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Abstract: Dead reckoning is a promising yet often overlooked smartphone-based indoor localiza-

tion technology that relies on phone-mounted sensors for counting steps and estimating walking

directions, without the need for extensive sensor or landmark deployment. However, misalignment

between the phone’s direction and the user’s actual movement direction can lead to unreliable direc-

tion estimates and inaccurate location tracking. To address this issue, this paper introduces SWiLoc

(Smartphone and WiFi-based Localization), an enhanced direction correction system that integrates

passive WiFi sensing with smartphone-based sensing to form Correction Zones. Our two-phase

approach accurately measures the user’s walking directions when passing through a Correction

Zone and further refines successive direction estimates outside the zones, enabling continuous and

reliable tracking. In addition to direction correction, SWiLoc extends its capabilities by incorporating

a localization technique that leverages corrected directions to achieve precise user localization. This

extension significantly enhances the system’s applicability for high-accuracy localization tasks. Addi-

tionally, our innovative Fresnel zone-based approach, which utilizes unique hardware configurations

and a fundamental geometric model, ensures accurate and robust direction estimation, even in sce-

narios with unreliable walking directions. We evaluate SWiLoc across two real-world environments,

assessing its performance under varying conditions such as environmental changes, phone orienta-

tions, walking directions, and distances. Our comprehensive experiments demonstrate that SWiLoc

achieves an average 75th percentile error of 8.89 degrees in walking direction estimation and an 80th

percentile error of 1.12 m in location estimation. These figures represent reductions of 64% and 49%,

respectively for direction and location estimation error, over existing state-of-the-art approaches.

Keywords: Channel State Information (CSI); dead reckoning; indoor localization; smartphone sensor

fusion; walking direction estimation; WiFi sensing

1. Introduction

Accurately determining user location can facilitate numerous applications such as
navigation, social media, and location-based marketing [1]. While GPS is the preferred
method for outdoor localization, its effectiveness for indoors is restricted due to signal
degradation or blockage by physical obstacles. Beyond GPS, indoor localization techniques
fall into two categories: device-free and smartphone-based. However, these methods are
not widely adopted in pervasive indoor settings due to their inherent constraints [2].

Smartphones have become indispensable in our daily activities and are expected to
remain popular in the years to come. Technologies for indoor localization based on smart-
phones include WiFi RSSI [3], Pedestrian Dead Reckoning (PDR) [4], BLE-beacon [5], and
camera-based methods [6]. Among these, PDR is particularly practical for widespread use
as it utilizes the IMU sensors built into smartphones. While distance measurement via IMU
sensors is precise, estimating walking direction is less reliable due to the misalignment
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between the smartphone’s orientation and the actual direction of human movement. Accu-
rate direction estimation is crucial as it significantly enhances the ability to estimate a user’s
accurate location within complex indoor environments, thus improving the overall effec-
tiveness of navigation and location-dependent applications. This directional misalignment
can lead to significant errors in location determination [7].

Building on previous discussions regarding smartphone-based localization technolo-
gies, considerable research has been directed toward improving the accuracy of direction
estimation using smartphones. These methodologies generally fall into two categories:
those that depend on external landmarks [8–10] and those that enhance IMU sensor data
through various statistical techniques [11–15]. The former requires users to consistently
pass by designated landmarks, which may not always be feasible in fluid urban envi-
ronments. The latter, while effective, tends to be tailored to individual users, reflecting
specific gait patterns and how the device is carried, which can limit its general applicability
and sensitivity.

In this paper, we improve Pedestrian Dead Reckoning (PDR)-based direction estima-
tion by integrating it with passive WiFi sensing to enhance overall localization accuracy.
Passive WiFi sensing, a widely studied device-free indoor localization method, leverages
the ubiquitous presence of WiFi. By merging the benefits of smartphone-based motion
sensing with WiFi sensing, we establish WiFi sensing regions (correction zones) using
WiFi devices. We then utilize the precise walking distances recorded by smartphones to
refine the accuracy of WiFi sensing. This integrated approach not only yields superior
accuracy and reliability compared to standalone WiFi-based direction estimation but also
effectively enhances the precision of location estimation, addressing the limitations inherent
in smartphone-based direction estimation methodologies.

