
“How Can I Be of Service?”—A Comprehensive

Analysis of Web Service Integration Practices

Siddhi Baravkar∗, Olivia Pellegrini∗, Pratiksha Gaikwad∗, Eli Tilevich†, and Zheng Song∗

∗Department of Computer and Information Science, University of Michigan at Dearborn

Email: {siddhib, opelle, prati, zhesong}@umich.edu
†Dept. of Computer Science, Virginia Tech

Email: tilevich@cs.vt.edu

Abstract—Despite the widespread adoption of Web services
in modern computing applications, there remains a lack of
a systematic approach that can guide service developers in
creating appealing services. This paper addresses this gap by
presenting findings from a comprehensive study of RapidAPI web
services, the largest service marketplace, and their integration
into GitHub-hosted applications. We collected data on over 16K
RapidAPI services and 19K corresponding GitHub repositories
invoking these services, evaluating each service based on metrics
such as latency, reliability, pricing, community support, and
provider support. Our analysis examines how these metrics
influence service popularity and usage patterns on GitHub.
We manually analyzed 800 GitHub repositories and identified
developers’ service selection preferences and integration patterns,
considering alternative services and their features. Additionally,
we classified GitHub developers based on proficiency levels to
understand how developers’ levels of proficiency impact their
service selection and integration strategies. Our findings offer
insights for service marketplaces to recommend integration-
friendly services and for service developers to create offerings
tailored to real-world application needs.

Index Terms—Service marketplace, Service selection, Rapi-
dAPI, GitHub, Service metrics

I. INTRODUCTION

In the realm of web services, service selection represents

a fundamental and enduring problem. This problem can be

articulated as follows: when confronted with a collection

of equivalent web services offering similar functionalities

and usable interchangeably, how to identify and select the

service that most effectively fulfills an application’s functional

requirements. Existing approaches solve this problem based on

various facets, including latency, cost, reliability, community

support, and trust [1], [2], [3]. These approaches frequently

operate under the assumption that integration developers prior-

itize specific service facets when selecting services. However,

the extent to which integration developers prioritize these

facets remains unclear, leaving service providers uncertain

about which aspects of their services require improvement.

In this work, we take an empirical approach to this problem

by conducting a large-scale study. Rather than surveying

and interviewing integration developers, our study derives

actionable insights by studying how they integrate services

in their source code. To execute our empirical study at a

sufficiently large scale to derive meaningful insights, we had

to overcome the following challenges: 1) how to identify

service invocations within the source code, as developers

often utilize various libraries with diverse functionalities; 2)

how to distinguish the invoked services in the absence of

a standardized format, such as differentiating service from

other HTTP requests; 3) how to identify and extract relevant

metadata associated with services.

In the service-oriented architecture (SOA), a service registry

enables providers to register their services and integration

developers to find the services they need [4], [5]. Recent

years have seen the rapid growth of a new type of service

registry that we call Marketplace, which provides a one-

stop solution for integrating services throughout application

lifecycle: 1) Integration developers can use keywords to search

for services; 2) when invoking a service, the request is sent

to the marketplace, which authenticates the credentials of the

requests and serves as a middleman delegating the requests;

3) the marketplace further measures the amount of requests,

the latency and successful status of each request, and displays

such metadata on each service’s web page; 4) based on the

billing strategies specified by service providers, the market-

place handles the billing for integration developers’ service

subscriptions; 5) the marketplace also provides discussion

forums for integration developers and service providers to

communicate directly.

Due to their convenience and utility, the SOA ecosystem

makes extensive use of marketplaces, such as RapidAPI, and

BaiduAPI, which attract 16K services, over 4 million users 1,

and 400 billion invocations per month [6]. These emerging

platforms also enable large-scale empirical studies. We take

advantage of marketplaces as the source of relevant service

metadata, while using open-source software repositories as

the source of service invocation statistics. Juxtaposing the

obtained information provides a powerful avenue for better

understanding integration developers’ rationale for selecting

and integrating services.

This paper reports on the results of a large-scale empirical

study that focuses specifically on how developers select and in-

tegrate services. We collected 16K services with their metadata

from RapidAPI, and 19K GitHub repositories that invoke these

services. We first analyzed how different service facets impact

their popularity as measured by RapidAPI and as measured

1https://rapidapi.com/company/

11206

2024 IEEE International Conference on Web Services (ICWS)

2836-3868/24/$31.00 ©2024 IEEE
DOI 10.1109/ICWS62655.2024.00144
Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

by us from mining GitHub repositories, identifying the root

causes for the differences. To pinpoint the exact reasons why

developers select particular services, we randomly picked 800

services used in different repositories. We manually labeled

whether alternate services could replace them by inspecting

their call sites. We also divided integration developers into

categories based on their proficiency levels and studied how

they differed in service selection and integration.

The paper makes two primary contributions. Firstly, it

introduces a novel methodology for empirically studying how

integration developers select services, accompanied by the

public release 2 of all collected data for use by fellow

researchers and practitioners. Secondly, through analysis of

the gathered data, the paper addresses the following research

questions:

• RQ1: What are the common characteristics shared by ser-

vices managed through RapidAPI, as well as the GitHub

repositories and developers who utilize these services?

• RQ2: How do various service facets correlate with their

usage patterns, as observed on both RapidAPI and GitHub

platforms?

