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ABSTRACT

Maximum Independent Set (MIS) is an NP-hard optimization prob-
lem with wide-ranging applications in science and technology.
Recently, a super-linear speedup over classical simulated anneal-
ing in solving MIS was experimentally observed using a Rydberg
atom array (RAA) quantum computer. The extent of the observed
speedup depended on the graph instance and the circuit depth of
the quantum algorithm. Due to the limited availability of RAA,
it is beneficial to be able to efficiently predict the quantum opti-
mization performance on a given graph and circuit depth prior
to running it. In this work, we present a graph neural network
(GNN)-based performance predictor of the RAA-based MIS opti-
mizer. Our experimental results achieve accuracy with an average
root mean squared error (RMSE) of 0.03 out of the range [0, 1].
We open source the experimental data collected for this study at

https://github.com/UCLA-VAST/RAAMIS.
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1 INTRODUCTION

A major goal in quantum information science has been to show
quantum advantage on a problem with useful practical applications.
Combinatorial optimization problems, which seek to minimize a
cost function over bit strings, have wide-ranging applications in
science and technology. These problems also form the foundation of
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modern computer science and solving them exactly is NP-hard [18].
Quantum combinatorial optimization algorithms that can be im-
plemented on quantum devices in the near-term typically involve
adiabatic [9] or variationally parametrized [8] quantum evolution
optimized by closed-loop classical feedback [19, 38].

While these algorithms are guaranteed to solve the problem in
the limit of infinite circuit depth, less is known about their finite-
depth performance despite nearly two decades of research. Theoret-
ical studies are fundamentally limited to small system sizes [42] or
shallow circuits [10] due to the inherent intractability of classically
simulating quantum systems. Prior experimental studies also are
limited to small system sizes [14, 26] or lack significant quantum
coherence beyond shallow circuit depths [12, 15, 32], and as a re-
sult, offer only limited insights into the algorithms’ performances
at large system sizes and high circuit depths, the regime believed
to be necessary for quantum advantage [4, 7].

Ebadi et al. [6] addresses this problem by experimentally imple-
menting quantum algorithms for solving Maximum Independent
Set (MIS), a paradigmatic NP-hard optimization problem [18], using
a Rydberg atom array (RAA) quantum computer (a similar RAA
is now commercially available [29, 40]). The goal of MIS is to find
the maximum independent set of a graph, i.e., the largest subset of
nodes where no pair of nodes are connected by an edge. By utilizing
a hardware-efficient encoding associated with the Rydberg blockade
mechanism, this work reached system sizes of hundreds of qubits
at relatively high circuit depths of ~ 32. Ebadi et al. experimentally
observed a super-linear quantum speedup over classical simulated
annealing (SA) in solving MIS on the hardest graph instances for SA.
The extent of the quantum speedup, however, depended on both the
graph instance and the circuit depth of the quantum algorithm [3].

Motivated by this work, we present a graph neural network
(GNN)-based performance predictor, MIS-GNN, for the RAA-based
MIS optimizer. We take a data-driven approach by training neural
networks to predict quantum performance because of the difficulty
in simulating quantum systems exactly. We choose GNN since it can
directly take the graph instance as the input. Additionally, GNNs
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have been shown to be effective in predicting complex performance
metrics in electronic design automation, e.g., [2, 13, 20, 31, 34].

Specifically, we build a bi-directional graph for each instance and
define appropriate attributes for both the nodes and edges to help
the model better learn the graph features (i.e., embeddings). The
nodes take the geographical locations and the circuit depth as the
attributes while the edges are divided into eight types to identify
the whereabouts of the neighbors. The graph is passed through five
layers of TRANSFORMERCONV [33], a state-of-the-art GNN encod-
ing approach for the node embeddings. The final node embeddings
are chosen by exploiting a jumping knowledge network architec-
ture [41] to dynamically adjust the ranges of the neighborhood
for each node. Then, we concatenate the aggregated results of the
node embeddings, which create a graph-level embedding, with the
circuit depth value and pass them through multi-layer perceptron
(MLP) networks to predict our final objectives: Pjys) (MIS proba-
bility) and R (approximation ratio). P|ys| is the probability of the
quantum algorithm finding an MIS of the graph. R is the expecta-
tion value of the size of the independent set found by the quantum
algorithm divided by |MIS|, the true size of MIS of the graph.