This paper is an extended version of our previous work [16], which was presented as a
short paper at the MASS’23. In this version, we expanded the methodology by establishing
a correlation between the phone’s compass direction and the user’s walking direction (we
call it Phase 1); as well as by using this correlation to estimate the user’s walking direction
based on the phone’s compass direction (Phase 2). We used this accurate walking direction
to estimate user’s precise location. Additionally, we extended the experimental results
by conducting real-world experiments in continuous traces. Finally, we provided a more
comprehensive analysis on how different phone holding positions impacts the walking
direction accuracy, thereby the localization accuracy. We also compared these findings with
state-of-the-art localization approaches.

In summary, our main contributions are as follows:

• In this paper, we introduce SWiLoc (Smartphone and WiFi-based Localization), a
novel direction correction system that leverages passive WiFi sensing to form Correc-
tion Zones for refining smartphone-based user direction estimates. Our two-phase

approach not only accurately measures the user’s walking directions when they pass
through a correction zone but also utilizes these measured directions to estimate their
successive directions outside correction zones. This is done by first establishing a
correlation in Phase 1 and using this correlation in Phase 2.

• Building on the first contribution, we extend SWiLoc’s capabilities by implementing an
accurate localization technique that uses the corrected directions to achieve precise user
localization. This extension enhances the system’s utility by enabling continuous and
accurate tracking of the user’s movements, providing a robust solution for applications
requiring high localization accuracy.

• Our third contribution is the resolution of unreliable walking directions through
our innovative and distinctive hardware configurations. We discuss and resolve the
unreliable direction problem in this paper. Our model is based on the Fresnel zone-
based approach that not only ensures reliable direction estimations in challenging
scenarios but also significantly enhances localization accuracy.

• Our system undergoes rigorous analysis and evaluation across two real-world set-
tings, where its performance is benchmarked against state-of-the-art methods. We
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thoroughly assess how various factors—such as environmental conditions, ways the
phone is held, walking directions, and varying locations and distances—affect the pre-
cision of our method. The results demonstrate that SWiLoc consistently outperforms
other existing methods in both direction estimation and localization, regardless of
whether they utilize WiFi sensing or smartphone sensor fusion.

The structure of this paper is organized as follows: Section 2 reviews existing solutions
and identifies their limitations. Section 3 describes our system’s overview and design
principles. Section 4 details the methodology of our system. Section 5 offers a comprehen-
sive description of our system’s implementation. The evaluation results are presented in
Section 6. The paper concludes with Section 7.

2. Related Works and Background

Numerous studies have focused on precisely determining the walking direction and
location of an individual using either smartphone IMU sensors or WiFi CSI (Channel State
Information) [17,18]. Each method has its inherent drawbacks. In this section, we provide
a concise overview of several recent and notable studies, highlighting their advantages
and disadvantages.

2.1. Channel State Information (CSI)

CSI is extensively utilized to analyze the propagation dynamics of WiFi signals when
encountering physical barriers [19]. WiFi technologies typically employ OFDM modulation,
which spreads the signal over multiple subcarriers. Unlike the Received Signal Strength
Indicator (RSSI), which averages signal strengths across subcarriers, CSI detects individual
subcarrier fluctuations, offering detailed measurements. CSI data is structured as a three-
dimensional channel tensor involving t transmitting and r receiving antennas:

CSI =







H1,1 . . . H1,r
...

. . .
...

Ht,1 . . . Ht,r







Here, Ht,r is a vector comprising complex pairs for each sub-carrier:

Ht,r = [ht,r,1, . . . , ht,r,m]

The count of subcarriers varies with the hardware and bandwidth used. Each subcar-
rier in Ht,r is represented as a complex number hm, incorporating both amplitude (|hm|)
and phase (∠hm) components. Multipath effects like phase shifts and amplitude attenua-
tion impact these CSI values, which are crucial for precisely detecting human movements
and locations.

2.2. Pedestrian Dead Reckoning (PDR)

Dead reckoning involves continuously calculating the distance or direction from a
fixed starting point to determine the current location in indoor navigation settings. In PDR,
the number of steps and the length of each step are utilized to calculate the distance a
pedestrian has covered, while direction estimation helps to find the pedestrian’s current
heading. Understanding both the direction and the step length enables pedestrians to find
their real-time positions from an initial location.