• RQ3: What factors primarily influence integration de-

velopers in selecting a service from a set of equivalent

options with similar functionalities?

• RQ4: How does the proficiency level of developers influ-

ence their practices in selecting and integrating services?

The rest of this paper is organized as follows. Section

II introduces the background and related work. Section III

details how we collected data from RapidAPI and Github,

and answers RQ1. Section IV analyzes data and provides

answers to the other RQs. Sections V and VI introduce the

threats to validity and implications of our research. Section

VII concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we introduce background knowledge about

using RapidAPI as a marketplace, existing work on service se-

lection, and empirical study approaches for service integration

and available datasets.

A. Service Registry and How RapidAPI is Different

Traditional service registries serve as a bridge for integration

developers to find services. RapidAPI, initially founded in

2015, is now the largest service registry. It takes a brand new

role in service-oriented architecture as a service marketplace,

which acts as a delegation between service providers and

consumers. All service requests are sent to the delegation

servers of RapidAPI, which further query the actual servers

managed by service providers to obtain the results and return

them to integration developers.

In particular, the marketplace acts as a ’One-stop-solution’

providing Service consumers with features like service dis-

covery, QoS monitoring, API documentation, API service

subscription, and billing all within a Platform as a Service

2https://anonymous.4open.science/r/Web Service- Research-66B4/

(PaaS) offering, supporting the entire software development

life cycle. [7]. The service providers share with the platform

the invocation URL of their services, along with the docu-

mentation and example code for using the services and their

price. The integration developers can discover the service and

utilize it by subscribing to the service and managing billing

on a platform itself [8].

RapidAPI consists of 49 different categories 3 of services

like Sports, Finance, Data, Entertainment, etc., and 522 col-

lections 4 represent a group of APIs sharing common charac-

teristics. RapidAPI editors manually pick the services in each

collection.

In RapidAPI, each service contains a cluster of endpoints

that provide distinct functionalities. All the endpoints in a ser-

vice share the same invocation URL and RapidAPI measures

the QoS and the usages by services, not endpoints. Hence, in

our data collection and analysis, we carry on the definition

of services from RapidAPI and measure the performance and

usages for each service, or say, a cluster of endpoints.

B. Service Selection Criteria

Selecting the appropriate service that aligns with the de-

sired requirements is essential for developers to meet both

functional and performance expectations. Numerous research

studies [9]–[12] have been conducted to assist developers in

recommending services or selecting optimal services, focusing

primarily on evaluating or predicting QoS parameters such as

availability, latency, reliability, etc. Other than QoS, cost [13]

for invoking services, the level of community support for

services [14], [15], and the quality of documentations [16]

are also considered in service selection. Our empirical study

considers all of the aforementioned criteria.

There are also other criteria for selecting services. For

example, services’ QoI (quality of information) [17], i.e.,

accuracy, updated frequency, and data completeness might be

considered for service selection; the QoS perceived by end

users may also be considered [18], [19]; the design patterns

and anti-patterns of services may also be considered [20].

However, this paper excludes these criteria from our study,

as the QoI, end-user QoS, and design anti-patterns are hard to

measure on a large scale.

C. Empirical Study of Service Integration

Understanding integration developers’ preferences has been

an important problem. There have already been multiple small-

scale studies on this topic. For example, [21] surveyed less

than 300 users on their opinions towards selecting one SMS

service from 92 candidate services. Its result indicates that

the service facets, ranking by their impact on the selection

results, are 1) functionality of the service; 2) reliability; 3)

cost; 3) developer support; and 4) latency. However, this

rating for SMS service is ad-hoc and may not represent the

general developer’s preferences. Similarly, [20] interviewed 40

developers about their preferences over 3 sets of services,

3https://rapidapi.com/categories
4https://rapidapi.com/collections

21207

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

which still provides limited insights and might be biased.

Due to the lack of proper methodology, large-scale studies on

developers’ preferences for selecting and integrating services

in the wild are yet to be conducted.

III. DATA COLLECTION

This section delves into our methodology for collecting and

labeling data from RapidAPI and Github. Fig. 1 shows the

flow for the data collection, in which Selenium web driver [22]

was used to crawling and MySQL database for storage. We

repeated this data collection process for two rounds over 8

months, to further understand how services’ performance and

usage change.

Selenium web
driver

RapidAPI
Marketplace GitHub

MySQL DB

1

3

Data from RapidAPI

Requesting API
services data

2

 Storing RapidAPI data

6

4 Get X-RapidAPI-Host

Storing GitHub data

Data Analysis
(RapidAPI + GitHub)7

5 Search GitHub data using
RapidAPI services

Fig. 1: RapidAPI and GitHub data collection workflow

A. Collecting Service Metadata from RapidAPI

Initially, we obtained the full list of web services from all

49 RapidAPI categories. For each web service in the list,

we crawled its detail page. We obtained metrics that include

popularity, latency, service level, pricing, hostname, guiding

documents, and discussion forums, as indicated by Fig. 2.

The popularity, latency, and service level with hostname (in

Fig. 2a) are directly measured by RapidAPI, as it delegates

service requests. The guiding documents (in Fig. 2b) are also

specified by service providers to guide integration developers.

For the discussion forums (in Fig. 2c), we collected pages

of discussions and the number of replies. The pricing (in

Fig. 2d) is set by service providers and may have different

formats. For example, developers can set the price for the

monthly subscription, the quota (hourly, daily, or monthly

request limits), and the per-request cost if the total requests

exceed the quota. We further collected the collections, which

are similar services manually grouped by editors.

