT

Broker, an intermediary software entity that uses a topic-

based publish-subscribe architecture to facilitate MQTT com-

munication amongst IoT devices(publishers) and subscribing

applications(subscribers).

The increase in smart–home devices has led to a surge in

MQTT networks in which IoT devices operate (and sense)

the same physical environment, thus they perform the same

sensing task, thereby transferring duplicate sets of data. Si-

multaneously, there is a growing number of applications

that subscribe to smart-home devices’ data, yet only require

one set of data. This scenario presents unique challenges,

Fig. 1: MQTT-Based System

including higher network traffic, which results in subscribers

experiencing higher latency. Additionally, many IoT devices

waste energy sensing and transferring the replicated data, as

well as any re-transmissions triggered by the higher network

latency. Unfortunately, current MQTT Broker implementations

lack mechanisms to distribute multiple sensing tasks amongst

co-located publishers such that the minimum amount of data

is transferred to satisfy all subscribers’ latency requirements.

As a result, these IoT systems experience inefficient energy

use and reduced system longevity.

We observed IoT systems with IoT devices that transfer

data via wireless communication, which inherently results in a

problem of tail energy consumption. Tail energy consumption

refers to the unnecessary energy consumed by a publisher after

completing a data transfer, as the publisher remains in a high-

power state for a certain tail time. Considering the unnecessary

energy consumption from uncoordinated sensing tasks, the tail

energy effect, as well as the limited battery power available

to IoT devices, IoT systems with co-located publishers risk

system shutdown.

Thus, this paper introduces MQTT-EES, a novel sensing

task orchestration system to optimize the energy efficiency of

MQTT. Since each device has various sensing capabilities, and

each subscriber has different latency requirements to satisfy,

there exists a finite number of task aggregations with realistic

energy limitations of IoT systems, so MQTT-EES approaches

this NP-hard problem with a greedy algorithm. Specifically,

tasks are allocated to publishers which optimize the number of

data transfers performed during tail windows. In doing so, each

publisher effectively utilizes their high energy state, thereby

minimizing their energy consumption. In this capacity, more

sensing tasks may be aggregated to all publishers, resulting in

the extension of the IoT system’s overall lifespan. The main

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

contributions of our paper are as below:

• We propose MQTT-EES, a novel task orchestration sys-

tem to improve the energy efficiency of MQTT by

aggregating tasks on IoT devices. By formulating energy

efficient task aggregation as an NP-hard optimization

problem and presenting a greedy algorithm to solve it,

MQTT-EES minimizes long-tail communication energy

consumption, and prolonging the overall lifespan of the

MQTT system.

• We evaluated MQTT-EES under simulation-based ex-

periments that incorporates different system parameters

to test diverse IoT conditions, including the number of

publishers, subscribers, topics, as well as the size of

the tail window. Our comprehensive evaluation results

that MQTT-EES significantly extends the overall lifespan

of the system 2.78 times compared to standard MQTT

implementations and reduces the average energy con-

sumption by up to 12%.

The rest of the paper is as follows. Section II provides an

overview of the MQTT protocol and its previous challenges.

Section III provides our system modeling to describe IoT

systems with co-located devices. Section IV overviews the

optimization problem and our solution’s greedy approach.

Section V showcases MQTT-EES’s results and its experiment

configurations. Section VI draws conclusions from MQTT-

EES’s results and a summary of its contributions.

II. BACKGROUND AND RELATED WORKS

A. MQTT System

Many MQTT-based systems implement energy-saving tech-

nologies given the protocol’s low CPU usage and lightweight

code footprint [1]. Unfortunately, MQTT’s re-transmission

mechanisms have been shown to increase energy consumption

under high traffic scenarios [2]. Furthermore, the protocol,

over wireless communication, is susceptible to unnecessary

tail energy consumption, especially during transmissions of

small packet sizes [3] [4] [5]. There exist studies that attempt

to decrease tail energy consumption through an additional

end-to-end communication packet attribute [6], or an addi-

tional payload of delay-tolerant data within session heartbeat

transmissions [7]; however, they both require incompatible

modifications to the latest MQTT specification [8]. MQTT’s

many-to-many communication enables multiple publishers to

transmit data over a single topic for multiple subscribers

to receive; this paradigm’s flexibility often leads to heavy

network traffic if not scheduled or balanced heedlessly. While

MQTT-EES takes issue aggregating sensing tasks across het-

erogeneous IoT devices, there exists many solutions which

aggregate the queuing or processing of sensed data through

schedulers or load-balanced network architectures to stabilize

the network’s traffic and latency.

