
Decoding and Answering Developers’ Questions

about Web Services Managed by Marketplaces

Siddhi Baravkar∗, Chi Zhang∗, Foyzul Hassan∗, Long Cheng†, and Zheng Song∗

∗ Department of Computer and Information Science, University of Michigan at Dearborn, USA
† School of Computing Clemson University, USA

{siddhib, zhchi, foyzul}@umich.edu, lcheng2@clemson.edu, zhesong@umich.edu

Abstract—Service registry, a key component of the service-
oriented architecture (SOA), aids software developers in dis-
covering services that meet specific functionality requirements.
Recent years have witnessed the transition from the traditional
service registries to its successor, the Service Marketplaces, which
involves deeper engagement in the SOA software lifecycle and
offers additional features, such as service request delegation and
monitoring of services’ Quality of Service (QoS). However, by
analyzing developers’ questions posted on online Q&A forums,
we found that many developers struggle with such transition,
leading to development inefficiencies and even security vulnera-
bilities. This paper presents the first empirical study aimed at
uncovering the issues developers face with marketplaces, partic-
ularly those arising from the transition. Through a meticulous
process of manually labeling and analyzing developers’ questions,
we develop a taxonomy of these issues, summarize the impacts
caused by the transition, and provide actionable suggestions to
App developers, service providers, and marketplaces. Utilizing
the labeled questions and our insights, we fine-tune a Large
Language Model (LLM) for providing answers to similar ques-
tions raised by developers and helping service providers and
marketplaces extract useful information from these questions,
such as service outages and key leakages. Our evaluation of
the model’s performance in answering and extracting pertinent
information from a set of real-world questions demonstrates its
effectiveness: it accurately classified 85% of the queries and
successfully identified 88% of service names and 77% of key
leakages. As the first empirical study in this domain, this work not
only aids developers in navigating the transition more effectively
but also sheds light on the under explored issue of service registry
evolution, offering valuable insights for researchers.

Index Terms—Service Marketplace, Q&A forums, Taxonomy,
Large Language Model

I. INTRODUCTION

Service-oriented architecture (SOA) has been widely

adopted in modern software systems. It provides application

developers a flexible and efficient framework for accessing

remote domain-specific data and computational-intensive tech-

nologies hosted by third party service providers. Examples of

such services include face recognition, text generation, trans-

lation [1], [2], and querying for real-time ticket/flight/game

information [3]. With the blooming of Machine Learning as

a Service (MLaaS) [4], SOA will be even more important, with

an estimated market size of 26.5 billion USD by 2027 [5].

To connect service providers and application developers,

service registries serve as an important component of SOA. It

stores various information about available services and helps

developers discover services with the required functionali-

ties [6]. We observe that in recent years, the service registry

has experienced a major migration in terms of its functionality,

from traditional static service registries to the new service

marketplaces. For example, RapidAPI is the most widely used

marketplace, serving over 4 million users globally 1.

Unlike traditional service registries, which direct app devel-

opers to the websites of service providers, RapidAPI offers a

streamlined, one-stop solution for app developers. On Rapi-

dAPI, developers can subscribe to services, send requests, and

manage their service payments all in one place, simplifying the

process of integrating and using external services. This major

functionality change introduces several sequential adjustments

to the overall workflow of using service registries.

However, these workflow differences are not widely known,

which could potentially impact developers using the market-

places. Our review of inquiries on StackOverflow(SO), a lead-

ing online question-and-answer platform for software devel-

opers, uncovered numerous instances where developers were

puzzled about using RapidAPI. For example, one question that

has been viewed 22K times asks about failing to access a free-

to-use service via RapidAPI, despite possessing a valid key2.

This confusion arises from a fundamental difference in how

RapidAPI operates compared to traditional service registries.

Traditionally, developers receive an invocation key only after

subscribing to a specific service. Conversely, RapidAPI issues

a universal key that grants access to all its services, yet

mandates a subscription to individual services before they

can be utilized. This discrepancy highlights a knowledge

gap among application developers, who are accustomed to

the conventional model of service registries. Bridging this

gap could not only help service providers and application

developers more efficiently use marketplaces but also provide

marketplace owners insights to improve their platform design.

To the best of our knowledge, although previous studies [7],

[8] have summarized developers’ concerns and doubts when

using traditional service registries, there hasn’t been any re-

search conducted on the challenges encountered by developers

when using service marketplaces. The differences in their

working mechanism require a dedicated study to understand

the challenges faced by developers, especially those caused by

the migration. The study will also generate insights for us to

1https://rapidapi.com/company/
2https://rb.gy/59mo95

194

2024 IEEE International Conference on Software Services Engineering (SSE)

979-8-3503-6851-2/24/$31.00 ©2024 IEEE
DOI 10.1109/SSE62657.2024.00037

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Se
rv

ice
s E

ng
in

ee
rin

g
(S

SE
) |

 9
79

-8
-3

50
3-

68
51

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
SE

62
65

7.
20

24
.0

00
37

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

train an AI-based automated tool that assists developers and

researchers in mitigating these challenges. In particular, this

study seeks answers to the following research questions:

• RQ1: What are the differences in workflow between

traditional service registries and service marketplaces?

• RQ2: What are the developers’ challenges, especially

those due to migration from traditional service registry

to service marketplace?

