2024 1EEE International Conference on Web Services (ICWS) | 979-8-3503-6855-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICWS62655.2024.00144

2024 IEEE International Conference on Web Services (ICWS)

“How Can I Be of Service?”’—A Comprehensive
Analysis of Web Service Integration Practices

Siddhi Baravkar®, Olivia Pellegrini*, Pratiksha Gaikwad*, Eli Tilevichf, and Zheng Song*
*Department of Computer and Information Science, University of Michigan at Dearborn
Email: {siddhib, opelle, prati, zhesong} @umich.edu
TDept. of Computer Science, Virginia Tech
Email: tilevich@cs.vt.edu

Abstract—Despite the widespread adoption of Web services
in modern computing applications, there remains a lack of
a systematic approach that can guide service developers in
creating appealing services. This paper addresses this gap by
presenting findings from a comprehensive study of RapidAPI web
services, the largest service marketplace, and their integration
into GitHub-hosted applications. We collected data on over 16K
RapidAPI services and 19K corresponding GitHub repositories
invoking these services, evaluating each service based on metrics
such as latency, reliability, pricing, community support, and
provider support. Our analysis examines how these metrics
influence service popularity and usage patterns on GitHub.
We manually analyzed 800 GitHub repositories and identified
developers’ service selection preferences and integration patterns,
considering alternative services and their features. Additionally,
we classified GitHub developers based on proficiency levels to
understand how developers’ levels of proficiency impact their
service selection and integration strategies. Our findings offer
insights for service marketplaces to recommend integration-
friendly services and for service developers to create offerings
tailored to real-world application needs.

Index Terms—Service marketplace, Service selection, Rapi-
dAPI, GitHub, Service metrics

I. INTRODUCTION

In the realm of web services, service selection represents
a fundamental and enduring problem. This problem can be
articulated as follows: when confronted with a collection
of equivalent web services offering similar functionalities
and usable interchangeably, how to identify and select the
service that most effectively fulfills an application’s functional
requirements. Existing approaches solve this problem based on
various facets, including latency, cost, reliability, community
support, and trust [1], [2], [3]. These approaches frequently
operate under the assumption that integration developers prior-
itize specific service facets when selecting services. However,
the extent to which integration developers prioritize these
facets remains unclear, leaving service providers uncertain
about which aspects of their services require improvement.

In this work, we take an empirical approach to this problem
by conducting a large-scale study. Rather than surveying
and interviewing integration developers, our study derives
actionable insights by studying how they integrate services
in their source code. To execute our empirical study at a
sufficiently large scale to derive meaningful insights, we had
to overcome the following challenges: 1) how to identify

service invocations within the source code, as developers
often utilize various libraries with diverse functionalities; 2)
how to distinguish the invoked services in the absence of
a standardized format, such as differentiating service from
other HTTP requests; 3) how to identify and extract relevant
metadata associated with services.

In the service-oriented architecture (SOA), a service registry
enables providers to register their services and integration
developers to find the services they need [4], [5]. Recent
years have seen the rapid growth of a new type of service
registry that we call Marketplace, which provides a one-
stop solution for integrating services throughout application
lifecycle: 1) Integration developers can use keywords to search
for services; 2) when invoking a service, the request is sent
to the marketplace, which authenticates the credentials of the
requests and serves as a middleman delegating the requests;
3) the marketplace further measures the amount of requests,
the latency and successful status of each request, and displays
such metadata on each service’s web page; 4) based on the
billing strategies specified by service providers, the market-
place handles the billing for integration developers’ service
subscriptions; 5) the marketplace also provides discussion
forums for integration developers and service providers to
communicate directly.

Due to their convenience and utility, the SOA ecosystem
makes extensive use of marketplaces, such as RapidAPI, and
BaiduAPI, which attract 16K services, over 4 million users !,
and 400 billion invocations per month [6]. These emerging
platforms also enable large-scale empirical studies. We take
advantage of marketplaces as the source of relevant service
metadata, while using open-source software repositories as
the source of service invocation statistics. Juxtaposing the
obtained information provides a powerful avenue for better
understanding integration developers’ rationale for selecting
and integrating services.

This paper reports on the results of a large-scale empirical
study that focuses specifically on how developers select and in-
tegrate services. We collected 16K services with their metadata
from RapidAPI, and 19K GitHub repositories that invoke these
services. We first analyzed how different service facets impact
their popularity as measured by RapidAPI and as measured

Uhttps://rapidapi.com/company/

2836-3868/24/$31.00 ©2024 IEEE 1206

DOI 10.1109/ICWS62655.2024.00144

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

by us from mining GitHub repositories, identifying the root
causes for the differences. To pinpoint the exact reasons why
developers select particular services, we randomly picked 800
services used in different repositories. We manually labeled
whether alternate services could replace them by inspecting
their call sites. We also divided integration developers into
categories based on their proficiency levels and studied how
they differed in service selection and integration.

The paper makes two primary contributions. Firstly, it
introduces a novel methodology for empirically studying how
integration developers select services, accompanied by the
public release %> of all collected data for use by fellow
researchers and practitioners. Secondly, through analysis of
the gathered data, the paper addresses the following research
questions:

* RQ1: What are the common characteristics shared by ser-
vices managed through RapidAPI, as well as the GitHub
repositories and developers who utilize these services?

¢ RQ2: How do various service facets correlate with their
usage patterns, as observed on both RapidAPI and GitHub
platforms?