B. Collecting Services Usages from Github

Invoking services from RapidAPI always requires spec-

ifying X-RapidAPI-Host of the service, which has a sim-

ilar format of “service name”+“p.rapidapi.com,” with “ser-

vice name” being unique to each service. For example,

the RapidAPI host for “Bitcointy” service is “community-

bitcointy.p.rapidapi.com.” Hence, we searched on Github for

repositories using the X-RapidAPI-Host of services as the

keyword, as specified by steps 4 and 5 in Fig. 1. We collected

each repository’s metadata, including repository URLs, stars,

forks, watchers (Fig. 2e) and its owner (Fig. 2f). We also

collected each owner’s repository count and followers to

measure their proficiency.

C. Statistics of Collected Data:

Platforms / Data collection Round 1 Round 2

RapidAPI services 16,613 16,395

RapidAPI services used in GitHub 1,500 1,677

Repositories using RapidAPI services 10,317 19,733

TABLE I: Data collection from RapidAPI and GitHub

We conducted two rounds of data collection, in July 2023

and March 2024, to understand how RapidAPI services and

their usage changed in 8 months. Table I displays the data col-

lection statistics gathered from RapidAPI and GitHub across

two rounds. We observe that 31.60% services available in the

first round were removed from RapidAPI at the time of our

second round collection, with a similar amount of services

added. The utilization of RapidAPI services on GitHub expe-

rienced a surprising increase of 93.6%, from 10K repositories

to 19K repositories.

Figure 3a illustrates the statistical overview of RapidAPI

services. In round 1, we gathered data from 16,613 services,

the metrics of 41.96% of which turned undefined. Undefined

metrics occur whenever the number of developers using a

service is insufficient for RapidAPI to collect enough infor-

mation about the service’s popularity, latency, and service

level. Similarly, in round 2, data from 16,395 services were

collected, with 47.89% of them featuring undefined metrics.

Round 2 shows a 5.94% increase in services with undefined

metrics, as compared to round 1. Among the 31.60% services

removed from round 2, 67.90% exhibit undefined metrics.

Observation 1: RapidAPI Services are Vibrant

Services on RapidAPI are actively updated (with

31.6% removed in the past year and more added) and

widely used by (open source) software.

D. Labeling RapidAPI Service Facets

The service metadata provided by RapidAPI provides nu-

meric values for each service’s latency, service level, and

popularity 5. We further define how to label three additional

facets, including pricing, support from service developers, and

support from the community, as detailed below.

• Popularity: The popularity metric is associated with the

invocations for a particular service. It is depicted by

the RapidAPI platform on a scale of 0 to 10 with a

granularity of 0.1, where a higher score indicates greater

service utilization. The value is calculated by RapidAPI

using two factors: how many developers are using each

service and how many requests are sent within a certain

period. However, RapidAPI’s calculation algorithm is not

publicly accessible.

5https://docs.rapidapi.com/docs/faqs

31208

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

(a) Rapid API metrics (b) RapidAPI Support (Serv. Provider) (c) RapidAPI Discussions

(d) RapidAPI Pricing (e) GitHub Repository Details (f) GitHub Owner Details

Fig. 2: RapidAPI and GitHub Data Collection

• Latency: Noting that RapidAPI delegates all service

requests, latency is measured as the average time (ms) it

takes for a delegation server to receive a response from

the API server for all calls within the last 30 days.

• Service Level: The service level metric indicates server

reliability through successful service calls. On the Rap-

idAPI platform, the service level is depicted on a scale

of 0% to 100% with a granularity of 1%, where a higher

score indicates greater service reliability.

• Pricing: RapidAPI enables service providers to specify

various price models, including basic, pro, ultra, and

mega, each with a distinctive pricing structure for every

service. Initially, we classified the services into three

categories: cost-free (services with more than 100 re-

quests per day), limited cost-free (services with fewer

than 100 requests per day), and paid services. For the

limited cost-free and paid categories, we calculated a

“cost per request” by 1) choosing the price model with the

lowest cost, as most integration developers may choose

the lowest cost; 2) dividing the cost by number of requests

allowed per period. As an illustration, in the case of the

service depicted in Figure 2d, we opt for the basic model

due to its lower cost. However, this model only allows

for 24 requests per day, falling short of our set threshold

of 100 requests per day. Consequently, we will consider

the cost per request as $0.7. In cases where the cost per

request parameter is unspecified, we have evaluated it by
Requestsperday

cost
.

• Support from service providers: This metric involves

information about the documentation support provided

by the service providers on the marketplace to assist

the developers in utilizing their services. Using docu-

mentation content and resource links (see Fig. 2b) as

parameters, we set a threshold value of documentation

word count of at least 100 words, as a minimum of

100 words can adequately convey necessary details. In

particular, we categorized the service providers’ support

as: 1) good, if a service has at least a 100-word count for

the documentation as well as a resource link; 2) average,

if a service has either one but not both; and 3) poor, if

neither is available.

• Support from the community: This metric provides in-

formation regarding whether the integration developers of

a service are forming a community to help each other. For

each service, we consider how many discussion threads

have at least one reply, as answering questions forms

a healthier community than purely asking questions. In

particular, we categorized the service community support

as: 1) good, if 70% of discussions have replies; 2) average

for 70% to 10%, and 3) poor for 10% to 0%.

