
Poster: Service Polymorphism: Enhancing Web

Service Performance by Serving Clients

Dissimilarly

Zhengquan Li, Zheng Song

Department of Computer and Information Science, University of Michigan – Dearborn, MI, USA

{zqli, zhesong}@umich.edu

Abstract—Modern applications often invoke web services to
access remote data and functionalities. The current service-
oriented paradigm is “one-size-fits-all,” where App developers
expect a single service to deliver satisfying Quality of Service
(QoS) to all geographically and temporally dispersed clients.
However, our empirical study reveals that despite the pervasive
use of CDN and edge computing, many web services deliver
significantly varied QoS to different users, resulting in some
clients suffering from poor user experience. This paper introduces
service polymorphism, a novel software paradigm that serves
dispersed clients dissimilarly to improve their perceived QoS.
Service polymorphism allows a client to maintain a list of
equivalent services and invokes the one that offers the optimal
QoS in the invocation context. The main challenge in supporting
service polymorphism lies in minimizing the overhead for fine-
grained QoS sensing. To address this challenge, we propose an
edge-based QoS sharing mechanism that aggregates the context-
specific QoS in edge servers, and allows clients to retrieve the
QoS from local WiFi Access Points with minimized latency to
decide the optimal service. Our evaluation shows that service
polymorphism improves QoS significantly for 8 services out of
20, reducing their average latency by 231 ms (45%), tail latency
by 80 ms (12%), and error ratio from 0.2% to 0%.

Index Terms—Web Service, Latency, WiFi Access Points

I. SOA: CURRENT PRACTICE AND PROBLEMS

Service polymorphism is motivated by our in-depth study of

Service-Oriented Architecture (SOA) applications on GitHub,

analysis of service information provided by RapidAPI [1]

(the world’s largest web service repository), and empirical

measurement of service QoS in different locations and times.

SOA Practice: One-size-fits-all: We searched GitHub for

repositories that invoke RapidAPI services. Our search yielded

873 unique repositories, constrained by GitHub’s limitations.

Upon manual inspection of these repositories, we noticed a

common trend: all these applications hardcoded a pre-selected

service for each required functionality.

Wide Existence of Equivalent Services: RapidAPI offers

collections of web services, such as Weather APIs, Flight

data APIs, and Translation APIs. These collections consist

of services with similar functionalities provided by different

vendors that can be used interchangeably in Apps with minor

adaptions. For instance, a language translation functionality

can be fulfilled by either Text Translation, NLP Translation,

or Lecto Translation. Overall, we found that 461 collections

feature 3 or more services, indicating a significant presence of

equivalent services.

No Service being Always QoS-optimal: We selected 20 sets

of equivalent web services from RapidAPI and invoked these

services for 3 days from 8 gloabl locations. We observed that

the QoS of services, particularly latency, varies significantly

in different locations and times. Using the measured QoS of

translation services as an example, Fig. 1 and Fig. 2 shows

the latency of three equivalent services at each location and

time slot, respectively. These figures clearly show that the pre-

selected service, Lecto Trans, performs well in most locations

and times but also underperforms compared to its peers in

some locations (e.g., Ohio and Cape Town) and during certain

time slots (e.g., slots 10 and 35).

Key Summary of Our Study

Many services suffer from fluctuating QoS over spa-

tial/temporal contexts, rendering it impossible to pre-

select one service that consistently outperforms its

equivalent peers in various contexts. These observa-

tions motivate us to introduce service polymorphism

as a replacement for the current “one-size-fits-all” pro-

gramming paradigm of service-oriented applications.

II. SERVICE POLYMORPHISM

We introduce service polymorphism: a client automatically

invokes web services in different contexts to guarantee optimal

QoS. Instead of requiring each service to provide satisfactory

QoS for all clients, a client maintains a list of equivalent

services and dynamically decides which one to invoke based

on their real-time QoS to provide the optimal QoS in current

invocation context. To do so, the client needs to access the

context-specific QoS statistics of all equivalent services.