• RQ3: How can an AI-based automated tool assist devel-

opers and researchers in mitigating these challenges?

This paper is structured as follows: Section II introduces

the background and related works; Section III introduces

our approaches towards answering the questions; Section IV

explains our findings, answers the RQs, and gives actionable

suggestions to stakeholders; Section V concludes this paper.

Additionally, we have open-sourced the dataset of questions

collected and the process of fine-tuning the language model,

which can be found in 3.

II. BACKGROUND AND RELATED WORK

This section introduces the background of our research,

along with a review of existing literature in this field.

A. Service Registry

A service registry is an important component of the service-

oriented architecture. It was originally designed to help devel-

opers search and find the services that fit their functionality

requirements. Our definition of the two generations of service

registries was inspired by [9], which was published almost

ten years ago. They categorized the first generation as an in-

formation gateway between service providers and consumers,

and the second generation as “integrated throughout the entire

software life cycle.”

Following this definition, we categorize service market-

places as the second generation of service registry, as they

serve as a delegation between App developers and service

providers. Three basic user roles interact with marketplaces:

• Service Provider: The service providers are individuals

or organizations offering services to third-party users.

They run the servers that host the services, which usually

require authentication to be accessed. Service providers

register their services in the service registry, to be used

by App developers.

• Application Developer: App developers discover ser-

vices by interacting with the service registry. They select

the service that best fits their software’s requirements, de-

velop service invocation logic, and add the authentication

keys by which they pay for service usage.

• End User: End users are the consumers of the software,

by whom the service requests are sent. End users usually

have no knowledge and capability to modify the software

they use.

3https://anonymous.4open.science/r/FineTuning-72E4/

B. Understanding Developers’ Concerns

To the best of our knowledge, this paper is the first to

study developers’ questions about service marketplaces. The

most related work studied developers’ concerns related to

traditional registries [7] by analyzing SO questions related

to ProgrammableWeb and APIGuru. It outlines the taxonomy

for traditional registries as “Authorization”, “Function”, “Doc-

umentation”, and “Others”. Correspondingly, we devised a

different taxonomy for the service marketplace: our taxonomy

includes the issues caused by the differences in their workflow

(i.e., delegation), including security, usability, documentation,

performance, etc.

Several works studied developers’ concerns and patterns re-

lated to web service usage. Similar to our approach, many [8],

[10], [11] analyzed developers questions posted on SO. Dif-

ferent from our approach that uses “RapidAPI” as keywords

because all services need to be invoked via the uniform

RapidAPI interface, they filtered the related posts either by

pre-selecting services as keywords or by “service” hashtags.

Some of their findings overlap with ours, such as QoS issues

in services and issues related to API updates. Different from

these approaches, our work further reveals developers’ issues

caused by marketplaces.

Our paper explained how the shift from a traditional service

registry to a service marketplace has confused developers,

introduced a developers’ questions taxonomy as well as devel-

oped an LLM-based AI-assisted tool to identify and address

developers’ concerns related to API marketplaces to ensure

smoother service utilization. Similar ideas of automatically

answering questions by analyzing existing questions and an-

swers have been widely explored [12]–[14], especially with

the recent blooming of generative AI. This paper is the first to

apply such a technique in the domain of web service, which

makes it a useful tool for SOA developers and stakeholders.

III. METHODOLOGY

This section discusses data collection and the methodology

for all three research questions mentioned in Sec. I. As

illustrated by Figure 1, for RQ1, we explored the workflows

of widely used service registries, categorized them into two

generations, and summarized the major differences in their

workflows. For RQ2, we analyzed and labeled the questions

posted on various Q&A forums, by which we created a

taxonomy. Lastly, for RQ3, we developed an LLM-based tool

by fine-tuning and evaluating its effectiveness on a test dataset.

Comparing API registries
(ProgrammableWeb,

APIGuru, RapidAPI, Apify,
and Baidu)

Data Collection and Processing

Collecting developers’
concerns

Labeling developers’
concerns

Categorizing developers’
concerns

Training and Testing LLM
Using labeled developers’

concerns

Fig. 1. Methodology Workflow

195

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Features/Platforms ProgrammableWeb APIGuru RapidAPI Apify Baidu

API Coverage 24000+ (before 2022) 2529 40000+ 1558 730

Invocation Examples No No 19 3 6

QoS metrics No No Yes Yes No

Request Delegation No No Yes Yes Yes

Doc. by Service Providers No No Yes Yes Yes

Generation Static Static Marketplace Marketplace Marketplace
TABLE I

STATISTICS OF API REGISTRIES

A. Comparing Two Generations of Service Registry

We chose widely-used service registries, including Pro-

grammableWeb, APIGuru4, RapidAPI, Apify 5, Baidu API 6,

as the targets of our study. Table I compares the statistics of

these registries. RapidAPI and programmableWeb host more

services than the other three.

We further explored the features of these registries by using

them, both as service providers listing services and as App

developers searching for services and invoking them. For

ProgrammableWeb which has been retired, we explored its

features by reading papers and tutorials. Initially, we catego-

rized them into two groups: static service registries and service

marketplaces, distinguishing them based on their common pat-

terns, w.r.t. 1) delegating end-user requests; 2) measuring and

displaying the QoS of services; 3) allowing service providers

to customize documentation; and 4) providing example codes

for invoking services in various programming languages. Sec.

