

1 Phage-like particle vaccines are highly immunogenic and protect against pathogenic
2 coronavirus infection and disease
3

4 Bennett J. Davenport^{1,#}, Alexis Catala^{2,3,#}, Stuart M. Weston⁵, Robert M. Johnson⁵, Jeremy
5 Arduinay⁵, Holly L. Hammond⁵, Carly Dillen⁵, Matthew B. Frieman⁵, Carlos E. Catalano^{3,4,*}, and
6 Thomas E. Morrison^{1,*}

7

8 ¹Department of Immunology and Microbiology, School of Medicine, University of Colorado
9 Anschutz Medical Campus

10 ²Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado
11 Anschutz Medical Campus

12 ³Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical
13 Campus

14 ⁴Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
15 Sciences, University of Colorado Anschutz Medical Campus

16 ⁵Department of Microbiology and Immunology, University of Maryland School of Medicine

17 [#]These authors contributed equally

18 ^{*}Corresponding authors

19

20 Running title: Phage vaccines against SARS-CoV-2 and MERS-CoV

21 **ABSTRACT**

22 The response by vaccine developers to the COVID-19 pandemic has been extraordinary with
23 effective vaccines authorized for emergency use in the U.S. within one year of the appearance of
24 the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with
25 the global rollout of new vaccines highlight the need for platforms that are amenable to rapid
26 tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We
27 developed a “designer nanoparticle” platform using phage-like particles (PLPs) derived from
28 bacteriophage lambda for multivalent display of antigens in rigorously defined ratios. Here, we
29 engineered PLPs that display the receptor binding domain (RBD) protein from SARS-CoV-2 and
30 MERS-CoV, alone ($\text{RBD}_{\text{SARS}}\text{-PLPs}$, $\text{RBD}_{\text{MERS}}\text{-PLPs}$) and in combination (hCoV-RBD PLPs).
31 Functionalized particles possess physiochemical properties compatible with pharmaceutical
32 standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with
33 RBD_{SARS} - or RBD_{MERS} -PLPs display serum RBD-specific IgG endpoint and live virus neutralization
34 titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent
35 plasma from infected patients. Further, these antibody levels remain elevated up to 6 months
36 post-prime. In dose response studies, immunization with as little as one microgram of RBD_{SARS} -
37 PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBD_{SARS} -
38 PLPs, RBD_{MERS} -PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-
39 CoV lung infection and disease. Collectively, these data suggest that the designer PLP system
40 provides a platform for facile and rapid generation of single and multi-target vaccines.

41 **INTRODUCTION**

42 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense,
43 single-stranded RNA virus, was first isolated in late 2019 from patients with severe respiratory
44 illness in Wuhan, China (1, 2). This betacoronavirus is related to two other coronaviruses that are
45 highly pathogenic for humans – SARS-CoV and Middle East respiratory syndrome coronavirus
46 (MERS-CoV) (3). Although SARS-CoV no longer circulates in the human population, SARS-CoV-
47 2 infection is the cause of the global pandemic of coronavirus disease 2019 (COVID-19), which
48 can progress to acute respiratory distress syndrome (ARDS) and death (4). The elderly,
49 immunocompromised, and those with certain co-morbidities (e.g., obesity, diabetes, and
50 hypertension) are at greatest risk of severe COVID-19 (5). In addition, MERS-CoV remains in
51 circulation and has infected over 2,500 people with lethal disease in ~834 (~34% case fatality
52 rate)(6). The virus has spread to 28 countries since emerging in the Kingdom of Saudi Arabia in
53 2012 (6, 7), and large outbreaks of human-to-human transmission have occurred in Riyadh and
54 Jeddah in 2014 and in South Korea in 2015 (8, 9).

55 The RNA genome of betacoronaviruses is approximately 30,000 nucleotides in length
56 (10). The 5' two-thirds encode nonstructural proteins that catalyze genome replication and viral
57 RNA synthesis, whereas the 3' one-third of the genome encodes the viral structural proteins,
58 including nucleoprotein and the spike (S), envelope, and membrane proteins. The S protein of
59 coronaviruses forms homotrimeric spikes on the virion (**Fig 1A**), which engages cell surface
60 attachment factors and entry receptors (11). Protein cleavage occurs sequentially during the entry
61 process to yield S1 and S2 fragments and is then followed by further processing of S2 to yield a
62 smaller S2' protein (12). The S1 fragment includes the receptor binding domain (RBD), the
63 predominant target of potently neutralizing monoclonal antibodies, while the S2 fragment
64 promotes membrane fusion (13-22).

65 A number of vaccine candidates against coronaviruses, targeting the S protein, have been
66 developed, including DNA plasmid, lipid nanoparticle encapsulated mRNA, inactivated virion, and

67 viral-vectored vaccines (23, 24). For instance, currently approved RNA-based vaccines that target
68 the S protein of SARS-CoV-2 are safe and highly effective (25, 26); however, they suffer from
69 multiple-dose requirements and require strict “cold-chain” conditions that limit vaccine distribution
70 and pose constraints on the infrastructure and healthcare system. Conversely, adenovirus vector
71 vaccines against SARS-CoV-2 can have the advantage of single-dose administration (27), but
72 they are less effective than RNA vaccines and can lead to serious side effects, such as labored
73 breathing, transient neutropenia and lymphopenia, liver damage, and, in rare cases, neuropathies
74 like Bell’s palsy and transverse myelitis (28-30). Furthermore, the success of platforms derived
75 from eukaryotic viruses (e.g., adenoviruses) has been tempered by safety concerns related to
76 pathogenicity, immunogenicity, and toxicity (31). Thus, there continues to be a need for
77 multifaceted, rapidly tunable vaccine platforms that can respond to novel emerging threats,
78 including natural variants, that provide long-term protection, and that are amenable to industrial
79 strategies to afford thermostable, single-shot formulations for efficient distribution in resource-
80 limited settings.

81 Bacteriophage systems have been adapted as therapeutic and diagnostic (theranostic)
82 platforms. In these cases, phage-like particles (PLPs) derived from capsid proteins are utilized as
83 a scaffold for genetic and chemical modification (32, 33). For example, filamentous phages, such
84 as M13 and fd, and icosahedral phages, including P22, T4, AP205, MS2, and lambda, have been
85 used to display imaging reagents (34-36), synthetic polymers (37-39), bioactive peptides and
86 proteins (39-46). PLPs have also been employed as vaccine platforms to display antigens
87 including from *Y. pestis* (42) and *P. falciparum* (43). In these cases, the PLP decoration ligands
88 are engineered using genetic and/or chemical modification of the capsid-associated proteins.

89 The Catalano laboratory has developed a “designer nanoparticle” platform adapted from
90 phage lambda (47). Co-expression of the major capsid and “scaffolding” proteins in *Escherichia*
91 *coli* affords icosahedral PLP shells that can be isolated in high yield. These can then be decorated
92 *in vitro* with the lambda decoration protein (gpD) such that a single particle will display 140 trimeric

93 spikes of gpD (420 total copies) projecting from its surface (48, 49). The decoration protein can
94 be modified genetically to display heterologous peptides and proteins that can be displayed on
95 the PLP surface (39, 50, 51). Additionally, we have engineered a mutant gpD protein that contains
96 a Ser42->Cys mutation (gpD(S42C)), which enables site-specific chemical modification of the
97 decoration protein using maleimide chemistry (**Fig 1B**) (39). Employing our *in vitro* system, PLPs
98 can be independently or simultaneously decorated with genetically and chemically modified
99 decoration proteins in rigorously defined surface densities (39, 46). Notably, the lambda PLP
100 platform has several advantages and unique features that can be harnessed for vaccine
101 development. For example, (i) PLPs can be decorated under defined *in vitro* conditions with
102 biological and synthetic molecules in varying surface densities using genetic and chemical
103 modification strategies; (ii) modification of the particle surface is fast and can be tuned in a user
104 defined manner, thereby streamlining the formulation process; (iii) intact phage and PLP shells
105 are natural adjuvants capable of stimulating the innate immune response (52, 53); (iv) the ability
106 to display antigens in high density can aid in regulating effector function (54); (v) decorated
107 particles are monodisperse, stable, and possess physiochemical properties amenable for
108 pharmaceutical formulation and therapeutic applications (46). Therefore, the lambda system
109 described here allows for substantial flexibility and rigorous control in vaccine design and
110 development, setting the stage for the construction of an “all-in-one” vaccine platform.

111 In this study, we report the development of a monovalent lambda PLP-based vaccine
112 against SARS-CoV-2 (RBD_{SARS}-PLP) or MERS-CoV (RBD_{MERS}-PLP) via decoration with the spike
113 RBD proteins from either virus. Additionally, we engineered bivalent PLPs that co-display spike
114 RBD proteins from both viruses (hCoV-RBDs-PLP) to serve as a bivalent vaccine candidate.
115 Intramuscular administration of RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, and hCoV-RBDs PLPs in mice
116 induce robust and durable humoral immune responses, including the production of neutralizing
117 antibodies. Moreover, immunization also protected mice against lung infection, inflammation, and
118 pathology after virulent SARS-CoV-2 and MERS-CoV challenge.

119

120 **RESULTS**

121 **Design and construction of particles decorated with human coronavirus spike RBD**
122 **proteins.** The lambda designer PLP platform was adapted to display CoV spike RBD proteins
123 using methods established in the Catalano laboratory (39, 46). Purified recombinant spike RBD
124 proteins derived from the SARS-CoV-2 and MERS-CoV isolates Wuhan-Hu-1 and EMC/2012 are
125 referred to as RBD_{SARS} and RBD_{MERS}, respectively, or collectively as hCoV-RBDs. These proteins
126 were crosslinked to the lambda decoration protein mutant, gpD(S42C), following a two-step
127 procedure. First, solvent accessible lysine residues in the hCoV-RBDs were modified with the *N*-
128 hydroxysuccinimide ester groups of the SM(PEG)₂₄ heterobifunctional crosslinker, as depicted in
129 **Fig 1C**; SDS-PAGE analysis reveals an apparent single predominant product for both RBD_{SARS}
130 and RBD_{MERS} (**Fig 2A,D**, respectively, *lanes 4*). Next, the maleimide groups of the crosslinker
131 were reacted with the sole cysteine residue of gpD(S42C) to afford the gpD-RBD_{SARS} and gpD-
132 RBD_{MERS} constructs (**Fig 1C**); SDS-PAGE analysis reveals multiple products in each case (**Fig**
133 **2A,D**, *lanes 5*). The reaction mixtures were fractionated by size exclusion chromatography (SEC)
134 (**Fig 2B,E**), and the fraction containing a single predominant product for each hCoV RBD was
135 isolated and then concentrated for use in all subsequent experiments (*fraction 32, Fig 2C,F*).

136 The purified gpD-RBD constructs were used to decorate PLPs, alone and in
137 combination at defined surface densities, as outlined in **Fig 1D**. Complete particle decoration
138 requires 420 copies of the decoration protein that assemble as trimeric spikes, projecting from
139 the shell surface (see **Fig 1B**); therefore, we define the number of gpD-binding sites occupied as
140 a surface density percentage. For instance, 60% RBD_{SARS}-PLPs denotes particles that are each
141 decorated with 252 copies of gpD-RBD_{SARS} with the remaining sites filled with wildtype (WT) gpD
142 (168 copies). Similarly, 40% hCoV-RBD PLPs are particles that are each decorated with 168
143 copies of gpD-RBD_{SARS}, 168 copies of gpD-RBD_{MERS}, and 84 copies of WT gpD. Analysis of the

144 reaction mixtures by agarose gel electrophoresis (AGE) demonstrated that particles can be
145 decorated in a defined manner with either and both gpD-RBD constructs (**Fig 3A-C**).

146 Decorated particles were purified by SEC (**Fig 3D**) and characterized by multiple
147 approaches. Electron microscopy (EM) confirmed that decorated PLPs retain icosahedral
148 symmetry and are well dispersed. Close inspection of the micrographs revealed that particles
149 decorated with RBD densities greater than 20% are characterized by surface projections whose
150 number increases with increasing surface decoration (**Fig 3E**); we attribute these projections to
151 RBD proteins extending from the particle surface. Physiochemical characterization of PLP
152 preparations by dynamic and electrophoretic light scattering analyses reveal that the mean
153 hydrodynamic diameter of particles decorated with RBDs also increases as a function of RBD
154 surface density and have an overall surface charge that ranges from -12 to -29 mV (**Table 1**). The
155 polydispersity index (PDI) of the decorated particles ranges from (0.156 ± 0.05) to (0.285 ± 0.09) .
156 In sum, these data indicate that these particle preparations have a high degree of homogeneity
157 and are acceptable by pharmaceutical standards.

158 Having confirmed that PLPs can be decorated with varying surface densities of hCoV
159 RBDs, we sought to determine whether the purified gpD-RBD constructs retain their antigenic
160 characteristics following particle decoration. Thus, the antigenicity of RBD_{SARS}-PLPs, RBD_{MERS}-
161 PLPs, and hCoV-RBD-PLPs was assessed using enzyme immunoassays. The data presented in
162 **Figs 3F and 3G** show that PLPs decorated with 20% gpD-RBD_{SARS} and/or 20% gpD-RBD_{MERS}
163 retain antigenic properties, whereas no reactivity was noted for WT PLPs.