* RQ3: What factors primarily influence integration de-
velopers in selecting a service from a set of equivalent
options with similar functionalities?

* RQ4: How does the proficiency level of developers influ-
ence their practices in selecting and integrating services?

The rest of this paper is organized as follows. Section
Il introduces the background and related work. Section III
details how we collected data from RapidAPI and Github,
and answers RQI. Section IV analyzes data and provides
answers to the other RQs. Sections V and VI introduce the
threats to validity and implications of our research. Section
VII concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we introduce background knowledge about
using RapidAPI as a marketplace, existing work on service se-
lection, and empirical study approaches for service integration
and available datasets.

A. Service Registry and How RapidAPI is Different

Traditional service registries serve as a bridge for integration
developers to find services. RapidAPI, initially founded in
2015, is now the largest service registry. It takes a brand new
role in service-oriented architecture as a service marketplace,
which acts as a delegation between service providers and
consumers. All service requests are sent to the delegation
servers of RapidAPI, which further query the actual servers
managed by service providers to obtain the results and return
them to integration developers.

In particular, the marketplace acts as a ’One-stop-solution’
providing Service consumers with features like service dis-
covery, QoS monitoring, API documentation, API service
subscription, and billing all within a Platform as a Service

Zhttps://anonymous.4open.science/r/Web_Service-_Research-66B4/

(PaaS) offering, supporting the entire software development
life cycle. [7]. The service providers share with the platform
the invocation URL of their services, along with the docu-
mentation and example code for using the services and their
price. The integration developers can discover the service and
utilize it by subscribing to the service and managing billing
on a platform itself [8].

RapidAPI consists of 49 different categories * of services
like Sports, Finance, Data, Entertainment, etc., and 522 col-
lections * represent a group of APIs sharing common charac-
teristics. RapidAPI editors manually pick the services in each
collection.

In RapidAPI, each service contains a cluster of endpoints
that provide distinct functionalities. All the endpoints in a ser-
vice share the same invocation URL and RapidAPI measures
the QoS and the usages by services, not endpoints. Hence, in
our data collection and analysis, we carry on the definition
of services from RapidAPI and measure the performance and
usages for each service, or say, a cluster of endpoints.

B. Service Selection Criteria

Selecting the appropriate service that aligns with the de-
sired requirements is essential for developers to meet both
functional and performance expectations. Numerous research
studies [9]-[12] have been conducted to assist developers in
recommending services or selecting optimal services, focusing
primarily on evaluating or predicting QoS parameters such as
availability, latency, reliability, etc. Other than QoS, cost [13]
for invoking services, the level of community support for
services [14], [15], and the quality of documentations [16]
are also considered in service selection. Our empirical study
considers all of the aforementioned criteria.

There are also other criteria for selecting services. For
example, services’ Qol (quality of information) [17], i.e.,
accuracy, updated frequency, and data completeness might be
considered for service selection; the QoS perceived by end
users may also be considered [18], [19]; the design patterns
and anti-patterns of services may also be considered [20].
However, this paper excludes these criteria from our study,
as the Qol, end-user QoS, and design anti-patterns are hard to
measure on a large scale.

C. Empirical Study of Service Integration

Understanding integration developers’ preferences has been
an important problem. There have already been multiple small-
scale studies on this topic. For example, [21] surveyed less
than 300 users on their opinions towards selecting one SMS
service from 92 candidate services. Its result indicates that
the service facets, ranking by their impact on the selection
results, are 1) functionality of the service; 2) reliability; 3)
cost; 3) developer support; and 4) latency. However, this
rating for SMS service is ad-hoc and may not represent the
general developer’s preferences. Similarly, [20] interviewed 40
developers about their preferences over 3 sets of services,

3https://rapidapi.com/categories
“https://rapidapi.com/collections

1207

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

which still provides limited insights and might be biased.
Due to the lack of proper methodology, large-scale studies on
developers’ preferences for selecting and integrating services
in the wild are yet to be conducted.

III. DATA COLLECTION

This section delves into our methodology for collecting and
labeling data from RapidAPI and Github. Fig. 1 shows the
flow for the data collection, in which Selenium web driver [22]
was used to crawling and MySQL database for storage. We
repeated this data collection process for two rounds over 8
months, to further understand how services’ performance and
usage change.

Requesting API
services data

Selenium web
driver

RapidAPI
Marketplace

‘ @ Data from RapidAPI [

@ Search GitHub data using
RapidAPI services

GitHub

@ Get X-RapidAPI-Host

MySQL DB @ Storing GitHub data

@ Storing RapidAPI data

Data Analysis
@ (RapidAPI + GitHub)

Fig. 1: RapidAPI and GitHub data collection workflow

A. Collecting Service Metadata from RapidAPI

Initially, we obtained the full list of web services from all
49 RapidAPI categories. For each web service in the list,
we crawled its detail page. We obtained metrics that include
popularity, latency, service level, pricing, hostname, guiding
documents, and discussion forums, as indicated by Fig. 2.
The popularity, latency, and service level with hostname (in
Fig. 2a) are directly measured by RapidAPI, as it delegates
service requests. The guiding documents (in Fig. 2b) are also
specified by service providers to guide integration developers.
For the discussion forums (in Fig. 2c), we collected pages
of discussions and the number of replies. The pricing (in
Fig. 2d) is set by service providers and may have different
formats. For example, developers can set the price for the
monthly subscription, the quota (hourly, daily, or monthly
request limits), and the per-request cost if the total requests
exceed the quota. We further collected the collections, which
are similar services manually grouped by editors.