IV further analyzes the differences in their workflows in detail.

B. Collecting and Categorizing Developers’ Questions

To answer RQ2, we collected data from online Q&A

platforms and categorized them. In particular, we used these

platforms’ search interface to find data related to our study.

1) Data Collection: The two most popular online Q&A

platforms for App developers are SO 7 and the issue panel of

GitHub repositories [15]. We also included data from G2 8, a

platform for developers to publish reviews related to software

and services. Among the three marketplaces we mentioned

earlier, we chose to only study questions related to RapidAPI

and Apify, as Baidu API is targeted for Chinese software

developers and we cannot find questions about it in English-

speaking online communities.

To get the most recent questions related to our topic, we

used “RapidAPI” and “Apify” as keywords to search on these

online communities. Altogether, we collected approximately

2000 random questions.

2) Data Categorization: We conducted a manual examina-

tion of each question to gain a comprehensive understanding

of developers’ doubts and concerns. Three of the authors,

each with 3 to 5 years of industrial software development

4https://apis.guru/
5https://apify.com/
6https://apis.baidu.com/, in Chinese
7stackoverflow.com
8g2.com

experience, individually reviewed each question and identi-

fied recurring patterns. Beyond just summarizing developers’

doubts and concerns, we also inspected the questions for

technical issues overlooked by developers and delved into the

root causes.

As the next step, we conducted a group discussion to reach

an agreement on the patterns, root causes, and impacts of

developers’ questions. We applied majority voting to resolve

the disagreement in our opinion. We assigned names to each

category of questions and labeled the questions themselves ac-

cordingly, aligning them with the commonly observed issues.

Upon categorizing the data, it was clear that some ques-

tions—such as those about coding issues with various HTTP

libraries and frameworks, project ticket trackers created by

users to track their work progress, and discussions not per-

tinent to API marketplaces—did not align with the focus

of our research. To determine the relevance of a question,

we employed a straightforward criterion: would a developer

encounter the same issue using a traditional registry? If the

answer was affirmative, we deemed the question irrelevant and

excluded it from our analysis. This filtering process resulted

in a refined dataset comprising 103 records.

Among all the questions we collected, a majority of them

(95%) are related to simple coding, e.g., “ Can’t use RapidAPI

with Retrofit (HTTP client for Android and Java)...” Given that

many software developers first encounter HTTP requests early

in their careers [16], the prevalence of fundamental coding

inquiries suggests that a substantial number of RapidAPI

users are novice software engineers. This observation under-

scores how marketplaces like RapidAPI empower beginning

developers to incorporate complex functionalities into their

applications, democratizing access to sophisticated software

development tools.

C. Developing an LLM Tool to Answer Developers’ Questions

After categorizing the data, we discovered that despite the

variety of ways developers pose questions, the underlying

issues often fall into a few distinct categories. This revelation

led us to utilize our categorized questions, complete with

their identified root causes and proposed solutions, to fine-

tune a Large Language Model (LLM). The enhanced LLM can

now use the insights from this analysis to answer developers’

questions with greater accuracy. Additionally, it has the capa-

bility to sift through developers’ inquiries to track performance

problems related to specific APIs and detect potential key

leakages. For instance, if the refined model spots a question

196

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

highlighting performance issues with a certain API, it can

flag this to the attention of either the service provider or

the platform, facilitating a more proactive approach to issue

resolution.

1) Data for Training the LLM Tool: As 95% of all questions

are general questions related to coding, we picked 7 questions

from the ones we removed, representing different types of

coding-related issues, and added them back to form 110

questions as inputs for fine-tuning.

Following the openAI guides 9, all 110 questions are put

into a single file, to be fed into the LLM fine-tuning interface.

Each record in our dataset is structured according to a ”role-

completion” format, which is divided into three distinct com-

ponents: system role, user role, and assistant role. The system

role is specifically designated as ”Act as an API marketplace

expert to address user concerns effectively,” positioning it

to function in an assistant capacity. Within this framework,

the inquiries posed by developers are categorized under the

user role, illustrating the perspective from which questions are

asked. On the other side, the role of the ”Assistant” is assigned

to encapsulate the expected LLM outcomes, encompassing

both actionable recommendations in response to the devel-

opers’ queries and pertinent information aimed at API mar-

ketplaces and service providers. This role-completion method

is designed to simulate a realistic interaction scenario, where

the LLM adopts the role of an informed assistant, providing

targeted advice and insights based on the user’s (developer’s)

inquiries and the predefined system role’s expertise.

2) Training the LLM tool: As we mentioned earlier, we

expect the fine-tuned model to 1) answer developers’ questions

automatically without requiring human developers to get in-

volved; and 2) extract useful information from these questions.

Hence, for each of the questions in the training set, we created

answers (assistant role) following the procedure given below:

• Manually labeling each question: in particular, we labeled

the following information for each question: 1) what

category/subcategory it belongs to; 2) which service is

mentioned; and 3) if an invocation key is exposed.