B. MQTT System Optimization

Cloud-computing principles have emerged out of many IoT

network management solutions as clustered/bridged MQTT

Brokers and other supporting fog gateways may be created,

deployed, and destroyed dynamically. For example, [9] pro-

poses a framework that deploys additional MQTT Brokers

and load balances MQTT Client connections such that the

cloud CPU utilization stabilizes at a user-defined percentage.

Another example is [10], which dynamically spawns cloud

MQTT Brokers within close proximity of edge IoT device

nodes to maintain latency requirements of connected MQTT

Clients. While [11] is another cloud-based load-balanced IoT

solution, its ensures the QoS of mission-critical health data

in addition to maintaining the energy efficiency of a 4-tier

cloud-fog architecture. Cloud-orchestrated IoT solutions may

optimize the scalability of MQTT-based systems, but the

aforementioned solutions do not model the energy efficiency of

individual battery-powered IoT devices. Many IoT schedulers

focus on organizing data queues to best meet high priority data

QoS. [12] is novel for presenting a multi-Broker IoT scheduler

which adapts individual Broker’s input and output network

traffic to maintain stable network traffic and the delivery

of critical message types. The system’s energy consumption

model is contingent upon IoT devices which exhibit the same

sensing, processing, and transmission ability; thus, IoT devices

with heterogeneous sensing capabilities are not considered.

[13] assumes heterogeneous IoT devices while orchestrating

priority queues to ensure the delivery of highly prioritized data,

but does not model the individual devices’ energy consumption

during execution. Various solutions harness scheduling and

cloud-computing principles to optimize MQTT-based systems,

but many neglect to model IoT devices’ constrained energy

resource, and an approach to optimize heterogeneous device

utilization through tail energy reduction and task distribution.

III. SYSTEM MODEL

We consider the MQTT-EES comprised of a set of pub-

lishers P = {p1, p2, . . . , pm} and a set of sensing topics

T = {t1, t2, . . . , tn}. Each publisher pj is characterized by its

energy capacity Cj , which indicates the total amount of energy

available for task executions over the observation period Tobs.

Additionally, each publisher has a specific set of sensing ca-

pabilities denoted by Sj = {sj1, sj2, . . . , sjn}, where sji = 1
if publisher j is capable of sensing data for topic i and 0
otherwise. The topics are defined by their sensing frequencies

fi assigned by subscribers, representing the intervals at which

the sensor data need to be read and sent to the broker within

the observation period. Let F = {f1, f2, ..., fn} represents the

set of frequencies for all topics.

As the publisher devices usually send data to the broker

via wireless communication (e.g., WiFi and Bluetooth), which

inherently results in a problem of tail energy consumption.

Tail energy consumption here refers to the energy consumed

by a publisher after completing a data transfer. Even when

the transfer is finished, the publisher remains in a high-power

state for a certain tail time, consuming unnecessary energy.

In this case, if multiple sensing tasks happen at the same

time on a publisher, it is intuitive to consider it as a single

energy-consuming event (we assume the time of sensing the

data and sending data to the broker for each topic is constant

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

and same) as it will not trigger separate tail energy windows.

The energy consumption is related to the effective number

of task executions. Effective executions refer to the count of

task executions within the observation period Tobs that are

considered distinct in terms of energy consumption. Due to

the tail energy effect, multiple tasks executed at the same

moment are consolidated and counted as only one effective

execution. The number of effective executions may be less

than the total number of task executions. Therefore, if MQTT-

EES can assign the topics to publishers to reduce the number

of effective executions within the observation period Tobs, the

more energy can be saved.

IV. PROBLEM FORMULATION AND SOLVING

A. Problem Formulation

We aim to minimize the total energy consumption across

all publishers by intelligently assigning each sensing topic to

a single publisher. The assignment considers each publisher’s

energy capacity, sensing capabilities, and the tail energy

consumption of executing sensing tasks, with the goal of

minimizing the number of effective executions and thereby

optimizing the overall energy index.

Let xij be a binary decision variable where xij = 1 if

topic ti is assigned to publisher pj , and xij = 0 otherwise.

We define a vector xj for each publisher j, encapsulating the

assignment of all topics to that publisher:

xj = [x1j , x2j , . . . , xnj]

The output of the optimization model is X = {xj , ∀j ≤ m}.