164 **Particles decorated with gpD-RBD_{SARS} are immunogenic following one or two**
165 **immunizations.** To assess the immunogenicity of RBD_{SARS} PLPs, 6-week-old BALB/c mice were
166 immunized by intramuscular (i.m.) inoculation with 10 μ g of WT PLPs (control) or 60% RBD_{SARS}-
167 PLPs, followed by administration of a booster dose three weeks later (**Fig 4A**). Serum samples
168 were collected 14 days after the primary or booster immunization (day 35 post-prime) and again
169 at days 63 and 174 post-prime. IgG responses against purified RBD protein were evaluated by

170 ELISA (**Fig 4B**). After a single immunization, 60% RBD_{SARS}-PLPs induced RBD_{SARS}-specific IgG
171 titers comparable to those detected in convalescent samples from SARS-CoV-2 recovered
172 patients (**Fig 4B,C**). At 14 days post-boost (day 35), these responses were elevated 16-fold ($P <$
173 0.001). Importantly, mice immunized with 60% RBD_{SARS}-PLPs maintained high levels of RBD_{SARS}-
174 specific IgG out to day 174 post-prime (**Fig 4B**), indicating that these particles elicit durable
175 humoral immune responses. In contrast, RBD_{SARS}-specific IgG was undetectable in mice
176 immunized with WT PLPs at all time points evaluated (**Fig 4B**). Furthermore, IgG subclass
177 analysis at 14 days post-prime and boost revealed that 60% RBD_{SARS}-PLPs elicit high levels of
178 RBD_{SARS}-specific IgG1, IgG2a, and IgG2b (**Fig 4D**).

179 Additionally, we evaluated serum from immunized animals for the capacity to neutralize
180 SARS-CoV-2 infection using a live virus focus-reduction neutralization test (FRNT). Serum from
181 mice immunized with WT PLPs did not display neutralizing activity (**Fig S1**), whereas serum from
182 mice immunized with 60% RBD_{SARS}-PLPs 14 days post-prime neutralized SARS-CoV-2 infection
183 comparable to the neutralizing activity detected in convalescent samples from SARS-CoV-2
184 recovered patients (**Fig 4E-F**). Neutralizing activity was enhanced 4.7-fold following the booster
185 immunization ($P < 0.05$), and high levels of SARS-CoV-2 neutralizing antibodies were maintained
186 out to day 174 post-prime (**Fig 4E and Fig S1**).

187 **Vaccination with RBD_{SARS}-PLPs protects from virulent SARS-CoV-2 challenge.** We
188 evaluated the protective activity of particles decorated with gpD-RBD_{SARS} using a recently
189 developed mouse-adapted strain of SARS-CoV-2 (SARS-CoV-2 MA10), which productively
190 replicates in the mouse lung and results in clinical manifestations of disease consistent with
191 severe COVID-19 in humans (55). Six-week-old BALB/c mice were immunized i.m. with WT PLPs
192 or 60% RBD_{SARS}-PLPs. At 184 days post-prime, mice were challenged intranasally with
193 10^4 plaque-forming units (PFUs) of SARS-CoV-2 MA10 (**Fig 5**). Mice immunized with WT PLPs
194 rapidly lost weight following SARS-CoV-2 infection, whereas no weight loss was observed in mice
195 immunized with 60% RBD_{SARS}-PLPs (**Fig 5A**). At 4 days post-infection (dpi), mice were

196 euthanized, and lungs were collected for viral burden analysis and histopathology. While high
197 levels of infectious virus were detected in the lungs of mice immunized with WT PLPs, infectious
198 virus was undetectable in the lungs of mice immunized with 60% RBD_{SARS}-PLPs, as determined
199 by plaque assay (**Fig 5B**). Moreover, greatly reduced levels of genomic (**Fig 5C**) and subgenomic
200 (**Fig 5D**) viral RNA were detected in the lungs of mice vaccinated with 60% RBD_{SARS}-PLPs, as
201 compared to those immunized with WT PLPs. Collectively, these data indicate that i.m.
202 immunization with RBD_{SARS}-PLPs elicits durable protection against SARS-CoV-2 lung infection.

203 The effect of immunization with RBD_{SARS}-PLPs on lung inflammation and disease also was
204 assessed by analyzing lung tissue for histopathological changes. Mice immunized with WT PLPs
205 and challenged with SARS-CoV-2 MA10 had an abundant accumulation of immune cells in
206 perivascular and alveolar locations, vascular congestion, and interstitial edema (**Fig 5E**).
207 Conversely, immunization with 60% RBD_{SARS}-PLPs resulted in a marked reduction of lung-
208 associated histopathological changes (**Fig 5E**), indicative of protection against SARS-CoV-2
209 induced lung inflammation and injury.

210 **Low doses of RBD_{SARS}-PLPs remain immunogenic and protect from virulent SARS-
211 CoV-2 challenge.** We next evaluated the immunogenicity and protective efficacy of de-escalating
212 doses of particles decorated with gpD-RBD_{SARS}. Six-week-old BALB/c mice were immunized by
213 i.m. injection with 2.5, 1.0, or 0.25 µg of 60% RBD_{SARS}-PLPs and received a booster dose of the
214 same amount three weeks later. Control mice received two i.m. injections of 2.5 µg of WT PLPs,
215 following the same immunization schedule. Serum samples were collected on days 14, 35 (14
216 days post-boost), 63, and 84 post-prime, and IgG responses against purified RBD protein were
217 evaluated by ELISA. At 14 days, little response was observed in mice immunized with a single
218 injection of 0.25 µg of 60% RBD_{SARS}-PLPs, and no response was detected in control mice (**Fig
219 6A**). In contrast, mice immunized with 2.5 or 1.0 µg of 60% RBD_{SARS}-PLPs had detectable levels
220 of RBD_{SARS}-specific IgG which were comparable to mice immunized with a 10 µg dose (compare
221 **Figs 4B and 6A**), and to RBD_{SARS}-specific IgG detected in convalescent samples from SARS-

222 CoV-2 recovered patients (**Fig 4C**). At 14 days post-boost (day 35 post-prime), RBD_{SARS}-specific
223 IgG responses were elevated in mice that received all doses of 60% RBD_{SARS}-PLPs, although
224 lower responses were observed for mice immunized with 0.25 µg (**Fig 6A**). Additionally, mice
225 immunized with all doses maintained high levels of RBD_{SARS}-specific IgG up to 84 days post-prime
226 (**Fig 6A**).

227 We also evaluated serum from this dose de-escalation study for the capacity to neutralize
228 SARS-CoV-2 infection (**Fig 6B and Fig S2**). Serum from mice immunized with WT PLPs did not
229 display neutralizing activity (**Fig S2**). While day 14 post-prime serum from mice immunized with
230 all doses of 60% RBD_{SARS}-PLPs displayed little to no neutralizing activity, day 35 (14 days post-
231 boost) serum from mice immunized with 2.5 or 1.0 µg of 60% RBD_{SARS}-PLPs displayed potent
232 neutralizing activity that was maintained up to 84 days post-prime (**Fig 6B**). Despite detectable
233 levels of RBD_{SARS}-specific IgG, immunization with 0.25 µg of 60% RBD_{SARS} PLPs did not result in
234 neutralizing activity at any of the time points evaluated (**Fig 6B**).

235 Mice immunized with de-escalating doses of 60% RBD_{SARS} PLPs were challenged with
236 10⁴ PFU of SARS-CoV-2 MA10 at day 90 post-prime. Compared to control mice, mice immunized
237 with all doses (including 0.25 µg) of 60% RBD_{SARS} PLPs were protected from weight loss
238 associated with SARS-CoV-2 infection (**Fig 6C**). At 4 dpi, lungs were collected and assessed for
239 viral burden. Immunization with 2.5 or 1.0 µg of 60% RBD_{SARS}-PLPs resulted in potent protection
240 against viral infection (**Fig 6D**) and reduced levels of viral genomic and subgenomic RNA (**Fig**
241 **6E,F**) in the lungs. Furthermore, histopathological analysis of lung tissues of mice immunized at
242 these doses showed minimal perivascular and alveolar infiltrates at 4 dpi, whereas those of
243 control mice were characterized by extensive inflammation (**Fig 6G**). Mice immunized with 0.25
244 µg of 60% RBD_{SARS} PLPs had levels of infectious virus and viral RNA in the lungs similar to those
245 in control mice (**Fig 6D-F**), consistent with an inability to neutralize SARS-CoV-2 infection (**Fig**
246 **6B**). Additionally, these mice displayed more severe lung inflammation and injury versus those
247 immunized with higher doses. Overall, the data indicate that neutralizing antibodies are essential

248 for protection against SARS-CoV-2 infection and suggest that additional adaptive immune
249 response elicited by vaccination with RBD_{SARS}-PLPs may contribute to protection against severe
250 disease characterized by more extensive weight loss, such as the generation of memory T cells.

251 **Vaccination with mosaic hCoV-PLPs protects from virulent SARS-CoV-2 and MERS-**

252 **CoV challenge.** As described above, PLPs can be decorated with multiple hCoV RBDs at varying
253 surface densities to generate mosaic PLPs. Thus, we evaluated the immunogenicity and
254 protective efficacy of particles simultaneously decorated with gpD-RBD_{SARS} and gpD-RBD_{MERS} in
255 comparison with their mono-RBD decorated counterparts (**Fig 7**). Six-week-old BALB/c mice were
256 immunized by i.m. injection with 7.5 µg of WT PLPs, 20% RBD_{SARS}-PLPs, 20% RBD_{MERS}-PLPs,
257 or 20% hCoV-RBD-PLPs (note, 20% of each of gpD-RBD_{SARS} and gpD-RBD_{MERS}). Mice received
258 a booster dose of the same amount three weeks later. Serum samples were collected on days
259 14, 35 (14 days post-boost), and 96 post-prime, and IgG responses against purified SARS-CoV-
260 2 and MERS-CoV RBD protein were evaluated by ELISA. At each time point evaluated, mice
261 immunized with the bi-valent 20% hCoV-RBD-PLPs had similar levels of RBD_{SARS}- and RBD_{MERS}-
262 specific IgG as mice immunized with the mono-valent 20% RBD_{SARS}-PLPs or 20% RBD_{MERS}-PLPs
263 (**Fig 7A, 7B**). In addition, immunization with 20% hCoV-RBD-PLPs induced potent neutralizing
264 antibody responses against both SARS-CoV-2 (**Fig 7C**) and MERS-CoV (**Fig 7D**). We note,
265 however, that neutralizing titers against MERS-CoV were somewhat lower in mice immunized
266 with the bi-valent vaccine compare with the mono-valent MERS vaccine (**Fig 7D**).

267 Next, these mice were challenged with 10⁴ PFU of SARS-CoV-2 MA10 or 10⁵ PFU MERS-
268 CoV at day 102 post-prime. Five days prior to MERS-CoV challenge, mice were i.n. inoculated
269 with Ad-hDPP4 to deliver the MERS-CoV cell entry receptor to lung cells (56, 57). Compared with
270 control mice, mice immunized with either RBD_{SARS}-PLPs or hCoV-PLPs were protected from
271 weight loss (**Fig 7E**) and lung viral burden (**Fig 7F**) associated with SARS-CoV-2 infection.
272 Similarly, mice immunized with either RBD_{MERS}-PLPs or hCoV-PLPs were protected from weight
273 loss (**Fig 7G**) and lung viral burden (**Fig 7H**) associated with MERS-CoV infection.

274

275 **DISCUSSION**

276 Numerous vaccine strategies and platforms have been developed for current and
277 emerging infectious diseases, and several studies support the use of CoV RBDs as vaccine
278 immunogens. For instance, the SARS-CoV-2 RBD is immunodominant, contains multiple
279 antigenic sites, and is the overwhelming target of neutralizing activity in COVID-19 convalescent
280 plasma (58). In addition, passive administration of monoclonal antibodies that target the RBD of
281 SARS-CoV-2 and other pathogenic CoVs protects rodents, ferrets, and non-human primates from
282 severe CoV infection (14, 59-68), indicating that the generation of RBD-specific antibodies is an
283 advantageous therapeutic strategy. Moreover, the RBD is a target of cross-neutralizing antibodies
284 (58, 69), and immunization with SARS-CoV-2 RBD functionalized nanoparticles can elicit cross-
285 neutralizing antibodies against a number of SARS-related CoVs (70). Nevertheless and despite
286 significant advancements in diagnostic and therapeutic countermeasures, continued vaccine
287 development efforts are warranted, especially for viruses that pose a threat to global public health
288 or to provide broad protection against multiple viruses.

289 In this study, we designed and constructed lambda PLPs decorated with the RBDs from
290 extant highly pathogenic human CoVs (i.e., SARS-CoV-2, MERS-CoV) as a tunable, multivalent
291 vaccine platform. The platform allows for symmetrical, high-density display of multiple target
292 antigens, thereby enhancing the stimulation of host immune responses. Properties of decorated
293 PLPs present several advantages for use as an effective vaccine delivery vehicle, including (i) a
294 particle size less than 200 nm, enabling entry into the lymphatic system (71) where adaptive
295 immune responses are initiated; (ii) additional physiochemical properties such as surface charge,
296 exposure of functional group, and hydrophobicity are easily manipulated by both genetic and
297 chemical approaches; and (iii) simultaneous delivery of foreign molecules can be achieved on a
298 single PLP. Further, we found no adverse effects due to immunization with phage lambda
299 particles by intramuscular routes in mice even after repeated doses or after challenge (i.e., no

300 evidence of vaccine-enhanced disease), indicating a favorable safety profile for future *in vivo*
301 testing.