• Adding solutions to the answer: we created general

suggested solutions for each category and subcategory of

questions, and formed the answers using these sugges-

tions. For example, for the example question given in the

introduction section and other questions with the same

root cause, we give the same suggestion of “the problem

is caused by RapidAPI requires to subscribe to a service

before invoking it, even if the service is free. To solve this

problem, login to RapidAPI and subscribe to the service

you are using.”

• Adding information to be extracted to the answer, includ-

ing its service and whether an invocation key is exposed,

using the Chain-of-Thought (COT) prompts.

CoT prompts generate intermediate reasoning steps be-

fore arriving at a final answer, mimicking human problem-

9https://platform.openai.com/docs/guides/fine-tuning/
preparing-your-dataset

solving processes. It enhances the model’s ability to tackle

complex questions by making its reasoning transparent and

interpretable, thereby improving the accuracy and reliability

of its outputs. When generating inputs, we follow the CoT

mechanism by giving the logic behind how we reason the in-

formation from questions, which helps LLM accurately extract

information from differently formatted developers’ questions.

To demonstrate the difference between prompting with and

without CoT, we give two examples below.

1) Without CoT:

Listing 1. Without CoT

User: Authentication never works... fetch(https://

covid-19-data.p.rapidapi.com/totals, {method:

GET, headers: { x-rapidapi-key:

keyHiddenInManuscript, x-rapidapi-host: covid

-19-data.p.rapidapi.com}}).then(response => {

console.log(response);}).catch(err => {console.

error(err);}); will return 403 {message: You are

not subscribed to this API

Assistant: This is a Usability issue because it

mentions in the user question - You are not

subscribed to this API and 403. \n Please

subscribe to the API. The API is X-RapidAPI-Host

: covid-19-data.p.rapidapi.com. Please hide the

key to avoid security issues. The code-practice

is not good as X-RapidAPI-Key

keyHiddenInManuscript, is exposed causing

security issue.

2) With CoT:

Listing 2. With CoT

User: Authentication never works... fetch(https://

covid-19-data.p.rapidapi.com/totals, {method:

GET, headers: { x-rapidapi-key:

keyHiddenInManuscript, x-rapidapi-host: covid

-19-data.p.rapidapi.com}}).then(response => {

console.log(response);}).catch(err => {console.

error(err);}); will return 403 {message: You are

not subscribed to this API.}

Assistant: The user question has a usability issue,

noting that the user has an error You are not

subscribed to this API. The problem is caused by

RapidAPI requiring to subscribe to a service

before invoking it, even if the service is free.

To solve this problem, log in to RapidAPI and

subscribe to the service you are using. In the

analysis, it is recognized that the X-RapidAPI-

Host is covid-19-data.p.rapidapi.com, and it is

noted negatively that the X-RapidAPI-Key is

exposed as keyHiddenInManuscript, indicating

wrong security practices, User must hide the API

key. The exposed key is a 50-character mix of

numbers and lowercase letters, which is a

security concern. However, the main concern is

regarding API subscriptions. To address this, it

is suggested user should generate a new, valid

API key. Additionally, it’s advisable to double-

check the header parameters and API subscription

to ensure they are correctly configured. These

actions could potentially identify the API

subscription problem, addressing the usability

category issue effectively.

In particular, we chose gpt-3.5-turbo-1106 among all other

models due to its large token limit of 16K (1 token is 4

197

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

words) for each training input stream. Being able to preserve

more question details enhances contextual comprehension and

optimizes model performance. The runtime for fine-tuning 110

records is almost 15 minutes with an epoch size of 3. We run

the fine-tuning two rounds, one without CoT and one with

CoT. The cost for two rounds of training is minimal, i.e.,

around $10.

3) Test Dataset Collection for Evaluation: To test the

performance of our fine-tuned LLM, we further retrieved

additional SO questions from a historical dataset hosted on

Google BigQuery for test dataset generation. Different from

our training dataset which was partially collected from the

search interface of SO, we can query all SO questions using

BigQuery without being limited to the first 500 results as

in the search interface. We removed the overlapping data

and still got around 1,000 questions left, from which we

selected the most recent 100 records for testing. We applied

these 100 questions to our fine-tuned model and recorded the

responses. As the ground truth, we further manually labeled

their categories/subcategories, as well as other information like

the impacted service names and key leakages.

IV. RESULTS

In this section, we give the detailed answers to the RQs,

followed by observations and actionable suggestions to web

service stakeholders, including service providers, App devel-

opers, and marketplaces. Below we first briefly summarize the

answers to the RQs.

• RQ1: Marketplace differs from static registry in terms of

service subscription, service registration, service invoca-

tion, billing, and service QoS monitoring.

• RQ2: The taxonomy is quite different from that of static

registry, with more issues related to usability, security,

documentation, and performance.

• RQ3: A LLM-based model fine-tuned with the labeled

data can achieve 85% accuracy for answering developers’

questions, 88% accuracy for identifying service names,

and 77% accuracy for detecting key leakages.

A. Differences Between Two Generations of Service Registry

Fig. 2 and 3 describe the workflows of the traditional service

registry and service marketplace, respectively. In both figures,

we use green to denote the workflow of service selection

and orange to denote service invocation. We observe that

the workflows are very similar. For service selection, service

providers first register their services, and App developers

search for services. App developers then subscribe to the

service they select and distribute the invocation key with

software to end users. For service invocation, end users use

the invocation key to send service requests.