Fig. 3 shows the service distributions based on our cus-

tomized metrics, i.e., cost per request, service developer’s

support, and community support. We observe that: 1) most

services fall into the cost-free category, but still more than

10% services charge for more than 1 cent per request; 2) over

60% service developers provide good or average support for

their integration developers; and 3) only very few services have

an activity community.

Fig. 4 shows the service distribution based on popularity,

latency, and service level, with the blue line denoting services

collected in round 1, yellow for round 2, and green for services

included in round 1 but removed in round 2. Note that here

we excluded the services with undefined metrics. We observe

that 1) the service level and popularity of services in round

1, round 2, and removed are almost identical; 2) over 70%

of services removed from round 2 have high latency, making

the average latency of services in round 2 smaller than round

2; 4) however, many services still suffer from poor QoS, i.e.,

41209

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

(a) RapidAPI service statistics

cost-free

78.0%

$0 to 0.01

10.3%
$0.01 to 0.1

4.3%$0.1 to 1
6.5%> $1

0.8%

Service cost

(b) Pricing Categorization

Good
8.3%

Average

51.8%

Poor

39.9%

Service provider support

(c) Service provider’s support

Good

1.6%

Average

54.8%

Poor

43.6%

Community support

(d) Community support

Fig. 3: RapidAPI Service Statistics and Distributions based on customized metrics

1-1.9 2-2.9 3-3.9 4-4.9 5-5.9 6-6.9 7-7.9 8-8.9 9-10
Popularity Range

0

10

20

30

40

50

Se
rv

ice
 D

ist
rib

ut
io

n
(%

)

Popularity Distribution
Round 1
Round 2
Removed in Round 2

(a) Popularity Distribution

1-99 100-299 300-599 600-999 1000-9999 > 9999
Latency Range (ms)

0

25

50

75

100

Se
rv

ice
 D

ist
rib

ut
io

n
(%

)

Latency Distribution
Round 1
Round 2
Removed in Round 2

(b) Latency Distribution

10-90 91-95 96 97 98 99 100
Service Level Range (%)

0

25

50

75

100

Se
rv

ice
 D

ist
rib

ut
io

n
(%

)

Service Level Distribution
Round 1
Round 2
Removed in Round 2

(c) Service Level Distribution

Fig. 4: RapiAPI Service Distribution

over 20% services with reliability lower than 98% and over

25% of services with latency higher than 1,000 ms.

One of our unexpected findings was that many services

provided insufficient QoS. A commonly shared understanding

is that the QoS of services is bound by SLA (a service-level

agreement). Hence, we further studied the documentation of all

services, looking for the keywords “SLA” and “service level

agreement.” To our surprise, among all the services collected

in round 2, only 15 services mentioned SLA variations in their

documentation, and only 3 with legitimate SLA documents.

Observation 2: RapidAPI Services Characteristics

Developers can use over 3/4 of services offered on

RapidAPI for free, but many services suffer from poor

QoS and inadequate support from service providers

and the community.

E. Labeling GitHub Developers’ Proficiency

The developer proficiency level may impact the service

selection as per their preferences. In particular, to measure the

proficiency of a developer who owns a GitHub repository that

integrates RapidAPI services, we consider the following three

aspects: i) the number of repositories owned, ii) the number

of forks on the repository that invoke RapidAPI services, and

iii) the number of followers.

As the resulting metric has multiple dimensions, we applied

the following rules to classify developers into three levels:

• Skilled Developers: If all three aspects fall in the top

20% of their respective counts.

• Average Developers: If any 2 aspects fall in the top 20%

of their respective counts.

• Novice Developers: If only one or no metric falls in the

top 20% of their respective counts.

Fig. 5 shows the distribution of developers’ proficiency

levels under our definition. We observe that less than 25%

of developers that integrate services in their software are

classified as skilled and average, with a majority of users fall

into the novice category.

Skilled

4.3%

Average
19.2%

Novice76.5%

Developers Proficiency level on GitHub

Fig. 5: Distribution of Developer’s Proficiency Levels

51210

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

F. Labeling GitHub Service Usages

We further measured the main purposes of the repositories

using services. We analyzed the primary programming lan-

guage used in each repository, which is provided by Github,

and categorized the purposes of the repository by the primary

language, as listed below:

• Web Development, with languages being Javascript,

Typescript, HTML, CSS, Jupyter Notebook, EJS, Svelte,

Vue, ASP.NET, etc.

• General Purpose Scripting, with languages being Python,

Ruby, PHP, Perl, Groovy, Lua, etc.

• Mobile App Development, with languages being Swift,

Kotlin, and Dart.

• Backend Systems, with languages being C Sharp, Java,

Go, Rust, C++, Scala, Haskell, etc.

• Databased, with languages being SQL, HCL, and PLSQL.

• Document and Template Languages, with languages be-

ing Tex, XSLT, and Roff.

• Others, with languages not in the above categories.

Web
 Dev

Gen
era

l S
cri

pti
ng

Back
en

d/S
yst

em
s

Mob
ile

App
 Dev

Not
Men

tio
ne

d
Othe

r

Data
ba

se

Docu
men

t L
an

gu
ag

e

Programming Language Categories

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f G
itH

ub
 R

ep
os

ito
rie

s 63.77%

21.78%

7.98%
3.52% 2.44% 0.43% 0.05% 0.04%

Programming Language Taxonomy

Fig. 6: Distribution of Developer’s Proficiency Levels

Observation 3: RapidAPI Services Usage

Services are widely used in web development, but less

used in mobile Apps.

