Client-Specific Homogeneous Service
Composition at Runtime for QoS-Critical Tasks

Zhengquan Li!, Long Cheng?, Zheng Song!

! Dept. of Computer and Information Science, University of Michigan at Dearborn
{zgli, eejoylim, zhesong}@umich.edu
2 School of Computing, Clemson University
lcheng2@clemson.edu

Abstract. Web services are widely used in modern software, providing
diverse data and functionalities. Some data and functionalities are critical
to an application’s execution and user experience, posing strict require-
ments on the Quality of Service (QoS) of their delivery (e.g., latency
and reliability), which services often fail to meet. Previous studies show
that composing homogeneous services, i.e., simultaneously invoking mul-
tiple services providing the same functionalities and returning the first
response, can improve latency and reliability. However, this approach
increases the workloads on cloud servers and causes additional network
traffic, limiting its deployment at scale. Noting that services provide
varying QoS across different locations, we introduce an approach that
dynamically composes homogeneous services for each client, achieving
the desired QoS for critical services while minimizing invocation costs.
Specifically, our method probes the QoS of all homogeneous services for a
client, then calculates an optimal composition strategy that meets QoS
requirements at the lowest cost. The evaluation results show that our
approach significantly improves the QoS invoking a single service (en-
hancing reliability to 100%, reducing average latency by 7% and tail
latency by 35%) while incurring 50% less cost than static homogeneous
composition, making it a useful tool for service-oriented applications.

Keywords: Quality of Service - Service Composition - Latency Opti-
mization

1 Introduction

Web services are widely used in modern software, providing diverse data and
functionalities essential for various applications. Some of these data and func-
tionalities are critical to an application’s execution and user experience, such as
real-time data processing in financial transactions or live updates in social me-
dia platforms. Given several functionally-equivalent services, developers face the
problem of how to meet the stringent QoS requirements of their applications, in
terms of latency, tail latency, and reliability.

The current state-of-the-practice approach is to select and invoke a skyline
service (see Fig. 1 up left), i.e., a service that is not dominated by any other

2 Zhengquan Li, Long Cheng, Zheng Song

functionally-equivalent services. However, according to service statistics collected
by service marketplaces [7] and an empirical study on developers’ comments in-
voking web services [2], even skyline services sometimes fail to meet QoS require-
ments. To further improve QoS for critical tasks, previous works [3,9] have ex-
plored the composition of homogeneous services, which involves simultaneously
invoking multiple equivalent services and using the first response to continue
the application’s execution (Fig. 1 bottom left). While effective in enhancing
QoS, this method significantly increases the number of service invocations, caus-
ing higher workloads on web servers and more network traffic. The additional
invocation cost makes this approach impractical for large-scale deployment.

State-of-the-Practice: Service Selection I Dynamic Homogeneous Service Composition
3 5 5 1
[SEED] [SeivicelZ] [SSVicol] 1 [Service 1] [Service 2] [Service 3]]

ﬂlnvoke Skyline Service |
1 I I
@ @ @ [Probe] [Probe][Probe]

Clients at All Locations
1 I l

[Invoke 1*2] [Invoke 2*3] Invoke 1]

] l I
Qe 09 90

Client 1 Client 2 Client 3

1
1
1
I
Static Homogeneous Service Composition :
[Service 1] [Service 2] [Service 3] |
1

1

1

1

1

1

ﬂlnvoke All Three Services

@O0

Clients at All Locations

Fig. 1: Approaches for Satisfying the QoS Requirements of Critical Tasks

Motivated by that most services exhibit significantly different QoS at various
locations [12], this paper introduces a more cost-efficient homogeneous service
composition approach, which customizes service composition for end users at
runtime. As demonstrated by the right sub-figure in Fig. 1, for clients at different
locations, our approach first probes the QoS of all homogeneous services, and
calculates a client-specific composition strategy that best satisfies the developers’
QoS requirements within a predefined invocation cost budget.