302 We demonstrate that mono and mosaic hCoV-RBD decorated particles induce RBD-
303 specific binding and virus neutralizing antibodies after one and two doses. Notably, these
304 responses remained highly elevated up to 6 months post-prime, indicating that the vaccine
305 platform can stimulate robust and durable immune responses. Additionally, immunized mice were
306 protected against virulent virus challenge (up to day 184 post-prime for SARS-CoV-2 and day 102
307 for MERS-CoV) as indicated by significantly reduced virus-induced weight loss, a marked
308 reduction in lung-associated inflammation and injury, and lower titers of infectious virus in the
309 lungs paired with diminished levels of viral genomic and subgenomic RNA. Consistent with
310 published studies (70), PLPs decorated with the SARS-CoV-2 RBD alone do not elicit IgG that
311 binds the MERS-CoV RBD or antibodies that neutralize MERS-CoV infection. In contrast, those
312 simultaneously decorated with the SARS-CoV-2 and MERS-CoV RBD proteins induce strong
313 immune responses against both pathogenic viruses. This supports that co-displaying multiple
314 antigens on the same particle is an effective means of broadening immune responses elicited by
315 our vaccine platform, and that the presence of multiple antigens do not interfere with each other.

316 A number of nanoparticles and antigen coupling strategies have been evaluated for
317 vaccine design (72). These include nanoparticles based on the SpyCatcher-SpyTag system which
318 can be used to conjugate antigens to self-assembling protein nanoparticles (73-75), the Novavax
319 vaccine (76), and other phage systems (77). Most often, these immunization studies involve the
320 use of large amounts of antigen (e.g., 50-100 µg/dose), up to 4 immunizations, formulation with
321 an adjuvant (e.g., AddaVax), and vaccine administration routes not amenable to humans (e.g.,
322 intraperitoneal) (75, 78). Our dose response studies show that immunization with as little as one
323 microgram of 60% RBD_{SARS}-PLPs elicited robust neutralizing antibody responses and conferred
324 protection against SARS-CoV-2 challenge. These data suggest that PLP-based vaccines
325 facilitate dose sparing immunization practices which, from both manufacturing and distribution

326 perspectives, enhances their utility as a vaccine platform. Further studies will be necessary to test
327 protective efficacy following immunization in a dose-dependent manner or through alternative
328 routes.

329 While we did not define the epitopes targeted, the anti-SARS-CoV-2 monoclonal antibody
330 used in the enzyme immunoassays binds to a conserved epitope in the RBD that is only
331 accessible when the S protein is in conformation competent to bind the hACE2 receptor (79, 80).
332 Additionally, RBD-specific IgG subclass responses were assessed; however, further
333 characterization of the potential role of these in vaccine-mediated protection was not determined.
334 Considering the implications these may have to the development of safe vaccines (e.g., clinical
335 syndromes associated with vaccine-enhanced disease) (81), additional studies are needed to
336 examine the possible impacts to cellular effector function and evaluate mucosal and cellular
337 immunity in addition to immunity against variants of SARS-CoV-2 and MERS-CoV.

338 In summary, the versatility and robustness of the lambda system presented provides a
339 promising vaccine candidate. Immunization with hCoV-RBD decorated PLPs induces antibodies
340 with neutralizing activity, results in a durable immune response, and provides effective protection
341 against virulent virus challenge. Continued efforts into the optimization of this platform could
342 expand the diversity of protein-based vaccine technologies available and aid in the prevention of
343 infectious diseases deleterious to global health.

344

345 METHODS

346 **Purification of lambda PLPs.** Lambda PLPs were expressed in *E. coli*
347 BL21(DE3)[pNu3_E] cells and purified, as described (46). Briefly, self-assembled PLPs were
348 extracted from cell lysates in 20 mM Tris [pH 8.0, 4°C] buffer containing 0.4 mg/mL lysozyme and
349 0.04 mg/mL DNase. Following rate zonal centrifugation (10–40% sucrose density gradient), PLPs
350 were collected, concentrated, and exchanged into 20 mM Tris [pH 8.0, 4°C] buffer containing 15
351 mM MgCl₂, 1 mM EDTA, and 7 mM β-ME using centrifugal filter units (100k MWCO; Millipore

352 Amicon Ultra). Proteins were fractionated by anion exchange chromatography employing three 5
353 mL HiTrap Q HP columns connected in tandem and developed with a 30-column volume linear
354 gradient to 1 M NaCl. The eluate was analyzed by SDS-PAGE, and PLP-containing fractions were
355 pooled and exchanged into 50 mM HEPES [pH 7.4] buffer containing 100 mM NaCl and 10 mM
356 MgCl₂ prior to storage at 4 °C.

357 **Purification of lambda decoration proteins.** WT and gpD(S42C) decoration proteins
358 were expressed in *E. coli* BL21(DE3)[pD] and BL21(DE3)[pDS542C] cells, respectively, and
359 purified, as described (46). Briefly, cell lysate supernatants were dialyzed overnight against 20
360 mM Tris [pH8.0, 4 °C] buffer containing 20 mM NaCl and 0.1 mM EDTA. Proteins were
361 fractionated employing three 5 mL HiTrap Q HP columns connected in tandem and developed
362 with a 30-column volume linear gradient to 1 M NaCl. Fractions containing decoration protein
363 were pooled, exchanged into 50 mM NaOAc [pH 4.8] buffer using centrifugal filter units (3k
364 MWCO; Millipore Amicon Ultra), and loaded onto three 5 mL HiTrap SP columns connected in
365 tandem. Bound proteins were eluted with a 30-column volume linear gradient to 0.5 M NaCl, and
366 fractions containing decoration protein were pooled and dialyzed overnight against 20 mM Tris
367 [pH 8.0, 4 °C] buffer containing 20 mM NaCl and 0.1 mM EDTA for storage at 4°C. For long-term
368 storage at -80°C, aliquots of purified protein were supplemented with 20% glycerol.

369 **Purification of recombinant hCoV RBD proteins.** A pCAGGS expression vector
370 encoding the SARS-CoV-2 spike RBD was obtained from Dr. Florian Krammer, Icahn School of
371 Medicine at Mount Sinai (82). This construct contains sequences encoding the native signal
372 peptide (residues 1–14) followed by residues 319–541 from the SARS-CoV-2 Wuhan-Hu-1 spike
373 protein (GenBank MN908947.3) and a hexa-histidine tag at the C-terminus for purification. A
374 pTwist-CMV expression vector (Twist Biosciences Technology) encoding the MERS-CoV spike
375 RBD was kindly provided by Dr. Peter S. Kim, Stanford University (83). This construct contains
376 sequences encoding an N-terminal human IL-2 signal peptide following by residues 367-588 from
377 the MERS-CoV EMC/2012 spike RBD (GenBank JX86905.2) and dual C-terminal tags (octa-

378 histidine, AviTag) for purification. Recombinant protein expression and purification was performed
379 by the University of Colorado Cancer Center Cell Technologies Shared Resource. Due to the
380 involvement of glycans in the epitopes of some neutralizing antibodies (62, 84), RBDs were
381 expressed in Expi293F cells to retain normal glycosylation and antigenic properties. Expi293F
382 cells were transfected with plasmid DNA using ExpiFectamine transfection reagent
383 (ThermoFisher Scientific). At 72 h post-transfection, cell culture supernatants were centrifuged
384 (4,000 x g) for 20 min and filtered (0.2 micron). Recombinant proteins were purified by Ni-NTA
385 column chromatography using an ATKA purification system. Protein was eluted with 500 mM
386 imidazole and concentrated before assessing protein purity by SDS-PAGE and Coomassie
387 staining.

388 **Crosslinking of lambda decoration protein (gpD(S42C)) to hCoV RBDs.** SARS-CoV-
389 2 or MERS-CoV RBD protein was exchanged into 0.01 M PBS [pH 7.2] buffer using centrifugal
390 filter units (10k MWCO; Millipore Amicon Ultra). A 5-fold molar excess of SM(PEG)₂₄ (PEGylated,
391 long-chain sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate crosslinker;
392 ThermoFisher Scientific) was added, and the mixture was incubated (30 min, 25°C) for
393 modification of solvent accessible primary amines. Reduced gpD(S42C) was added to the mixture
394 (1:1, molar equivalent) and incubated (1 h, 25°C) to yield the crosslinked products (gpD-RBD_{SARS},
395 gpD-RBD_{MERS}). The reaction was quenched with the addition of 0.2% β-ME (30 min, 25°C), and
396 crosslinked proteins were purified by size-exclusion chromatography employing a 24 mL
397 Superose 6 Increase 10/300 GL column equilibrated and developed with 40 mM HEPES [pH 7.4]
398 buffer containing 150 mM NaCl, 200 mM arginine, 0.1 mM EDTA, and 2 mM β-ME. Fractions
399 containing cross-linked proteins were identified by SDS-PAGE and were pooled. The purified
400 proteins were exchanged into 20 mM Tris [pH 8.0, 4°C] buffer containing 20 mM NaCl and
401 0.1 mM EDTA for storage at 4°C. Protein concentration was quantified spectrophotically.

402 ***In vitro* PLP expansion and decoration.** PLPs were expanded and subsequently
403 decorated *in vitro*, as described (46). Briefly, purified PLPs were expanded in 10 mM HEPES [pH

404 7.4] buffer containing 2.5 M urea for 30 min on ice and then exchanged into 10 mM HEPES [pH
405 7.4] buffer containing 200 mM urea using centrifugal filter units (100k MWCO; Millipore Amicon
406 Ultra). Expanded shells (30 nM) were decorated in a stepwise fashion with modified and WT
407 decoration protein at 25°C in 10 mM HEPES [pH 7.4] buffer containing 50 mM urea, 10 mM
408 arginine, and 0.1% Tween 20. Proteins were added in the following order: (1) gpD-RBD_{SARS} (0.69-
409 8.33 μ M final concentration, 30 min incubation); (2) gpD-RBD_{MERS} (1.39-8.33 μ M, 30 min
410 incubation); (3) wildtype gpD (5.55–13.19 μ M, 60 min incubation). Decorated PLPs were purified
411 by size-exclusion chromatography employing a 24 mL Superose 6 Increase 10/300 GL column
412 equilibrated and developed with 100 mM HEPES [pH 6.6] buffer containing 200 mM NaCl, 200
413 mM arginine, 1 mM EDTA, and 2 mM β -ME at a flow rate of 0.3 mL/min. Fractions containing
414 decorated PLPs were pooled and exchanged into 50 mM HEPES [pH 7.4] buffer containing 100
415 mM NaCl and 10 mM MgCl₂ for storage at 4°C.

416 **Transmission Electron Microscopy.** Carbon-coated copper grids (400 mesh; CF400-
417 CU) were glow-discharged using a Pelco EasiGlo system (Ted Pella, Inc.; Redding, CA, USA)
418 with a plasma current of 15 mA, negative glow discharge head polarity, glow discharge duration
419 of one minute, and held under vacuum for 15 seconds. PLP preparations were diluted to 10 nM
420 using water (sterile, double distilled) and spotted twice onto grids. Following sample adsorption
421 (20 s), excess liquid was wicked off using a Whatman #1 filter paper. Grids were washed using
422 water, and excess liquid was wicked off. Samples were negatively stained (20–25 s) with filtered
423 2% (w/v) methylamine tungstate [pH 6.7] and 50 μ g/mL bacitracin (0.2 μ m Nucleopore
424 polycarbonate syringe filters). Excess stain was wicked off, and grids were allowed to air-dry for
425 at least one hour before transferring to a grid storage box. Samples were maintained covered
426 throughout this procedure and stored at room temperature until imaged. Images were acquired
427 on a FEI Tecnai G2 transmission electron microscope at an accelerating voltage of 80 kV and
428 equipped with a 2k \times 2k CCD camera. Images were processed in Fiji (85) and measurements
429 were based on 100 particles with values reported as mean \pm standard deviation.

430 **Particle size and charge measurements.** Decorated particles were diluted to 2 nM (55-
431 700 µL) using 10 mM HEPES [pH 7.4] for dynamic light scattering (DLS) and electrophoretic light
432 scattering (ELS) analyses. Particle size and charge measurements were acquired on a Malvern
433 Panalytical Zetasizer Nano ZS (He-Ne laser 633 nm light source; 5 mW maximum power). Size
434 information obtained from the correlation function was based on hydrodynamic diameter
435 (weighted mean reported as Z-average, Z-Ave) and particle size distributions (intensity, volume
436 PSD) with polydispersity index (PDI) values provided to serve as an estimate of the width of the
437 distributions. Overall surface charge was reported as zeta potential [mV]. Successive sample
438 measurements were done in quadruplicate with values reported as mean ± standard deviation.

439 **Virus and cells.** Vero E6 (CRL-1586, American Type Culture Collection (ATCC)) were
440 cultured at 37°C in Dulbecco's Modified Eagle medium (DMEM, HyClone 11965-084)
441 supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES [pH 7.3], 1 mM sodium
442 pyruvate, 1X non-essential amino acids, and 100 U/ml of penicillin-streptomycin. SARS-CoV-2
443 strain 2019 n-CoV/USA_WA1/2020 was obtained from BEI Resources. The virus was passaged
444 once in Vero E6 cells and titrated by focus formation assay (FFA) on Vero E6 cells. The mouse-
445 adapted SARS-CoV-2 strain MA10 (kindly provided by R. Baric, University of North Carolina at
446 Chapel Hill) elicits disease signs in laboratory mice similar to severe COVID-19 (55) was used for
447 all challenge studies. All work with infectious SARS-CoV-2 and MERS-CoV was performed in
448 Institutional Biosafety Committee approved BSL3 and A-BSL3 facilities at the University of
449 Colorado School of Medicine and University of Maryland School of Medicine using positive
450 pressure air respirators and other personal protective equipment.