The organization of the paper is as follows: in Sec. 2, we cover
the background on optimizing MIS with RAA, the hardness of
predicting quantum MIS performance, and the principles of GNN; in
Sec. 3, we detail the encoding and architecture of the GNN model; in
Sec. 4, we present evaluations on the accuracy of the GNN predictor;
in Sec. 5, we conclude the paper and discuss future directions.

2 BACKGROUND
2.1 Unit-Disk MIS on Rydberg Atom Arrays

Rydberg atom arrays can solve a wide variety of combinatorial
optimization problems using hardware-efficient encodings [25].
Motivated by recent experiments [6], we focus on MIS. RAA natu-
rally encodes MIS on certain unit-disk graphs, where the nodes are
on a 2D grid, and an edge connects each pair of nodes if and only
if this pair is located within a unit radius, as shown in Fig. 1a.

To solve MIS on such a unit-disk graph G = (V, E) using RAA [6,
28], we can associate each node with a single atom and make use
of two atomic states: the ground state, |0), and a highly excited
state, |1) called a Rydberg state. We can arrange the atoms in a
configuration induced by G and initialize them to |0), as illustrated
in Fig. 1a. Then, by applying a quantum adiabatic algorithm [9] we
can minimize the energy:

1
Hgyg = —0 Z ny + 3 Z Vuohuho, (1)

uevVv u,veV,u#o

where n,;, = 0 if atom u is in |0) and n,, = 1 if the atom is in
[1), Vigy o | Xy — ¥5|~C is the interaction energy depending on the
distance between u and v, and § is a tunable parameter.

The interaction energy models the Rydberg blockade mecha-
nism [23]: when both u and v are excited and the distance between
them is small, V;;yny,n, increases rapidly, which is energetically
unfavorable. The maximal distance when V;,, is still significant is
the Rydberg blockade radius, Ry, which we choose to be the unit
length. Because G is a unit-disk graph, minimizing the quadratic
term in Hryq, %, Vuohuno, means that the adjacent atoms (within
Ry, apart), are not simultaneously excited. Thus, the set of excited
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Figure 1: (a) Atoms are initially arranged in a configuration
encoding a unit-disk graph, such that two nodes are con-
nected by an edge if and only if they are within the Rydberg
blockade radius Rj. All atoms are initialized in |0), corre-
sponding to no nodes in the independent set. (b) After an
evolution under the quantum adiabatic algorithm, excited
atoms in |1) constitute the MIS solution by the quantum al-
gorithm (red vertices).

atoms, A, is an independent set. Moreover, as the cardinality of A,
2 ny in Hyygq, is maximized, the algorithm optimizes A towards a
maximum independent set, as exhibited in Fig. 1b.

We use the setting from Ebadi et al. [6] where the grid separation
is R,/ V2 (see Fig. 1a) so that the nearest and next-nearest neighbors
have significant interaction energy. Solving MIS on this particular
class of unit-disk graphs is NP-hard and thus general enough to
solve any problem in NP [6].

2.2 Hardness of Estimating RAA-Based
Quantum Optimizer Performance

Currently, the availability of quantum computers that can run the
adiabatic algorithm is still limited. Thus, it is valuable to estimate
the performance of the algorithm before actually spending the effort
of implementing it on a RAA.

From the principles of the quantum adiabatic algorithm, Ebadi
et al. [6] reasoned that the probability of such algorithm finding an
MIS is Ppiis| = 1—e~¢ doan/9ona where doaa is the quantum depth
and goaa is the minimum spectral gap between the ground and
first excited multi-atom state during the evolution. The quantum
depth is simply the total runtime of the quantum algorithm divided
by certain unit time (the time to flip a single atom state). However,
in the worst case, exactly computing goaa take exponential time in
the system size [1, 21]. Thus, it is of interest to find other efficient
methods to estimate Py