The objective is to minimize the total energy index, which is

the sum of the individual energy indices of all publishers; each

index represents the ratio of the total energy cost of a given

publisher (including the sensing and communication cost) to

the given publisher’s remaining.

X = argmin

m∑

j=1

Ej

Cj

= argmin

m∑

j=1

Sensing(xj , T, F) + Commn(xj , T, F)

Cj

s.t. :

m∑

j=1

xij = 1, ∀i ∈ {1, . . . , n}

s.t. : xij ≤ sji, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}

s.t. :
n∑

i=1

xij · ei ≤ Cj , ∀j ∈ {1, . . . ,m}

(1)

where Sensing(xj , T, F) calculate the total sensing energy

consumption for publisher j based on its assigned topics

(through xj). Commn(xj , T, F) calculates the total com-

munication energy consumption for publisher j based on

its assigned topics (through xj). The observation period is

noted as T , and the set of all topics’ frequencies is noted as

F = {f1, f2, . . . , fn}.

For the Constraints, we explain them one by one as follows:

• Assignment Constraint: Each topic must be assigned

to only one publisher who is capable of sensing it:∑m

j=1 xij = 1, ∀i ∈ {1, . . . , n}
• Sensing Capability Constraint: A topic can only be as-

signed to a publisher if the publisher has the capability to

sense it: xij ≤ sji, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}
• Energy Capacity Constraint: The total energy used

by a publisher for the effective executions should not

exceed its energy capacity:
∑n

i=1 xij · epe ≤ Cj , ∀j ∈
{1, . . . ,m}. Here, ei is the estimated energy consumption

for a single execution of topic i, factoring in the energy

saved by batching executions due to the tail energy effect.

B. Problem Solving

We start with introducing a brute-force approach to ease the

understanding how MQTT-EES works to reduce the energy

consumption. Then we move to our greedy approach to

solve the problem more efficiently considering the constrained

resources on IoT devices.

1) Brute-Force Approach: The brute-force approach simply

explores all possible assignments of tasks (or sensing topics) to

publishers. This method evaluates every possible combination

of task-to-publisher assignments to identify the one that yields

the lowest total energy index, which is indicative of the most

energy-efficient distribution of tasks across the network of

publishers. By assessing each potential assignment, the brute-

force method ensures that no possible solution is overlooked,

thereby guaranteeing the optimal assignment that minimizes

energy consumption given the constraints of publisher capac-

ities and task requirements. For each possible assignment,

we calculate its resulted energy index for each publisher.

This requires calculating effective executions of a given topic

assignment. The following example illustrate the calculation

of effective executions.

Consider an example involving a publisher assigned three

sensing tasks over a one-minute observation period. Suppose

Task 1 has a frequency of 10 seconds, Task 2 has a frequency

of 20 seconds, and Task 3 has a frequency of 30 seconds.

Given the assumption of a zero tail duration, tasks executed

simultaneously are aggregated into a single energy-consuming

event. The execution times within the one-minute period are

as follows:

• Task 1 executes at 0, 10, 20, 30, 40, and 50 seconds.

• Task 2 executes at 0, 20, and 40 seconds.

• Task 3 executes at 0 and 30 seconds.

Here, describe how this example uses a tail window of 0,

in which tasks with the exact same time points will be

executed concurrently. In our system this tail window is held

constant. We merge the timing of all task executions into

a list {0, 0, 0, 10, 20, 20, 30, 30, 40, 40, 50}. Then we observe

overlaps in execution times across these tasks. At the 0-second

point, all three tasks execute simultaneously, counted as one

effective execution. Similarly, overlaps at 20 and 30 seconds,

where Task 1 and Task 2, and Task 1 and Task 3 overlap,

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

respectively, are each considered a single effective execution.

Thus, after remove the overlaps, the timing of executive task

executions is: {0, 10, 20, 30, 40, 50}.

Despite the total of 11 (6+3+2) scheduled task executions

across the three topics, the effective executions are fewer due

to the overlaps. Specifically, there are effectively 6 distinct ex-

ecution times when considering the energy efficiency achieved

through task overlaps at 0, 20, and 30 seconds. Thus, the

number of effective executions is reduced to 6, illustrating

how strategic scheduling batches tasks thereby significantly

enhance energy efficiency by minimizing the total number of

high-power states induced by sensing task executions.