IV. DATA ANALYSIS

This section details the data analysis we employed to

address Research Questions 2 to 4.

A. Correlation between Service Facets and Usages

First, we aim to answer RQ2. The popularity of RapidAPI

is indicated by both the number of developers utilizing the

service and the frequency of invocations made to those ser-

vices. We correlated this metric by examining the number of

repositories utilizing each service on GitHub, terming it as the

average repositories per service to evaluate the usage of each

RapidAPI service on GitHub.

Fig. 7f illustrates the relationship between the average

RapidAPI popularity of all services and the average number

of repositories on GitHub utilizing these RapidAPI services.

We observe that as RapidAPI popularity increases, so does

the number of average repositories on GitHub. This correla-

tion indicates that GitHub can serve as a suitable platform

for studying the RapidAPI usage patterns. However, for the

services used in more than 40 repositories, we observe a slight

decrease in their average popularity, which may be caused by

not so many end users using these repositories and sending

fewer requests, as RapidAPI popularity is measured by both

the number of subscribers and the invocation frequency.

Further in Fig. 7 We compared various RapidAPI service

facets and analyzed their impact on service usage. As a

general trend, we observe that higher service level (reliability),

lower cost, and better support from service providers and the

community attract more developers, as indicated by Figs. 7b,

7c, 7d, and 7e, which is not surprising.

Observation 4: Service Usage Characteristics

Developers prioritize reliability and latency within

acceptable thresholds. Nevertheless, robust support

mechanisms, from both the developer and the com-

munity, remain crucial.

Other observed insights are as follows:

• Latency (see Fig. 7a): 1) extremely low latencies of 1 to

99 ms may not increase the service’s popularity, as con-

firmed by both RapidAPI and Github; 2) different impacts

of latency on service usages are observed, i.e., Github

developers favor services with less than 1s of latency,

while RapidAPI indicates developers favor services with

less than 10s of latency.

• Reliability (see Fig. 7b): as confirmed by both RapidAPI

and Github, developers tend to prefer services that offer

good reliability, typically in the range of 97% to 99%,

rather than those with perfect reliability of 100%, which

is against the common assumption that services need to

guarantee the reliability of several nines. One possible

reason causing this phenomenon could be that, as more

developers use a service, sending their requests, the

service’s reliability decreases. Or we can say that instead

of developers choosing services with lower reliability,

developers’ choices cause services’ reliability to decrease.

• Support from Service Providers (see Fig. 7d): the cor-

relations between support from service providers and

service usages measured by GitHub and RapidAPI differ.

Services with little or no documentation and no resource

URLs may be more popular than services with either

of these properties present, as observed on RapidAPI.

Finding a plausible reason that explains this phenomenon

remains an open research question.

B. Selecting Services from Similar Options

Here we delve into a comprehensive comparison between

the services selected by developers through RapidAPI and

potential alternatives that were not chosen. The aim is to

examine the facets of RapidAPI that significantly influence

developers’ choices when choosing a service among alterna-

tives with similar functionalities.

61211

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

1-99 100-299 300-599 600-999 1000-9999 > 9999
Latency Range

3

4

5

6

7

Av
er

ag
e

Po
pu

la
rit

y

RapidAPI Popularity 8

10

12

14

16

Av
er

ag
e

Re
po

sit
or

y
Co

un
t

Avg Popularity, Repository Count by Latency Range

GitHub Popularity

(a) Latency

10-90 91-95 96 97 98 99 100
Service Level Range

6.5

7.0

7.5

8.0

8.5

Av
er

ag
e

Po
pu

la
rit

y

RapidAPI popularity

6

8

10

12

14

16

18

20

Av
er

ag
e

Re
po

sit
or

y
Co

un
t

Avg Popularity, Repository Count by Service Level Range

GitHub popularity

(b) Service level

0 0-0.01 0.01-0.1 0.1-1 >1
Cost Range

0

1

2

3

4

5

6

7

Av
er

ag
e

Po
pu

la
rit

y

RapidAPI Popularity 4

6

8

10

12

Av
er

ag
e

Re
po

sit
or

y
Co

un
t

Avg Popularity, Repository Count by Cost Range

GitHub Popularity

(c) Pricing

Poor Average Good
Support from service provider

5.8

5.9

6.0

6.1

6.2

6.3

Av
er

ag
e

Po
pu

la
rit

y

RapidAPI Popularity

9

10

11

12

13

14

15

16

17
Av

er
ag

e
Re

po
sit

or
y

Co
un

t
Avg Popularity, Repository Count by Service provider's support

GitHub Popularity

(d) Supp (Serv. provider)

Poor Average Good
Support from community

6.0

6.5

7.0

7.5

8.0

8.5
Av

er
ag

e
Po

pu
la

rit
y

RapidAPI Popularity

9

12

15

18

21

24

27

Av
er

ag
e

Re
po

sit
or

y
Co

un
t

Avg Popularity, Repository Count by community support

GitHub Popularity

(e) Supp (Community)

1-10 11-20 21-40 41-50 Over 50
RapidAPI services used by no. of repositories

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e

Po
pu

la
rit

y

Avg RapidAPI Popularity vs GitHub usage

(f) RapidAPI vs. GitHub

Fig. 7: Service facets Vs Service usages

Three co-authors manually inspected how services are inte-

grated into Github repositories. By calling RapidAPI-provided

functions, they randomly selected 800 GitHub repositories,

from which they identified approximately 382 unique Rapi-

dAPI services, all of which they inspected manually.