1) Workflow Comparison: We compare the workflow of

two generations in detail.

1) Service Subscription: Service subscription is the main

difference in the service selection workflow between

both generations. While both generations display ser-

vice information on the registry, the traditional registry

redirects developers to the service provider’s website,

for further purchasing and subscription. In contrast,

marketplaces provide a one-stop experience for service

selection, the service developers are supposed to fill in

all descriptive information about their services on the

marketplaces, and the App developers will subscribe

to the service on the marketplace and also pay to the

marketplace.

2) Service Registration: In a service marketplace, the pro-

cess of subscribing to APIs differs from that of a service

registry. Developers are required to subscribe to the

necessary API directly within the marketplace itself.

Therefore, the marketplace must provide comprehensive

information. Without such information, users may not

be directed to the service provider’s website

3) Service Invocation: The service invocation requests for

traditional service registries are sent to the service

provider’s servers, but for service marketplace requests

are sent to servers owned by marketplaces. The market-

place then delegates the request from the end users to

the service providers.

4) Billing: In a traditional service registry, service providers

handle billing before a request is invoked. However, the

billing process differs in marketplaces like RapidAPI.

Here, users can subscribe to different APIs offered on

the platform and are billed on the marketplace itself

according to the pricing plans established by the API

providers. Charges are determined by factors such as

the volume of API requests and the specific endpoints

accessed.

5) Service QoS monitoring: QoS monitoring is introduced

in the service marketplace and involves tracking various

parameters such as popularity, latency, and service level.

When the end user invokes a service, they send a request

to the service marketplace along with an API key.

The service marketplace then verifies the API key and

forwards the request to the service provider. Following

this, it proceeds to update the Quality of Service (QoS).

In summary, the static service registry helps developers find

services but does not play a role in the subsequent service

invocation, while the service marketplace is involved through-

out the entire software lifecycle of SOA applications. The

distinction in workflow between traditional service registries

and service marketplaces, particularly in the service market-

place’s role as an intermediary between App developers and

service providers, has raised concerns among developers. With

millions of developers now relying on service marketplaces,

it’s imperative to address and resolve these commonly faced

issues so that platform providers can cultivate trust with users,

promote favorable user experiences, and cultivate enduring

relationships that will strengthen the platform’s success and

expansion.

B. Developers’ Questions Taxonomy

The outcome of our effort is a taxonomy of developers’

concerns (Fig.4), as well as a few observations that could ben-

198

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Traditional
Service Registry

DB

Service Provider

Invocation Key

Search for
Service

Register Service

4

2 1

1

Subscribe to Service3

Service Requests

App DeveloperEnd Users

Fig. 2. Workflow of Traditional Service Discovery

Service Provider

Key Verification

End Users App Developer Service
Marketplace

DB

1

Register Service1Search for
Service

2

3

Service Requests

2

Invocation Key4 Service Requests3

Update QoS4

Subscribe to Service

Fig. 3. Workflow of Service Marketplaces

efit stakeholders including the marketplace platform, service

developers, and App developers.

Table II describes the issue count from platforms like

GitHub, SO, and G2.com. We observed Documentation or

general help/support, as well as performance related inquiries,

are predominantly found on GitHub. On the other hand,

usability concerns and key leakages in the queries posted by

users tend to be noticed on SO. Next we introduce these

categories in detail.

Platforms General Queries Usability Performance Security

GitHub 29 12 15 3

SO - 20 8 12

G2.com - - 4 -
TABLE II

ISSUE DISTRIBUTION IN GITHUB, SO, AND G2.COM

1) GENERAL QUERIES (Help/Support):

This category encompasses issues regarding assistance related

to services on the marketplace.

• Integration/Migration/Upgradation: This subcategory in-

volves incorporating the API into an existing system or

application, transferring the API from one environment

to another, and updating the API to a newer version.

• Finding Similar APIs: In this subcategory, developers

want to locate other APIs within the platform that offer

comparable functionality, services, or features to a spe-

cific API. This allows users to explore alternative options

or identify additional resources that may better suit their

needs.

• Guides/ Tutorials/ Documents: This subcategory involves

users seeking help with some uncertainties, enhancing

understanding, and acquiring practical knowledge on uti-

lizing APIs effectively.

An example of such issue is“(where can I find) Documen-

tation for API TMDB?”

As indicated in the table I, while being able to offer

customized documentation in the service marketplace, many

service providers still fail to provide adequate documentation

concerning endpoints, integration methods, and other details.

Consequently, App developers express concerns about the need

for API documentation.

Migration Impact 1

While App developers are no longer redirected to

service providers’ websites and rely only on documen-

tation listed on marketplaces, many service providers

fail to provide adequate documentation when listing

their services. App developers often struggle to search

for API documentation.