451 **Mouse experiments.** Animal studies were carried out in accordance with the
452 recommendations in the Guide for the Care and Use of Laboratory Animals of the National
453 Institutes of Health. The protocols were approved by the Institutional Animal Care and Use
454 Committees at the University of Colorado School of Medicine (Assurance Number A3269-01) and
455 the University of Maryland School of Medicine (Assurance number D16-00125 (A3200-01)).

456 Female BALB/c mice were purchased from The Jackson Laboratory. 6-8-week-old mice were
457 immunized with WT PLPs (control), RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, or hCoV-RBD PLPs
458 preparations in 50 μ l PBS via i.m. injection in the hind leg. Mice were boosted three weeks after
459 the primary immunization using the same route. For virulent virus challenge, mice were
460 anaesthetized by intraperitoneal injection with 50 μ L of a mix of xylazine (0.38 mg/mouse) and
461 ketamine hydrochloride (1.3 mg/mouse) diluted in PBS. Immunized BALB/c mice were inoculated
462 intranasally (i.n.) with 10^4 PFU of SARS-CoV-2 MA10. For MERS-CoV challenge, immunized
463 mice were first inoculated i.n. with 2.5×10^8 PFU of a replication incompetent adenovirus vector
464 to deliver human DPP4 (Ad5-hDPP4) into the lungs of mice (57). Five days later, mice were
465 inoculated i.n. with 10^5 PFU of MERS-CoV (Jordan strain). All mice were weighed and monitored
466 for additional disease signs daily. At 4 days post-inoculation (dpi), animals were euthanized by
467 bilateral thoracotomy and tissues were collected for virological, immunological, and pathological
468 analyses.

469 **ELISA.** SARS-CoV-2 and MERS-CoV RBD-specific antibody responses in mouse and
470 human sera were measured by ELISA. Immunol 4HBX plates were coated with 0.2 μ g of
471 recombinant SARS-CoV-2 RBD protein (Wuhan-Hu-1, GenPept QHD43416) or MERS-CoV RBD
472 protein overnight at 4°C. Coating antigen was removed, and plates were blocked with 200 μ l of
473 3% non-fat milk in PBS/0.1% Tween-20 (PBS-T) for one hour at room temperature. After blocking,
474 wells were washed once with PBS-T and then probed with serum samples diluted in PBS-T
475 supplemented with 1% non-fat milk for 1.5 h. Samples were removed, and wells were washed
476 three times with PBS-T and probed with secondary antibodies diluted at 1:4000 in PBS-T; goat
477 anti-mouse IgG-HRP (Southern Biotech, 1030-05), goat anti-human IgG Fc-HRP (Southern
478 Biotech, 2014-05), goat anti-mouse IgG1-BIOT (Southern Biotech, 1071-08), goat anti-mouse
479 IgG_{2a} Human ads-BIOT (Southern Biotech, 1080-08), goat anti-mouse IgG_{2b}-BIOT (Southern
480 Biotech, 1091-08), goat anti-mouse IgG₃ human ads-BIOT (Southern Biotech, 1100-08).
481 Biotinylated antibodies were subsequently probed with streptavidin-HRP (Southern Biotech,

482 7100-05). Detection antibody was removed, and wells were washed three times with PBS-T.
483 Plates were developed using 3,3',5,5'-tetramethylbenzidine (TMB; Sigma, T0440), followed by
484 the addition of 0.3 M H₂SO₄. Plate absorbance was read at 450 nm on a Tecan Infinite M plex
485 plate reader. Endpoint titers are reported as the reciprocal of the final dilution, in which
486 absorbance at 450 nm was above the blank average plus three times the standard deviation of
487 all blanks in the assay. The immunoreactivity of RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, and hCoV-RBD
488 PLPs was measured in a similar manner. In this case, plates were coated with 0.2 µg of WT PLPs
489 or RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, and hCoV-RBD PLPs overnight at 4°C. Following blocking and
490 washing, wells were incubated for 1.5 h at room temperature with either chimeric human anti-
491 SARS-CoV spike antibody clone CR3022 (Absolute Antibody, Ab01680) or mouse anti-MERS-
492 CoV spike antibody clone D12 (Absolute Antibody, Ab00696) prepared in a 2-fold dilution series
493 in PBS-T with a starting dilution of 1:200 and signal was developed as described above.

494 **SARS-CoV-2 focus reduction neutralization test (FRNT).** Vero E6 cells were seeded
495 in 96-well plates at 10⁴ cells/well. The next day serum samples were heat-inactivated at 56°C for
496 30 minutes and then serially diluted (2-fold, starting at 1:10) in DMEM (HyClone, 11965-084) plus
497 1% FBS in 96-well plates. Approximately 100 focus-forming units (FFU) of SARS-CoV-2 USA-
498 WA1/2020 were added to each well and the serum plus virus mixture was incubated for 1 h at
499 37°C. Following co-incubation, medium was removed from cells and the serum sample plus virus
500 mixture was added to the cells for 1 h 37°C. Samples were then removed and cells overlaid with
501 1% methylcellulose (MilliporeSigma, M0512) in minimum essential media (MEM) (Gibco, 12000-
502 063) plus 2% FBS and incubated for 24 hours at 37°C. Cells were fixed with 1% paraformaldehyde
503 (PFA; Acros Organics, 416780030) and probed with 1 µg/mL of chimeric human anti-SARS-CoV
504 spike antibody (CR3022, Absolute Antibody, Ab01680) in Perm Wash (1X PBS/0.1%
505 saponin/0.1% BSA) for 2 h at room temperature. After three washes with PBS-T, cells were
506 incubated with goat anti-human IgG Fc-HRP (Southern Biotech, 2014-05) diluted at 1:1000 in

507 Perm Wash for 1.5 h at room temperature. SARS-CoV-2-positive foci were visualized with
508 TrueBlue substrate (SeraCare, 5510-0030) and counted using a CTL Biospot analyzer and
509 Biospot software (Cellular Technology Ltd, Shaker Heights, OH). The FRNT₅₀ titers were
510 calculated relative to a virus only control (no serum) set at 100%, using GraphPad Prism 9.1.2
511 (La Jolla, CA) default nonlinear curve fit constrained between 0 and 100%.

512 **MERS-CoV neutralization assay.** To determine the inhibitory activity of mouse sera
513 against MERS-CoV, 3,950 TCID₅₀/ml of MERS-CoV-Jordan was incubated with diluted sera for
514 30 minutes at room temperature and the inhibitory capacity of each serum dilution was assessed
515 by TCID₅₀ assay as previously described (56, 86).

516 **Quantification of SARS-CoV-2 genomic and subgenomic RNA.** To quantify viral
517 genomic and subgenomic RNA, lung tissue of mice challenged with SARS-CoV-2 was
518 homogenized in TRIzol reagent (Life Technologies, 15596018) and total RNA was isolated using
519 a PureLink RNA Mini kit (Life Technologies, 12183025). Single-stranded cDNA was generated
520 using random primers and SuperScript IV reverse transcriptase (Life Technologies, 18091050).
521 SARS-CoV-2 genomic or subgenomic RNA copies were measured by qPCR using the primer and
522 probe combinations listed in **Table S1** (Integrated DNA Technologies). To quantify SARS-CoV-2
523 genomic RNA, we extrapolated viral RNA levels from a standard curve generated from known
524 FFU of SARS-CoV-2 from which RNA was isolated and cDNA generated as previously described
525 (87). To quantify SARS-CoV-2 subgenomic RNA, we extrapolated viral RNA levels from a
526 standard curve using defined concentrations of a plasmid containing an amplified SARS-CoV-2
527 subgenomic fragment (pCR-sgN TOPO). Briefly, a subgenomic RNA fragment was amplified by
528 RT-PCR using RNA isolated from SARS-CoV-2-infected Vero E6 cells. The 125 bp amplicon is
529 composed of the joining region between the 3' UTR and the N gene, with inclusion of a
530 transcription-regulatory sequence (TRS) of the SARS-CoV-2 Wuhan-Hu-1 (NC_045512.2). This
531 amplicon was cloned into the pCR4 Blunt TOPO vector (Invitrogen, K2875J10), sequence
532 confirmed, and used in a dilution series of defined gene copies. All qPCR reactions were prepared

533 with Taqman Universal MasterMix II (Applied Biosystems, 4440038) and were analyzed with
534 Applied Biosystems QuantStudio ViiA 7 analyzer.

535 **Plaque assay.** Vero E6 cells were seeded in 12-well plates one day prior to virus
536 inoculation. Lung homogenates were serially diluted in DMEM supplemented with 2% FBS,
537 HEPES, and penicillin-streptomycin and incubated on cells for one hour at 37°C. Afterwards, cells
538 were overlaid with 1% (w/v) methylcellulose in MEM plus 2% FBS and incubated at 37°C. At 3
539 dpi, overlays were removed, and plates were fixed with 4% PFA for 20 minutes at room
540 temperature. After removal of PFA, plates were stained with 0.05% (w/v) crystal violet in 20%
541 methanol (10-20 min). Crystal violet was removed, and plates were rinsed with water or PBS.
542 Plaques were counted manually to determine infectious virus titer.

543 **Histopathology.** Mice were euthanized at 4 days following SARS-CoV-2 MA10 or MERS-
544 CoV challenge. The lungs were removed and fixed with 10% formalin. 5-micron sections were
545 stained with H&E for histological examination. Slides were examined in a blinded fashion for total
546 inflammation, periafteriolar, and peribronchiolar inflammation and epithelial cell denuding.

547 **Statistical Analysis.** Statistical significance was assigned when *P* values were < 0.05
548 using Prism Version 9.1.2 (GraphPad). Tests, number of animals (n), median values, and
549 statistical comparison groups are indicated in the Figure Legends.

550

551 **ACKNOWLEDGEMENTS**

552 The authors gratefully acknowledge Florian Krammer and Peter S. Kim for providing the
553 expression vectors for the SARS-CoV-2 spike RBD and MERS-CoV spike RBD proteins,
554 respectively. We thank Ralph S. Baric for providing the mouse-adapted SARS-CoV-2 strain MA10

555 The research reported herein was supported by the NSF #GRFP1553798 (A.C.) and
556 #MCB2016019 (C.E.C.) as well as funds from the University of Colorado School of Medicine.

557

558 **AUTHOR CONTRIBUTIONS**

559 B.J.D., A.C., M.B.F., C.E.C., and T.E.M. designed the experiments. B.J.D., A.C., S.W.,
560 and R.J. performed the experiments. B.J.D., A.C., S.W., R.J., M.B.F., C.E.C., and T.E.M.
561 performed data analysis. B.J.D., A.C., C.E.C., and T.E.M. wrote the initial draft of the manuscript.
562 All authors provided comments and edits to the final version.

563

564 REFERENCES

565 1. N. Zhu *et al.*, A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N Engl*
566 *J Med* **382**, 727-733 (2020).

567 2. F. Wu *et al.*, A new coronavirus associated with human respiratory disease in China. *Nature* **579**, 265-269 (2020).

568 3. V. Coronaviridae Study Group of the International Committee on Taxonomy of, The
569 species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV
570 and naming it SARS-CoV-2. *Nat Microbiol* **5**, 536-544 (2020).

571 4. K. R. Stenmark *et al.*, Mechanisms of SARS-CoV-2-induced lung vascular disease:
572 potential role of complement. *Pulm Circ* **11**, 20458940211015799 (2021).

573 5. N. Stefan, A. L. Birkenfeld, M. B. Schulze, Global pandemics interconnected - obesity,
574 impaired metabolic health and COVID-19. *Nat Rev Endocrinol*, (2021).

575 6. Z. A. Memish, S. Perlman, M. D. Van Kerkhove, A. Zumla, Middle East respiratory
576 syndrome. *Lancet* **395**, 1063-1077 (2020).

577 7. A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, R. A. Fouchier, Isolation
578 of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N Engl J Med* **367**,
579 1814-1820 (2012).

580 8. E. Petersen, D. S. Hui, S. Perlman, A. Zumla, Middle East Respiratory Syndrome -
581 advancing the public health and research agenda on MERS - lessons from the South
582 Korea outbreak. *Int J Infect Dis* **36**, 54-55 (2015).

583 9. M. S. Majumder, C. Rivers, E. Lofgren, D. Fisman, Estimation of MERS-CoV
584 Reproductive Number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak:
585 Insights from Publicly Available Data. *PLoS Curr* **6**, (2014).

586 10. P. V'Kovski, A. Kratzel, S. Steiner, H. Stalder, V. Thiel, Coronavirus biology and
587 replication: implications for SARS-CoV-2. *Nat Rev Microbiol* **19**, 155-170 (2021).

588 11. F. Li, Structure, Function, and Evolution of Coronavirus Spike Proteins. *Annu Rev Virol* **3**,
589 237-261 (2016).

590 12. M. Hoffmann *et al.*, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
591 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280 e278 (2020).

592 13. B. Ju *et al.*, Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* **584**,
593 115-119 (2020).