To identify alternative service options for services utilized

within each GitHub repository, we adopted the following pro-

cedure: 1) we inspected the input/output parameters for each

service in use; 2) to help with manually labeling alternative

services, we filtered out candidate services that fall into the

same collection with the service in use, and appended the

candidate service set using keyword search on RapidAPI; 3)

if at least two of the three manual inspectors agreed that a

service in the candidate set can take the inputs of the service

in use and generate outputs with similar physical meaning, we

marked the service as an alternative for the current service in

use. Out of 382 services analyzed, we identified 332 as having

potential replacements.

We further analyzed each RapidAPI facet distribution for

332 services with potential replacements and compared them

with the possible alternatives. The facets analysis is divided

into 3 categories:

• Facets with no impact: Service level and pricing show

similar trends for the selected and alternative services

as in Fig. 8c 8d. For pricing, Adam Smith’s “invisi-

ble hand” [23] can influence the pricing strategies of

competing services, as each market consistently provides

more appealing pricing to attract customers. The pricing

graph indicates a similar outcome, with the selected and

alternative services reaching nearly identical pricing.

• Facets with minor impact: The popularity and latency as

shown in Fig. 8a 8b may have a minor impact while

selecting services from a set of similar options. Selected

services exhibit comparatively higher popularity, along-

side low-latency performance, specifically those with

latencies below 1 second.

• Facets with significant impact: The support provided

by service providers and the community significantly

influences developers, as illustrated in Fig. 8e and 8f,

where it is evident that most selected services enjoy better

support from both service providers and the community

compared to the alternative services.

Observation 5: How Do Developers Select Services

When selecting services from equivalent options, de-

velopers are impacted by the following factors ranked

from the highest to the lowest: 1) Service provider

support and Community support; 2) Latency and Pop-

ularity; and 3) Service level and Pricing.

C. How Developer Proficiency Impacts Service Integration

We analyzed the developers’ categories as per their pro-

ficiency levels in Sec. III-E labeled as as “Skilled”, “Av-

erage”, and “Novice” developers. In particular, we studied

how developer proficiency impacts two aspects of service

71212

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

1-1.9 2-2.9 3-3.9 4-4.9 5-5.9 6-6.9 7-7.9 8-8.9 9-10
Popularity range

0

25

50

75

100
Pe

rc
en

ta
ge

 o
f s

er
vi

ce
s (

%
)

Services in popularity range
Selected services
Optional services

(a) Popularity

1-99 100-299 300-599 600-999 1000-9999 >10000
Latency range (ms)

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in latency range
Selected services
Optional services

(b) Latency

10-90 91-95 96 97 98 99 100
Service Level range (%)

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in service level range
Selected services
Optional services

(c) ServiceLevel

0 0-0.01 0.01-0.1 0.1-1 1-1000
Pricing range (cost per request($))

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in pricing range
Selected services
Optional services

(d) Pricing

Poor Average Good
Support from service provider

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)
Service provider's support

Selected services
Optional services

(e) Support from Serv. Provider

Poor Average Good
Support from Community

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Community support
Selected services
Optional services

(f) Support from Community

Fig. 8: RapidAPI facets comparison for selected services and their alternatives

integration: 1) service selection; and 2) error handling. We

paid special attention to error handling, driven by the finding

of many popular services being afflicted by high latency and

low reliability.

1) Service Selection: Although services selected by skilled

developers slightly outperformed as compared to those se-

lected by average and novice developers in terms of service

level, pricing, and community support (Fig. 9c, 9d and 9f) the

difference between them was not particularly evident.

As per Figure 9b, the latency aspect reveals that skilled

developers prefer integrating services with lower latencies,

typically ranging between 1 millisecond to 1 second, compared

to average and novice developers. Moreover, beyond the 1s

threshold, the usage of services by skilled developers declines,

compared to their average and novice developers. This finding

indicates that skilled developers recognize the importance of

fast responsiveness when selecting services.

Fig. 9e illustrates both skilled and average developers

consider service provider’s support like good documenta-

tion details, resource links, tutorials, and similar resources

when selecting services. It might seem surprising, but skilled

developers highly value documentation quality. Experienced

developers might view good documentation as a sign of

solid software engineering practices. Essentially, well-made

software often has detailed documentation. While experienced

developers may not always need the documentation for inte-

gration, they like to see it as evidence of well-crafted services.

Skilled and average developers also prefer the popularity

facet distribution, as shown in Fig. 9a. One explanation for this

finding is that services gain popularity as skilled and average

developers select them rather than some services possessing

high popularity upfront.

Observation 6: Developer Proficiency Characteristics

Compared with novice developers, skilled developers

are more concerned about services’ popularity, latency,

and documentation support from service providers.

