2024 IEEE International Conference on Software Services Engineering (SSE) | 979-8-3503-6851-2/24/$31.00 ©2024 |EEE | DOI: 10.1109/SSE62657.2024.00037

2024 1EEE International Conference on Software Services Engineering (SSE)

Decoding and Answering Developers’ Questions
about Web Services Managed by Marketplaces

Siddhi Baravkar*, Chi Zhang*, Foyzul Hassan*, Long Cheng', and Zheng Song*
* Department of Computer and Information Science, University of Michigan at Dearborn, USA
T School of Computing Clemson University, USA
{siddhib, zhchi, foyzul} @umich.edu, Icheng2 @clemson.edu, zhesong@umich.edu

Abstract—Service registry, a key component of the service-
oriented architecture (SOA), aids software developers in dis-
covering services that meet specific functionality requirements.
Recent years have witnessed the transition from the traditional
service registries to its successor, the Service Marketplaces, which
involves deeper engagement in the SOA software lifecycle and
offers additional features, such as service request delegation and
monitoring of services’ Quality of Service (QoS). However, by
analyzing developers’ questions posted on online Q&A forums,
we found that many developers struggle with such transition,
leading to development inefficiencies and even security vulnera-
bilities. This paper presents the first empirical study aimed at
uncovering the issues developers face with marketplaces, partic-
ularly those arising from the transition. Through a meticulous
process of manually labeling and analyzing developers’ questions,
we develop a taxonomy of these issues, summarize the impacts
caused by the transition, and provide actionable suggestions to
App developers, service providers, and marketplaces. Utilizing
the labeled questions and our insights, we fine-tune a Large
Language Model (LLM) for providing answers to similar ques-
tions raised by developers and helping service providers and
marketplaces extract useful information from these questions,
such as service outages and key leakages. Our evaluation of
the model’s performance in answering and extracting pertinent
information from a set of real-world questions demonstrates its
effectiveness: it accurately classified 85% of the queries and
successfully identified 88% of service names and 77% of key
leakages. As the first empirical study in this domain, this work not
only aids developers in navigating the transition more effectively
but also sheds light on the under explored issue of service registry
evolution, offering valuable insights for researchers.

Index Terms—Service Marketplace, Q&A forums, Taxonomy,
Large Language Model

I. INTRODUCTION

Service-oriented architecture (SOA) has been widely
adopted in modern software systems. It provides application
developers a flexible and efficient framework for accessing
remote domain-specific data and computational-intensive tech-
nologies hosted by third party service providers. Examples of
such services include face recognition, text generation, trans-
lation [1], [2], and querying for real-time ticket/flight/game
information [3]. With the blooming of Machine Learning as
a Service (MLaaS) [4], SOA will be even more important, with
an estimated market size of 26.5 billion USD by 2027 [5].

To connect service providers and application developers,
service registries serve as an important component of SOA. It
stores various information about available services and helps
developers discover services with the required functionali-

979-8-3503-6851-2/24/$31.00 ©2024 IEEE
DOI 10.1109/SSE62657.2024.00037

194

ties [6]. We observe that in recent years, the service registry
has experienced a major migration in terms of its functionality,
from traditional static service registries to the new service
marketplaces. For example, RapidAPI is the most widely used
marketplace, serving over 4 million users globally .

Unlike traditional service registries, which direct app devel-
opers to the websites of service providers, RapidAPI offers a
streamlined, one-stop solution for app developers. On Rapi-
dAPI, developers can subscribe to services, send requests, and
manage their service payments all in one place, simplifying the
process of integrating and using external services. This major
functionality change introduces several sequential adjustments
to the overall workflow of using service registries.

However, these workflow differences are not widely known,
which could potentially impact developers using the market-
places. Our review of inquiries on StackOverflow(SO), a lead-
ing online question-and-answer platform for software devel-
opers, uncovered numerous instances where developers were
puzzled about using RapidAPI. For example, one question that
has been viewed 22K times asks about failing to access a free-
to-use service via RapidAPI, despite possessing a valid key?.
This confusion arises from a fundamental difference in how
RapidAPI operates compared to traditional service registries.
Traditionally, developers receive an invocation key only after
subscribing to a specific service. Conversely, RapidAPI issues
a universal key that grants access to all its services, yet
mandates a subscription to individual services before they
can be utilized. This discrepancy highlights a knowledge
gap among application developers, who are accustomed to
the conventional model of service registries. Bridging this
gap could not only help service providers and application
developers more efficiently use marketplaces but also provide
marketplace owners insights to improve their platform design.

To the best of our knowledge, although previous studies [7],
[8] have summarized developers’ concerns and doubts when
using traditional service registries, there hasn’t been any re-
search conducted on the challenges encountered by developers
when using service marketplaces. The differences in their
working mechanism require a dedicated study to understand
the challenges faced by developers, especially those caused by
the migration. The study will also generate insights for us to

Uhttps://rapidapi.com/company/
Zhttps://rb.gy/59mo95

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

train an Al-based automated tool that assists developers and
researchers in mitigating these challenges. In particular, this
study seeks answers to the following research questions:

e RQ1: What are the differences in workflow between
traditional service registries and service marketplaces?

* RQ2: What are the developers’ challenges, especially
those due to migration from traditional service registry
to service marketplace?

¢ RQ3: How can an Al-based automated tool assist devel-
opers and researchers in mitigating these challenges?