The primary methods for counting steps through a smartphone’s built-in accelerometer
include threshold setting, peak detection, correlation analysis, and spectral analysis, as
noted in [20]. Research indicates that these existing step counting methods are highly
accurate, with [20] reporting error rates below 5% for the majority of pedestrians.

Numerous step length estimation algorithms necessitate customized training for each
user, as discussed in [21]. However, recent advancements have led to the development
of several training-free methods [22] that accurately determine step length regardless of
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the individual pedestrian. In this paper, we implemented a simple yet accurate step count
and step length estimation method, although our main focus is to accurately identify
pedestrian’s heading direction and location.

The compass is the standard method for estimating direction embedded in both
Android and iOS devices. However, the discrepancy between the orientation of the phone
and the actual walking direction of the user results in only moderate accuracy when
using a smartphone compass for dead reckoning, as noted in [7]. Following this, we
will examine and encapsulate the latest advancements in walking direction and location
estimation techniques.

2.3. Smartphone Sensor Fusion based Direction and Location Estimation

By sensor fusion, only using the sensor readings obtained from a smartphone (ac-
celerometer, gyroscope, and magnetometer) can get a precise estimation of users’ walking
direction [7,11–15,23–25]. These approaches calculate the cumulative acceleration of pedes-
trian and project it to the horizontal plane, by associating the 3D angular rotation of the
phone (captured by gyroscope) with 3D accelerometer and magnetometer readings. We
further divide these approaches into two sub-categories, based on whether they require
user-specific training or not.

Training-based: The training-based approaches [11–15,23] obtain context information
on human motion and device attachment to more accurately estimate their directions. To
do so, they employ statistical techniques (Naive Bayes, Kalman Filter or Particle Filter),
classifiers or Machine Learning models(CNN, LSTM etc.) However, these methods re-
quire labor-intensive data collection. Moreover, one specific threshold value might not
work for different pedestrians, causing negative impact on accuracy. Lastly, these ap-
proaches typically demand pedestrians to walk for a long distance, thus create lag while
inferring direction.

Training-free: Some training-free approaches (e.g., SmartPDR [24] and RMPCA [25])
assume that the pedestrian carries the phone in a fixed mode. They use principle component
analysis (PCA) to filter out the noises in direction estimation. Some other approaches (e.g.,
Humaine [7]) can adapt to multiple mode of users holding the phone. However, all these
approaches require certain patterns in user’s walking and holding the phone, which results
in low direction estimation accuracy when the requirements are not met.

2.4. Calibration-Based Direction and Location Estimation

Calibration-based direction estimation necessitates that the pedestrian traverse be-
tween two predefined landmarks. The trajectory of the pedestrian, captured while moving
between these landmarks, is monitored, though the phone’s compass may provide unreli-
able direction. Upon reaching the second landmark, the true walking direction is computed
and used to adjust the correlation between the phone’s compass output and the pedestrian’s
actual movement direction. These landmarks can include options such as LED lights [9],
acoustic markers [10], or Bluetooth beacons [26,27].

Nevertheless, calibration-based direction estimation methods face several limitations:
(1) they often necessitate the installation of additional hardware devices; (2) their effec-
tiveness is limited by environmental conditions (for instance, SoundMark is ineffective in
noisy settings and LiDR requires LED lights to be arranged in a specific configuration);
(3) they require that pedestrians travel through two sequential locations, which introduces
an additional complication.

2.5. Direction and Location Estimation Using WiFi

Device-free direction and location estimation is a method for determining the move-
ment direction and location of a pedestrian without any devices carried by the individual.
This approach utilizes existing wireless signals, such as WiFi, within the environment.
These signals reflect off the moving pedestrian, and the resulting reflections are captured by
several receivers positioned throughout the area. Research such as WiDir [28], WiDar [29]
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and WiDar2 [30] determines the user’s direction using device-free techniques by imple-
menting various theoretical models, including the Fresnel zone, Doppler Frequency Shift
(DFS), Time-of-Flight (ToF), and Angle-of-Arrival (AoA). Notably, the Fresnel zone model
is distinguished by its simple geometrical features and its capability to provide accurate
direction and subsequent location estimations.