2) Error handling: Our analysis, as depicted in Fig. 9b and

9c, indicates that many services are impacted by high latency

and low reliability. Without proper error handling, an App may

be frozen, waiting for services’ responses or even crash if the

request is not successful. Many HTTP libraries have a default

timeout (e.g., 5 minutes for Python requests). The default

timeout may be inappropriate for services, as some of which

may take an unusually long time to execute, while others

81213

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

1-1.9 2-2.9 3-3.9 4-4.9 5-5.9 6-6.9 7-7.9 8-8.9 9-10
Popularity range

0

25

50

75

100
Pe

rc
en

ta
ge

 o
f s

er
vi

ce
s (

%
)

Services in popularity range
Skilled developers
Average developers
Novice developers

(a) Pricing

1-99 100-299 300-599 600-999 1000-9999 >10000
Latency range (ms)

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in latency range
Skilled developers
Average developers
Novice developers

(b) Latency

10-90 91-95 96 97 98 99 100
Service Level range (%)

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in service level range
Skilled developers
Average developers
Novice developers

(c) ServiceLevel

0 0-0.01 0.01-0.1 0.1-1 1-1000
Pricing range (cost per request($))

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Services in pricing range
Skilled developers
Average developers
Novice developers

(d) Pricing

Poor Average Good
Support from service provider

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)
Service provider's support

Skilled developers
Average developers
Novice developers

(e) Support from Serv. Provider

Poor Average Good
Support from Community

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
er

vi
ce

s (
%

)

Community support

Skilled developers
Average developers
Novice developers

(f) Support from Community

Fig. 9: RapidAPI facets as per developers’ proficiency

need to be retried as soon as their execution fails to meet a

shorter latency. Hence, developers must realize the importance

of error handling in service invocations and implement proper

strategies such as retries after failures and customized timeout.

Exception Handled

68.0%

 No Exception Handled

31.6%

Retry/Timeout 0.4%

GitHub RapidAPI Error Management

Fig. 10: Error Handling Code Patterns

To understand the error handling patterns followed by the

developers, we manually inspected the call site of the 800

repositories in GitHub, which we selected randomly to study

developers’ service selection preferences. We observed the

following distribution in error handling, as shown in Fig. 10:

• No exception handling, 31.6% of repositories.

• Basic exception handling, such as usage of try-catch

blocks or providing error details by logging HTTP status

codes (e.g., 404, 500) or other customized messages,

which comprises 68% of repositories.

• Proper exception handling, such as timeout and retries,

which comprises only 0.4% repositories.

Observation 7: Coding Patterns Characteristics

Many service developers are unaware of the pressing

need for proper error handling when integrating ser-

vices into their code.

V. THREATS TO VALIDITY

Internal validity: When labeling alternative services (Sec.

IV-B), we determined whether a service could serve as a

replacement at given call sites based on our judgment, which

presents an internal validity threat. To mitigate it, three co-

authors participated in the manual labeling process, so in

instances of disagreement among their opinions, a majority

voting mechanism was employed to reach a consensus.

External validity: We focused our analysis on the 53% data

subset, which contained QoS metrics measured by RapidAPI,

91214

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

as illustrated in Fig. 3a. Consequently, this analysis focus may

have limited its scope and depth. How we define community

support, service provider support, and cost per request may

also impact the analysis results. Although more factors may

be considered in measuring these service facets, our metrics

include the most important factors for each facet. Another

potential external threat to the validity of this study lies

in the GitHub data collection process related to RapidAPI

services, as it relies solely on open-source repositories. This

data selection thus excludes any insights that could have

been obtained from private repositories inaccessible to us,

potentially introducing bias or incomplete representation.

VI. IMPLICATIONS

The study we have carried out discovered 1) the characteris-

tics of RapidAPI-managed services by examining their various

facets, 2) how these services are used on GitHub with respect

to their various facets, 3) how developers choose services over

alternative options; and 4) how developers’ proficiency levels

impact their choices. Our findings can have useful implications

for different stakeholders:

• For Integration Developers: The insights into Rapi-

dAPI’s multifaceted nature can guide developers in sys-

tematically evaluating service facets, while also highlight-

ing the importance of robust error-handling strategies.

• For Service Providers: These insights can also inform

service providers about developer expectations, guiding

efforts in improving service usability.

• For Marketplace Platforms: Understanding developer

proficiency and preferences enables platforms to tailor

recommendations, improving satisfaction and platform

engagement across varying expertise levels.

• For Researchers: This study identified the need for

novel approaches for locating services with subpar QoS

or documentation, as a way to enhance service provider

feedback and platform trustworthiness.

VII. CONCLUSION

This paper has described a large-scale empirical study on

how integration developers select web services. Our find-

ings highlight that numerous services plagued by poor QoS

suffer from lackluster support from service providers and

the developer communities. Factors, including service level,

cost, and support from service providers and communities

significantly influence the utilization of RapidAPI services.

Among these factors, support emerges as the one that impacts

most which services end up being selected. Additionally, when

classifying repositories by the developers’ proficiency levels,

we discovered that skilled developers focus on factors that in-

clude popularity, latency, and provider support. Finally, service

integration can benefit from better error-handling strategies.

ACKNOWLEDGEMENT

This research is supported by NSF through the grants

#2104337 and # 2232565.

REFERENCES

[1] D. Pudasaini and C. Ding, “Service selection in a cloud marketplace: a
multi-perspective solution,” in 2017 IEEE 10th International Conference

on Cloud Computing (CLOUD). IEEE, 2017, pp. 576–583.
[2] A. A. Olu, “Modelling the performance of web services in cloud e-

marketplaces based on consumer waiting time and provider cost,” Ph.D.
dissertation, University of Zululand, 2016.