This paper is structured as follows: Section II introduces
the background and related works; Section III introduces
our approaches towards answering the questions; Section IV
explains our findings, answers the RQs, and gives actionable
suggestions to stakeholders; Section V concludes this paper.
Additionally, we have open-sourced the dataset of questions
collected and the process of fine-tuning the language model,
which can be found in 3.

II. BACKGROUND AND RELATED WORK

This section introduces the background of our research,
along with a review of existing literature in this field.

A. Service Registry

A service registry is an important component of the service-
oriented architecture. It was originally designed to help devel-
opers search and find the services that fit their functionality
requirements. Our definition of the two generations of service
registries was inspired by [9], which was published almost
ten years ago. They categorized the first generation as an in-
formation gateway between service providers and consumers,
and the second generation as “integrated throughout the entire
software life cycle.”

Following this definition, we categorize service market-
places as the second generation of service registry, as they
serve as a delegation between App developers and service
providers. Three basic user roles interact with marketplaces:

* Service Provider: The service providers are individuals
or organizations offering services to third-party users.
They run the servers that host the services, which usually
require authentication to be accessed. Service providers
register their services in the service registry, to be used
by App developers.

Application Developer: App developers discover ser-
vices by interacting with the service registry. They select
the service that best fits their software’s requirements, de-
velop service invocation logic, and add the authentication
keys by which they pay for service usage.

End User: End users are the consumers of the software,
by whom the service requests are sent. End users usually
have no knowledge and capability to modify the software
they use.

3https://anonymous.4open.science/r/Fine Tuning-72E4/

195

B. Understanding Developers’ Concerns

To the best of our knowledge, this paper is the first to
study developers’ questions about service marketplaces. The
most related work studied developers’ concerns related to
traditional registries [7] by analyzing SO questions related
to ProgrammableWeb and APIGuru. It outlines the taxonomy
for traditional registries as “Authorization”, “Function”, “Doc-
umentation”, and “Others”. Correspondingly, we devised a
different taxonomy for the service marketplace: our taxonomy
includes the issues caused by the differences in their workflow
(i.e., delegation), including security, usability, documentation,
performance, etc.

Several works studied developers’ concerns and patterns re-
lated to web service usage. Similar to our approach, many [8],
[10], [11] analyzed developers questions posted on SO. Dif-
ferent from our approach that uses “RapidAPI” as keywords
because all services need to be invoked via the uniform
RapidAPI interface, they filtered the related posts either by
pre-selecting services as keywords or by “service” hashtags.
Some of their findings overlap with ours, such as QoS issues
in services and issues related to API updates. Different from
these approaches, our work further reveals developers’ issues
caused by marketplaces.

Our paper explained how the shift from a traditional service
registry to a service marketplace has confused developers,
introduced a developers’ questions taxonomy as well as devel-
oped an LLM-based Al-assisted tool to identify and address
developers’ concerns related to API marketplaces to ensure
smoother service utilization. Similar ideas of automatically
answering questions by analyzing existing questions and an-
swers have been widely explored [12]-[14], especially with
the recent blooming of generative Al This paper is the first to
apply such a technique in the domain of web service, which
makes it a useful tool for SOA developers and stakeholders.

III. METHODOLOGY

This section discusses data collection and the methodology
for all three research questions mentioned in Sec. I. As
illustrated by Figure 1, for RQI, we explored the workflows
of widely used service registries, categorized them into two
generations, and summarized the major differences in their
workflows. For RQ2, we analyzed and labeled the questions
posted on various Q&A forums, by which we created a
taxonomy. Lastly, for RQ3, we developed an LLM-based tool
by fine-tuning and evaluating its effectiveness on a test dataset.

Data Collection and Processing

Collecting developers’
concerns
Labeling developers' C
concerns
Categorizing developers’
concerns

Comparing API registries
(ProgrammableWeb,
APIGuUru, RapidAPI, Apify,
and Baidu)

Training and Testing LLM
Using labeled developers’
concerns

Fig. 1. Methodology Workflow

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Features/Platforms ProgrammableWeb APIGuru RapidAPI Apify Baidu
API Coverage 24000+ (before 2022) 2529 40000+ 1558 730
Invocation Examples No No 19 3 6
QoS metrics No No Yes Yes No
Request Delegation No No Yes Yes Yes
Doc. by Service Providers No No Yes Yes Yes
Generation Static Static Marketplace | Marketplace | Marketplace
TABLE T

STATISTICS OF API REGISTRIES

A. Comparing Two Generations of Service Registry

We chose widely-used service registries, including Pro-
grammableWeb, APIGuru®, RapidAPI, Apify 5 Baidu API ©,
as the targets of our study. Table I compares the statistics of
these registries. RapidAPI and programmableWeb host more
services than the other three.

We further explored the features of these registries by using
them, both as service providers listing services and as App
developers searching for services and invoking them. For
ProgrammableWeb which has been retired, we explored its
features by reading papers and tutorials. Initially, we catego-
rized them into two groups: static service registries and service
marketplaces, distinguishing them based on their common pat-
terns, w.r.t. 1) delegating end-user requests; 2) measuring and
displaying the QoS of services; 3) allowing service providers
to customize documentation; and 4) providing example codes
for invoking services in various programming languages. Sec.
IV further analyzes the differences in their workflows in detail.