594 14. S. J. Zost *et al.*, Potently neutralizing and protective human antibodies against SARS-
595 CoV-2. *Nature* **584**, 443-449 (2020).

596 15. L. Premkumar *et al.*, The receptor binding domain of the viral spike protein is an
597 immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. *Sci
598 Immunol* **5**, (2020).

599 16. L. Liu *et al.*, Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2
600 spike. *Nature* **584**, 450-456 (2020).

601 17. J. Hansen *et al.*, Studies in humanized mice and convalescent humans yield a SARS-
602 CoV-2 antibody cocktail. *Science* **369**, 1010-1014 (2020).

604 18. Y. Li *et al.*, A humanized neutralizing antibody against MERS-CoV targeting the receptor-
605 binding domain of the spike protein. *Cell Res* **25**, 1237-1249 (2015).

606 19. X. C. Tang *et al.*, Identification of human neutralizing antibodies against MERS-CoV and
607 their role in virus adaptive evolution. *Proc Natl Acad Sci U S A* **111**, E2018-2026 (2014).

608 20. L. Jiang *et al.*, Potent neutralization of MERS-CoV by human neutralizing monoclonal
609 antibodies to the viral spike glycoprotein. *Sci Transl Med* **6**, 234ra259 (2014).

610 21. K. E. Pascal *et al.*, Pre- and postexposure efficacy of fully human antibodies against Spike
611 protein in a novel humanized mouse model of MERS-CoV infection. *Proc Natl Acad Sci U*
612 *S A* **112**, 8738-8743 (2015).

613 22. L. Du *et al.*, Identification of a receptor-binding domain in the S protein of the novel human
614 coronavirus Middle East respiratory syndrome coronavirus as an essential target for
615 vaccine development. *J Virol* **87**, 9939-9942 (2013).

616 23. F. Krammer, SARS-CoV-2 vaccines in development. *Nature* **586**, 516-527 (2020).

617 24. J. P. Moore, P. J. Klasse, COVID-19 Vaccines: "Warp Speed" Needs Mind Melds, Not
618 Warped Minds. *J Virol* **94**, (2020).

619 25. F. P. Polack *et al.*, Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl*
620 *J Med* **383**, 2603-2615 (2020).

621 26. L. R. Baden *et al.*, Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *N Engl*
622 *J Med* **384**, 403-416 (2021).

623 27. J. Sadoff *et al.*, Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-
624 19. *N Engl J Med* **384**, 2187-2201 (2021).

625 28. J. Wise, Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after
626 reports of blood clots. *BMJ* **372**, n699 (2021).

627 29. H. Boytchev, Covid-19: Germany struggles with slow uptake of Oxford AstraZeneca
628 vaccine. *BMJ* **372**, n619 (2021).

629 30. E. J. Kremer, Pros and Cons of Adenovirus-Based SARS-CoV-2 Vaccines. *Mol Ther* **28**,
630 2303-2304 (2020).

631 31. K. J. Koudelka, A. S. Pitek, M. Manchester, N. F. Steinmetz, Virus-Based Nanoparticles
632 as Versatile Nanomachines. *Annu Rev Virol* **2**, 379-401 (2015).

633 32. M. Karimi *et al.*, Bacteriophages and phage-inspired nanocarriers for targeted delivery of
634 therapeutic cargos. *Adv Drug Deliv Rev* **106**, 45-62 (2016).

635 33. P. Tao, J. Zhu, M. Mahalingam, H. Batra, V. B. Rao, Bacteriophage T4 nanoparticles for
636 vaccine delivery against infectious diseases. *Adv Drug Deliv Rev* **145**, 57-72 (2019).

637 34. K. A. Kelly, P. Waterman, R. Weissleder, In vivo imaging of molecularly targeted phage.
638 *Neoplasia* **8**, 1011-1018 (2006).

639 35. Z. M. Carrico *et al.*, N-Terminal labeling of filamentous phage to create cancer marker
640 imaging agents. *ACS Nano* **6**, 6675-6680 (2012).

641 36. J. L. Liu, K. L. Robertson, Engineered bacteriophage T4 nanoparticles for cellular imaging.
642 *Methods Mol Biol* **1108**, 187-199 (2014).

643 37. T. Yata *et al.*, Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene
644 Delivery. *Mol Ther Nucleic Acids* **3**, e185 (2014).

645 38. M. E. Farkas *et al.*, PET Imaging and biodistribution of chemically modified bacteriophage
646 MS2. *Mol Pharm* **10**, 69-76 (2013).

647 39. J. R. Chang *et al.*, Phage lambda capsids as tunable display nanoparticles.
648 *Biomacromolecules* **15**, 4410-4419 (2014).

649 40. N. E. van Houten, K. A. Henry, G. P. Smith, J. K. Scott, Engineering filamentous phage
650 carriers to improve focusing of antibody responses against peptides. *Vaccine* **28**, 2174-
651 2185 (2010).

652 41. B. Schwarz *et al.*, Symmetry Controlled, Genetic Presentation of Bioactive Proteins on the
653 P22 Virus-like Particle Using an External Decoration Protein. *ACS Nano* **9**, 9134-9147
654 (2015).

655 42. P. Tao *et al.*, In vitro and in vivo delivery of genes and proteins using the bacteriophage
656 T4 DNA packaging machine. *Proc Natl Acad Sci U S A* **110**, 5846-5851 (2013).

657 43. K. D. Brune *et al.*, Plug-and-Display: decoration of Virus-Like Particles via isopeptide
658 bonds for modular immunization. *Sci Rep* **6**, 19234 (2016).

659 44. N. Stephanopoulos, G. J. Tong, S. C. Hsiao, M. B. Francis, Dual-surface modified virus
660 capsids for targeted delivery of photodynamic agents to cancer cells. *ACS Nano* **4**, 6014-
661 6020 (2010).

662 45. A. Razazan *et al.*, Lambda bacteriophage nanoparticles displaying GP2, a HER2/neu
663 derived peptide, induce prophylactic and therapeutic activities against TUBO tumor model
664 in mice. *Sci Rep* **9**, 2221 (2019).

665 46. A. Catala *et al.*, Targeted Intracellular Delivery of Trastuzumab Using Designer Phage
666 Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. *ACS
667 Nano*, (2021).

668 47. C. E. Catalano, Bacteriophage lambda: The path from biology to theranostic agent. *Wiley
669 Interdiscip Rev Nanomed Nanobiotechnol* **10**, e1517 (2018).

670 48. G. C. Lander *et al.*, Bacteriophage lambda stabilization by auxiliary protein gpD: timing,
671 location, and mechanism of attachment determined by cryo-EM. *Structure* **16**, 1399-1406
672 (2008).

673 49. P. Singh, E. Nakatani, D. R. Goodlett, C. E. Catalano, A pseudo-atomic model for the
674 capsid shell of bacteriophage lambda using chemical cross-linking/mass spectrometry
675 and molecular modeling. *J Mol Biol* **425**, 3378-3388 (2013).

676 50. E. Beghetto, N. Gargano, Lambda-display: a powerful tool for antigen discovery.
677 *Molecules* **16**, 3089-3105 (2011).

678 51. J. Nicastro *et al.*, Construction and analysis of a genetically tuneable lytic phage display
679 system. *Appl Microbiol Biotechnol* **97**, 7791-7804 (2013).

680 52. L. Aghebati-Maleki *et al.*, Phage display as a promising approach for vaccine
681 development. *J Biomed Sci* **23**, 66 (2016).

682 53. E. Jonczyk-Matysiak *et al.*, Phage-Phagocyte Interactions and Their Implications for
683 Phage Application as Therapeutics. *Viruses* **9**, (2017).

684 54. A. Jegerlehner *et al.*, A molecular assembly system that renders antigens of choice highly
685 repetitive for induction of protective B cell responses. *Vaccine* **20**, 3104-3112 (2002).

686 55. S. R. Leist *et al.*, A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality
687 in Standard Laboratory Mice. *Cell* **183**, 1070-1085 e1012 (2020).

688 56. C. M. Coleman *et al.*, MERS-CoV spike nanoparticles protect mice from MERS-CoV
689 infection. *Vaccine* **35**, 1586-1589 (2017).

690 57. J. Zhao *et al.*, Rapid generation of a mouse model for Middle East respiratory syndrome.
691 *Proc Natl Acad Sci U S A* **111**, 4970-4975 (2014).

692 58. L. Piccoli *et al.*, Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2
693 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell* **183**,
694 1024-1042 e1021 (2020).

695 59. D. Corti *et al.*, Prophylactic and postexposure efficacy of a potent human monoclonal
696 antibody against MERS coronavirus. *Proc Natl Acad Sci U S A* **112**, 10473-10478 (2015).

697 60. B. Rockx *et al.*, Structural basis for potent cross-neutralizing human monoclonal antibody
698 protection against lethal human and zoonotic severe acute respiratory syndrome
699 coronavirus challenge. *J Virol* **82**, 3220-3235 (2008).

700 61. W. B. Alsoissi *et al.*, A Potently Neutralizing Antibody Protects Mice against SARS-CoV-
701 2 Infection. *J Immunol* **205**, 915-922 (2020).

702 62. M. A. Tortorici *et al.*, Ultrapotent human antibodies protect against SARS-CoV-2 challenge
703 via multiple mechanisms. *Science* **370**, 950-957 (2020).

704 63. Y. Wu *et al.*, A noncompeting pair of human neutralizing antibodies block COVID-19 virus
705 binding to its receptor ACE2. *Science* **368**, 1274-1278 (2020).

706 64. R. E. Chen *et al.*, In vivo monoclonal antibody efficacy against SARS-CoV-2 variant
707 strains. *Nature*, (2021).

708 65. Y. Guo *et al.*, A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage
709 and modified for optimal therapeutic outcomes. *Nat Commun* **12**, 2623 (2021).

710 66. C. Kim *et al.*, A therapeutic neutralizing antibody targeting receptor binding domain of
711 SARS-CoV-2 spike protein. *Nat Commun* **12**, 288 (2021).

712 67. A. Baum *et al.*, REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus
713 macaques and hamsters. *Science* **370**, 1110-1115 (2020).

714 68. R. Shi *et al.*, A human neutralizing antibody targets the receptor-binding site of SARS-
715 CoV-2. *Nature* **584**, 120-124 (2020).

716 69. A. Z. Wec *et al.*, Broad neutralization of SARS-related viruses by human monoclonal
717 antibodies. *Science* **369**, 731-736 (2020).

718 70. K. O. Saunders *et al.*, Neutralizing antibody vaccine for pandemic and pre-emergent
719 coronaviruses. *Nature* **594**, 553-559 (2021).

720 71. V. Manolova *et al.*, Nanoparticles target distinct dendritic cell populations according to
721 their size. *Eur J Immunol* **38**, 1404-1413 (2008).

722 72. K. D. Brune, M. Howarth, New Routes and Opportunities for Modular Construction of
723 Particulate Vaccines: Stick, Click, and Glue. *Front Immunol* **9**, 1432 (2018).

724 73. T. K. Tan *et al.*, A COVID-19 vaccine candidate using SpyCatcher multimerization of the
725 SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody
726 responses. *Nat Commun* **12**, 542 (2021).

727 74. A. A. Cohen *et al.*, Mosaic nanoparticles elicit cross-reactive immune responses to
728 zoonotic coronaviruses in mice. *Science* **371**, 735-741 (2021).

729 75. L. He *et al.*, Single-component, self-assembling, protein nanoparticles presenting the
730 receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. *Sci Adv*
731 **7**, (2021).

732 76. P. T. Heath *et al.*, Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. *N Engl J Med*,
733 (2021).

734 77. S. Chiba *et al.*, Multivalent nanoparticle-based vaccines protect hamsters against SARS-
735 CoV-2 after a single immunization. *Commun Biol* **4**, 597 (2021).

736 78. A. C. Walls *et al.*, Elicitation of Potent Neutralizing Antibody Responses by Designed
737 Protein Nanoparticle Vaccines for SARS-CoV-2. *Cell* **183**, 1367-1382 e1317 (2020).

738 79. J. ter Meulen *et al.*, Human monoclonal antibody combination against SARS coronavirus:
739 synergy and coverage of escape mutants. *PLoS Med* **3**, e237 (2006).

740 80. M. Yuan *et al.*, A highly conserved cryptic epitope in the receptor binding domains of
741 SARS-CoV-2 and SARS-CoV. *Science* **368**, 630-633 (2020).

742 81. B. S. Graham, Rapid COVID-19 vaccine development. *Science* **368**, 945-946 (2020).

743 82. F. Amanat *et al.*, A serological assay to detect SARS-CoV-2 seroconversion in humans.
744 *Nat Med* **26**, 1033-1036 (2020).

745 83. D. F. Robbiani *et al.*, Convergent antibody responses to SARS-CoV-2 in convalescent
746 individuals. *Nature* **584**, 437-442 (2020).

747 84. D. Pinto *et al.*, Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
748 antibody. *Nature* **583**, 290-295 (2020).

749 85. J. Schindelin *et al.*, Fiji: an open-source platform for biological-image analysis. *Nat
750 Methods* **9**, 676-682 (2012).

751 86. C. M. Coleman *et al.*, Purified coronavirus spike protein nanoparticles induce coronavirus
752 neutralizing antibodies in mice. *Vaccine* **32**, 3169-3174 (2014).

753 87. V. M. Corman *et al.*, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-
754 PCR. *Euro Surveill* **25**, (2020).