Therefore, the main challenge for supporting polymorphism

lies in how to accurately assessing services’ QoS with mini-

mum overhead. Previous studies purposed that the client indi-

vidually send probe requests to each service either periodically

or right before each service invocation, which incurs heavy

overhead to both the clients and web servers. A promising

solution to reduce QoS sensing costs is data crowd-sourcing.

This method involves clients sharing their QoS sensing results

with an edge server, which other clients can access the QoS.

Typically, edge servers (e.g., Akamai) are deployed multi-hop

away from end-users, with an average E2E communication

1444

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00143

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
DC

S6
09

10
.2

02
4.

00
14

3

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:04:20 UTC from IEEE Xplore. Restrictions apply.

(a) Frankfurt (b) Ohio (c) North California (d) Mumbai

(e) Sydney (f) Tokyo (g) Sao Paulo (h) Cape Town

Fig. 1: Latency Distributions of Translation Services at Different Locations (dash lines representing the pre-selected services)

Fig. 2: Translation Services’ Latency over Time

Fig. 3: Workflow of Service Polymorphism

latency of 20 to 30 ms [2]. To obtain timely service QoS,

a client needs to communicate with the edge server before

each service invocation. This extra latency overhead of QoS

retrieval offsets the latency benefits of invoking the optimal

service, potentially resulting in even higher latencies than these

clients invoking a preselected service in some contexts.

To solve this challenge, we introduce a novel edge-based

crowd-sourcing mechanism for fine-grained QoS sensing with

minimized overhead. In particular, we integrate WiFi Access

Points (APs), such as home routers, into the architecture

of edge server QoS sharing. The clients share their service

QoS sensing results to the edge server and retrieve the QoS

data from the WiFi APs. These WiFi APs are ubiquitously

positioned at the extreme edge of the network and only one

hop away from the end users. Such proximity enables clients

to access the shared QoS information with minimal latency

prior to future service invocations.

Workflow: Before initiating a service request, the mobile

runtime first fetches the QoS for all equivalent services from

its associated WiFi AP. Based on the received QoS, the mobile

runtime selects which service to invoke to ensure optimal QoS

in the current context. After the invocation, the runtime reports

its performance metrics (i.e., latency, successful or not) to

the WiFi AP. The WiFi AP then forwards these performance

results, along with a timestamp and location tag, to the edge

server after removing any user identifiers. The edge server

aggregates these performance results from the WiFi APs,

calculates the QoS for each service, and disseminates this

updated QoS back to WiFi APs in its vicinity.
III. PRELIMINARY EXPERIMENTAL RESULTS

We implemented service polymorphism as an Android li-

brarcy called Polymorphic Service Framework (PSF). We built

a real testbed and deployed 20 pairs of Android Apps invoking

the 20 sets of equivalent services used in our empirical study,

one using pre-selected services which have the global optimal

QoS and one using PSF. We compare the QoS performance of

PSF and Pre-selection with 10 nearby clients present. We de-

fine significant improvement as PSF improves the performance

by at least 20% over Pre-selection, mild improvement as 5%

to 20%, and insignificant improvement as less than 5%.
Category Average Latency Improv. Tail Latency Improv. Error Ratio Improv.

Significant (8) 44.89% 231.30ms 12.35% 80.31ms 0.2%

All (20) 17.59% 76.87ms 6.67% 38.72ms 0%

TABLE I: QoS Improvement of PSF over Pre-selection
According to our criteria, 8 sets (40%) are classified under

the “significant improvement” category, one set falls into

“mild”, and 11 sets (55%) into “insignificant”. Table I displays

the average performance enhancements for both “significant”

and all 20 polymorphic services, where PSF reduces average

latency by 45% (231 ms) and 18% (77 ms), respectively.

REFERENCES

[1] “Rapidapi - the next-generation api platform,” https://rapidapi.com/, ac-
cessed: 2024-04-07.

[2] B. Charyyev, E. Arslan, and M. H. Gunes, “Latency comparison of cloud
datacenters and edge servers,” in GLOBECOM 2020-2020 IEEE Global

Communications Conference. IEEE, 2020, pp. 1–6.

1445

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 07,2025 at 17:04:20 UTC from IEEE Xplore. Restrictions apply.