B. Collecting and Categorizing Developers’ Questions

To answer RQ2, we collected data from online Q&A
platforms and categorized them. In particular, we used these
platforms’ search interface to find data related to our study.

1) Data Collection: The two most popular online Q&A
platforms for App developers are SO 7 and the issue panel of
GitHub repositories [15]. We also included data from G2 8, a
platform for developers to publish reviews related to software
and services. Among the three marketplaces we mentioned
earlier, we chose to only study questions related to RapidAPI
and Apify, as Baidu API is targeted for Chinese software
developers and we cannot find questions about it in English-
speaking online communities.

To get the most recent questions related to our topic, we
used “RapidAPI” and “Apify” as keywords to search on these
online communities. Altogether, we collected approximately
2000 random questions.

2) Data Categorization: We conducted a manual examina-
tion of each question to gain a comprehensive understanding
of developers’ doubts and concerns. Three of the authors,
each with 3 to 5 years of industrial software development

“https://apis.guru/
Shttps://apify.com/
Ohttps://apis.baidu.com/, in Chinese
7stackoverflow.com

892 com

experience, individually reviewed each question and identi-
fied recurring patterns. Beyond just summarizing developers’
doubts and concerns, we also inspected the questions for
technical issues overlooked by developers and delved into the
root causes.

As the next step, we conducted a group discussion to reach
an agreement on the patterns, root causes, and impacts of
developers’ questions. We applied majority voting to resolve
the disagreement in our opinion. We assigned names to each
category of questions and labeled the questions themselves ac-
cordingly, aligning them with the commonly observed issues.

Upon categorizing the data, it was clear that some ques-
tions—such as those about coding issues with various HTTP
libraries and frameworks, project ticket trackers created by
users to track their work progress, and discussions not per-
tinent to API marketplaces—did not align with the focus
of our research. To determine the relevance of a question,
we employed a straightforward criterion: would a developer
encounter the same issue using a traditional registry? If the
answer was affirmative, we deemed the question irrelevant and
excluded it from our analysis. This filtering process resulted
in a refined dataset comprising 103 records.

Among all the questions we collected, a majority of them
(95%) are related to simple coding, e.g., “ Can’t use RapidAPI
with Retrofit (HTTP client for Android and Java)...” Given that
many software developers first encounter HTTP requests early
in their careers [16], the prevalence of fundamental coding
inquiries suggests that a substantial number of RapidAPI
users are novice software engineers. This observation under-
scores how marketplaces like RapidAPI empower beginning
developers to incorporate complex functionalities into their
applications, democratizing access to sophisticated software
development tools.

C. Developing an LLM Tool to Answer Developers’ Questions

After categorizing the data, we discovered that despite the
variety of ways developers pose questions, the underlying
issues often fall into a few distinct categories. This revelation
led us to utilize our categorized questions, complete with
their identified root causes and proposed solutions, to fine-
tune a Large Language Model (LLM). The enhanced LLM can
now use the insights from this analysis to answer developers’
questions with greater accuracy. Additionally, it has the capa-
bility to sift through developers’ inquiries to track performance
problems related to specific APIs and detect potential key
leakages. For instance, if the refined model spots a question

196

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

highlighting performance issues with a certain API, it can
flag this to the attention of either the service provider or
the platform, facilitating a more proactive approach to issue
resolution.

1) Data for Training the LLM Tool: As 95% of all questions
are general questions related to coding, we picked 7 questions
from the ones we removed, representing different types of
coding-related issues, and added them back to form 110
questions as inputs for fine-tuning.

Following the openAl guides °, all 110 questions are put
into a single file, to be fed into the LLM fine-tuning interface.
Each record in our dataset is structured according to a “role-
completion” format, which is divided into three distinct com-
ponents: system role, user role, and assistant role. The system
role is specifically designated as ”Act as an API marketplace
expert to address user concerns effectively,” positioning it
to function in an assistant capacity. Within this framework,
the inquiries posed by developers are categorized under the
user role, illustrating the perspective from which questions are
asked. On the other side, the role of the ”Assistant” is assigned
to encapsulate the expected LLM outcomes, encompassing
both actionable recommendations in response to the devel-
opers’ queries and pertinent information aimed at API mar-
ketplaces and service providers. This role-completion method
is designed to simulate a realistic interaction scenario, where
the LLM adopts the role of an informed assistant, providing
targeted advice and insights based on the user’s (developer’s)
inquiries and the predefined system role’s expertise.

2) Training the LLM tool: As we mentioned earlier, we
expect the fine-tuned model to 1) answer developers’ questions
automatically without requiring human developers to get in-
volved; and 2) extract useful information from these questions.
Hence, for each of the questions in the training set, we created
answers (assistant role) following the procedure given below:

o Manually labeling each question: in particular, we labeled
the following information for each question: 1) what
category/subcategory it belongs to; 2) which service is
mentioned; and 3) if an invocation key is exposed.

o Adding solutions to the answer: we created general
suggested solutions for each category and subcategory of
questions, and formed the answers using these sugges-
tions. For example, for the example question given in the
introduction section and other questions with the same
root cause, we give the same suggestion of “the problem
is caused by RapidAPI requires to subscribe to a service
before invoking it, even if the service is free. To solve this
problem, login to RapidAPI and subscribe to the service
you are using.”

o Adding information to be extracted to the answer, includ-
ing its service and whether an invocation key is exposed,
using the Chain-of-Thought (COT) prompts.