Even if Py is small, the quantum algorithm may still be able
to generate solutions that are close to the optimum. Thus, another
relevant performance metric is the approximation ratio, R, which
is defined as the observed independent set size generated by the
algorithm, divided by the size of the largest independent set, i.e.,
IMIS|. R = 1 if the algorithm outputs the ideal solution. Thus, R
describes the ability of an algorithm to find approximate solutions to
MIS. Computing R exactly also involves understanding the spectral
gaps during the quantum evolution, so this computation is hard for
classical computers.
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2.3 Graph Neural Networks

Nowadays, graphs are among the core data structures used in data
centers. Graph neural networks (GNNs) [39] are developed to ex-
tract low-dimensional structured information from graphs, which
by nature are unstructured. In other words, GNNs learn to assign
representative features (also called embeddings) to the nodes and
edges of the graphs that can be helpful in better analyzing them,
and, they have been proven to be powerful in many domains rang-
ing from social network analysis [36] to electronic design automa-
tion [13, 34]. Because of the efficiency and demonstrated capability
of GNNs, we leverage them to approximately estimate the perfor-
mance of RAA-based MIS optimization.

GNNg, in essence, rely on multiple layers of ‘message passing’
which updates the embeddings of each node by gathering the in-
formation from its neighboring nodes/edges. Layer I of a GNN can
be formulated as:

h = o( TE(AGG( {R'7!, je N(i)}))) @

where hi € Rft and hi.’l € RF-1 denote the updated and initial
node embeddings of node i in layer I, respectively. AGG and TF
represent the aggregation and transformation function which
gathers the embeddings of the neighbors and applies a learnable
weight to the aggregated results of each node, respectively. Different
GNNs may differ by their choice of these functions [17, 33]. o
is an activation function that is used to include non-linearity in
the model. After the node embeddings are updated by passing
through a few GNN layers, a readout (also known as pooling) layer
may be used to merge the node embeddings into a single graph-
level embedding. This embedding will be a vector summarizing the
distinctive features of the whole graph.

3 MIS-GNN METHODOLOGY

As mentioned in Sec. 1, our task is to build a GNN model that is
faster at predicting the performance of the quantum MIS optimizer.
More formally, we define our problem as follows. Let C be an RAA
configuration like Fig. 1a. Let O be either a quantum optimizer that
can identify the MIS of C. Let d be a depth value which corresponds
to the runtime of O that would affect P|yjs) and R. More specifically,

0(C.d) = (Ppas| (C.d). R(C.d) 3

We seek to find a prediction function (F) that approximates Pjys)
and R for any C and d without actually running O:

min ( avg ( L(0(C,d), F(C,d))) ) (4)
F\cd

We define the loss function, £, by taking the root mean squared
error (RMSE) of the prediction over the ground-truth value.

To solve this problem, one can analyze the different configura-
tions to detect key features (e.g., grid size, the atom filling ratio,
etc.) that result in a difference in the final objectives. Then, a fully-
connected network can be employed to learn to predict the final
objectives with those features. However, this approach relies on
costly and error-prone feature detection. Alternatively, one can
treat each of the configurations as an image and apply convolu-
tional neural networks (CNNs) on them. Then, one of this CNN’s
tasks would be learning to detect the adjacency of the atoms in
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the configuration. This can be alleviated if we directly input the
graph that induced the configuration to the machine learning model.
Therefore, exploiting GNNs for building the predictive model is a
natural fit for this application. This also helps with reducing the
computation intensity of the model. Sec. 3.1 describes our graph
representation and Sec. 3.2 explains the architecture of our GNN.

3.1 Graph Representation

As introduced in Sec. 2.1, the unit-disk graph G is specified by the
location of its atoms in the corresponding configuration. Specifi-
cally, each node is adjacent in G to its 4 nearest neighbors and the
4 next-nearest neighbors if there are indeed atoms at these grid
points. For example, in Fig. 1a, the blue node at (3,1) is adjacent to
its 3 nearest neighbors (2,1), (3,0), and (4,1), and its 3 next-nearest
neighbors (2,2), (4,0), and (4,2).