The Fresnel zone is created when radio waves travel from a transmitter (Tx) to a receiver
(Rx), traversing multiple paths that result in both constructive and destructive interference
due to the alternating lengths of these paths [28]. When considering a radio wavelength λ,
Fresnel zones consist of n ellipses, defined by the following properties:

|RxP|+ |PTx| − |TxRx| = nλ/2 (1)

where P represents a point on the nth ellipse, as depicted in Figure 1. The path length
(|RxP| + |PTx|) of the signal that is reflected or diffracted through the nth Fresnel zone
boundary is nλ/2 longer than the direct Line-of-Sight (LoS) path length (|TxRx|). Although
an infinite number of Fresnel zones exist, Raspberry Pis are limited to measuring 256 sets of
Fresnel zones due to the use of 256 OFDM subcarriers. The innermost ellipsoid is referred
to as the First Fresnel Zone (FFZ). Conventional Fresnel Zone approaches exhibit significant
errors when users move within certain areas, which will be further explored in Section 3.2.

In summary, the phone compass is inadequate for direction determination in PDR,
and each direction estimation method we have explored exhibits specific limitations. We
will next provide a design overview of SWiLoc.

Figure 1. Geometry of Fresnel Zones.

3. SWiLoc System

In this section, we introduce the SWiLoc system, which integrates passive WiFi sensing
with smartphone motion detection to estimate walking direction and location. Subse-
quently, we will explore the design considerations that shaped the development of the
SWiLoc system.

3.1. System Overview

SWiLoc, designed to provide walking directions and locations for pedestrians in an
indoor space, comprises three primary components: (1) phones carried by pedestrians in
arbitrary orientation; (2) correction zones, each measuring approximately 3 × 3 m and
containing a WiFi router placed at center with four WiFi receivers positioned at the corners;
(3) a server that gathers and processes data from the users’ phones and receivers through
wireless links (WiFi or cellular networks), and then transmits the calculated directions back
to the phones. Figure 2 illustrates the setup of our system, depicting a user navigating from
location A to D via locations B and C, moving through correction zones 1 and 2, with a
phone strapped to the their arm.
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Figure 2. Illustration of SWiLoc System.

SWiLoc works in two phases: (Phase 1) when the user is crossing the correction zone;
(Phase 2) after the user crosses the zone. In phase 1, we utilize the phone’s step count
data along with passive WiFi CSI information gathered by WiFi transceivers to determine
the user’s walking direction, and correlate their movement direction with the phone’s
direction; In phase 2, we collect the phone’s compass direction by which we infer the user’s
movement direction and thereby estimate the location using the direction inferred.

To illustrate the functionality of the SWiLoc system, let’s examine a simple scenario
depicted in Figure 2. The user begins their journey at point A and concludes at point D,
traversing the segments AB, BC, and CD. Upon entering correction zone 1, SWiLoc phase 1
assesses their walking direction as 110◦ relative to global north and communicates this
direction to their phone. At point B, the user adjusts their course by 98◦ toward global east
and proceeds until reaching point C. Since the compass direction diverges from their actual
walking trajectory, SWiLoc phase 2 updates their walking direction using their previous
direction and the compass adjustment, resulting in a new direction of 12◦.

In summary, SWiLoc consists of two phases. During phase 1, we establish a correlation
between the phone’s compass direction and the user’s walking direction. In phase 2, we
use this correlation to estimate the user’s walking direction based on the phone’s compass
direction. Regardless of how the user holds her phone, SWiLoc can accurately update the
real-time walking direction, as long as the phone’s relative position to the user remains
unchanged. This allows SWiLoc to function with the phone held in any arbitrary position,
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such as in the hand palm, shirt pocket, or pant pocket. If the user changes the phone’s
orientation while walking, a new correlation will be established when the user passes the
next correction zone.

3.2. SWiLoc Design Considerations

In most times, SWiLoc users stay in phase 2 and rely on the correlation between
phone’s direction and human’s movement direction to infer their directions. The primary
challenge for SWiLoc is achieving accurate walking direction and location estimates in
phase 1, as phase 2 relies on the results of phase 1. When the user crosses the correction
zone, SWiLoc combines the advantages of smartphone-based motion sensing and passive
WiFi sensing to improve accuracy.