CoT prompts generate intermediate reasoning steps be-
fore arriving at a final answer, mimicking human problem-

9https://platform.openai.com/docs/guides/fine-tuning/
preparing-your-dataset

197

solving processes. It enhances the model’s ability to tackle
complex questions by making its reasoning transparent and
interpretable, thereby improving the accuracy and reliability
of its outputs. When generating inputs, we follow the CoT
mechanism by giving the logic behind how we reason the in-
formation from questions, which helps LLM accurately extract
information from differently formatted developers’ questions.
To demonstrate the difference between prompting with and
without CoT, we give two examples below.

1) Without CoT:

Listing 1. Without CoT

User: Authentication never works... fetch (https://
covid-19-data.p.rapidapi.com/totals, {method:

GET, headers: { x-rapidapi-key:
keyHiddenInManuscript, x-rapidapi-host: covid
-19-data.p.rapidapi.com}}) .then(response => {

console.log(response); }) .catch(err => {console.
error (err);}); will return 403 {message: You are
not subscribed to this API

Assistant: This is a Usability issue because it
mentions in the user question - You are not
subscribed to this API and 403. \n Please
subscribe to the API. The API is X-RapidAPI-Host

covid-19-data.p.rapidapi.com. Please hide the
key to avoid security issues. The code-practice
is not good as X-RapidAPI-Key
keyHiddenInManuscript, is exposed causing
security issue.

2) With CoT:

Listing 2. With CoT

User: Authentication never works... fetch (https://
covid-19-data.p.rapidapi.com/totals, {method:

GET, headers: { x-rapidapi-key:
keyHiddenInManuscript, x-rapidapi-host: covid
-19-data.p.rapidapi.com}}) .then(response => {

console.log(response); }) .catch(err => {console.
error (err);}); will return 403 {message: You are
not subscribed to this API.}

Assistant: The user question has a usability issue,
noting that the user has an error You are not
subscribed to this API. The problem is caused by

RapidAPI requiring to subscribe to a service
before invoking it, even if the service is free.
To solve this problem, log in to RapidAPI and

subscribe to the service you are using. In the
analysis, it is recognized that the X-RapidAPI-
Host is covid-19-data.p.rapidapi.com, and it is
noted negatively that the X-RapidAPI-Key 1is
exposed as keyHiddenInManuscript, indicating
wrong security practices, User must hide the API
key. The exposed key is a 50-character mix of
numbers and lowercase letters, which is a
security concern. However, the main concern is
regarding API subscriptions. To address this, it
is suggested user should generate a new, valid
API key. Additionally, it’s advisable to double-
check the header parameters and API subscription
to ensure they are correctly configured. These
actions could potentially identify the API
subscription problem, addressing the usability
category issue effectively.

In particular, we chose gpt-3.5-turbo-1106 among all other
models due to its large token limit of 16K (1 token is 4

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

words) for each training input stream. Being able to preserve
more question details enhances contextual comprehension and
optimizes model performance. The runtime for fine-tuning 110
records is almost 15 minutes with an epoch size of 3. We run
the fine-tuning two rounds, one without CoT and one with
CoT. The cost for two rounds of training is minimal, i.e.,
around $10.

3) Test Dataset Collection for Evaluation: To test the
performance of our fine-tuned LLM, we further retrieved
additional SO questions from a historical dataset hosted on
Google BigQuery for test dataset generation. Different from
our training dataset which was partially collected from the
search interface of SO, we can query all SO questions using
BigQuery without being limited to the first 500 results as
in the search interface. We removed the overlapping data
and still got around 1,000 questions left, from which we
selected the most recent 100 records for testing. We applied
these 100 questions to our fine-tuned model and recorded the
responses. As the ground truth, we further manually labeled
their categories/subcategories, as well as other information like
the impacted service names and key leakages.

IV. RESULTS

In this section, we give the detailed answers to the RQs,
followed by observations and actionable suggestions to web
service stakeholders, including service providers, App devel-
opers, and marketplaces. Below we first briefly summarize the
answers to the RQs.

* RQI: Marketplace differs from static registry in terms of
service subscription, service registration, service invoca-
tion, billing, and service QoS monitoring.

RQ2: The taxonomy is quite different from that of static
registry, with more issues related to usability, security,
documentation, and performance.

RQ3: A LLM-based model fine-tuned with the labeled
data can achieve 85% accuracy for answering developers’
questions, 88% accuracy for identifying service names,
and 77% accuracy for detecting key leakages.

A. Differences Between Two Generations of Service Registry

Fig. 2 and 3 describe the workflows of the traditional service
registry and service marketplace, respectively. In both figures,
we use green to denote the workflow of service selection
and orange to denote service invocation. We observe that
the workflows are very similar. For service selection, service
providers first register their services, and App developers
search for services. App developers then subscribe to the
service they select and distribute the invocation key with
software to end users. For service invocation, end users use
the invocation key to send service requests.

1) Workflow Comparison: We compare the workflow of
two generations in detail.

