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Abstract—Modern applications often invoke web services to
access remote data and functionalities. The current service-
oriented paradigm is “one-size-fits-all,” where App developers
expect a single service to deliver satisfying Quality of Service
(QoS) to all geographically and temporally dispersed clients.
However, our empirical study reveals that despite the pervasive
use of CDN and edge computing, many web services deliver
significantly varied QoS to different users, resulting in some
clients suffering from poor user experience. This paper introduces
service polymorphism, a novel software paradigm that serves
dispersed clients dissimilarly to improve their perceived QoS.
Service polymorphism allows a client to maintain a list of
equivalent services and invokes the one that offers the optimal
QoS in the invocation context. The main challenge in supporting
service polymorphism lies in minimizing the overhead for fine-
grained QoS sensing. To address this challenge, we propose an
edge-based QoS sharing mechanism that aggregates the context-
specific QoS in edge servers, and allows clients to retrieve the
QoS from local WiFi Access Points with minimized latency to
decide the optimal service. Our evaluation shows that service
polymorphism improves QoS significantly for 8 services out of
20, reducing their average latency by 231 ms (45%), tail latency
by 80 ms (12%), and error ratio from 0.2% to 0%.

Index Terms—Web Service, Latency, WiFi Access Points

I. SOA: CURRENT PRACTICE AND PROBLEMS

Service polymorphism is motivated by our in-depth study of

Service-Oriented Architecture (SOA) applications on GitHub,
analysis of service information provided by RapidAPI [1]
(the world’s largest web service repository), and empirical
measurement of service QoS in different locations and times.
SOA Practice: One-size-fits-all: We searched GitHub for
repositories that invoke RapidAPI services. Our search yielded
873 unique repositories, constrained by GitHub’s limitations.
Upon manual inspection of these repositories, we noticed a
common trend: all these applications hardcoded a pre-selected
service for each required functionality.
Wide Existence of Equivalent Services: RapidAPI offers
collections of web services, such as Weather APIs, Flight
data APIs, and Translation APIs. These collections consist
of services with similar functionalities provided by different
vendors that can be used interchangeably in Apps with minor
adaptions. For instance, a language translation functionality
can be fulfilled by either Text Translation, NLP Translation,
or Lecto Translation. Overall, we found that 461 collections
feature 3 or more services, indicating a significant presence of
equivalent services.
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No Service being Always QoS-optimal: We selected 20 sets
of equivalent web services from RapidAPI and invoked these
services for 3 days from 8 gloabl locations. We observed that
the QoS of services, particularly latency, varies significantly
in different locations and times. Using the measured QoS of
translation services as an example, Fig. 1 and Fig. 2 shows
the latency of three equivalent services at each location and
time slot, respectively. These figures clearly show that the pre-
selected service, Lecto Trans, performs well in most locations
and times but also underperforms compared to its peers in
some locations (e.g., Ohio and Cape Town) and during certain
time slots (e.g., slots 10 and 35).

Key Summary of Our Study

Many services suffer from fluctuating QoS over spa-
tial/temporal contexts, rendering it impossible to pre-
select one service that consistently outperforms its
equivalent peers in various contexts. These observa-
tions motivate us to introduce service polymorphism
as a replacement for the current “one-size-fits-all” pro-
gramming paradigm of service-oriented applications.

II. SERVICE POLYMORPHISM

We introduce service polymorphism: a client automatically
invokes web services in different contexts to guarantee optimal
QoS. Instead of requiring each service to provide satisfactory
QoS for all clients, a client maintains a list of equivalent
services and dynamically decides which one to invoke based
on their real-time QoS to provide the optimal QoS in current
invocation context. To do so, the client needs to access the
context-specific QoS statistics of all equivalent services.

Therefore, the main challenge for supporting polymorphism
lies in how to accurately assessing services’ QoS with mini-
mum overhead. Previous studies purposed that the client indi-
vidually send probe requests to each service either periodically
or right before each service invocation, which incurs heavy
overhead to both the clients and web servers. A promising
solution to reduce QoS sensing costs is data crowd-sourcing.
This method involves clients sharing their QoS sensing results
with an edge server, which other clients can access the QoS.
Typically, edge servers (e.g., Akamai) are deployed multi-hop
away from end-users, with an average E2E communication
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Fig. 1: Latency Distributions of Translation Services at Different Locations (dash lines representing the pre-selected services)
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Fig. 3: Workflow of Service Polymorphism

latency of 20 to 30 ms [2]. To obtain timely service QoS,
a client needs to communicate with the edge server before
each service invocation. This extra latency overhead of QoS
retrieval offsets the latency benefits of invoking the optimal
service, potentially resulting in even higher latencies than these
clients invoking a preselected service in some contexts.

To solve this challenge, we introduce a novel edge-based
crowd-sourcing mechanism for fine-grained QoS sensing with
minimized overhead. In particular, we integrate WiFi Access
Points (APs), such as home routers, into the architecture
of edge server QoS sharing. The clients share their service
QoS sensing results to the edge server and retrieve the QoS
data from the WiFi APs. These WiFi APs are ubiquitously
positioned at the extreme edge of the network and only one
hop away from the end users. Such proximity enables clients
to access the shared QoS information with minimal latency
prior to future service invocations.

Workflow: Before initiating a service request, the mobile

runtime first fetches the QoS for all equivalent services from
its associated WiFi AP. Based on the received QoS, the mobile
runtime selects which service to invoke to ensure optimal QoS
in the current context. After the invocation, the runtime reports
its performance metrics (i.e., latency, successful or not) to
the WiFi AP. The WiFi AP then forwards these performance
results, along with a timestamp and location tag, to the edge
server after removing any user identifiers. The edge server
aggregates these performance results from the WiFi APs,
calculates the QoS for each service, and disseminates this
updated QoS back to WiFi APs in its vicinity.
III. PRELIMINARY EXPERIMENTAL RESULTS

We implemented service polymorphism as an Android li-
brarcy called Polymorphic Service Framework (PSF). We built
a real testbed and deployed 20 pairs of Android Apps invoking
the 20 sets of equivalent services used in our empirical study,
one using pre-selected services which have the global optimal
QoS and one using PSF. We compare the QoS performance of
PSF and Pre-selection with 10 nearby clients present. We de-
fine significant improvement as PSF improves the performance
by at least 20% over Pre-selection, mild improvement as 5%
to 20%, and insignificant improvement as less than 5%.

Category | Average Latency Improv. | Tail Latency Improv. | Error Ratio Improv.
Significant (8)[44.89%]  231.30ms 1235%] 80.31ms 0.2%
All (20) 1759%|  76.87ms 6.67% | 38.72ms 0%

TABLE I: QoS Improvement of PSF over Pre-selection
According to our criteria, 8 sets (40%) are classified under

the “significant improvement” category, one set falls into
“mild”, and 11 sets (55%) into “insignificant”. Table I displays
the average performance enhancements for both “significant”
and all 20 polymorphic services, where PSF reduces average
latency by 45% (231 ms) and 18% (77 ms), respectively.
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