2) Greedy Approach: The brute-force method exhaustively

searches through all possible assignments whose size grows

exponentially with the number of topics and publishers are

present. This inherent complexity means our problem is classi-

fied as NP-hard and hard to obtain the optimal solution within

polynomial-time. Thus, we purpose a greedy method, which

incrementally builds a solution by making locally optimal

choices at each step. This approach focuses on assigning each

task to the publisher that will incur the smallest increase in en-

ergy consumption, given the current state of task assignments

and each publisher’s remaining energy capacity.

At the core of the greedy strategy is a calculation that

estimates the energy a publisher will use if a new task

were assigned to it, considering the task’s frequency and the

observation period. By iterating over the tasks and dynamically

selecting the best publisher for each based on current energy

usage and capacity constraints, the greedy approach avoids the

explosion of possibilities faced by brute-force methods. The

result is a faster, more practical solution that, while not guar-

anteeing the absolute optimal distribution of tasks, provides

a near-optimal arrangement that significantly reduces overall

energy consumption and ensures a more balanced utilization of

publisher resources. This method is particularly advantageous

in real-time systems or those with a large number of tasks

and publishers, where computational efficiency and scalability

are critical. The following is the pseudo code of the greedy

approach:

The algorithm begins by initializing an empty mapping

for assignments to keep track of the tasks assigned to each

publisher. Besides, it sets the current energy usage (Ecurrent)

for each publisher to zero, preparing for subsequent energy

consumption calculations. Then the algorithm iterates through

each task that needs to be assigned. For each task, it evaluates

which publisher would be the best candidate based on energy

efficiency index. After determining Eincrease for a task with

a particular publisher, the algorithm computes a ratio (Eratio)

of the new total energy usage to the publisher’s total energy

capacity. This ratio helps in assessing the energy efficiency

of assigning the task to the publisher. The publisher that

results in the lowest Eratio for the task is selected as pbest.

This choice indicates an optimal balance between the task’s

energy requirements and the publisher’s energy capacity. The

selected task is then assigned to pbest, the publisher’s current

Algorithm 1 Greedy Approach

1: Initialize assignments as an empty mapping of publishers to tasks

2: Initialize Ecurrent for each publisher as zero

3: for each task in tasks do

4: pbest ← null

5: Emin ←∞
6: for each p in P do

7: Eincrease ← ENERGYINCREASE(p, task.freq, T)

8: Enew ← Ecurrent[p] + Eincrease

9: Eratio ←
Enew

p.allEnergyCapacity
10: if Enew f p.allEnergyCapacity and Eratio < Emin then

11: pbest ← p

12: Emin ← Eratio

13: end if

14: end for

15: if pbest ̸= null then

16: assignments[pbest].append(task)
17: Ecurrent[pbest]← Ecurrent[pbest] + Eincrease

18: end if

19: end for

20: return assignments

21: function ENERGYINCREASE(p, freq, T)

22: frequencies← the frequencies of all tasks assigned to p.

23: y1 ← TotalExe(frequencies, T)

24: y2 ← EffectiveExe(frequencies, T)

25: e1 ← 10 ▷ Assume the energy of sensing one data is a constant

26: e2 ← 5 ▷ Assume the energy of transferring one data is a constant

27: Eincrease = e1 ∗ y1 + e2 ∗ y2

28: return Eincrease

29: end function

energy usage is updated, and the assignment is recorded. This

procedure is iteratively applied to all tasks, ensuring each

is allocated in a manner that optimally utilizes the available

energy resources. Upon completing the assignments for all

tasks, the algorithm returns the final assignments mapping,

detailing how tasks have been distributed across publishers.

For the function EnergyIncrease, it estimate the energy

consumption increase from a new task assignment by: 1)

calculating the energy consumption of executing all the sens-

ing tasks by calculating the total executions; 2) calculating

the communication energy by first calculating the effective

executions (y) from the aggregated frequencies of assigned

tasks, reducing energy consumption by batching tasks (by

the way of listing all the timing of executing tasks in a

observation period, like we did in the brute-force approach).

We assumes a constant energy consumption for sensing the

data and transferring the data, simplifying the energy increase

estimation (Eincrease).

V. EVALUATION

Our simulation measured two system performance metrics,

system energy consumption and system lifespan. Simulated

MQTT environments are varied in the number of subscribers,

topics, and publishers, as well as the length of publishers’ tail

window. The default values of these components are listed in

Table I.