B. Collecting Services Usages from Github

Invoking services from RapidAPI always requires spec-
ifying X-RapidAPI-Host of the service, which has a sim-
ilar format of “service name”+“p.rapidapi.com,” with “ser-
vice name” being unique to each service. For example,
the RapidAPI host for “Bitcointy” service is ‘“‘community-
bitcointy.p.rapidapi.com.” Hence, we searched on Github for
repositories using the X-RapidAPI-Host of services as the
keyword, as specified by steps 4 and 5 in Fig. 1. We collected

each repository’s metadata, including repository URLs, stars,
forks, watchers (Fig. 2e) and its owner (Fig. 2f). We also
collected each owner’s repository count and followers to
measure their proficiency.

C. Statistics of Collected Data:

Platforms / Data collection Round 1 | Round 2
RapidAPI services 16,613 16,395
RapidAPI services used in GitHub 1,500 1,677
Repositories using RapidAPI services 10,317 19,733

TABLE I: Data collection from RapidAPI and GitHub

We conducted two rounds of data collection, in July 2023
and March 2024, to understand how RapidAPI services and
their usage changed in 8 months. Table I displays the data col-
lection statistics gathered from RapidAPI and GitHub across
two rounds. We observe that 31.60% services available in the
first round were removed from RapidAPI at the time of our
second round collection, with a similar amount of services
added. The utilization of RapidAPI services on GitHub expe-
rienced a surprising increase of 93.6%, from 10K repositories
to 19K repositories.

Figure 3a illustrates the statistical overview of RapidAPI
services. In round 1, we gathered data from 16,613 services,
the metrics of 41.96% of which turned undefined. Undefined
metrics occur whenever the number of developers using a
service is insufficient for RapidAPI to collect enough infor-
mation about the service’s popularity, latency, and service
level. Similarly, in round 2, data from 16,395 services were
collected, with 47.89% of them featuring undefined metrics.
Round 2 shows a 5.94% increase in services with undefined
metrics, as compared to round 1. Among the 31.60% services
removed from round 2, 67.90% exhibit undefined metrics.

Observation 1: RapidAPI Services are Vibrant]—

Services on RapidAPI are actively updated (with
31.6% removed in the past year and more added) and
widely used by (open source) software.

D. Labeling RapidAPI Service Facets

The service metadata provided by RapidAPI provides nu-
meric values for each service’s latency, service level, and
popularity °>. We further define how to label three additional
facets, including pricing, support from service developers, and
support from the community, as detailed below.

* Popularity: The popularity metric is associated with the

invocations for a particular service. It is depicted by
the RapidAPI platform on a scale of 0 to 10 with a
granularity of 0.1, where a higher score indicates greater
service utilization. The value is calculated by RapidAPI
using two factors: how many developers are using each
service and how many requests are sent within a certain
period. However, RapidAPI’s calculation algorithm is not
publicly accessible.

Shttps://docs.rapidapi.com/docs/fags

1208

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

‘) API-BASKETBALL

99/10 33ms 100% 99/10 adsms 100% NA

Spotlights

README
Introduction

Full Documentation

(a) Rapid API metrics

Choose the Right Plan For You
ly with AP

with AP ing. Find & plan that best matches the

Pro
$20.00 / mo

300/ day
+ 5007 esch other

Basic
$0.00 / mo

‘ 24 Ta

Objects

(d) RapidAPI Pricing

(b) RapidAPI Support (Serv. Provider)

(e) GitHub Repository Details

(c) RapidAPI Discussions
[Projects @ Packages R People

GitHub owner details:
Repository counts and followers

(f) GitHub Owner Details

Fig. 2: RapidAPI and GitHub Data Collection

* Latency: Noting that RapidAPI delegates all service
requests, latency is measured as the average time (ms) it
takes for a delegation server to receive a response from
the API server for all calls within the last 30 days.

» Service Level: The service level metric indicates server
reliability through successful service calls. On the Rap-
idAPI platform, the service level is depicted on a scale
of 0% to 100% with a granularity of 1%, where a higher
score indicates greater service reliability.

* Pricing: RapidAPI enables service providers to specify
various price models, including basic, pro, ultra, and
mega, each with a distinctive pricing structure for every
service. Initially, we classified the services into three
categories: cost-free (services with more than 100 re-
quests per day), limited cost-free (services with fewer
than 100 requests per day), and paid services. For the
limited cost-free and paid categories, we calculated a
“cost per request” by 1) choosing the price model with the
lowest cost, as most integration developers may choose
the lowest cost; 2) dividing the cost by number of requests
allowed per period. As an illustration, in the case of the
service depicted in Figure 2d, we opt for the basic model
due to its lower cost. However, this model only allows
for 24 requests per day, falling short of our set threshold
of 100 requests per day. Consequently, we will consider
the cost per request as $0.7. In cases where the cost per

request parameter is unspecified, we have evaluated it by
Requestsperday
cost : . L.
* Support from service providers: This metric involves

information about the documentation support provided
by the service providers on the marketplace to assist
the developers in utilizing their services. Using docu-
mentation content and resource links (see Fig. 2b) as
parameters, we set a threshold value of documentation

word count of at least 100 words, as a minimum of
100 words can adequately convey necessary details. In
particular, we categorized the service providers’ support
as: 1) good, if a service has at least a 100-word count for
the documentation as well as a resource link; 2) average,
if a service has either one but not both; and 3) poor, if
neither is available.