755

756

757

758 **FIGURE LEGENDS**

759 **Figure 1. Design and construction of hCoV RBD decorated particles. (A)** Atomistic
760 model of the SARS-CoV-2 virion with homotrimeric spikes of the S protein shown in shades of
761 pink (Nanographics GmbH). **(B)** Cryo-EM reconstruction of the phage lambda capsid with only
762 the density from the trimeric spikes of the decoration protein, gpD, displayed (Lander et al., 2008).
763 Shown to the right in cartoon representation is the crystal structure of an isolated gpD trimer (PDB:
764 1C5E) modified to contain the serine to cysteine mutation (red spheres) of the gpD variant,
765 gpD(S42C). **(C)** Reaction schematic for the chemical crosslinking of human coronavirus RBD
766 proteins (hCoV RBDs) to gpD(S42C) *via* lysine amide coupling and thiol-maleimide chemistry.
767 The products (gpD-RBD_{SARS}, gpD-RBD_{MERS}) contain a PEG crosslinker, SM(PEG)₂₄, with a spacer
768 arm length of 95.2 Å. **(D)** PLPs are decorated with RBDs at the desired surface densities either
769 independently (top) or in combination (bottom) with remaining gpD-binding sites filled using
770 wildtype gpD such that all 420 binding sites are occupied.

771 **Figure 2. Construction of hCoV RBDs. (A)** Proteins at various steps in the chemical
772 modification of gpD(S42C) for conjugation to RBD_{SARS} were fractionated by SDS-PAGE and
773 visualized by Coomassie Blue staining. Lanes: (1) gpD(S42C); (2) RBD_{SARS}; (3) gpD(S42C) and
774 RBD_{SARS} in the absence of crosslinker; (4) RBD_{SARS} modified with the crosslinker; (5) gpD-
775 RBD_{SARS} crosslinked proteins (red arrows). **(B)** SEC chromatogram of the gpD-RBD_{SARS} reaction
776 mixture (blue); collected fractions numbers are indicated at the top. SEC chromatograms of
777 unmodified RBD_{SARS} (red) and unmodified gpD(S42C) (purple) are shown for comparison. **(C)**
778 SDS-PAGE of fractions eluting from the SEC column in panel B. The migration of purified gpD-
779 RBD_{SARS}, unmodified RBD_{SARS}, and gpD(S42C) are denoted as D-R_S, R_S, and D, respectively.
780 Unless otherwise stated, gpD-RBD_{SARS} fraction 32 (red star) was used for all subsequent
781 experiments. **(D)** Proteins at various steps in the chemical modification of gpD(S42C) for

782 conjugation to RBD_{MERS} were fractionated by SDS-PAGE and visualized by Coomassie Blue
783 staining. Lanes: (1) gpD(S42C); (2) RBD_{MERS}; (3) gpD(S42C) and RBD_{MERS} in the absence of
784 crosslinker; (4) RBD_{MERS} modified with the crosslinker; (5) gpD-RBD_{MERS} crosslinked proteins (red
785 arrows). (E) SEC chromatogram of the gpD-RBD_{MERS} reaction mixture (yellow); collected fractions
786 are indicated at the top. (F) SDS-PAGE of fractions eluting from the SEC column in panel E. The
787 migration of purified gpD-RBD_{MERS}, unmodified RBD_{MERS}, and gpD(S42C) are denoted as D-R_M,
788 R_M, and D, respectively. Unless otherwise stated, gpD-RBD_{MERS} fraction 32 (red star) was used
789 for all subsequent experiments.

790 **Figure 3. PLP decoration with hCoV RBDs.** PLPs were decorated with (A) gpD-RBD_{SARS}
791 (D-R_S, blue), (B) gpD-RBD_{MERS} (D-R_M, yellow) or (C) with both constructs at the indicated surface
792 densities as outline in Fig 1D and the reaction mixtures were fractionated by AGE. In all gels,
793 naked PLPs (no decoration protein, *lanes 1*) and WT PLPs (decorated with 100% wildtype gpD
794 (grey), *lanes 2*) served as controls for the decoration reactions. (D) Representative SEC
795 chromatograms showing WT PLPs (grey; retention time (RT), 8.2 mL), 20% RBD_{SARS} PLPs (blue;
796 RT, 8.1 mL), 20% RBD_{MERS} PLPs (yellow; RT, 8.1 mL), and 20% hCoV RBD PLPs (black; RT,
797 8.1 mL). (E) Electron micrographs of PLPs decorated with hCoV RBDs (magnification, 98,000x;
798 scale bars, 100 nm). White arrows indicate the surface density attributed to the RBD proteins
799 projecting from the PLP surface. (F-G) Antigenicity of the purified hCoV-PLPs. ELISA plates were
800 coated with 0.2 µg WT PLPs, 20% RBD_{SARS} PLPs, 20% RBD_{MERS} PLPs, 20% hCoV PLPs, and
801 recombinant RBD protein as indicated. Plates were then probed with 2-fold serial dilutions of a
802 detection antibody, and signals were developed following standard ELISA protocols. For (F),
803 recombinant SARS-CoV-2 RBD protein is denoted as rRBD_{SARS}, and plates were probed with an
804 anti-SARS-CoV-2 RBD monoclonal antibody. For (G), recombinant MERS-CoV RBD protein is
805 denoted as rRBD_{MERS}, and plates were probed with an anti-MERS-CoV RBD detection antibody.

806 **Figure 4. RBD_{SARS}-PLPs are immunogenic.** (A) Schematic of immunization protocol and
807 sample collection. (B) WT BALB/c mice (n = 5 mice/group) were immunized with 10 µg of WT

808 PLPs (control) or 60% RBD_{SARS}-PLPs by intramuscular (i.m.) injection on days 0 and 21. Animals
809 were bled on days 14, 35, 63, and 174 and RBD_{SARS}-specific IgG endpoint titers were determined
810 by ELISA. *P* values were determined by one-way ANOVA with Tukey's multiple comparisons test.
811 **P*<0.05, ****P*<0.001. (C) RBD_{SARS}-specific IgG ELISA endpoint titers in plasma from pre-
812 pandemic controls (n = 10) and convalescent SARS-CoV-2 PCR positive patients (n = 20). (D)
813 RBD_{SARS}-specific IgG subclass responses on days 14 and 35 were determined by ELISA. *P*
814 values were determined by unpaired student's t test. **P*<0.05. (E-F) SARS-CoV-2 neutralizing
815 activity was determined by a focus reduction neutralization test (FRNT). (E) The dilution of serum
816 that inhibited 50% of infectivity (FRNT50 titer) was calculated for each sample by nonlinear
817 regression analysis, as described in Materials and Methods. *P* values were determined by one-
818 way ANOVA with Tukey's multiple comparisons test. **P*<0.05, ****P*<0.001. (F) SARS-CoV-2
819 FRNT50 titers in plasma from pre-pandemic controls (n = 10) and convalescent SARS-CoV-2
820 PCR positive patients (n = 20).

821 **Figure 5. Immunization with RBD_{SARS}-PLPs protects against SARS-CoV-2 infection**
822 **and disease.** (A) WT BALB/c mice (n = 5/group) were immunized with 10 µg of WT PLPs 60%
823 RBD_{SARS}-PLPs by intramuscular (i.m.) injection on days 0 and 21. At day 184, mice were
824 challenged intranasally (i.n.) with 10⁴ PFU of mouse-adapted SARS-CoV-2 MA10. Mice were
825 monitored daily for weight changes. *P* values were determined by two-way ANOVA with Tukey's
826 multiple comparisons test. ***P*<0.01, *****P*<0.0001. (B-D) At 4 dpi, viral burden in the lung was
827 quantified by plaque assay (B), RT-qPCR for viral genomic RNA (C), and RT-qPCR for N
828 subgenomic RNA (D). (E) Histopathology in lung tissue sections was evaluated by hematoxylin
829 and eosin staining. *P* values were determined by Mann-Whitney test in B, D; or by unpaired
830 student's t-test in C. ***P*<0.01, ****P*<0.001.

831 **Figure 6. Immunization with RBD_{SARS}-PLPs at low doses elicits potent and durable**
832 **SARS-CoV-2 antibody responses and protective immunity.** (A-B) WT BALB/c mice (n =
833 5/group) were immunized with 2.5 µg of WT PLPs (control) or variable doses (2.5, 1.0, or 0.25

834 μ g) of 60% RBD_{SARS}-PLPs by i.m. injection on days 0 and 21. Animals were bled on days 14, 35,
835 63, and 84. (A) RBD_{SARS}-specific IgG endpoint titers were determined by ELISA. *P* values were
836 determined by Mann-Whitney test. ***P*<0.01. (B) SARS-CoV-2 neutralizing activity in serum
837 samples was determined by FRNT. FRNT50 titer was calculated for each sample by nonlinear
838 regression analysis. *P* values were determined by Mann-Whitney test. ***P*<0.01. (C) At day 90
839 post-prime, mice were challenged i.n. with 10⁴ PFU of SARS-CoV-2 MA10 and monitored daily
840 for changes in weight. *P* values were determined by two-way ANOVA with Tukey's multiple
841 comparisons test. **P*<0.05, ***P*<0.01. (D-G) At 4 dpi, viral burden in the lung was quantified by
842 plaque assay (D), RT-qPCR for viral genomic RNA (E), and RT-qPCR for N subgenomic mRNA
843 (F), and histopathology in lung tissue sections was evaluated by hematoxylin and eosin staining
844 (G). *P* values were determined by Mann-Whitney test. ***P*<0.01, ****P*<0.001.

845 **Figure 7. Immunization with mosaic hCoV-RBD-PLPs protects against both SARS-
846 CoV-2 and MERS-CoV challenge. (A-B)** WT BALB/c mice (n = 5-10 mice/group) were
847 immunized with 7.5 μ g of WT PLPs (control), 20% RBD_{SARS}-PLPs, 20% RBD_{MERS}-PLPs, or mosaic
848 20% hCoV-RBD-PLPs by intramuscular (i.m.) injection on days 0 and 21. At the times indicated,
849 RBD_{SARS}-specific (A) and RBD_{MERS}-specific (B) IgG endpoint titers were determined by ELISA.
850 Mann-Whitney test. **P*<0.05, ****P*<0.001. (C) SARS-CoV-2 neutralizing activity was determined
851 by a focus reduction neutralization test (FRNT). The dilution of serum that inhibited 50% of
852 infectivity (FRNT50 titer) was calculated. Mann-Whitney test. **P*<0.05, ***P*<0.01, ****P*<0.001,
853 *****P*<0.0001. (D) MERS-CoV neutralizing activity was determined by a plaque reduction
854 neutralization test (PRNT). The dilution of serum that inhibited 50% of infectivity (PRNT50 titer)
855 was calculated. Mann-Whitney test. ***P*<0.01, ****P*<0.001, *****P*<0.0001. (E-H) At day 102 post-
856 prime, mice were challenged intranasally (i.n.) with 10⁴ PFU of SARS-CoV-2 MA10 (E-F) or 10⁵
857 PFU MERS-CoV (G-H). (E and G) Mice were monitored daily for weight changes. Two-way
858 ANOVA with Tukey's multiple comparisons test. ***P*<0.01, ***P*<0.01. (F and H) At 4 dpi, the

859 burden of infectious SARS-CoV-2 (**F**) and MERS-CoV (**H**) in the lung was quantified by plaque
860 assay. Mann-Whitney test. * $P<0.05$, ** $P<0.01$.

861

TABLE 1 | CHARACTERIZATION OF PLP PREPARATIONS

Sample	Zetasizer*				
	Z-Ave (d.nm)	PDI	Intensity PSD (d.nm)	Volume PSD (d.nm)	ZP (mV)
Naked PLPs	66.2 ± 1.4	0.073 ± 0.01	71.8 ± 2.1	58.6 ± 1.1	-25.1 ± 0.8
WT PLPs	73.8 ± 1.3	0.081 ± 0.04	80.1 ± 3.0	65.6 ± 1.6	-17.4 ± 2.4
5% RBD _{SARS} PLPs	82.4 ± 3.0	0.156 ± 0.05	90.8 ± 2.4	68.5 ± 0.7	-18.8 ± 2.4
20% RBD _{SARS} PLPs	111.5 ± 6.5	0.285 ± 0.09	121.3 ± 6.0	86.8 ± 5.2	-28.5 ± 1.6
60% RBD _{SARS} PLPs	110.7 ± 7.1	0.223 ± 0.06	131.9 ± 17	94.4 ± 6.7	-11.5 ± 2.6
10% RBD _{MERS} PLPs	84.3 ± 3.3	0.164 ± 0.05	89.7 ± 1.5	70.7 ± 0.6	-11.8 ± 1.4
20% RBD _{MERS} PLPs	94.9 ± 3.4	0.212 ± 0.06	101.7 ± 4.2	76.6 ± 1.4	-22.2 ± 2.1
40% RBD _{MERS} PLPs	93.1 ± 3.3	0.176 ± 0.04	102.3 ± 4.8	77.7 ± 1.7	-15.2 ± 2.1
20% hCOV RBD PLPs	115.3 ± 16	0.277 ± 0.11	112.9 ± 9.1	85.7 ± 5.2	-23.3 ± 2.8