Parameters Default Values

Publishers 8

Subscribers 8

Topics 8

Tail Window (ms) 250

TABLE I: Default Settings for System Parameters

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

The simulation also declares other non-varied constants

for measuring both energy consumption and system lifespan,

including:

• Range of topic frequencies F (100− 5000ms)

• Length of Observation Period T (1 hour = 3, 600, 000
ms)

• Sensing Energy Cost per Execution (0.0005%)

• Communication Energy Cost per Execution (0.005%)

Additionally, the sensing capabilities and subscriptions for

each topic are randomly generated at the beginning of each

round, and shared among all tested scheduling algorithms.

A. System Energy Consumption

To verify the effectiveness of our scheduling , we compared

MQTT-EES with one baseline: Random Scheduling in which

the MQTT broker randomly assign the sensing tasks to the

publishers that share the corresponding sensing capabilities.

The simulation for each scheduling approach runs a 30-round

experiment per varied parameter (number of publishers, sub-

scribers, topics; size of tail window) to simulate diverse, real-

world IoT environments. The details of how these parameters

are varied are summarised in Table II. In the experiments,

when one parameter is varied, all other parameters are held

at the default values described in Table I. Specifically, dur-

ing each round, the number of publishers, subscribers, and

topics vary from 3 to 15 through random generation. The

tail window is also varied given that IoT devices may adopt

different network interfaces that consume different tail energy

consumptions.

Fig. 2 to Fig. 5 compares the average energy consumption

(i.e., the overall energy consumption divided by the number

of system publishers) of MQTT-EES and Random Scheduling

under different system configurations. To present the average

energy reduction in using MQTT-EES over Random Schedul-

ing, Fig. 6 plots the distribution of average energy reduction as

a result of subtracting MQTT-EES’s average energy consump-

tion from Random Scheduling over each system parameter.

Parameter p Variance Range of Parameter p

Publishers 3 ≤ p ≤ 15

Subscribers 3 ≤ p ≤ 15

Topics 3 ≤ p ≤ 15

Tail Window (ms) p ∈ {100, 250, 500, 1000}

TABLE II: Value Range for Varied System Parameters

Fig. 2: Average Energy Consumption(%) vs # of Publishers

Fig. 3: Average Energy Consumption(%) vs # of Topics

Fig. 4: Average Energy Consumption(%) vs # of Subscribers

Fig. 5: Average Energy Consumption(%) vs. Tail Window

As the number of publishers increase in Fig. 2, the average

energy consumption decreases for both MQTT-EES and Ran-

dom Scheduling since both approaches distribute sensing tasks

among all capable publishers. Since the number of sensing

tasks is set to a default constant, adding more publishers

further divides the sensing tasks, thereby decreasing energy

consumption per publisher.

As the number of topics varies, the number of sensing tasks

varies, which is evident in Fig. 3. As the number of topics

increase, both scheduling approaches allocate more sensing

tasks to a default number of publishers. In this capacity, each

device in the simulated IoT system is allocated more sensing

tasks, thereby increasing the number the executions, resulting

in an increase in per-device energy consumption.

Fig. 4 shows that the average energy consumption increases

as the number of subscribers increases. We attribute this to a

simulation specific phenomenon in which the number of sub-

scriptions on a topic increases as the number of subscribers in-

creases. While the individual topic frequencies in F remain the

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

minimum latency requirements collected from the subscribers

upon subscription, additional subscriptions result in a higher

likelihood that the minimum latency requirement approaches

the minimum value in the range of topic frequencies.

In Fig. 5, a wider tail window (i.e 1000ms) considers

more sensing tasks as running concurrently, thereby decreasing

the number of executions which results in decreased energy-

consumption. In contrast, a smaller tail window (i.e 100 ms)

requires sensing tasks to occur relatively close together in

time which restricts the number of sensing tasks that may

run concurrently. As less sensing tasks run concurrently, the

number of executions increase, resulting in an increase in

average energy consumption.

Fig. 6: Average Energy Reduction(%) between MQTT-EES and

Random Scheduling across all experiments

In Fig. 6, we visualize the distribution of energy reductions

as a result of subtracting MQTT-EES’s average energy con-

sumption from Random Scheduling. In summary, MQTT-EES

outperformed Random Scheduling in all parameters configura-

tions, with an reduction of 12% in terms of the average energy

consumption.