* Support from the community: This metric provides in-
formation regarding whether the integration developers of
a service are forming a community to help each other. For
each service, we consider how many discussion threads
have at least one reply, as answering questions forms
a healthier community than purely asking questions. In
particular, we categorized the service community support
as: 1) good, if 70% of discussions have replies; 2) average
for 70% to 10%, and 3) poor for 10% to 0%.

Fig. 3 shows the service distributions based on our cus-
tomized metrics, i.e., cost per request, service developer’s
support, and community support. We observe that: 1) most
services fall into the cost-free category, but still more than
10% services charge for more than 1 cent per request; 2) over
60% service developers provide good or average support for
their integration developers; and 3) only very few services have
an activity community.

Fig. 4 shows the service distribution based on popularity,
latency, and service level, with the blue line denoting services
collected in round 1, yellow for round 2, and green for services
included in round 1 but removed in round 2. Note that here
we excluded the services with undefined metrics. We observe
that 1) the service level and popularity of services in round
1, round 2, and removed are almost identical; 2) over 70%
of services removed from round 2 have high latency, making
the average latency of services in round 2 smaller than round
2; 4) however, many services still suffer from poor QoS, i.e.,

1209

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

RapidAPI service count Service cost

$0 to 0.01

Total Services
Services with undefined metrics

20000 1
$0.01to 0.1

15000 4 $0.1to1
>$1

10000

Count of Services

47.89%
- 4L96%

67.90%
cost-free

R1 R2 R2 (removed)
RapidAPI services

(a) RapidAPI service statistics (b) Pricing Categorization

Service provider support
Poor

39.9%
Good

51.8%

Community support

Poor
Good
43.6%
8%

54.8%

Average
Average

(c) Service provider’s support (d) Community support

Fig. 3: RapidAPI Service Statistics and Distributions based on customized metrics

Latency Distribution

Service Level Distribution

—— Round 1
Round 2
—— Removed in Round 2

100

—— Round 1
Round 2

—— Removed in Round 2
75 -

50 4

Service Distribution (%)

254

Popularity Distribution 100
50
—— Round 1
Round 2

40 —— Removed in Round 2 -
— X
5 S
g <
< S
S =
5 30 4 2
2 b=
= 0
ki a
a
o 201 .g
L 2
>
5 &
()

10 A

S— 0 T T
1-99 100-299

T T T T T T T T T
1-1.9 229 3-39 449 559 669 7-7.9 889 9-10
Popularity Range

(a) Popularity Distribution

300!599
Latency Range (ms)

(b) Latency Distribution

T T u T
10-90 9195 96 97 98 99 100
Service Level Range (%)

T T T
600-999 1000-9999 > 9999

(c) Service Level Distribution

Fig. 4: RapiAPI Service Distribution

over 20% services with reliability lower than 98% and over
25% of services with latency higher than 1,000 ms.

One of our unexpected findings was that many services
provided insufficient QoS. A commonly shared understanding
is that the QoS of services is bound by SLA (a service-level
agreement). Hence, we further studied the documentation of all
services, looking for the keywords “SLA” and “service level
agreement.” To our surprise, among all the services collected
in round 2, only 15 services mentioned SLA variations in their
documentation, and only 3 with legitimate SLA documents.

Observation 2: RapidAPI Services Characteristics]—

Developers can use over 3/4 of services offered on
RapidAPI for free, but many services suffer from poor
QoS and inadequate support from service providers
and the community.

E. Labeling GitHub Developers’ Proficiency

The developer proficiency level may impact the service
selection as per their preferences. In particular, to measure the
proficiency of a developer who owns a GitHub repository that
integrates RapidAPI services, we consider the following three
aspects: i) the number of repositories owned, ii) the number
of forks on the repository that invoke RapidAPI services, and
iii) the number of followers.

As the resulting metric has multiple dimensions, we applied
the following rules to classify developers into three levels:

» Skilled Developers: If all three aspects fall in the top
20% of their respective counts.

* Average Developers: If any 2 aspects fall in the top 20%
of their respective counts.

¢ Novice Developers: If only one or no metric falls in the
top 20% of their respective counts.

Fig. 5 shows the distribution of developers’ proficiency
levels under our definition. We observe that less than 25%
of developers that integrate services in their software are
classified as skilled and average, with a majority of users fall
into the novice category.

Developers Proficiency level on GitHub
Skilled

76.5% Novice

19.2%
Average

Fig. 5: Distribution of Developer’s Proficiency Levels

1210

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

F. Labeling GitHub Service Usages

We further measured the main purposes of the repositories
using services. We analyzed the primary programming lan-
guage used in each repository, which is provided by Github,
and categorized the purposes of the repository by the primary
language, as listed below:

e Web Development, with languages being Javascript,
Typescript, HTML, CSS, Jupyter Notebook, EJS, Svelte,
Vue, ASP.NET, etc.

o General Purpose Scripting, with languages being Python,
Ruby, PHP, Perl, Groovy, Lua, etc.

e Mobile App Development, with languages being Swift,
Kotlin, and Dart.

o Backend Systems, with languages being C Sharp, Java,
Go, Rust, C++, Scala, Haskell, etc.

« Databased, with languages being SQL, HCL, and PLSQL.

¢ Document and Template Languages, with languages be-
ing Tex, XSLT, and Roff.

o Others, with languages not in the above categories.