The main contributions of our paper are as below:

— We introduced an approach that customizes service composition strategies
for individual clients for both QoS improvement and cost efficiency. To sup-
port this idea, we developed a QoS estimation model for composition strate-
gies, which ensures selecting a QoS-optimal strategy with less probing cost.

— The trace-based evaluation indicate that 1) our QoS estimation model is
more accurate than all baseline approaches; 2) on average, our approach
improves reliability from 99% to 100%, reduces mean latency and tail la-
tency by 7% and 35% respectively, while incurring 50% less cost than static
homogeneous service composition.

Client-specific Homogeneous Service Composition 3

2 Related Works and Motivation

In this section, we summarize approaches for meeting the QoS requirements of
critical tasks and the motivation of our approach.

2.1 Meeting the QoS Requirements of Critical Tasks

The problem of QoS-based web service selection and composition has consistently
received significant attention over the past two decades [1]. As service-oriented
architecture remains the primary method for accessing remote data and func-
tionalities, critical tasks such as VR/AR, autonomous driving, and financial
transactions demand stringent QoS requirements. Below, we introduce current
solutions aimed at meeting these requirements.

Skyline Service Selection. Among a set of equivalent services, a service is
considered a skyline service if no other service is better in all QoS attributes
simultaneously. Developers can either hard code a pre-selected skyline service
into their application [1] or rely on service gateways to select a service with
optimal real-time QoS for composition [6]. This approach assumes that a selected
skyline service can always satisfy the soft QoS requirements of an application.
However, this is not true for emerging applications with hard QoS requirements.
Static Homogeneous Service Composition. Homogeneous service compo-
sition has been explored in various contexts to enhance QoS. For example, some
studies [9] invoke multiple microservices in a way of speculative parallel fash-
ion to improve the system reliability and execution time for applications in IoT
environments. [3] parallely invoke multiple cognitive web services to improve ac-
curacy (e.g., face recognition accuracy). Despite their benefits, these approaches
simply invoking all services specified by static configurations, which lack flexi-
bility and can lead to significant operational costs at runtime.

2.2 Motivation

A large-scale measurement of service QoS [12] revealed significant variations in
service performance across different invocation contexts, such as locations and
times. This motivated our approach of dynamically composing homogeneous
services for individual users. To find the efficient service combination for each
user, it requires accurately estimate the resulting QoS for each combination.
Existing method [4,10] uses the minimum average latency among services as the
composited latency, which is inaccurate: We observed that the average latency
of a speculative parallel invocation can be even lower, as the fastest service may
sometimes experience long tail latency, and the slower service might return the
result sooner.

3 HomoService: Client-specific Service Composition

This section introduces our approach to composing homogeneous services for in-
dividual clients, termed as “HomoService”. In particular, HomoServic first probes

4 Zhengquan Li, Long Cheng, Zheng Song

the QoS of all homogeneous services for a client, then calculates an optimal com-
position strategy that meets QoS requirements at the lowest cost.

3.1 Problem Formulation for Finding Optimal Composition

Given the service invocation cost and the limited budget of the application
provider, it is essential to maximize QoS benefits in a cost-effective way when
composing homogeneous services. We formulate this composition problem as
follows: 1) Using a soft/hard QoS model, the developer’s requirements for relia-
bility and latency are treated as hard and soft constraints, respectively. Let C,
R, ﬁ, and T represent the developer’s per-invocation budget, minimum reliabil-
ity, desired average latency, and desired tail latency. 2) Let Z=14=1,2,3,...,1
denote the set of homogeneous services, and § = s =1,2,3,...,5 represent all
possible composition strategies. For a strategy s, Ls, Rs, Ts, and Cy denote its
latency, reliability, tail latency, and cost. The optimal composition problem can
be formulated as:

L.+ L LTt T
Ly T (1)
subject to: Vs € S; Rs > R; C, < C

§ = arg max

, where % * TTi represents the index of latency satisfaction, whose value
range is (1,S+oo). The latency satisfaction index considers both the average la-
tency and tail latency. If both the desired values for tail latency and average la-
tency are achieved (i.e., Ly = L T, = T), the latency satisfaction index reaches
4. A larger index means higher satisfaction of the overall latency, i.e., average
and tail latency.