We opted for the Fresnel zone-based (FZ) method for passive WiFi sensing because
it does not require training. Nevertheless, traditional FZ methods are prone to two major
issues. Firstly, the FZ model struggles with unreliable directions, which are directions where
there is no or very little variation in the CSI data. These directions are parallel or nearly
parallel to the Line-of-Sight (LoS) between a transceiver pair as shown in Figure 3a. The
direction estimation results become inaccurate when the user walks along these unreliable
directions [28]. Secondly, FZ methods estimate direction by calculating the ratio of the
number of Fresnel zones traversed by the user along the x and y axes. This approach, being
an approximation, introduces errors in the estimation process.

To address the aforementioned problems, SWiLoc introduces innovative solutions,
summarized below. The details will be given in the next sections.

(1) To solve the unreliable direction problem, SWiLoc incorporates additional receivers as
shown in Figure 3b. As two receivers placed perpendicular to each other may provide
inaccurate estimation, we use opposite receivers (either Rx2 and Rx4 or Rx1 and Rx3,
depending on the user’s direction) for direction estimation.

(2) In order to adapt to the changes in system hardware setup, SWiLoc utilizes accurate
walking distance data from smartphones to improve the precision and reliability of
WiFi sensing. Rather than relying on ratios, SWiLoc uses the geometrical relationship
between the user’s movement and its effect on the Fresnel zones. This method allows
SWiLoc to compute direction and location accurately without resorting to approximations.

(a) (b)

Figure 3. Towards Solving Unreliable Direction Problem. (a) Unreliable Direction using 2 receivers.

(b) SWiLoc solves unreliable direction using 4 receivers.

4. Methodology

This section initially presents the workflow of SWiLoc, followed by comprehensive
discussions on the calculation of movement direction (phase 1) and the correction of phone
orientation alongside location estimation (phase 2).

4.1. Workflow of SWiLoc

Figure 4 illustrates the workflow of SWiLoc. To recap, SWiLoc operates in two phases:
WiFi-based direction estimation when the user crosses the correction zone and phone sensor
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based estimation after the user leaves the zone. The steps and details of both of the phases
are described as follows.
Start:

1. The central server integrates a Network Time Protocol (NTP) to ensure time synchro-
nization between the smartphone and all four receivers.

Phase 1:

2. A user with a smartphone enters a correction zone and crosses the Line-of-Sight
between a pair of WiFi transceivers at time T0. This crossing event is identified through
CSI analysis, details of which are elaborated in our system implementation section.

3. Following CSI analysis, the server transmits T0 to the smartphone, which continues to
gather data from the motion sensor as the user walks. This data includes the user’s
step count, the phone’s orientation (pitch, roll, and azimuth), and the timestamp for
each step, all of which are processed and recorded by the smartphone.

4. The smartphone transmits the time T1 and distance d to the server, where T1 represents
the time taken for the user to walk k additional steps after crossing the LoS and d
denotes the distance traveled between T0 and T1. The value of k is predetermined and
d is calculated using the individual step length of each user.

5. The server analyzes the CSI data, calculates the fluctuation count between times T0 and
T1 and determines the user’s walking direction θp by applying Equations (2) and (3).

6. The server returns the calculated direction to the smartphone.

Phase 2:

7. The phone receives the user’s walking direction θp and maps the phone’s orientation
to the user’s walking direction during T0 and T1 by using Equation (4).

8. User continues walking, relying on the mapping formed in the previous step to infer
the user’s walking direction from phone’s orientation.

9. Finally, the phone computes user’s location using the corrected walking direction.
Phase 1 repeats when the user moves into a next correction zone.

Figure 4. System Workflow of SWiLoc.