Programming Language Taxonomy

63.77%

o
3

o
S

IS
S

w
S

N
S

H
1

7.98%
3:52% 2.44%

Percentage of GitHub Repositories

0.43% 0.05% 0.04%
T — T

0

Programming Language Categories

Fig. 6: Distribution of Developer’s Proficiency Levels

Observation 3: RapidAPI Services Usage J—

Services are widely used in web development, but less
used in mobile Apps.

IV. DATA ANALYSIS

This section details the data analysis we employed to
address Research Questions 2 to 4.

A. Correlation between Service Facets and Usages

First, we aim to answer RQ2. The popularity of RapidAPI
is indicated by both the number of developers utilizing the
service and the frequency of invocations made to those ser-
vices. We correlated this metric by examining the number of
repositories utilizing each service on GitHub, terming it as the
average repositories per service to evaluate the usage of each
RapidAPI service on GitHub.

Fig. 7f illustrates the relationship between the average
RapidAPI popularity of all services and the average number
of repositories on GitHub utilizing these RapidAPI services.
We observe that as RapidAPI popularity increases, so does

the number of average repositories on GitHub. This correla-
tion indicates that GitHub can serve as a suitable platform
for studying the RapidAPI usage patterns. However, for the
services used in more than 40 repositories, we observe a slight
decrease in their average popularity, which may be caused by
not so many end users using these repositories and sending
fewer requests, as RapidAPI popularity is measured by both
the number of subscribers and the invocation frequency.

Further in Fig. 7 We compared various RapidAPI service
facets and analyzed their impact on service usage. As a
general trend, we observe that higher service level (reliability),
lower cost, and better support from service providers and the
community attract more developers, as indicated by Figs. 7b,
7c, 7d, and 7e, which is not surprising.

Observation 4: Service Usage Characteristics

Developers prioritize reliability and latency within
acceptable thresholds. Nevertheless, robust support
mechanisms, from both the developer and the com-
munity, remain crucial.

Other observed insights are as follows:

o Latency (see Fig. 7a): 1) extremely low latencies of 1 to
99 ms may not increase the service’s popularity, as con-
firmed by both RapidAPI and Github; 2) different impacts
of latency on service usages are observed, i.e., Github
developers favor services with less than 1s of latency,
while RapidAPI indicates developers favor services with
less than 10s of latency.

« Reliability (see Fig. 7b): as confirmed by both RapidAPI
and Github, developers tend to prefer services that offer
good reliability, typically in the range of 97% to 99%,
rather than those with perfect reliability of 100%, which
is against the common assumption that services need to
guarantee the reliability of several nines. One possible
reason causing this phenomenon could be that, as more
developers use a service, sending their requests, the
service’s reliability decreases. Or we can say that instead
of developers choosing services with lower reliability,
developers’ choices cause services’ reliability to decrease.

o Support from Service Providers (see Fig. 7d): the cor-
relations between support from service providers and
service usages measured by GitHub and RapidAPI differ.
Services with little or no documentation and no resource
URLs may be more popular than services with either
of these properties present, as observed on RapidAPIL
Finding a plausible reason that explains this phenomenon
remains an open research question.

B. Selecting Services from Similar Options

Here we delve into a comprehensive comparison between
the services selected by developers through RapidAPI and
potential alternatives that were not chosen. The aim is to
examine the facets of RapidAPI that significantly influence
developers’ choices when choosing a service among alterna-
tives with similar functionalities.

1211

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

Avg Popularity, Repository Count by Latency Range

Avg Popularity, Repository Count by Service Level Range

Avg Popularity, Repository Count by Cost Range

I I /\\
] 1 =
L 5

26 / \/ \ 2301 I 2
o]]]
> > S 44
Q Q Q
o o \ o
s | g -
g 875 931
o o o
$ $ g
4 < Z 2

4 7.0

—— RapidAPI Popularity —— RapidAP! popularity F 11 — RapidAPi Popuiarity \ r
3 GitHub Popularity 6.5 GitHub popularity 04 GitHub Popularity
1-99 100299 300599 600-999 1000.9999 > 9999 10090 9195 9 o8 99 100 0 0-0.01 0.01-0.1 011 -1
Latency Range Service Level Range Cost Range

(a) Latency

Avg Popularity, Repository Count by Service provider's support

(b) Service level

Avg Popularity, Repository Count by community support

(c) Pricing

Avg RapidAPI Popularity vs GitHub usage

6.3 —— RapidAPI Popularity / —— RapidAPI Popularity
8.5
8.0
GitHub Popularity / GitHub Popularity
6.2 8.0
z z 2751
2 & 7.5 5
261 27 2
& & &
& & 7.0 © 7.0
© 6.0 \ e o
o o]
> > >
< < <65 4
\ 6.5 1
5.9 1
6.0
5.8 1 6.0 q
Poor Average Good Poor Average Good 1.'10 11120 21140 41150 ove'r 50

Support from service provider

(d) Supp (Serv. provider)

Support from community

(e) Supp (Community)

RapidAPI services used by no. of repositories

(f) RapidAPI vs. GitHub

Fig. 7: Service facets Vs Service usages

Three co-authors manually inspected how services are inte-
grated into Github repositories. By calling RapidAPI-provided
functions, they randomly selected 800 GitHub repositories,
from which they identified approximately 382 unique Rapi-
dAPI services, all of which they inspected manually.