We choose to build a slightly different graph G’ in GNN to benefit
the training. Each node in G’ keeps their geographical information
(X and Y coordinates) as attributes. Edges are directed and have
an attribute named FlowID to store their type which is one of the
eight different directions, as illustrated in Fig. 2a. Considering the
example in Fig. 1a, there is an edge from (2,2) to (3,1) with FlowID 7,
and also an edge from (3,1) to (2,2) with FlowID 0. From this point
forward, when we mention ‘graph’ or ‘G’, we are referring to this
bi-directional graph.

3.2 Predictive Model

To help MIS-GNN learn better features, we build initial features (em-
beddings) for each of the nodes and edges based on the attributes
we defined in Sec. 3.1. More specifically, the initial node embeddings
would include the X and Y coordinates of their respective node as
shown in Fig. 2a. Since the depth value has a significant impact on
the final objectives, we add it to all the node embeddings of a graph.
This enables us to differentiate the MIS instances that have the
same configuration but were tested under different depths. As all
these features are categorical integer data, we encode them using a
one-hot scheme. This is a popular approach for making the machine
learning model improve its predictions for such features [34]. The
initial node embedding of node i, h? e RE o, is created by concate-
nating the one-hot encoding of its X coordinate, Y coordinate, and
the depth, as depicted in Fig. 2a. Similarly, the edge embedding of
the edge from node i to j, e; j € R8, is the one-hot encoding of the
FlowID as shown in Fig. 2a.

The first task of the predictive model is to transform the features
we defined above based on the graph topology to summarize all
the information as a vector hg € RF¢. TRaNSFORMERCONV [33] is
a state-of-the-art GNN layer that has proven to be highly effective
when edges have attributes as well [34]. This is because, in contrast
to traditional GNN layers such as GCN [17] where the embeddings
of the neighboring nodes are gathered based on predefined weights
(e.g., degree of the nodes), TRANSFORMERCONV learns to identify the
importance of a neighboring node. In doing so, it builds an attention
coefficient, a; j, for each connection based on the edge embeddings
in addition to the source and destination node embeddings. These
attention coefficients determine the significance of each neighbor
in the aggregation phase. As such, we use TRANSFORMERCONV as
the building block of our GNN encoder as exhibited in Fig. 2b.
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Figure 2: MIS-GNN (a) Initial features of nodes and edges. (b) High-level view of the predictive model.

One known problem with GNNs is over-smoothing, which oc-
curs when the different node embeddings become indistinguishable
after a few GNN layers [13]. To alleviate this problem, we exploit
a jumping knowledge network (JKN) [41] architecture after the
GNN layers as depicted in Fig. 2b, where each node can dynamically
determine which layer’s output must be used as its final embedding.
This can also help the network calibrate a different range of neigh-
borhoods for each of the nodes based on the graph structure. After
finalizing the node embeddings, we add them together to create the
graph-level embedding, hg.

Once the GNN encoder outputs kg, we have the features of the
graph that we are seeking. This brings the network to its second
task, which is to predict our final objectives based on these features.
To do this transformation, we exploit a multi-layer perceptron
(MLP) network as shown in Fig. 2b. As mentioned in Sec. 1, the
depth has a high impact on the final result. Therefore, in addition to
including it in the initial node features passed to the GNN encoder,
we directly pass it to the MLPs as well to amplify its effect on output.
For each of the objectives, we define a separate MLP, but they still
share the same GNN encoder. This has been shown to increase the
accuracy when the objectives are correlated [34].

3.3 Data Augmentation

We employ a data augmentation approach that leverages various
transformations of the unit-disk graph, including rotations, mir-
roring, and diagonal flips. By rotating the graph by 90, 180, and
270 degrees, and reflecting it across vertical, horizontal, and di-
agonal axes, we generate multiple variants of the original graphs.
This process increases the diversity of the dataset, enhancing the
robustness of models trained on these augmented samples. The
transformations preserve the original graph topology while intro-
ducing variations that can help the model generalize better across
different spatial configurations.