4.2. Computation of Direction in Correction Zone

Figure 5a illustrates the method for determining the user’s direction using motion
sensor data and WiFi sensing. A coordination system is established using a transmitter Tx
at (0,0) and four receivers (Rx1–Rx4), with Rx4 aligning with the positive x-axis. When the
user intersects the LoS between Tx and Rx4 at time T0, the intersection point is designated
as (ls,0). Although the CSI analysis at the receiver detects the time of LoS crossing, the
exact crossing point, ls, remains undetermined. The user then walks k steps to reach point
P at time T1. As detailed in Figure 5b, the coordinates of P (user’s location at T1) can be
represented as:

(x = ls + d cos θp, y = d sin θp) (2)

Here, ls represents the distance from Tx to the user’s crossing point on the LoS at time T0, and
θp indicates the direction the user is walking from location P towards the WiFi transceiver
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system’s coordinate system. In the formula, the smartphone provides the distance d from the
LoS crossing to point P, with ls and θp remaining as the two unknown parameters.

(a) User’s Trajectory (b) User’s Location at T1

Figure 5. Geometrical Derivation of SWiLoc using Triangle.

As the user moves between T0 and T1, they cross several Fresnel zones established
between the pairs of transceivers, Tx and Rx2, and Tx and Rx4. These Fresnel zone
crossings are identifiable by analyzing the CSI from the corresponding receivers, which
display fluctuations in amplitude levels. For ease of understanding and representation,
we simplify the sequence of Fresnel zones at location P by counting the number of zones
crossed by the user [31]. We assign m and n to represent the sequence of the Fresnel
zones at location P for Rx2 and Rx4, respectively, which are determined by counting these
fluctuations. Based on the Fresnel zone model, we establish the following:

ellipse1 :
(x − c)2

(an
1 )

2
+

(y)2

(bn
1 )

2
= 1

ellipse2 :
(x + c)2

(am
2 )

2
+

(y)2

(bm
2 )

2
= 1

(3)

here an
1 , bn

1 , am
2 and bm

2 represent the major and minor axes of the nth and mth ellipses
respectively (refer to Figure 6). These terms are derived from Fresnel zone theory using
the values of m and n and c is half the distance between the transmitter and receiver, as
established during the system setup. By substituting the x, y values from Equations (2)–(3),
we can determine the user’s direction θp and the LoS crossing point (ls, 0).

Figure 6. The mth and nth Fresnel Zone for Rx2 and Rx4.

4.3. Phone-Based Direction Estimation

Different ways of user carrying the phone cause different misalignments between the
phone’s orientation and the user’s walking direction. As long as the user doesn’t change
the way they hold the phone, the mapping between the two directions doesn’t change.



Sensors 2024, 24, 6327 10 of 23

SWiLoc builds this mapping from θp and the phone’s orientation at location P, as shown by
Equation (4).

θu =
(

θp + (γu − γp)
)

mod 360 (4)

where γu is the phone’s new orientation and θu is the user’s new direction. Figure 7
illustrates this mapping: user’s current direction obtained from correction zone is θp and
phone’s current orientation is γp. After user takes a turn, user’s new direction θu is inferred
by correcting phone’s new orientation γu using the mapping in Equation (4). We calculate
the phone’s orientation towards the global north (i.e., azimuth, which is the rotational angle
about the phone’s z axis) by its 3D accelerator’s and magnetometer’s readings.

(a) Before Turn (b) After Turn

Figure 7. Mapping Phone Orientation to User Direction.

4.4. Location Estimation

With the accurate direction estimation, we can now accurately estimate the user’s
location, that involves 3 main steps: step detection, step length estimation, and location
calculation. By detecting each step, estimating the length of each step, and iteratively
updating the position, we can continuously track the user’s movement and calculate their
new location.

4.4.1. Step Detection

To detect steps using smartphone accelerometer, we first compute the magnitude of
the acceleration vector to combine the three axes and reduce noise using the Equation (5).

am(t) =
√

ax(t)2 + ay(t)2 + az(t)2 (5)

Next, we apply a low-pass filter to the magnitude signal to remove high-frequency
noise, which has been done using the Equation (6), where α is the smoothing factor.

a f (t) = α · am(t) + (1 − α) · a f (t − 1) (6)

Finally, peak detection in the filtered signal is done by identifying local maxima that
exceed a predefined threshold T, using the condition a f (t) > T; and a f (t) > a f (t − 1) and
a f (t) > a f (t + 1) to confirm a peak at time t. By applying these steps, we can accurately
detect steps based on the identified peaks in the filtered acceleration data.