To identify alternative service options for services utilized
within each GitHub repository, we adopted the following pro-
cedure: 1) we inspected the input/output parameters for each
service in use; 2) to help with manually labeling alternative
services, we filtered out candidate services that fall into the
same collection with the service in use, and appended the
candidate service set using keyword search on RapidAPI; 3)
if at least two of the three manual inspectors agreed that a
service in the candidate set can take the inputs of the service
in use and generate outputs with similar physical meaning, we
marked the service as an alternative for the current service in
use. Out of 382 services analyzed, we identified 332 as having
potential replacements.

We further analyzed each RapidAPI facet distribution for
332 services with potential replacements and compared them
with the possible alternatives. The facets analysis is divided
into 3 categories:

o Facets with no impact: Service level and pricing show
similar trends for the selected and alternative services
as in Fig. 8c 8d. For pricing, Adam Smith’s “invisi-
ble hand” [23] can influence the pricing strategies of
competing services, as each market consistently provides
more appealing pricing to attract customers. The pricing

graph indicates a similar outcome, with the selected and
alternative services reaching nearly identical pricing.

o Facets with minor impact: The popularity and latency as
shown in Fig. 8a 8b may have a minor impact while
selecting services from a set of similar options. Selected
services exhibit comparatively higher popularity, along-
side low-latency performance, specifically those with
latencies below 1 second.

o Facets with significant impact: The support provided
by service providers and the community significantly
influences developers, as illustrated in Fig. 8e and 8f,
where it is evident that most selected services enjoy better
support from both service providers and the community
compared to the alternative services.

,—[Observation 5: How Do Developers Select Services]q

When selecting services from equivalent options, de-
velopers are impacted by the following factors ranked
from the highest to the lowest: 1) Service provider
support and Community support; 2) Latency and Pop-
ularity; and 3) Service level and Pricing.

C. How Developer Proficiency Impacts Service Integration

We analyzed the developers’ categories as per their pro-
ficiency levels in Sec. III-E labeled as as “Skilled”, “Av-
erage”, and “Novice” developers. In particular, we studied
how developer proficiency impacts two aspects of service

1212

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

Services in popularity range

100

Services in latency range

Services in service level range

100 100
—— Selected services —— Selected services —— Selected services
Optional services Optional services Optional services
g 75 1 g 751 g 75 1
%] %] w0
[} (4 i
Q Q L
I 2 2
[[} i
2] 2] wn
% 50 A % 50 A %5 50 1
[[(IJ
(o)) (o)) o
© © ©
c e c
8 8 3
5 251 5 251 /\ § 251
a a a
T T T T T T T T T 0 - T T T T T T T T T T T T
1-1.9 2-29 3-39 449 559 669 7-79 889 9-10 1-99 100-299 300-599 600-999 1000-9999 >10000 10-90 91-95 96 97 98 99 100
Popularity range Latency range (ms) Service Level range (%)
(a) Popularity (b) Latency (c) ServiceLevel
Services in pricing range Service provider's support Community support
100 100 100
—— Selected services —— Selected services —— Selected services
Optional services Optional services Optional services
—~ 801 —~ —~
B & 75 & 75
%] %] wn
[(9} i
L2 2 L
2 60 - 2 2
[(g} [
wn 7] wn
k] ‘s 507 % 50 A
g [[
& 401 g g
c € c
[[J] [
< = =
o] o 25 o 25
8 20 a o
_/\
(e T T T T T T T T T T
0 0-0.01 0.01-0.1 0.1-1 1-1000 Poor Average Good Poor Average Good

Pricing range (cost per request($))

(d) Pricing

Support from service provider

(e) Support from Serv. Provider

Support from Community

(f) Support from Community

Fig. 8: RapidAPI facets comparison for selected services and their alternatives

integration: 1) service selection; and 2) error handling. We
paid special attention to error handling, driven by the finding
of many popular services being afflicted by high latency and
low reliability.

1) Service Selection: Although services selected by skilled
developers slightly outperformed as compared to those se-
lected by average and novice developers in terms of service
level, pricing, and community support (Fig. 9c, 9d and 9f) the
difference between them was not particularly evident.

As per Figure 9b, the latency aspect reveals that skilled
developers prefer integrating services with lower latencies,
typically ranging between 1 millisecond to 1 second, compared
to average and novice developers. Moreover, beyond the 1s
threshold, the usage of services by skilled developers declines,
compared to their average and novice developers. This finding
indicates that skilled developers recognize the importance of
fast responsiveness when selecting services.

Fig. 9e illustrates both skilled and average developers
consider service provider’s support like good documenta-
tion details, resource links, tutorials, and similar resources
when selecting services. It might seem surprising, but skilled
developers highly value documentation quality. Experienced
developers might view good documentation as a sign of

solid software engineering practices. Essentially, well-made
software often has detailed documentation. While experienced
developers may not always need the documentation for inte-
gration, they like to see it as evidence of well-crafted services.

Skilled and average developers also prefer the popularity
facet distribution, as shown in Fig. 9a. One explanation for this
finding is that services gain popularity as skilled and average
developers select them rather than some services possessing
high popularity upfront.

Observation 6: Developer Proficiency Characteristics

Compared with novice developers, skilled developers
are more concerned about services’ popularity, latency,
and documentation support from service providers.