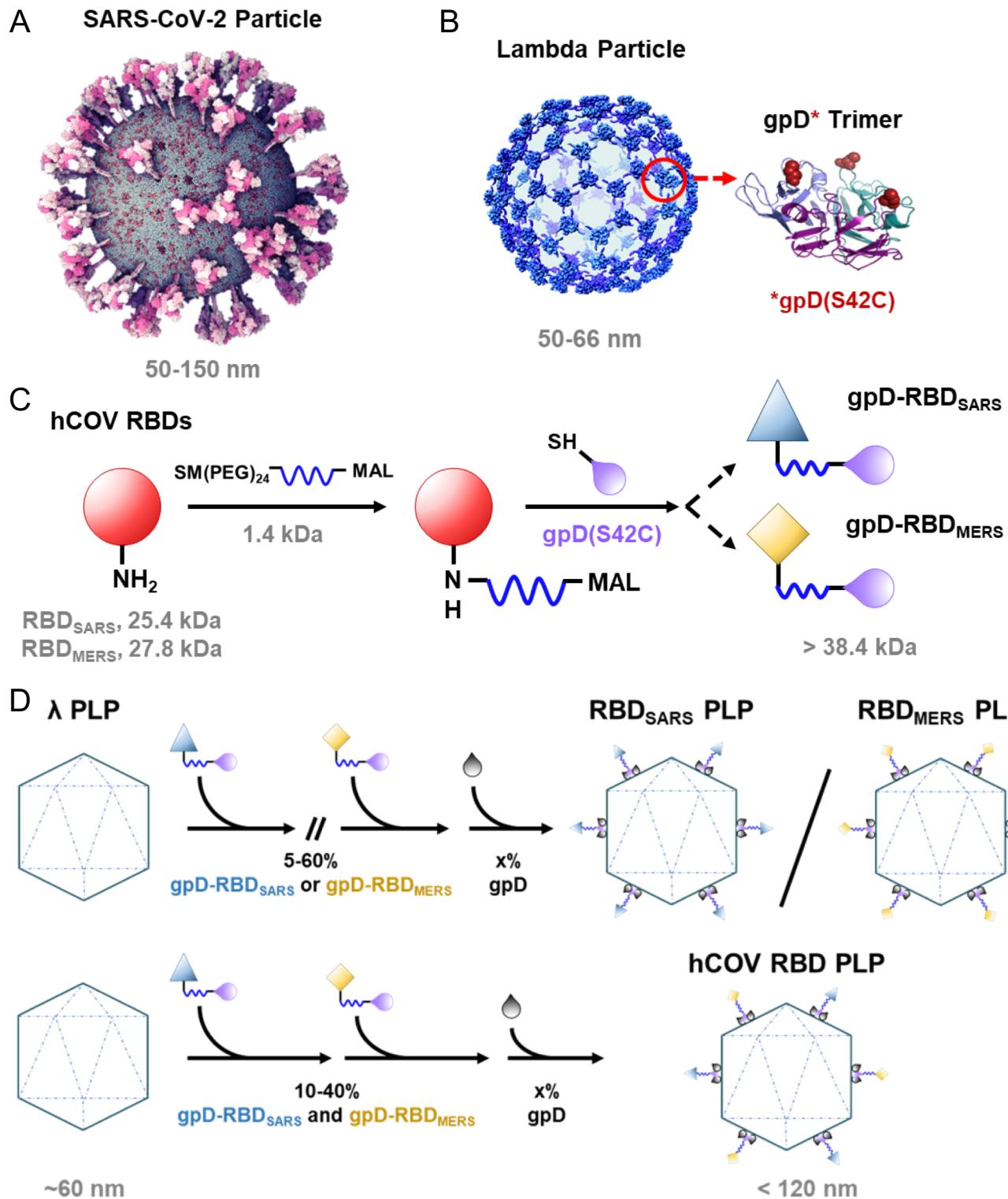
*PLP preparations were diluted in 10 mM HEPES [pH 7.4], and measurements acquired in quadruplicate at 25°C. Values shown are mean ± standard deviation.

Particle sizing data is based on particle diameter (d.nm) as measured by dynamic light scattering from two to three independent analyses. These are reported as Z-average (Z-Ave; weighted mean hydrodynamic size), polydispersity index (PDI; measure of sample heterogeneity) and particle size distributions (PSD; intensity, volume).

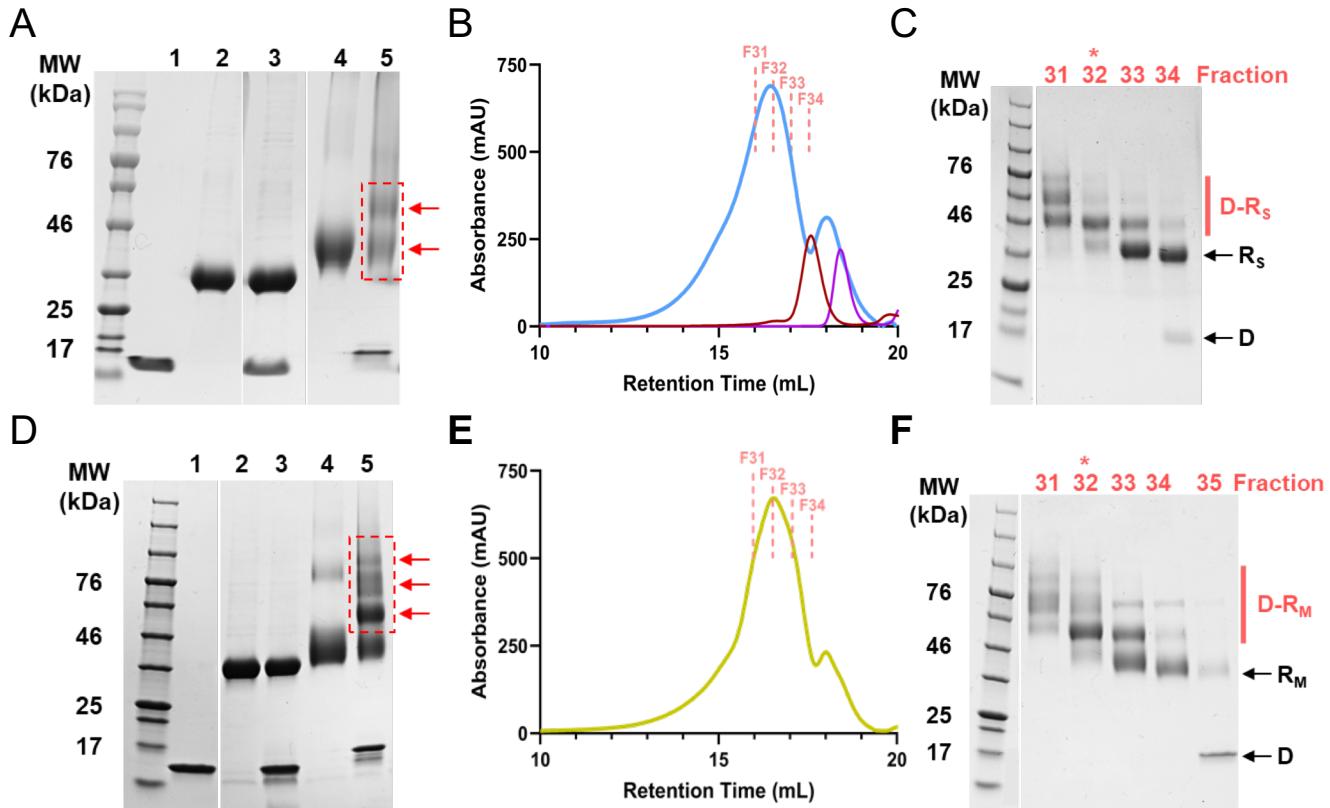
Particle charge data is based on overall surface charge (Zeta potential, ZP) as measured by electrophoretic light scattering.

863

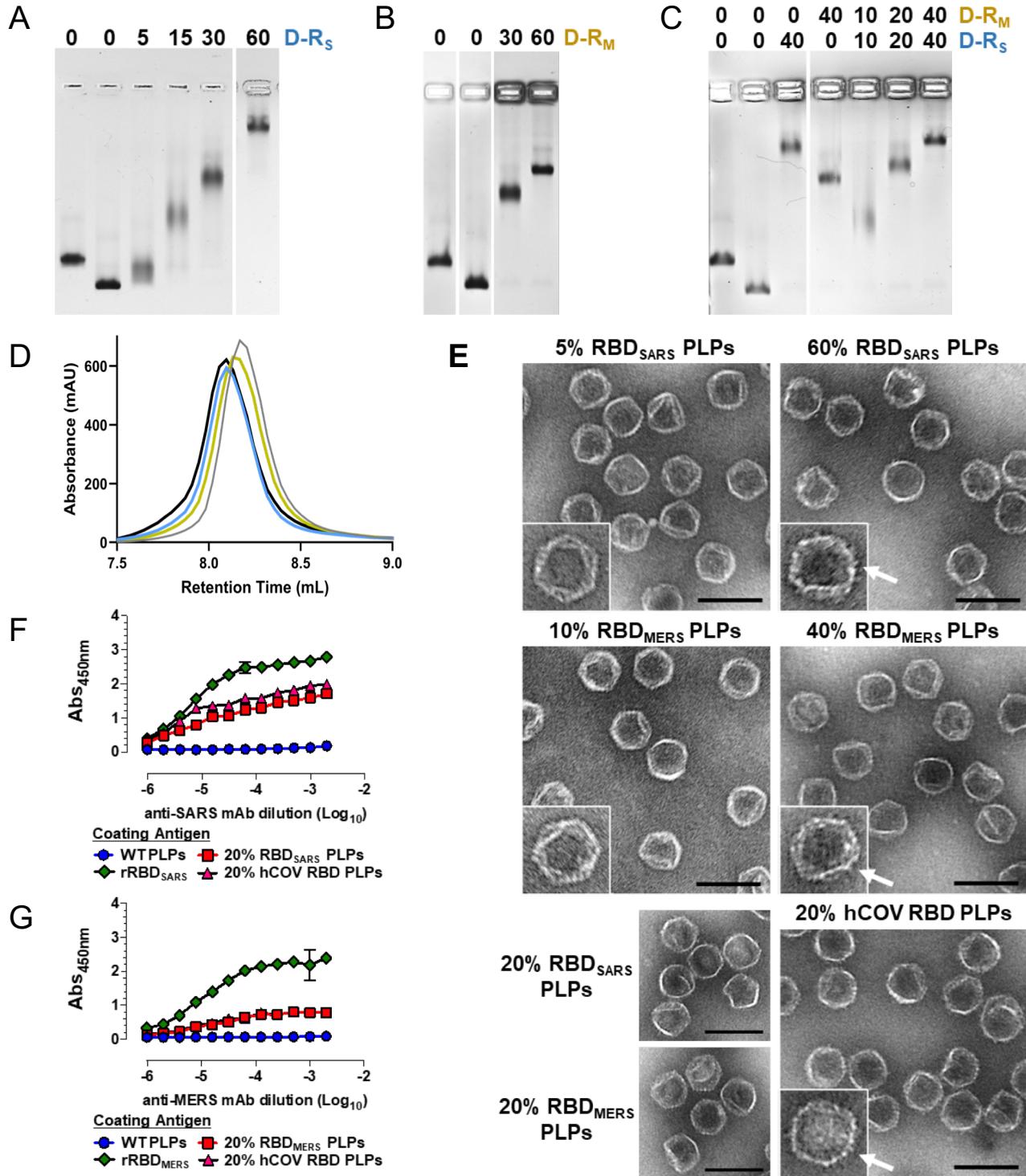
TABLE S1: SARS-CoV-2 qPCR primer and probe combinations