B. System Lifespan

The system lifespan was evaluated under default parameters

with three approaches. As illustrated in Fig. 7 , MQTT-EES

lasts 3.41 hours until 1 publisher’s simulated battery is reduced

to 0. When compared to the lifespans of standard MQTT and

Random Scheduling, MQTT-EES increases an IoT system’s

lifespan by 278% and 142% respectively. The improvement

is confirmed by our approach’s assertion that scheduled tasks

are aggregated onto a single publisher given it consumes the

least energy upon task execution. MQTT-EES differs from

the standard MQTT implementation as it assigns a task to

all publishers that are capable of doing so.

VI. CONCLUSION

In this paper, we purposed MQTT-EES, designed to op-

timize energy efficiency in IoT environments. Our approach

can reduce average energy consumption by 12% and extends

system lifespan by 2.78 times compared to standard MQTT

implementations. These improvements are achieved through

strategic task allocation and a greedy algorithm that tackles

the NP-hard problem of energy optimization among co-located

Fig. 7: Average System Lifespan(Hr) vs 3 Algorithms

IoT devices. These impressive results not only demonstrate

substantial energy savings and enhanced system longevity but

also suggest broader implications for sustainability in IoT.

VII. ACKNOWLEDGEMENT

This research is supported by NSF through the grant

#2104337. REFERENCES

[1] S. Jiwangkura, P. Sophatsathit, and A. Chandrachai, “Mqtt of iot
classification in energy saving,” in proceeding of 11th International

Conference on Data Mining, Computers, Communication and Industrial

Applications (DMCCIA-2017), Kuala Lumpur, 2017.
[2] J. Toldinas, B. Lozinskis, E. Baranauskas, and A. Dobrovolskis, “Mqtt

quality of service versus energy consumption,” in 2019 23rd interna-

tional conference electronics. IEEE, 2019, pp. 1–4.
[3] D.-H. Mun, M. Le Dinh, and Y.-W. Kwon, “An assessment of internet

of things protocols for resource-constrained applications,” in 2016 IEEE

40th Annual Computer Software and Applications Conference (COMP-

SAC), vol. 1. IEEE, 2016, pp. 555–560.
[4] Y. Li, Y. Wang, and T. Lan, “Mobile ad prefetching and energy

optimization via tail energy accounting,” IEEE Transactions on Mobile

Computing, vol. 18, no. 9, pp. 2117–2128, 2018.
[5] N. Ferraz Junior, A. A. Silva, A. E. Guelfi, and S. T. Kofuji, “Per-

formance evaluation of publish-subscribe systems in iot using energy-
efficient and context-aware secure messages,” Journal of Cloud Com-

puting, vol. 11, no. 1, p. 6, 2022.
[6] Y. Im and M. Lim, “E-mqtt: End-to-end synchronous and asynchronous

communication mechanisms in mqtt protocol,” Applied Sciences, vol. 13,
no. 22, p. 12419, 2023.

[7] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “etrain:
Making wasted energy useful by utilizing heartbeats for mobile data
transmissions,” in 2015 IEEE 35th International Conference on Dis-

tributed Computing Systems. IEEE, 2015, pp. 113–122.
[8] O. Standard, “Mqtt version 5.0,” Retrieved June, vol. 22, p. 2020, 2019.
[9] L. M. Pham, N.-T.-T. Le, and X.-T. Nguyen, “Multi-level just-enough

elasticity for mqtt brokers of internet of things applications,” Cluster

Computing, vol. 25, no. 6, pp. 3961–3976, 2022.
[10] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware

mqtt middleware for edge computing applications,” in 2018 IEEE

International Conference on Cloud Engineering (IC2E). IEEE, 2018,
pp. 191–197.

[11] N. Singh and A. K. Das, “Energy-efficient fuzzy data offloading for
iomt,” Computer Networks, vol. 213, p. 109127, 2022.

[12] S. Abdullah and K. Yang, “An energy-efficient message scheduling
algorithm in internet of things environment,” in 2013 9th International

Wireless Communications and Mobile Computing Conference (IWCMC).
IEEE, 2013, pp. 311–316.

[13] F. L. de Caldas Filho, R. L. Rocha, C. J. Abbas, L. M. E. Martins, E. D.
Canedo, and R. T. de Sousa, “Qos scheduling algorithm for a fog iot
gateway,” in 2019 Workshop on Communication Networks and Power

Systems (WCNPS). IEEE, 2019, pp. 1–6.

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:00:39 UTC from IEEE Xplore. Restrictions apply.