2) Error handling: Our analysis, as depicted in Fig. 9b and
9c, indicates that many services are impacted by high latency
and low reliability. Without proper error handling, an App may
be frozen, waiting for services’ responses or even crash if the
request is not successful. Many HTTP libraries have a default
timeout (e.g., 5 minutes for Python requests). The default
timeout may be inappropriate for services, as some of which
may take an unusually long time to execute, while others

1213

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

Services in popularity range

Services in latency range

Services in service level range

100 100 100
—— Skilled developers —— Skilled developers —— Skilled developers
Average developers Average developers Average developers
— —— Novice developers — —— Novice developers — —— Novice developers
X 75 & 754 & 754
%] %] w0
[} (4 i
Q Q L
I 2 2
[[} i
2] 2] wn
% 50 A % 50 A %5 50 1
[[('U
(o)) (o)) o
8 8 3
c e c
(v} [} [
L o o
o 251 o 251 o 251
a a a
u T T T T T T T 0 - T T T T T T T ¥ T T T T
1-1.9 2-29 3-39 449 559 669 7-79 889 9-10 1-99 100-299 300-599 600-999 1000-9999 >10000 10-90 91-95 96 97 98 99 100
Popularity range Latency range (ms) Service Level range (%)
(a) Pricing (b) Latency (c) ServiceLevel
Services in pricing range Service provider's support Community support
100 100 100
—— Skilled developers —— Skilled developers
Average developers Average developers
—~ 801 —— Novice developers — —— Novice developers —
B & 75 & 75
%] %] wn
[(9} i
L2 2 L
2 60 - 2 2
[(g} [
wn 7] wn
k] ‘s 507 % 50 A
& & &
& 401 © @©
c € c
[[J] [
< = =
o] o 25 o 25
8 20 o o —— Skilled developers
Average developers
—— Novice developers
(e T T T T T T T T T u
0 0-0.01 0.01-0.1 0.1-1 1-1000 Poor Average Good Poor Average Good

Pricing range (cost per request($))

(d) Pricing

Support from service provider

(e) Support from Serv. Provider

Support from Community

(f) Support from Community

Fig. 9: RapidAPI facets as per developers’ proficiency

need to be retried as soon as their execution fails to meet a
shorter latency. Hence, developers must realize the importance
of error handling in service invocations and implement proper
strategies such as retries after failures and customized timeout.

GitHub RapidAPI Error Management

No Exception Handled

31.6%

Retry/Timeout =—=0-4%—

68.0%

Exception Handled

Fig. 10: Error Handling Code Patterns

To understand the error handling patterns followed by the
developers, we manually inspected the call site of the 800
repositories in GitHub, which we selected randomly to study
developers’ service selection preferences. We observed the
following distribution in error handling, as shown in Fig. 10:

« No exception handling, 31.6% of repositories.

o Basic exception handling, such as usage of try-catch
blocks or providing error details by logging HTTP status
codes (e.g., 404, 500) or other customized messages,
which comprises 68% of repositories.

e Proper exception handling, such as timeout and retries,
which comprises only 0.4% repositories.

Observation 7: Coding Patterns Characteristics]—

Many service developers are unaware of the pressing
need for proper error handling when integrating ser-
vices into their code.

V. THREATS TO VALIDITY

Internal validity: When labeling alternative services (Sec.
IV-B), we determined whether a service could serve as a
replacement at given call sites based on our judgment, which
presents an internal validity threat. To mitigate it, three co-
authors participated in the manual labeling process, so in
instances of disagreement among their opinions, a majority
voting mechanism was employed to reach a consensus.

External validity: We focused our analysis on the 53% data
subset, which contained QoS metrics measured by RapidAPI,

1214

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

as illustrated in Fig. 3a. Consequently, this analysis focus may
have limited its scope and depth. How we define community
support, service provider support, and cost per request may
also impact the analysis results. Although more factors may
be considered in measuring these service facets, our metrics
include the most important factors for each facet. Another
potential external threat to the validity of this study lies
in the GitHub data collection process related to RapidAPI
services, as it relies solely on open-source repositories. This
data selection thus excludes any insights that could have
been obtained from private repositories inaccessible to us,
potentially introducing bias or incomplete representation.

VI. IMPLICATIONS

The study we have carried out discovered 1) the characteris-
tics of RapidAPI-managed services by examining their various
facets, 2) how these services are used on GitHub with respect
to their various facets, 3) how developers choose services over
alternative options; and 4) how developers’ proficiency levels
impact their choices. Our findings can have useful implications
for different stakeholders:

o For Integration Developers: The insights into Rapi-
dAPI’s multifaceted nature can guide developers in sys-
tematically evaluating service facets, while also highlight-
ing the importance of robust error-handling strategies.

o For Service Providers: These insights can also inform
service providers about developer expectations, guiding
efforts in improving service usability.

o For Marketplace Platforms: Understanding developer
proficiency and preferences enables platforms to tailor
recommendations, improving satisfaction and platform
engagement across varying expertise levels.

o For Researchers: This study identified the need for
novel approaches for locating services with subpar QoS
or documentation, as a way to enhance service provider
feedback and platform trustworthiness.

VII. CONCLUSION

This paper has described a large-scale empirical study on
how integration developers select web services. Our find-
ings highlight that numerous services plagued by poor QoS
suffer from lackluster support from service providers and
the developer communities. Factors, including service level,
cost, and support from service providers and communities
significantly influence the utilization of RapidAPI services.
Among these factors, support emerges as the one that impacts
most which services end up being selected. Additionally, when
classifying repositories by the developers’ proficiency levels,
we discovered that skilled developers focus on factors that in-
clude popularity, latency, and provider support. Finally, service
integration can benefit from better error-handling strategies.