[3] G. Gu and F. Zhu, “Trust and disintermediation: Evidence from an online
freelance marketplace,” Management Science, vol. 67, no. 2, pp. 794–
807, 2021.

[4] M. R. Azmy, Suhardi, and W. Muhamad, “Advanced technologies to
support service discovery in service-oriented systems,” in 2020 Interna-

tional Conference on Information Technology Systems and Innovation

(ICITSI), 2020, pp. 300–305.
[5] C. Manchanda, W. Hussain, L. Rabhi, and F. Rabhi, “Towards an api

marketplace for an e-invoicing ecosystem,” in Enterprise Applications,

Markets and Services in the Finance Industry, J. van Hillegersberg,
J. Osterrieder, F. Rabhi, A. Abhishta, V. Marisetty, and X. Huang, Eds.
Cham: Springer International Publishing, 2023, pp. 82–96.

[6] L. Dahlander, D. M. Gann, and M. W. Wallin, “How open is innovation?
a retrospective and ideas forward,” Research Policy, vol. 50, no. 4, p.
104218, 2021.

[7] A. Menychtas, S. G. Gomez, A. Giessmann, A. Gatzioura, K. Sta-
noevska, J. Vogel, and V. Moulos, “A marketplace framework for trading
cloud-based services,” in Economics of Grids, Clouds, Systems, and

Services: 8th International Workshop, GECON 2011, Paphos, Cyprus,

December 5, 2011, Revised Selected Papers 8. Springer, 2012, pp.
76–89.

[8] E. Zeydan, L. Blanco, S. Barrachina-Muñoz, F. Rezazadeh, L. Vet-
tori, and J. Mangues, “A marketplace solution for distributed network
management and orchestration of slices,” in 2023 19th International

Conference on Network and Service Management (CNSM), 2023, pp.
1–6.

[9] S.-Y. Hwang, C.-C. Hsu, and C.-H. Lee, “Service selection for web ser-
vices with probabilistic qos,” IEEE transactions on services computing,
vol. 8, no. 3, pp. 467–480, 2014.

[10] Y. Ma, S. Wang, F. Yang, and R. N. Chang, “Predicting qos values via
multi-dimensional qos data for web service recommendations,” in 2015

IEEE International Conference on Web Services, 2015, pp. 249–256.
[11] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommendation

via exploiting location and qos information,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 7, pp. 1913–1924, 2014.
[12] D. Pudasaini and C. Ding, “Service selection in a cloud marketplace: A

multi-perspective solution,” in 2017 IEEE 10th International Conference

on Cloud Computing (CLOUD), 2017, pp. 576–583.
[13] R. Ramacher and L. Mönch, “Cost-minimizing service selection in the

presence of end-to-end qos constraints and complex charging models,”
in 2012 IEEE Ninth International Conference on Services Computing.
IEEE, 2012, pp. 154–161.

[14] Y. Wang, J. Zhang, and J. Vassileva, “Effective web service selection
via communities formed by super-agents,” in 2010 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent

Technology, vol. 1. IEEE, 2010, pp. 549–556.
[15] F. Binzagr, H. Labbaci, and B. Medjahed, “Fame: An influencer model

for service-oriented environments,” in Service-Oriented Computing: 17th

International Conference, ICSOC 2019, Toulouse, France, October 28–

31, 2019, Proceedings 17. Springer, 2019, pp. 216–230.
[16] A. Owrak, A. Namoun, and N. Mehandjiev, “Quality evaluation within

service-oriented software: a multi-perspective approach,” in 2012 IEEE

Ninth International Conference on Services Computing. IEEE, 2012,
pp. 594–601.

[17] Z. Song, O. Rowader, Z. Li, M. Tello, and E. Tilevich, “Quality of
information matters: Recommending web services for performance and
utility,” in 2022 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, 2022, pp. 41–48.
[18] N. C. Mendonca, J. A. F. Silva, and R. O. Anido, “Client-side selection

of replicated web services: An empirical assessment,” Journal of Systems

and Software, vol. 81, no. 8, pp. 1346–1363, 2008.
[19] E. Jawabreh and A. Taweel, “Time-aware qos web service selection us-

ing collaborative filtering: A literature review,” in European Conference

on Service-Oriented and Cloud Computing. Springer, 2023, pp. 55–69.
[20] M. Daaji, A. Ouni, M. M. Gammoudi, S. Bouktif, and M. W. Mkaouer,

“Multi-criteria web services selection: Balancing the quality of design
and quality of service,” ACM Transactions on Internet Technology

(TOIT), vol. 22, no. 1, pp. 1–31, 2021.

101215

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

[21] M. Bano and D. Zowghi, “Users’ voice and service selection: An
empirical study,” in 2014 IEEE 4th International Workshop on Empirical

Requirements Engineering (EmpiRE). IEEE, 2014, pp. 76–79.
[22] R. Khankhoje, “Web page element identification using selenium and

cnn: A novel approach,” Journal of Software, vol. 1, no. 1, 2023.
[23] J. C. Panzar, Competition and Efficiency. London: Palgrave Macmillan

UK, 2016, pp. 1–4. [Online]. Available: https://doi.org/10.1057/
978-1-349-95121-5 669-1

111216

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:02:12 UTC from IEEE Xplore. Restrictions apply.