As we only consider the speculative parallel invocation, there are only S = 27
combinations of strategies, i.e., whether each service is in a strategy. We can treat
Equation 1 as a 0-1 knapsack problem, i.e., given a set of homogeneous services,
each with a certain latency, reliability, and cost, determine which services to in-
clude in the composition so that the reliability requirement is fully satisfied, the
total cost is less than or equal to a given limit, and the latency satisfaction index
is as small as possible. Various methods, such as dynamic programming, and ex-
haustive search, can be used to solve this 0-1 knapsack problem. These methods
explore possible service combinations, evaluating them based on latency, cost,
and reliability constraints to find the best option. Accurate estimation of QoS
parameters (cost Cj, reliability R, latency L, and tail latency T5) is crucial to

determining the optimal composition.

3.2 Composition QoS Estimation Model

We introduce the limitation of current models for composition QoS estimation,
and how we address it with a fine-grained way.

Existing Approaches for Estimating Composition QoS For a service
1 € I, we use ¢;, 15, and [; to denote its cost, reliability, and latency. Given

Client-specific Homogeneous Service Composition 5

a set of homogeneous services Hs of a composition strategy s, their specula-
tive parallel invocation succeeds when any service succeeds, and fails when all
constituent services fail. Existing approaches [4,10] estimate the QoS for their
speculative parallel invocation as: 1) Cs = >,y ¢i;2) Rs = 1—[[;cq. (1 —10);
3) Ly = min(l;),Vi € Hs. We found that although the cost and reliability esti-
mations are accurate, the latency is not. The average latency of a speculative
parallel invocation can be even lower, as the fastest service may sometimes ex-
perience long tail latency, and the slower service might return the result sooner.
Furthermore, these methods do not consider tail latency estimation. As a result,
these approaches are insufficient for accurately estimating composition latency.
Our Approach for Estimating Composition Latency To more accurately
estimate the latency of composition, we treat service latency as a distribution
rather than a single value. The distribution is calculated from the recorded QoS
data of the service at runtime. In particular, this paper adopts the Shifted Ex-
ponential Distribution [8] to model individual service’s latency. We employ a
piece-wise function, F;(x), to represent the Cumulative Distribution Function
(CDF) of service i’s latency, where 2 denotes a latency value.

Fi(z) = {0, r<t 2)

1 — e mmr(@ x>t

The distribution parameters, t and m, correspond to the service’s minimum
latency and average latency, respectively. In contrast to other service latency
distributions (e.g., Erlang and Pareto Distribution) that require estimating pa-
rameters from the entire set of invocation samples, the distribution we choose is
simple and only requires to acquire one additional latency statistical parameter,
the minimum latency, in addition to the average latency.

After modeling each homogeneous service latency, we calculate the resulting
latency distribution for a composition. Recall that we use I;,Vi € H, to denote
the latency of a service i. We use P(LS < x) to denote the probability of the
latency L of a composition strategy s is less than x. Assuming [;,Vi € H, are
independent, we have:

P(L, <z) =P(min(l;) < z),Vi € H,
=1—P(min(l;) > z),Vi € H,

:1—1jP(l,»>x) (3)

Hs
—1-J[a-P(<a))
i=1
We can calculate the resulting latency CDF P(LS < x) by using P(l; < z) =
F;(x), where F;(x) can be given by Eq. 2. After calculating the latency distri-
bution, we can further calculate other statistics of interest, such as the average
latency (i.e., Ls) or tail latency (i.e., Ts) in a closed-form expression, which other
service distributions models cannot achieve.

6 Zhengquan Li, Long Cheng, Zheng Song

4 Evaluation

In this section, we evaluate HomoService by addressing two key questions: 1)
How accurate is our QoS estimation model? 2) How much does HomoService
improve QoS and reduce invocation costs?