ACKNOWLEDGEMENT

This research is supported by NSF through the grants
#2104337 and # 2232565.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

1215

REFERENCES

D. Pudasaini and C. Ding, “Service selection in a cloud marketplace: a
multi-perspective solution,” in 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD). 1EEE, 2017, pp. 576-583.

A. A. Olu, “Modelling the performance of web services in cloud e-
marketplaces based on consumer waiting time and provider cost,” Ph.D.
dissertation, University of Zululand, 2016.

G. Gu and E. Zhu, “Trust and disintermediation: Evidence from an online
freelance marketplace,” Management Science, vol. 67, no. 2, pp. 794—
807, 2021.

M. R. Azmy, Suhardi, and W. Muhamad, “Advanced technologies to
support service discovery in service-oriented systems,” in 2020 Interna-
tional Conference on Information Technology Systems and Innovation
(ICITSI), 2020, pp. 300-305.

C. Manchanda, W. Hussain, L. Rabhi, and F. Rabhi, “Towards an api
marketplace for an e-invoicing ecosystem,” in Enterprise Applications,
Markets and Services in the Finance Industry, J. van Hillegersberg,
J. Osterrieder, F. Rabhi, A. Abhishta, V. Marisetty, and X. Huang, Eds.
Cham: Springer International Publishing, 2023, pp. 82-96.

L. Dahlander, D. M. Gann, and M. W. Wallin, “How open is innovation?
a retrospective and ideas forward,” Research Policy, vol. 50, no. 4, p.
104218, 2021.

A. Menychtas, S. G. Gomez, A. Giessmann, A. Gatzioura, K. Sta-
noevska, J. Vogel, and V. Moulos, “A marketplace framework for trading
cloud-based services,” in Economics of Grids, Clouds, Systems, and
Services: 8th International Workshop, GECON 2011, Paphos, Cyprus,
December 5, 2011, Revised Selected Papers 8. Springer, 2012, pp.
76-89.

E. Zeydan, L. Blanco, S. Barrachina-Muiioz, F. Rezazadeh, L. Vet-
tori, and J. Mangues, “A marketplace solution for distributed network
management and orchestration of slices,” in 2023 19th International
Conference on Network and Service Management (CNSM), 2023, pp.
1-6.

S.-Y. Hwang, C.-C. Hsu, and C.-H. Lee, “Service selection for web ser-
vices with probabilistic qos,” IEEE transactions on services computing,
vol. &, no. 3, pp. 467-480, 2014.

Y. Ma, S. Wang, F. Yang, and R. N. Chang, “Predicting qos values via
multi-dimensional qos data for web service recommendations,” in 2015
IEEE International Conference on Web Services, 2015, pp. 249-256.
X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommendation
via exploiting location and qos information,” I[EEE Transactions on
Farallel and Distributed Systems, vol. 25, no. 7, pp. 1913-1924, 2014.
D. Pudasaini and C. Ding, “Service selection in a cloud marketplace: A
multi-perspective solution,” in 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), 2017, pp. 576-583.

R. Ramacher and L. Monch, “Cost-minimizing service selection in the
presence of end-to-end qos constraints and complex charging models,”
in 2012 IEEE Ninth International Conference on Services Computing.
IEEE, 2012, pp. 154-161.

Y. Wang, J. Zhang, and J. Vassileva, “Effective web service selection
via communities formed by super-agents,” in 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, vol. 1. 1EEE, 2010, pp. 549-556.

F. Binzagr, H. Labbaci, and B. Medjahed, “Fame: An influencer model
for service-oriented environments,” in Service-Oriented Computing: 17th
International Conference, ICSOC 2019, Toulouse, France, October 28—
31, 2019, Proceedings 17. Springer, 2019, pp. 216-230.

A. Owrak, A. Namoun, and N. Mehandjiev, “Quality evaluation within
service-oriented software: a multi-perspective approach,” in 2012 IEEE
Ninth International Conference on Services Computing. 1EEE, 2012,
pp. 594-601.

Z. Song, O. Rowader, Z. Li, M. Tello, and E. Tilevich, “Quality of
information matters: Recommending web services for performance and
utility,” in 2022 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 1EEE, 2022, pp. 41-48.

N. C. Mendonca, J. A. F. Silva, and R. O. Anido, “Client-side selection
of replicated web services: An empirical assessment,” Journal of Systems
and Software, vol. 81, no. 8, pp. 1346-1363, 2008.

E. Jawabreh and A. Taweel, “Time-aware qos web service selection us-
ing collaborative filtering: A literature review,” in European Conference
on Service-Oriented and Cloud Computing. Springer, 2023, pp. 55-69.
M. Daaji, A. Ouni, M. M. Gammoudi, S. Bouktif, and M. W. Mkaouer,
“Multi-criteria web services selection: Balancing the quality of design
and quality of service,” ACM Transactions on Internet Technology
(TOIT), vol. 22, no. 1, pp. 1-31, 2021.

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

[21] M. Bano and D. Zowghi, “Users’ voice and service selection: An cnn: A novel approach,” Journal of Software, vol. 1, no. 1, 2023.
empirical study,” in 2014 IEEE 4th International Workshop on Empirical ~ [23] J. C. Panzar, Competition and Efficiency. London: Palgrave Macmillan
Requirements Engineering (EmpiRE). 1EEE, 2014, pp. 76-79. UK, 2016, pp. 1-4. [Online]. Available: https://doi.org/10.1057/

[22] R. Khankhoje, “Web page element identification using selenium and 978-1-349-95121-5_669-1

1216

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from |IEEE Xplore. Restrictions apply.