1) Service Subscription: Service subscription is the main
difference in the service selection workflow between
both generations. While both generations display ser-
vice information on the registry, the traditional registry

198

redirects developers to the service provider’s website,
for further purchasing and subscription. In contrast,
marketplaces provide a one-stop experience for service
selection, the service developers are supposed to fill in
all descriptive information about their services on the
marketplaces, and the App developers will subscribe
to the service on the marketplace and also pay to the
marketplace.
Service Registration: In a service marketplace, the pro-
cess of subscribing to APIs differs from that of a service
registry. Developers are required to subscribe to the
necessary API directly within the marketplace itself.
Therefore, the marketplace must provide comprehensive
information. Without such information, users may not
be directed to the service provider’s website
Service Invocation: The service invocation requests for
traditional service registries are sent to the service
provider’s servers, but for service marketplace requests
are sent to servers owned by marketplaces. The market-
place then delegates the request from the end users to
the service providers.
Billing: In a traditional service registry, service providers
handle billing before a request is invoked. However, the
billing process differs in marketplaces like RapidAPIL
Here, users can subscribe to different APIs offered on
the platform and are billed on the marketplace itself
according to the pricing plans established by the API
providers. Charges are determined by factors such as
the volume of API requests and the specific endpoints
accessed.
Service QoS monitoring: QoS monitoring is introduced
in the service marketplace and involves tracking various
parameters such as popularity, latency, and service level.
When the end user invokes a service, they send a request
to the service marketplace along with an API key.
The service marketplace then verifies the API key and
forwards the request to the service provider. Following
this, it proceeds to update the Quality of Service (QoS).
In summary, the static service registry helps developers find
services but does not play a role in the subsequent service
invocation, while the service marketplace is involved through-
out the entire software lifecycle of SOA applications. The
distinction in workflow between traditional service registries
and service marketplaces, particularly in the service market-
place’s role as an intermediary between App developers and
service providers, has raised concerns among developers. With
millions of developers now relying on service marketplaces,
it’s imperative to address and resolve these commonly faced
issues so that platform providers can cultivate trust with users,
promote favorable user experiences, and cultivate enduring
relationships that will strengthen the platform’s success and
expansion.

2)

3)

4)

5)

B. Developers’ Questions Taxonomy

The outcome of our effort is a taxonomy of developers’
concerns (Fig.4), as well as a few observations that could ben-

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Traditional
Service Registry

@ Register Service

Service Provider

Search for
Service
End Users App Developer
@Invocation Key
Search for
Service
End Users } App Developer

@Invocation Key
@ Service Requests

Service
Marketplace

’ Service Provider

@ Subscribe to Service

@ Service Requests

Fig. 3. Workflow of Service Marketplaces

efit stakeholders including the marketplace platform, service
developers, and App developers.

Table II describes the issue count from platforms like
GitHub, SO, and G2.com. We observed Documentation or
general help/support, as well as performance related inquiries,
are predominantly found on GitHub. On the other hand,
usability concerns and key leakages in the queries posted by
users tend to be noticed on SO. Next we introduce these
categories in detail.

Platforms | General Queries | Usability | Performance | Security

GitHub 29 12 15 3

SO - 20 8 12

G2.com - - 4 -
ABLE 1T

ISSUE DISTRIBUTION IN GITHUB, SO, AND G2.COM

1) GENERAL QUERIES (Help/Support):
This category encompasses issues regarding assistance related
to services on the marketplace.

* Integration/Migration/Upgradation: This subcategory in-
volves incorporating the API into an existing system or
application, transferring the API from one environment
to another, and updating the API to a newer version.
Finding Similar APIs: In this subcategory, developers
want to locate other APIs within the platform that offer
comparable functionality, services, or features to a spe-
cific APL. This allows users to explore alternative options

199

or identify additional resources that may better suit their
needs.

Guides/ Tutorials/ Documents: This subcategory involves
users seeking help with some uncertainties, enhancing
understanding, and acquiring practical knowledge on uti-
lizing APIs effectively.

An example of such issue is“(where can I find) Documen-
tation for API TMDB?”

As indicated in the table I, while being able to offer
customized documentation in the service marketplace, many
service providers still fail to provide adequate documentation
concerning endpoints, integration methods, and other details.
Consequently, App developers express concerns about the need
for API documentation.

,—[Migration Impact 1 }

While App developers are no longer redirected to
service providers’ websites and rely only on documen-
tation listed on marketplaces, many service providers
fail to provide adequate documentation when listing
their services. App developers often struggle to search
for API documentation.

Actionable Suggestions: According to our analysis of Rap-
idAPI data, only 56% of RapidAPI services include listed
resource links containing information about the API product,

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Developers Concerns

(103)
?::I:rla; :::::T Us(asl::)lity Se(cfll;;ity Performance
(29)
Int.egraflonl Fllnd'lng Gmd.esl 'Inv.alldl Unauthorized Rate API ke.y API key APl down / (.Jonnect
Migration / similar Tutorials / Missing API access / fimit protection leakages slow timeout /
Upgradation APIS documents key Not subscribed @ suggestion observed (15) stopped
(14) (8) @) (16) (14) () (10) (12)

Fig. 4. API marketplaces user concerns

while 22% of services provide documentation details outlining
service endpoint information, integration steps, and more. The
platform should monitor APIs lacking sufficient documenta-
tion support by offering resource links, documentation, and
tutorials for the service. It should also notify API providers
to improve their documentation by incorporating detailed
information on service endpoints, API integration methods,
and more.

2) USABILITY:

Usability issues are associated with problems or difficulties
that users encounter when interacting with a product, system,
or interface.