To answer these questions, we collected service QoS of multiple tasks from
different locations worldwide. Specifically, we selected six types of tasks: weather
forecasting, IP-to-location, face detection, language translation, flight data re-
trieval, and hotel data retrieval, to cover typical service usages scenarios [11]. For
each task, we selected three homogeneous services, giving priority to those with
lower subscription costs and higher popularity. We developed a Python program
to invoke these services every 40 seconds from five global locations—Frankfurt,
Tokyo, Sydney, Mumbai, and Michigan—over continuous three days. This pro-
cess collected approximately 4,000 samples per service set, totaling 90 service
invocation trace sets. We used this dataset to evaluate both the accuracy of
the QoS estimation model and the performance improvements achieved through
HomoService.

4.1 Performance of our QoS Estimation Model

We measured the estimation accuracy of our model on average latency and tail
latency (90%", 95" percentile latency). We compared our approach with the
following three baseline approaches: 1) Average Latency Based [4, 10|, which
estimates the latency of service composition as the minimum of the average
latencies of all invoked services; 2) Single Statistic-Based, which further estimates
tail latency as the minimum tail latency of individual services. For example,
for three services with tail latencies Ty, T5, T3, the composition’s tail latency is
T = min(Ty, T, T3); and 3) Linear Regression [5], which is trained using 80% of
90 sets of invocation traces and predicts average and tail latencies. In the above
example, the linear regression model takes T7,T5, T3 as inputs and outputs the
estimated resulting tail latency for a composition strategy that combines three
services.

1.00 =t 1.00 1.00
- 0.95 0.95
095/ o) G Sy i W g
0.0 0090 > 0.90 ——4
s s > g
$0.85 Single Statistic-Based 30385 Silolo Statitio Basdd 3085 -
—e— Linear Regression - 0.80 ingle Statistic-Base - 0.80
Boso e " 3 I—e— Linear Regression B Single Statistic-Based
<] ur Approacl 80.75 === Our Approach $0.75 =-o=Linear Regression
130'75 13070 13070 —A - Our Approach
&o70 “0.65 ® 065
0.65 /_’0——0——"\‘ 060 '/.__’._/4__—.———' 060 ’/'__,._/._——0——"
0.60 0.55 0.55
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
QoS Sample Size 0o0S Sample Size QoS Sample Size
(a) Average Latency (b) 90% Tail Latency (¢) 95% Tail Latency

Fig. 2: Sample Size’s Impact on Modeling Fitness for Service Composition

Client-specific Homogeneous Service Composition 7

We compared the performance of these methods with varying sample sizes,
incrementing from 5 to 50 in steps of 10. We randomly selected the required
number of samples from each trace and repeat the procedure 400 times. As
shown in Fig. 2, when the sample size reaches 30, our approach showed much
better accuracy than other approaches, especially for tail latency. Overall, our
method more accurately estimates composition latency, particularly with limited
samples.

4.2 QoS Benefits and Cost Reduction of Using HomoService

After estimating QoS for a single composition strategy, we show how to optimally
compose homogeneous services to maximize QoS improvement considering the
developer-specified QoS parameters.

QoS Parameters Configuration For using HomoService, parameters like ser-
vice invocation cost, required reliability, latency, and sample size are crucial. We
developed a random budget generator to evaluate our solution under various
cost constraints. The budget range is defined from the cost of the QoS optimal
service (minimum) to a maximum of K times the highest service cost, with K
initially set at 2. Costs were sourced from the service corresponding Rapid page,
normalized to integers, and used to generate budgets. We targeted a reliability
of 99.99% and aimed for latencies 15% better than the QoS optimal service, with
a set sample size of 50 for each task using the composition.