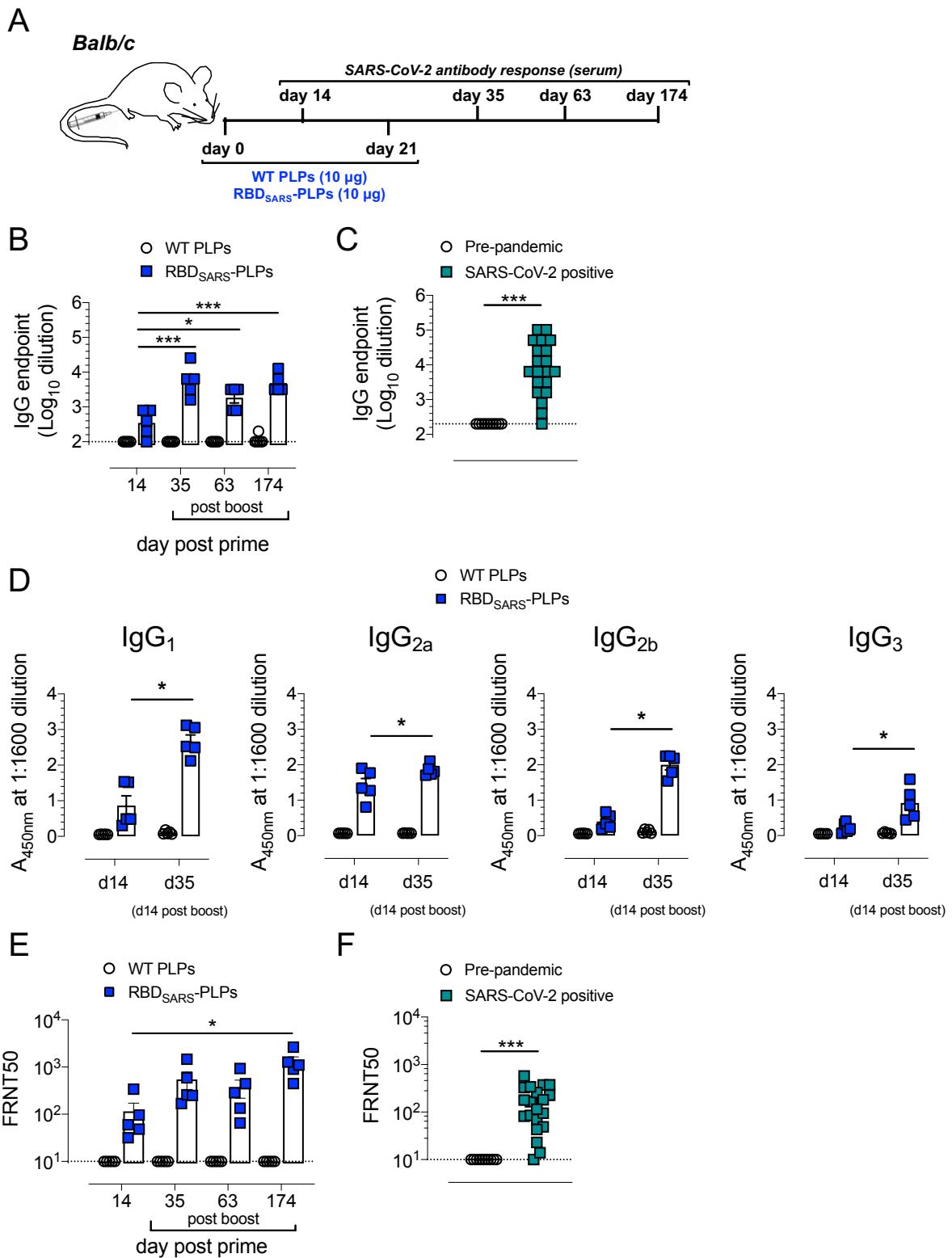

SARS-CoV-2 E gene qPCR primer and probe

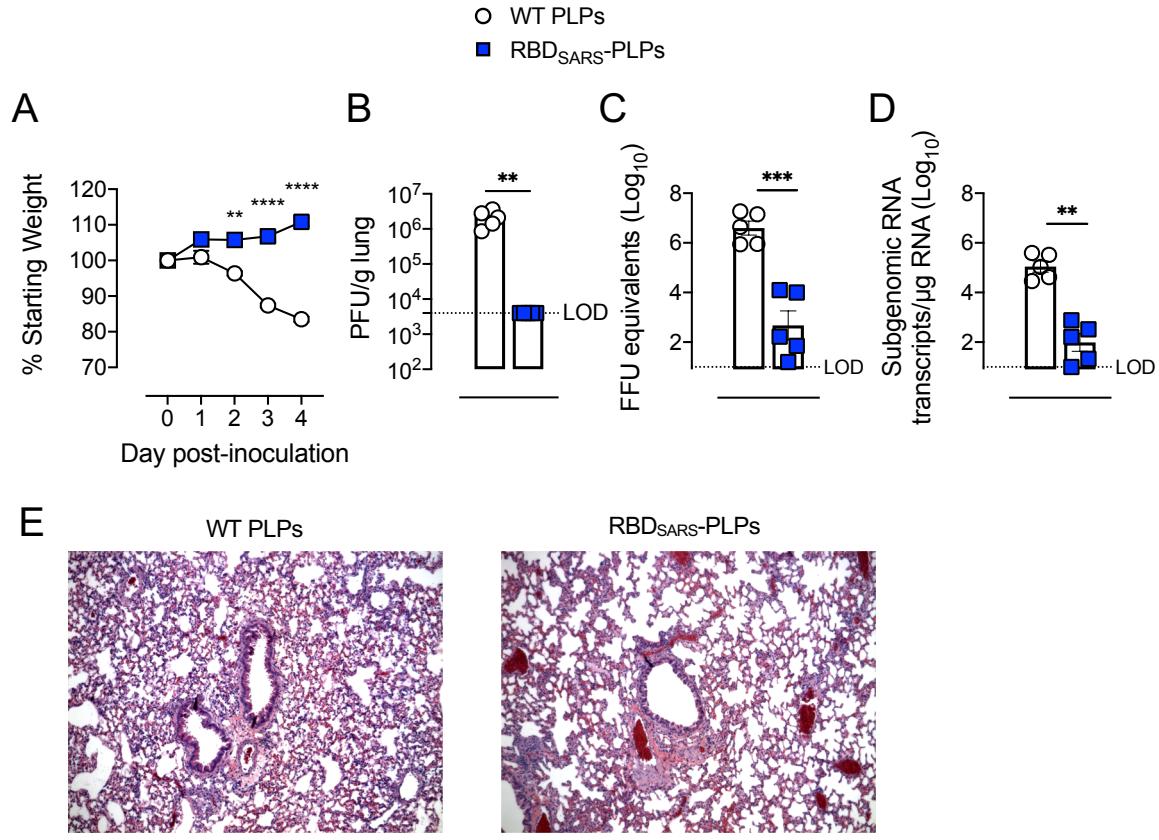
E Sarbeco fwd 1	5'	ACAGGTACGTTAATAGTTAATAGCGT	3'
E Sarbeco rev 2	5'	ATATTGCAGCAGTACGCACACA	3'
E Sarbeco probe 1	5'	FAM-ACACTAGCCATCCTACTGCGCTTCG-BHQ	3'

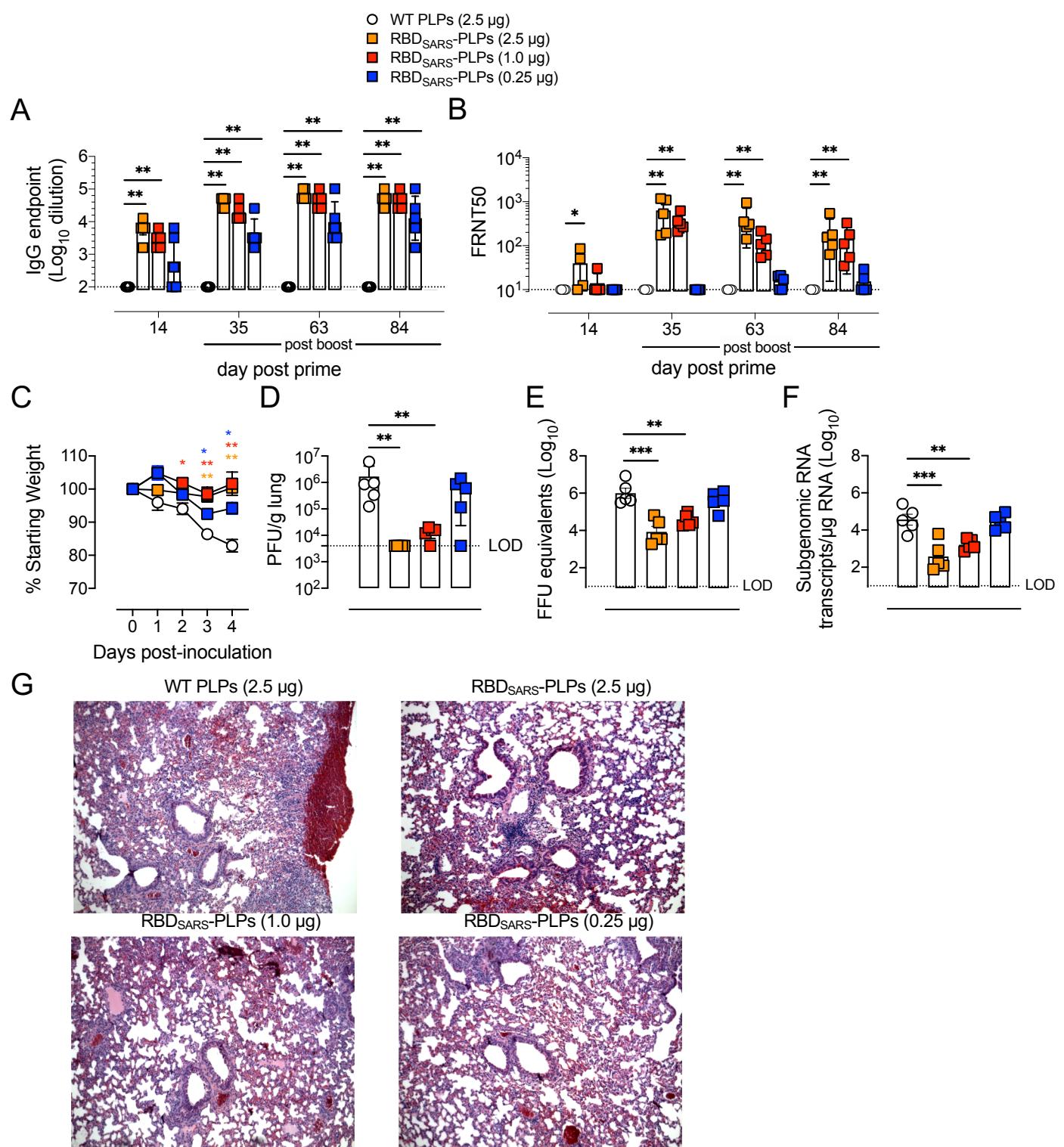

SARS-CoV-2 N (sgRNA) qPCR primer and probe

sgN SARS2 fwd	5'	ACCTTCCCAGGTAACAAACCAACCA	3'
sgN SARS2 rev	5'	CACCAAACGTAATGCGGGGTGC	3'
sgN SARS2 probe	5'	FAM-CTGATAATGGACCCAAAATCAGCGA-BHQ	3'


Figure 1


Figure 2


Figure 3


Figure 4

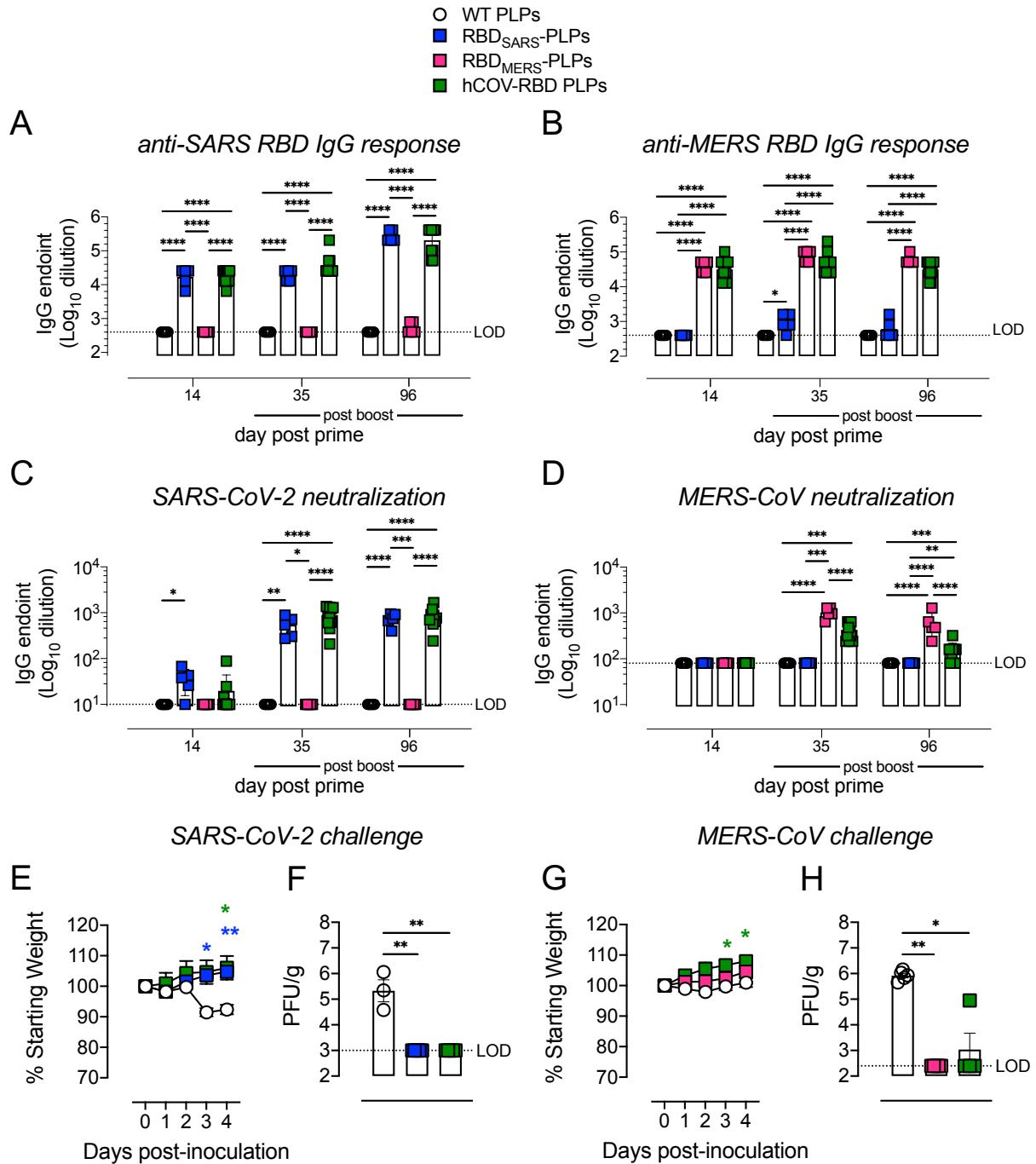

Figure 5

Figure 6

Figure 7