Actionable Suggestions: According to our analysis of Rap-

idAPI data, only 56% of RapidAPI services include listed

resource links containing information about the API product,

199

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Developers Concerns
(103)

General queries
(Help /Support)

(29)

Usability
(32)

Finding
similar
APIS
(8)

Integration /
Migration /

Upgradation
(14)

Security
(15)

Performance
(27)

Guides /
Tutorials /

documents
(7)

Unauthorized
access /

Not subscribed
(14)

Invalid /
Missing API

key
(16)

Rate
limit
(2)

API key
protection
suggestion

(5)

API key
leakages
observed

(10)

API down /
slow
(15)

Connect
timeout /
stopped

(12)

Fig. 4. API marketplaces user concerns

while 22% of services provide documentation details outlining

service endpoint information, integration steps, and more. The

platform should monitor APIs lacking sufficient documenta-

tion support by offering resource links, documentation, and

tutorials for the service. It should also notify API providers

to improve their documentation by incorporating detailed

information on service endpoints, API integration methods,

and more.

2) USABILITY:

Usability issues are associated with problems or difficulties

that users encounter when interacting with a product, system,

or interface.

• Invalid / Missing API key: An Invalid API key error

occurs when the API key provided by the user is either

incorrect or expired and a ”Missing API key” error occurs

when the user fails to include the required API key in the

request.

• Unauthorized access / Not Subscribed: The usability is-

sue ”Unauthorized access” or ”Not Subscribed” typically

occurs when users attempt to access certain features or

resources within an API without proper authorization or

subscription status.

• Rate limit: Rate limiting is a mechanism APIs use to

control the number of requests made by a client within a

specific period. Within Rapid API, every API service is

bundled with pricing packages, each of which provides a

specific allocation of requests either on a daily or monthly

basis.

Fig, 5 shows two example questions falling into this cate-

gory. These examples show App developers are often confused

by the resulting return codes, wondering whether the problem

lies with the HTTP library usage, the platform itself, or the

service provider. For instance, a 403 error code may be caused

by errors in crafting the request URL sent to the marketplace,

key authentication failures on the marketplace, or the service

Fig. 5. HTTP Error code ambiguity

provider’s server going down.

Migration Impact 2

The marketplace’s involvement in service invocation

procedure adds complexity, making it challenging for

developers to identify the causes of invocation failures

and debug them.

Fig. 6 shows an example question related to the new

subscription model. As explained in Sec. IV-A1, static reg-

istry redirects App developers to service providers’ platforms,

where developers subscribe to the service and get invocation

keys. In the marketplace, developers are granted an invocation

200

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Service Invocation mechanism

key by default. However, to invoke services, they need to

further subscript to these services on the marketplace. Many

of them are confused by such a transition, as they think

having a key is enough for invoking services. However, when

we inspected the detail page of web services managed by

RapidAPI, which is usually the landing page when App

developers search for keywords like “free face recognition web

services,” we discovered no hints suggesting that developers

must subscribe to the services before invoking them. Further-

more, the executable code, tailored with the developer’s unique

key, is readily supplied.

Migration Impact 3

The new subscription model confuses developers.

Actionable Suggestions: To help App developers debug the

problem, we suggest the marketplaces define standard and fine-

grained error codes for all the services they manage. Instead

of relying on the default HTTP response codes, Baidu API

already allows service providers to specify their fine-grained

error codes in documentation. We believe defining uniform

error codes can help automate the debugging procedure. Be-

sides, many of the questions related to the new subscription

model could be easily answered by providing proper guidance

information to developers.

3) SECURITY:

Security issues in API marketplaces involve vulnerabilities

such as inadequate authentication, data exposure, and insuf-

ficient encryption, potentially leading to unauthorized access

and data breaches.

• API key protection suggestion: Some questions seek help

in safeguarding API keys. Many answers suggest securely

storing them in environment variables or utilizing a ded-

icated secrets management service. Some answers also

recommend avoiding hard-coded keys directly into source

code or public repositories to reduce the risk of exposure.

• API key leakages observed: Within this specific issue

subcategory, developers have accidentally exposed API

keys when posting their questions.

Figure. 7 gives a code snippet that has the key leakage issue.

When invoking a service, App developers need to specify its

host and a developer-specific API invocation key. Although

static registries and the marketplace both face such issues,

their impact on the marketplace is more severe. This is because

one developer may subscribe to multiple services, with some

being free services and others requiring payments, using the

same key. We call such a mechanism “one-key-for-all-service.”

Even if a developer’s question is about invoking a free service,

a malicious third party could use the key to access all paid

services the developer has subscribed to, with some containing

sensitive customer data. Besides, as RapidAPI now plays an

important role in service invocations, if attackers use the

captured keys to perform a DDoS attack and cause RapidAPI

delegation servers to fail, all services managed by RapidAPI

will be impacted.

Fig. 7. Key Leakage code snippet example

Migration Impact 4

Developers unintentionally expose their invocation

keys in question, posing significant consequences due

to the ’one-key-for-all-service’ mechanism in market-

places.

Actionable Suggestions: We believe it’s the platform’s re-

sponsibility to prevent exposure of the invocation key. The

platform can prevent key leakages by 1) Marketplaces should

find safer alternatives to the ’one-key-for-all-service’ model;

2) being able to identify instances where keys are exposed

and prompt users to securely hide them, which is one of

the reasons why we developed the LLM-based tool; and 3)

educating application developers.

4) PERFORMANCE:

Performance is the efficiency and responsiveness of a sys-

tem or application. Within the Performance issue category,

developers express concerns regarding slow response times or

connection timeouts.