* Invalid / Missing API key: An Invalid API key error
occurs when the API key provided by the user is either
incorrect or expired and a ”"Missing API key” error occurs
when the user fails to include the required API key in the
request.

* Unauthorized access / Not Subscribed: The usability is-
sue “Unauthorized access” or ”Not Subscribed” typically
occurs when users attempt to access certain features or
resources within an API without proper authorization or
subscription status.

* Rate limit: Rate limiting is a mechanism APIs use to
control the number of requests made by a client within a
specific period. Within Rapid API, every API service is
bundled with pricing packages, each of which provides a
specific allocation of requests either on a daily or monthly
basis.

Fig, 5 shows two example questions falling into this cate-
gory. These examples show App developers are often confused
by the resulting return codes, wondering whether the problem
lies with the HTTP library usage, the platform itself, or the
service provider. For instance, a 403 error code may be caused
by errors in crafting the request URL sent to the marketplace,
key authentication failures on the marketplace, or the service

1. 403 error code representing Forbidden

| am currently making an app that fetches the data from rapid API. but | am getting the error:

retrofit2.HttpException: HTTP 483 Forbidden

| don't know what's the problem, if anyone know the solution please help me

This is the get request | am making :

interface ApiService {

"Jcountry: Sti
Host: String):

2. 403 error code representing Not subscribed to API.

| am using vite, react, netlify and rapidapi for my project. All requests and functionalities were
working perfectly when i was working on localhost and vscode, But when | deployed to the netfify,
| ran into error which states e.slice is not a function. While debugging, i found out that in netwark

tab in developer tools, the response from the rapidapi was cuc’% 403, and the message that you
|are not subscribed to the api |

Fig. 5. HTTP Error code ambiguity

provider’s server going down.

Migration Impact 2 }

The marketplace’s involvement in service invocation
procedure adds complexity, making it challenging for
developers to identify the causes of invocation failures
and debug them.

Fig. 6 shows an example question related to the new
subscription model. As explained in Sec. IV-Al, static reg-
istry redirects App developers to service providers’ platforms,
where developers subscribe to the service and get invocation
keys. In the marketplace, developers are granted an invocation

200

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

3. Service invocation mechanism in service marketplace.

How to get rid of this - message:{'You are not subscribed to this APL.'}.7

ago

dapi-hey

then(response = {
cansale. Log(response) ;

.catch(err == {
con (err);

Fig. 6. Service Invocation mechanism

key by default. However, to invoke services, they need to
further subscript to these services on the marketplace. Many
of them are confused by such a transition, as they think
having a key is enough for invoking services. However, when
we inspected the detail page of web services managed by
RapidAPI, which is usually the landing page when App
developers search for keywords like “free face recognition web
services,” we discovered no hints suggesting that developers
must subscribe to the services before invoking them. Further-
more, the executable code, tailored with the developer’s unique
key, is readily supplied.

Migration Impact 3 }

The new subscription model confuses developers.

Actionable Suggestions: To help App developers debug the
problem, we suggest the marketplaces define standard and fine-
grained error codes for all the services they manage. Instead
of relying on the default HTTP response codes, Baidu API
already allows service providers to specify their fine-grained
error codes in documentation. We believe defining uniform
error codes can help automate the debugging procedure. Be-
sides, many of the questions related to the new subscription
model could be easily answered by providing proper guidance
information to developers.

3) SECURITY:

Security issues in API marketplaces involve vulnerabilities
such as inadequate authentication, data exposure, and insuf-
ficient encryption, potentially leading to unauthorized access
and data breaches.

* API key protection suggestion: Some questions seek help
in safeguarding API keys. Many answers suggest securely
storing them in environment variables or utilizing a ded-
icated secrets management service. Some answers also
recommend avoiding hard-coded keys directly into source
code or public repositories to reduce the risk of exposure.

* API key leakages observed: Within this specific issue
subcategory, developers have accidentally exposed API
keys when posting their questions.

201

Figure. 7 gives a code snippet that has the key leakage issue.
When invoking a service, App developers need to specify its
host and a developer-specific API invocation key. Although
static registries and the marketplace both face such issues,
their impact on the marketplace is more severe. This is because
one developer may subscribe to multiple services, with some
being free services and others requiring payments, using the
same key. We call such a mechanism “one-key-for-all-service.”
Even if a developer’s question is about invoking a free service,
a malicious third party could use the key to access all paid
services the developer has subscribed to, with some containing
sensitive customer data. Besides, as RapidAPI now plays an
important role in service invocations, if attackers use the
captured keys to perform a DDoS attack and cause RapidAPI
delegation servers to fail, all services managed by RapidAPI
will be impacted.

headers: {

'X-RapidAPI-Host': 'coinrankingl.p.rapidapi.com',

'X-RapidAPI-Key': 'S CESNSISENSI IS SNeeees ' |
5

Fig. 7. Key Leakage code snippet example

Migration Impact 4 }

Developers unintentionally expose their invocation
keys in question, posing significant consequences due
to the “one-key-for-all-service’ mechanism in market-
places.

Actionable Suggestions: We believe it’s the platform’s re-
sponsibility to prevent exposure of the invocation key. The
platform can prevent key leakages by 1) Marketplaces should
find safer alternatives to the ’one-key-for-all-service’ model;
2) being able to identify instances where keys are exposed
and prompt users to securely hide them, which is one of
the reasons why we developed the LLM-based tool; and 3)
educating application developers.