4 EXPERIMENTAL RESULTS
4.1 Setup and Data Collection

For training and validating our GNN, we collect data with a com-
mercially available RAA, Aquila [29, 40], and also use data from
the Harvard study by Ebadi et al. [6]. The Harvard data is for both
the random instances in Fig. 3 of Ref. [6] and the hard instances for
SA considered in Fig 4. However, for consistency we do not include
data for the individually optimized instances in Fig. 4, and instead
use data for those same graph instances using the same adiabatic
algorithm applied to the instances in Fig. 3. The Harvard dataset

Table 1: The statistics of our target dataset. R stands for ap-
proximation ratio and Pjyis| denotes the probability of find-
ing an MIS.

source data min | max | mean | std

depth 1.41 32.0 10.98 10.27

R 0.795 | 0.995 0.917 | 0.043

Pivis 0.0 | 0.947 | 0.173 | 0.230
Harvard #nlodels 20 | 289 | 99 81
#edges 82 1746 559 485

avg. degree | 4.1 6.04 5.42 0.35
depth 26.4 26.4 26.4 0.0

R 0.787 | 0.946 | 0.854 | 0.023

. Pivis 0.0 | 0271 | 0.003 | 0.02
Aquila #rlodels 38 | 205 | 125 | 50
#edges 75 607 335 145

avg. degree | 4.5 6.09 5.63 0.22

consists of 130 distinct graphs that include 654 different pairs of
depth and graph (d and C in Eq. 3).

The Aquila dataset consists of another 422 distinct graphs with
the same quantum depth. The independent set (IS) results are col-
lected on QuEra Aquila [29, 40] with 1000 shots. We generate atom
configurations to realize the unit disk graph by locating the atoms
in a grid with spacing of 4um and R,=6um. We apply the time-
dependent Hamiltonian as described in [22] to the system charac-
terizing a graph for solving MIS. Table 1 summarizes the statistics
of these graphs and their MIS objectives. We divided the graphs in
both datasets into 70%, 15%, and 15% for the training, validation,
and testing sets, respectively. The graphs in the testing set are not
included in the training set, ensuring they represent unseen data.

The model is deployed and trained using PyTorch [27] with
Adam optimizer [16] and a learning rate of 0.005. The final model
is picked based on the loss on the validation set and the reported
performance numbers are based on the test set. The initial embed-
dings have 54 features for the annealing/quantum dataset. We use
5 TRANSFORMERCONV layers with 54 features in the GNN encoder
and 4 layers in the MLP decoder. Each GNN layer (except for the
last one) is followed by an exponential linear unit (ELU) [5] activa-
tion function since it can enable faster training over the traditional
rectified linear unit (ReLU) [24] activation function.

4.2 Post-Processing of Experimental Data

The measurement results from Aquila consist of two parts: the
pre_sequence marks the sites where atom preparation failed, and
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Figure 3: Post-processing of experimental data. (a) After the
evolution under the quantum adiabatic algorithm, atoms
in the Rydberg state are marked by red dots. The measure-
ment result may not be a valid IS, e.g., atoms at (2,4) and (3,4)
are adjacent vertices, so the post-processing is performed
to extract a valid IS. (b) The IS after the first phase of the
post-processing by removing invalid vertices. (c) The IS after
the second phase of the post-processing by including vertices
that do not violate the IS constraint.

the post_sequence gives the measurement results for the atom
state (0 for the Rydberg state, and 1 for the ground state). Then, the
IS found by Aquila can be inferred from the measurement outputs
by collecting the qubits in the Rydberg state. The raw measurement
outputs necessitated postprocessing to ensure the validity of the
IS. For example, Figure 3(a) shows raw measure results, where the
atoms in the Rydberg stages are marked in red. Those atoms do
not constitute a valid IS, since atoms at (2, 4) and (3, 4) cannot be
included into the set simultaneously. To transform the measurement
outcome to a valid IS, we adopt a two-phase greedy algorithm as
described in the paper [6]. In the initial phase, we scan row by
row to remove vertices violating the independent set condition. For
instance, as shown in Figure 3(b), we begin with checking the atoms
with the order: (0, 0), (3,0),(0,2),...,(3,4). If the atom does not
share an edge with any atoms in the current IS, we include it to the
IS set. In the second phase, the algorithm examines the remaining
vertices to reintroduce eligible vertices. According to the row and
column order, we iteratively add vertices that can be included in to
the IS without violating the constraints. Figure 3(c) demonstrates
the final IS after the post-processing. Based on the IS illustrated
in Figure 3(b), we follow the order (1,0), (2,0), (0,1),..., (4, 4) to
check if a vertex can be added into the IS.