• API down /slow: The developers may face this issue when

the API is either experiencing downtime or operating at

a reduced speed.

• Connect timeout/ stopped: This typically happens when

there’s a delay in the connection process, or when the

connection attempt is terminated due to certain condi-

tions such as network issues, server unavailability, or

misconfiguration. In some instances, the service may have

completely ceased to function on the side of the API

provider.

A specific example is“(why) Ecoindex.fr Backend API was

down?”

201

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

Dimension Correctly classified(CoT) Correctly classified(w/o CoT) Total Issues

Classification

General Queries Issues 6 4 6
Usability Issues 28 23 28
Performance Issues 9 6 9
Coding Issues 42 42 57
Total Test data 85 75 100

Information Extraction
Service Detection from Total Test data 84 37 95
Key Leakage Identified from Total Test Data 20 7 26

TABLE III
FINE-TUNED MODEL ACCURACY FOR TEST DATASET

Fig. 8. RapidAPI QoS

The services provided by the API providers are poorly

coded and inadequately tested by the platform before being

added to the platform. Despite marketplaces like as shown

in Fig. 8 RapidAPI being designed to aid developers in

monitoring Quality of Service (QoS), they mainly focus on

monitoring the long-term QoS and respond to short-term QoS

issues not swiftly enough. Consequently, we observe some

developers inquiring whether the service is temporarily down

or why latency is high, due to the platform’s slow updates of

these parameters.

Migration Impact 5

The platform provides QoS updates from long-term

monitoring but developers expect immediate QoS

alerts.

Actionable Suggestions: API marketplaces should identify

these services and create Service Level Agreements (SLAs)

with service providers. The API marketplace must com-

municate to service providers the necessity of maintaining

well-coded and thoroughly tested APIs. Our LLM tool aids

application developers in understanding the cause of service

downtime.

C. Evaluation of Fine-tuned Automated Tool

We evaluated our fine-tuned model to ascertain its pro-

ficiency in accurately identifying issue categories, impacted

APIs, and key leakages. By comparing the model’s classifica-

tion results with the manual labels, Table III lists the number

of records correctly identified in each category. Interestingly,

the model successfully categorized issues related to Usability,

Performance Issues Key Leakages

calorieninjas.p.rapidapi.com euromillions.p.rapidapi.com

api-football-v1.p.rapidapi.com yummly2.p.rapidapi.com

omgvamp-hearthstone-v1.p.rapidapi.com lambda-face-recognition.p.rapidapi.com

elenasport-io1.p.rapidapi.com omgvamp-hearthstone-v1.p.rapidapi.com

bayut.p.rapidapi.com api-football-v1.p.rapidapi.com

coinranking1.p.rapidapi.com community-open-weather-map.p.rapidapi.com

matchilling-chuck-norris-jokes-v1.p.rapidapi.com booking-com.p.rapidapi.com

textanalysis-keyword-extraction-v1.p.rapidapi.com webknox-trivia-knowledge-facts-v1.p.rapidapi.com

corona-virus-world-and-india-data.p.rapidapi.com

google-translate1.p.rapidapi.com

devru-times-of-india.p.rapidapi.com

alpha-vantage.p.rapidapi.com

indeed-indeed.p.rapidapi.com

v1-sneakers.p.rapidapi.com

coinranking1.p.rapidapi.com

covid-19-data.p.rapidapi.com

apidojo-yahoo-finance-v1.p.rapidapi.com

faceplusplus-faceplusplus.p.rapidapi.com

cryptocurrency.p.rapidapi.com

dev132-cricket-live-scores-v1.p.rapidapi.com

TABLE IV
IMPACTED APIS IDENTIFIED FROM TEST DATA

Performance, and General Queries. However, it erroneously

classified 15 coding issues into different categories and failed

to identify 11 API names and 6 instances of key leakages.

Overall we achieved an accuracy of 85% for question clas-

sification, 88% for identifying service names, and 77% for

identifying key leakages. We noticed that approximately 30-

40% of API services were affected by key leakages.

Table IV lists all the impacted APIs that we’ve manually

confirmed from the questions in the test dataset, with the help

of our tool. It demonstrates that the tool can be used to detect

performance outages and key leakages, and give warnings to

service providers and marketplaces.

We further evaluate the impact of CoT in fine-tuning.

The accuracy achieved by the training model without CoT

was 75% for classification and around 40% for identifying

service names and key leakages. It shows that CoT improves

the accuracy of fine-tuning, especially for identifying service

names and key leakages which requires understanding the

logic behind the reasoning.

D. Implications

Our empirical analysis identified key differences between

traditional service registries and Service Marketplaces. More-

over, the study also identified a taxonomy of common mi-

202

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

gration challenges that developers often face. Further, we

developed a proof of concept of how the LLM model can

be useful to assist the developers. The findings and technique

of the study can lead to the following implications.

For SOA Stakeholders Our analysis identified key dif-

ferences between traditional service registries and Service

Marketplaces. Such findings could be beneficial for developers

to make decisions on migrating from traditional service reg-

istries and Service Marketplaces. Moreover, the taxonomy can

guide developers on common issues of Service Marketplaces

migration, their root causes, and the solution.