4) PERFORMANCE:

Performance is the efficiency and responsiveness of a sys-
tem or application. Within the Performance issue category,
developers express concerns regarding slow response times or
connection timeouts.

* API down /slow: The developers may face this issue when
the API is either experiencing downtime or operating at
a reduced speed.

» Connect timeout/ stopped: This typically happens when
there’s a delay in the connection process, or when the
connection attempt is terminated due to certain condi-
tions such as network issues, server unavailability, or
misconfiguration. In some instances, the service may have
completely ceased to function on the side of the API
provider.

A specific example is“(why) Ecoindex.fr Backend API was
down?”’

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Dimension Correctly classified(CoT) | Correctly classified(w/o CoT) | Total Issues

General Queries Issues 6 4 6

Usability Issues 28 23 28
Classification Performance Issues 9 6 9

Coding Issues 42 42 57

Total Test data 85 75 100
Information Extraction Service Detection from Total Test data 84 37 95

Key Leakage Identified from Total Test Data 20 7 26

TABLE TII
FINE-TUNED MODEL ACCURACY FOR TEST DATASET

99/10 339ms 100% N/A

Performance Issues Key Leakages

calorieninjas.p.rapidapi.com euromillions.p.rapidapi.com

‘) API-BASKETBALL ' GEZED vartis
. By APLSP psted 13 days a80 1

+400 Basketball Leagues & Cups with Livescore, Ocds. Bookmakers, Statistics, Standings, Historical D

[Nodejs) Axies

SET timezane

squestURL rapidapicom

Header Parameters

RapidAPI-Key SIGN-UP-FOR-KEY

PaMARE e apibasketbal o rapidagicom

Fig. 8. RapidAPI QoS

The services provided by the API providers are poorly
coded and inadequately tested by the platform before being
added to the platform. Despite marketplaces like as shown
in Fig. 8 RapidAPI being designed to aid developers in
monitoring Quality of Service (QoS), they mainly focus on
monitoring the long-term QoS and respond to short-term QoS
issues not swiftly enough. Consequently, we observe some
developers inquiring whether the service is temporarily down
or why latency is high, due to the platform’s slow updates of
these parameters.

Migration Impact 5 }

The platform provides QoS updates from long-term
monitoring but developers expect immediate QoS
alerts.

Actionable Suggestions: API marketplaces should identify
these services and create Service Level Agreements (SLAs)
with service providers. The API marketplace must com-
municate to service providers the necessity of maintaining
well-coded and thoroughly tested APIs. Our LLM tool aids
application developers in understanding the cause of service
downtime.

C. Evaluation of Fine-tuned Automated Tool

We evaluated our fine-tuned model to ascertain its pro-
ficiency in accurately identifying issue categories, impacted
APIs, and key leakages. By comparing the model’s classifica-
tion results with the manual labels, Table III lists the number
of records correctly identified in each category. Interestingly,
the model successfully categorized issues related to Usability,

api-football-v1.p.rapidapi.com yummly2.p.rapidapi.com

omgvamp-hearthstone-v1.p.rapidapi.com lambda-face-recognition.p.rapidapi.com

elenasport-iol.p.rapidapi.com omgvamp-hearthstone-v1.p.rapidapi.com

bayut.p.rapidapi.com api-football-v1.p.rapidapi.com

coinrankingl.p.rapidapi.com community-open-weather-map.p.rapidapi.com

matchilling-chuck-norris-jokes-v1.p.rapidapi.com |booking-com.p.rapidapi.com

textanalysis-keyword-extraction-v1.p.rapidapi.com | webknox-trivia-knowledge-facts-v1.p.rapidapi.com

corona-virus-world-and-india-data.p.rapidapi.com

google-translate1.p.rapidapi.com

devru-times-of-india.p.rapidapi.com

alpha-vantage.p.rapidapi.com

indeed-indeed.p.rapidapi.com

v1-sneakers.p.rapidapi.com

coinrankingl.p.rapidapi.com

covid-19-data.p.rapidapi.com

apidojo-yahoo-finance-v1.p.rapidapi.com

faceplusplus-faceplusplus.p.rapidapi.com

cryptocurrency.p.rapidapi.com

dev132-cricket-live-scores-v1.p.rapidapi.com
TABLE IV
IMPACTED APIS IDENTIFIED FROM TEST DATA

Performance, and General Queries. However, it erroneously
classified 15 coding issues into different categories and failed
to identify 11 API names and 6 instances of key leakages.
Overall we achieved an accuracy of 85% for question clas-
sification, 88% for identifying service names, and 77% for
identifying key leakages. We noticed that approximately 30-
40% of API services were affected by key leakages.

Table IV lists all the impacted APIs that we’ve manually
confirmed from the questions in the test dataset, with the help
of our tool. It demonstrates that the tool can be used to detect
performance outages and key leakages, and give warnings to
service providers and marketplaces.

We further evaluate the impact of CoT in fine-tuning.
The accuracy achieved by the training model without CoT
was 75% for classification and around 40% for identifying
service names and key leakages. It shows that CoT improves
the accuracy of fine-tuning, especially for identifying service
names and key leakages which requires understanding the
logic behind the reasoning.