Reliability Cost Latency ms (Avg. | Tail)
Paradigm | Skyline/Static/Dynamic | Skyline /Static/Dynamic Skyline/Static/Dynamic
India 0.99/1.00,/1.00 356,/645/467 841/711/744 | 3094,/1392/1773
Japan 0.99/1.00,/1.00 356,/645/467 500/432/448 | 2882/1111/1500
Australia 0.99/1.00/1.00 356,645,469 783,/730/743 | 3379,/1683 /2059
Germany 0.99/1.00/1.00 356,645 /468 671/680/701 | 1389/1119/1250
US 0.99/1.00,/1.00 356,/645/468 661/550/591 | 2100/1621/1804
Avg. 0.99/1.00/1.00 356,/645,/468 691/620/645 | 2568/1385/1677

Table 1: Service QoS Performance at Five Locations Worldwide

QoS Improvement and Costs Comparison We compared our dynamic ap-
proach with other two baselines: 1) Skyline, which invokes the service with the
best average latency across five locations, and 2) Static Homogeneous Service
Composition, which hardcodes and simultaneously invokes three homogeneous
services. We ran 400 Python simulations and summarized the average results in
Table 1, showing the QoS performance of three different invocation paradigms
at five global locations. Findings include: 1) dynamic composition boosts QoS
at each location, enhancing reliability to 100% and reducing average latency by
7% and tail latency by 35% compared to invoking skyline services; 2) Overall,
dynamic composition costs 31% more than Skyline, whereas static composition
costs 80% more but only slightly improves latency (3% average, 11% tail). In
summary, HomoService offers the most cost-effective improvement in service re-
liability, latency, and budget efficiency.

8 Zhengquan Li, Long Cheng, Zheng Song

5 Conclusion

In this paper, we introduced an approach that dynamically composes homo-
geneous services for each client, achieving the desired QoS for critical services
while minimizing invocation costs. Unlike static homogeneous service compo-
sition, which invokes all services to improve QoS at high costs, our approach
customizes the optimal composition strategy to balance QoS benefits and invo-
cation costs for each end user.We collected QoS data across various tasks and
locations and conducted extensive evaluations based on this dataset. The re-
sults demonstrate the effectiveness and practicality of our approach, offering a
valuable solution for service-oriented application developers.

Acknowledgement

This research is supported by NSF through grant 2104337. The authors also
want to thank Ms. Eejoy Lim for her contribution to this work.

References

1. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web
service composition. In: WWW’10. pp. 11-20 (2010)

2. Baravkar, S., Zhang, C., Hassan, F., Cheng, L., Song, Z.: Decoding and answering
developers’ questions about web services managed by marketplaces. In: 2024 IEEE
International Conference on Software Services Engineering. IEEE (2024)

3. Bhatia, A., Li, S., Song, Z., Tilevich, E.: Exploiting equivalence to efficiently en-
hance the accuracy of cognitive services. In: IEEE CLOUDCOM’19. pp. 143-150

4. Hiratsuka, N., Ishikawa, F., Honiden, S.: Service selection with combinational use
of functionally-equivalent services. In: 2011 IEEE International Conference on Web
Services. pp. 97-104. IEEE, Washington DC, USA (2011)

5. Mann, G., Sandler, M., Krushevskaja, D., Guha, S., Even-Dar, E.: Modeling the
parallel execution of black-box services. In: HotCloud (2011)

6. Moussa, H., Gao, T., Yen, L.L., Bastani, F., Jeng, J.J.: Toward effective service
composition for real-time soa-based systems. SOCA 4, 17-31 (2010)

7. rapidAPI: RapidAPI - the next-generation API platform (2015), https://
rapidapi.com/hub

8. ReliaWiki: The exponential distribution (2017), https://reliawiki.org/
index.php/The_Exponential_Distribution

9. Song, Z., Tilevich, E.: Equivalence-enhanced microservice workflow orchestration
to efficiently increase reliability. In: 2019 IEEE International Conference on Web
Services (ICWS). pp. 426-433. IEEE (2019)

10. Song, Z., Tilevich, E.: Win with what you have: QoS-consistent edge services with
unreliable and dynamic resources. In: 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). pp. 530-540. IEEE (2020)

11. Wu, Z., Madhyastha, H.: Understanding the latency benefits of multi-cloud webser-
vice deployments. ACM SIGCOMM Computer Communication Review 43, 13-20
(04 2013). https://doi.org/10.1145/2479957.2479960

12. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE transactions on services computing 7(1), 32-39 (2012)