For Researchers The taxonomy of Service Marketplaces

migration could help researchers to develop advanced research

techniques such as recommendation systems [17], [18] and

automated program repair [19], [20] techniques to assist de-

velopers in fixing migration issues more efficiently and in a

timely manner.

For Tool Builders The evaluation showed that our pro-

posed approach of utilizing an LLM-based issue categorization

technique can effectively categorize migration issues. The tool

builders can take further initiative to integrate that technique

with IDEs and development tools so that developers can

instantly get feedback on the issues they face during migration.

V. CONCLUSION

In summary, this paper presents three key contributions.

Firstly, we extensively detailed how the transition in workflow

from service registry to service marketplace is the primary rea-

son for developers’ confusion when utilizing service market-

places. Secondly, we established a taxonomy of user concerns,

delineating their origin from the shift from traditional service

registries to service marketplaces. Lastly, we introduced an

automated tool capable of identifying these concerns and

offering 3-dimensional assistance to App developers, service

providers, and the platform. Through thorough evaluation, we

validated the tool’s accuracy and summarized the implications

of this research.

ACKNOWLEDGEMENT

This research is supported by NSF through the grants

#2104337 and # 2152819.

REFERENCES

[1] A. Tewari, P. Nagdev, and A. Sahitya, “Sky computing: the future of
cloud computing,” IJCSIT) International Journal of Computer Science

and Information Technologies, vol. 6, no. 4, pp. 3861–3864, 2015.
[2] N. T. Yazdi and C. H. Yong, “A potential way for efficient information

sharing based on mobile text messaging,” in 2012 International Confer-

ence on Green and Ubiquitous Technology, 2012, pp. 172–175.

[3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the soa-based internet of things: Discovery, query, selection, and on-
demand provisioning of web services,” IEEE Transactions on Services

Computing, vol. 3, no. 3, pp. 223–235, 2010.
[4] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,

W. Lin, and Y. Ding, “{MLaaS} in the wild: Workload analysis and
scheduling in {Large-Scale} heterogeneous {GPU} clusters,” in 19th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), 2022, pp. 945–960.
[5] “Global machine learning as a service (mlaas) industry research re-

port, competitive landscape, market size, regional status and prospect,”
shorturl.at/mKMY3, accessed: 2023-12-30.

[6] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on the
world wide web,” in WWW’08, 2008, pp. 795–804.

[7] N. Zhang, Y. Zou, X. Xia, Q. Huang, D. Lo, and S. Li, “Web apis:
Features, issues, and expectations–a large-scale empirical study of web
apis from two publicly accessible registries using stack overflow and
a user survey,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 498–528, 2022.

[8] K. Mahmood, G. Rasool, F. Sabir, and A. Athar, “An empirical study
of web services topics in web developer discussions on stack overflow,”
IEEE Access, vol. 11, pp. 9627–9655, 2023.

[9] R. Akolkar, T. Chefalas, J. Laredo, C.-S. Perng, A. Sailer, F. Schaffa,
I. Silva-Lepe, and T. Tao, “The future of service marketplaces in the
cloud,” in 2012 IEEE Eighth World Congress on Services, 2012, pp.
262–269.

[10] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan, “What
do client developers concern when using web apis? an empirical study
on developer forums and stack overflow,” in ICWS’16. IEEE, 2016,
pp. 131–138.

[11] G. Ajam, C. Rodrı́guez, and B. Benatallah, “Api topics issues in stack
overflow q&as posts: An empirical study,” in 2020 XLVI Latin American

Computing Conference (CLEI), 2020, pp. 147–155.
[12] H. Zhang, S. Wang, T.-H. Chen, Y. Zou, and A. E. Hassan, “An empirical

study of obsolete answers on stack overflow,” IEEE Transactions on

Software Engineering, vol. 47, no. 4, pp. 850–862, 2021.
[13] B. Xu, T.-D. Nguyen, T. Le-Cong, T. Hoang, J. Liu, K. Kim, C. Gong,

C. Niu, C. Wang, B. Le et al., “Are we ready to embrace generative ai for
software q&a?” in 2023 38th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 2023, pp. 1713–1717.
[14] Y. Feng, S. Vanam, M. Cherukupally, W. Zheng, M. Qiu, and H. Chen,

“Investigating code generation performance of chat-gpt with crowd-
sourcing social data,” in Proceedings of the 47th IEEE Computer

Software and Applications Conference, 2023, pp. 1–10.
[15] H. Li, F. Khomh, M. Openja et al., “Understanding quantum software

engineering challenges an empirical study on stack exchange forums
and github issues,” in 2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2021, pp. 343–354.
[16] F. Corno, L. De Russis, and J. P. Sáenz, “On the challenges novice

programmers experience in developing iot systems: A survey,” Journal

of Systems and Software, vol. 157, p. 110389, 2019.
[17] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?

a two-phase recommendation model,” IEEE transactions on software

Engineering, vol. 39, no. 11, pp. 1597–1610, 2013.
[18] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-

dation for bug resolution,” in 2013 20th Working Conference on Reverse

Engineering (WCRE). IEEE, 2013, pp. 72–81.
[19] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program

repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.
[20] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of

random search on automated program repair,” in Proceedings of the 36th

International Conference on Software Engineering, 2014, pp. 254–265.

203

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:03:03 UTC from IEEE Xplore. Restrictions apply.