D. Implications

Our empirical analysis identified key differences between
traditional service registries and Service Marketplaces. More-
over, the study also identified a taxonomy of common mi-

202

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

gration challenges that developers often face. Further, we
developed a proof of concept of how the LLM model can
be useful to assist the developers. The findings and technique
of the study can lead to the following implications.

For SOA Stakeholders Our analysis identified key dif-
ferences between traditional service registries and Service
Marketplaces. Such findings could be beneficial for developers
to make decisions on migrating from traditional service reg-
istries and Service Marketplaces. Moreover, the taxonomy can
guide developers on common issues of Service Marketplaces
migration, their root causes, and the solution.

For Researchers The taxonomy of Service Marketplaces
migration could help researchers to develop advanced research
techniques such as recommendation systems [17], [18] and
automated program repair [19], [20] techniques to assist de-
velopers in fixing migration issues more efficiently and in a
timely manner.

For Tool Builders The evaluation showed that our pro-
posed approach of utilizing an LLM-based issue categorization
technique can effectively categorize migration issues. The tool
builders can take further initiative to integrate that technique
with IDEs and development tools so that developers can
instantly get feedback on the issues they face during migration.

V. CONCLUSION

In summary, this paper presents three key contributions.
Firstly, we extensively detailed how the transition in workflow
from service registry to service marketplace is the primary rea-
son for developers’ confusion when utilizing service market-
places. Secondly, we established a taxonomy of user concerns,
delineating their origin from the shift from traditional service
registries to service marketplaces. Lastly, we introduced an
automated tool capable of identifying these concerns and
offering 3-dimensional assistance to App developers, service
providers, and the platform. Through thorough evaluation, we
validated the tool’s accuracy and summarized the implications
of this research.

ACKNOWLEDGEMENT

This research is supported by NSF through the grants
#2104337 and # 2152819.

REFERENCES

[1] A. Tewari, P. Nagdev, and A. Sahitya, “Sky computing: the future of
cloud computing,” IJCSIT) International Journal of Computer Science
and Information Technologies, vol. 6, no. 4, pp. 3861-3864, 2015.

[2] N. T. Yazdi and C. H. Yong, “A potential way for efficient information
sharing based on mobile text messaging,” in 2012 International Confer-
ence on Green and Ubiquitous Technology, 2012, pp. 172-175.

203

[3

[4

=

[5]

[6]

[7

—

[8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the soa-based internet of things: Discovery, query, selection, and on-
demand provisioning of web services,” IEEE Transactions on Services
Computing, vol. 3, no. 3, pp. 223-235, 2010.

Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “{MLaaS} in the wild: Workload analysis and
scheduling in {Large-Scale} heterogeneous {GPU} clusters,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 945-960.

“Global machine learning as a service (mlaas) industry research re-
port, competitive landscape, market size, regional status and prospect,”
shorturl.at/mKMY3, accessed: 2023-12-30.

E. Al-Masri and Q. H. Mahmoud, “Investigating web services on the
world wide web,” in WWW’08, 2008, pp. 795-804.

N. Zhang, Y. Zou, X. Xia, Q. Huang, D. Lo, and S. Li, “Web apis:
Features, issues, and expectations—a large-scale empirical study of web
apis from two publicly accessible registries using stack overflow and
a user survey,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 498-528, 2022.

K. Mahmood, G. Rasool, F. Sabir, and A. Athar, “An empirical study
of web services topics in web developer discussions on stack overflow,”
IEEE Access, vol. 11, pp. 9627-9655, 2023.

R. Akolkar, T. Chefalas, J. Laredo, C.-S. Perng, A. Sailer, F. Schaffa,
I. Silva-Lepe, and T. Tao, “The future of service marketplaces in the
cloud,” in 2012 IEEE Eighth World Congress on Services, 2012, pp.
262-269.

P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan, “What
do client developers concern when using web apis? an empirical study
on developer forums and stack overflow,” in ICWS’16. 1EEE, 2016,
pp. 131-138.

G. Ajam, C. Rodriguez, and B. Benatallah, “Api topics issues in stack
overflow q&as posts: An empirical study,” in 2020 XLVI Latin American
Computing Conference (CLEI), 2020, pp. 147-155.

H. Zhang, S. Wang, T.-H. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on stack overflow,” IEEE Transactions on
Software Engineering, vol. 47, no. 4, pp. 850-862, 2021.

B. Xu, T.-D. Nguyen, T. Le-Cong, T. Hoang, J. Liu, K. Kim, C. Gong,
C. Niu, C. Wang, B. Le et al., “Are we ready to embrace generative ai for
software q&a?” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2023, pp. 1713-1717.
Y. Feng, S. Vanam, M. Cherukupally, W. Zheng, M. Qiu, and H. Chen,
“Investigating code generation performance of chat-gpt with crowd-
sourcing social data,” in Proceedings of the 47th IEEE Computer
Software and Applications Conference, 2023, pp. 1-10.

H. Li, F. Khomh, M. Openja et al., “Understanding quantum software
engineering challenges an empirical study on stack exchange forums
and github issues,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2021, pp. 343-354.

F. Corno, L. De Russis, and J. P. Sdenz, “On the challenges novice
programmers experience in developing iot systems: A survey,” Journal
of Systems and Software, vol. 157, p. 110389, 2019.

D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE transactions on software
Engineering, vol. 39, no. 11, pp. 1597-1610, 2013.

X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 72-81.

C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56-65, 2019.
Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 254-265.

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