4.3 Model Accuracy Evaluation

As Table 1 shows, the data has a low range. Our experiments show
that normalizing the data by a factor of 200 helps the model better
distinguish between the objectives, and we can reduce the loss.
Table 2 summarizes the loss in the prediction of either of our ob-
jectives in their original range. The loss is reported with three
different metrics, root mean squared error (RMSE), mean absolute
error (MAE), and maximum error. Note that as a lot of P)ys| val-
ues are very close to zero, mean absolute percentage error (MAPE)
would take extreme values, making it inapplicable here. To verify
the effectiveness of our optimizations to the model architecture, we
compare it to a baseline model that 1) utilizes GCN [17] instead of
the TRANSFORMERCONV, 2) does not include the edge attributes, 3)
no jumping knowledge network is used, 4) misses the direct path
of the depth value to the input to MLP, 5) employs ReLU activation
function instead of ELU, 6) no data augmentation. As the results
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Figure 4: Comparison of the prediction of our model to a
perfect model for quantum experiment.

Table 2: The model loss in predicting the objectives compared
to a baseline model where our optimizations to the network
architecture are disabled. Lower is better. MAPE is not appli-
cable since P|pqis| has many values close to zero.

model | data | RMSE | MAE | max error
baseline R 0.079 0.057 0.315
Ppis) | 0134 | 0.074 0.611
ours R 0.033 0.024 0.135
Pjurs| | 0121 | 0.065 0.505

demonstrate, our model, due to the optimizations we applied, can
get to a lower loss. Compared to the baseline, it can reduce the
RMSE by 2.39%x, MAE by 2.38%, and max error by 2.3X for predict-
ing approximation ratio. For P|ys|, we reduce the RMSE by 1.11X,
MAE by 1.14%, and max error by 1.21x. The improvement on pre-
dicting P|prs) is less significant. Since Pjyys) is biased toward 0 in
our dataset, we have limited capability to have accurate prediction
for data point with larger Pjyg)-

To better make sense of the model’s prediction, we plot their
performance against a perfect model. Fig. 4 depicts the results on
our dataset. In each plot, we are showing the prediction vs. the
ground-truth value. The green points represent a perfect model in
which the prediction matches the actual data. The red points depict
our model’s behavior. Therefore, the closer the red points are to
the green points, the better the model’s prediction. We can also see
that where the density of data is larger (see Table 1), the model can
perform better as it has more data to learn from. In consistent with
the loss, the model is less accurate when predicting large Py,
since the dataset is unbalance.

5 CONCLUSION & FUTURE WORK

In this paper, we propose a GNN-based predictor, MIS-GNN, for
RAA-based quantum MIS optimizer. We convert each graph con-
figuration to a bi-directional graph that encodes the geographical
locations of atoms and circuit depth as initial features. We carefully
designed a GNN-based model to predict the final objectives by ex-
tracting a graph embedding based on the graph topology and the
defined features. The experimental results demonstrate that our
model can match the ground-truth values with an average RMSE
of 0.03 out of the range [0, 1]. Our model is better at predicting the
approximation ratio (R) than the success probability in obtaining a
MIS (Pjmis|) by the quantum processors. This study is one of the
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first few attempts (together with [11, 37]) to use machine learning
models running on classical computers to predict the performance
on quantum processors The error may come from the limited exper-
imental data (e.g. in the GNN-based circuit performance predictor
published in [35], over 40,000 circuit configurations were used in
training the GNN model), or somehow relate to the quantum un-
certainty principle.

We make a large set of RAA experimental data publicly avail-
able. These data, along with future data generated by even larger
quantum MIS optimizers on the roadmap [30], can contribute to
further improvements of the GNN predictor. Furthermore, based on
the GNN model presented, it is conceivable to develop generative
GNNs that produce instances where quantum advantage emerges,
which would help researchers further understand the possibility of
quantum advantage in MIS. In doing so, more work is needed to
test MIS-GNN on harder instances.
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