4.4.2. Step Length Estimation

To estimate step length using the step detection algorithm, we collect accelerometer
and gyroscope data from the smartphone during walking and identify steps using the
filtered acceleration magnitude. For each detected step, we extract the mean acceleration
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magnitude Accmean, peak acceleration Accpeak, mean gyroscope reading Gyromean and step
frequency S f req features using the Equation (7):

Accmean =
1

n

n

∑
i=1

am(i)

Accpeak = max(am(i))

Gyromean =
1

n

n

∑
i=1

√

ωx(i)2 + ωy(i)2 + ωz(i)2

S f req =
1

∆t

(7)

These features are then combined into a feature vector x and given as follows:

x =
[

Accmean Accpeak Gyromean Sfreq

]T
(8)

The step length L is estimated using a dot product with a calibration vector w, such that
L = w · x, where x is obtained from Equation (8). To determine the calibration vector w for
accurate step length estimation in our system, the following procedure was implemented:

Initially, extensive sensor data were collected from controlled walking trials, ensuring
precise measurement of actual step lengths. This data facilitated the extraction of key
features, encapsulated in the vector x, which includes mean acceleration, peak acceleration,
mean gyroscope reading, and step frequency, as outlined in Equation (7). A linear regression
model was then applied to this dataset, correlating the feature vectors with the recorded
step lengths to derive the coefficients forming w. This regression process was conducted
using robust statistical software capable of linear regression analysis, allowing for the
optimization of the calibration vector to ensure the most accurate and reliable step length
predictions based on our sensor setup. This structured approach ensures that the step
length estimation is finely tuned to the dynamics captured by our system’s sensors.

4.4.3. Location Calculation

Given that the user, after reaching at point P, continues walking in the new direction θu,
then the new position (xi, yi) can be calculated iteratively using the following formulas [32]:

xi = xi−1 + Li · cos (θu · π/180)

yi = yi−1 + Li · sin (θu · π/180)
(9)

where xi−1 and yi−1 are the coordinates of the previous position and Li is the estimated
length of the i-th step. By updating the position after each detected step, we can continu-
ously track the user’s location in the new direction θu.

5. System Implementation

In this section, we outline the hardware configuration and the procedural steps re-
quired to implement the SWiLocsoftware.

5.1. Hardware Setup

Each correction zone consists of four receivers and one transmitter. We utilize the
Raspberry Pi 4B as the receiver to gather CSI data, chosen for its accessibility and afford-
ability. However, the standard firmware of the Broadcom WiFi chip does not support CSI
data capture. Thus, we employed modified firmware [18] from Nexmon that enables CSI
data capture. This firmware conveys CSI data to the host system by embedding it within
transport layer payloads in frames. For transmission, a TP-Link Archer A7 router operating
on the 5 GHz band was used. To initiate data transmission, we ping the router every 5 ms,
prompting it to send a pong packet received by the four receivers.
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We use a desktop equipped with an Intel Core i7 processor and 8 GB of RAM as the
server, which connects to all receivers via Ethernet. This server processes the CSI data and
performs all necessary calculations for direction and location computation. Additionally, it
operates a Network Time Protocol (NTP) server to manage time synchronization across all
system components.

Finally, a Huawei Nova 3i smartphone serves as the user’s device. It communi-
cates with the server via a TCP socket and automatically synchronizes its time with the
NTP server.

5.2. Software Implementation

We implement the following procedures on the server, with the android App installed
on the phone:

5.2.1. LoS Crossing Detection

The LoS crossing detection step identifies a specific pattern in the CSI readings from
four receivers and determines the time T0 as the LoS crossing moment, along with the
specific receiver (e.g., Rx1, 2, 3, or 4) where the user intersects the LoS. A distinct pattern
emerges in the CSI data as the user crosses the LoS. Figure 8 displays this pattern (high-
lighted within a red rectangular box) occurring between t0 = 3.7 s and t′0 = 4.4 s. The
pattern reveals that the energy amplitude drops below −55 dBm during this interval. This
reduction occurs because the user obstructs the radio signal between the transmitter and
receiver, leading to decreased energy in the CSI readings. Given the brief duration of the
LoS crossing (less than 1 s), we calculate T0 as the midpoint of the interval, T0 = (t0 + t′0)/2,
representing the average time of crossing.

Figure 8. LoS Crossing Detection.

We developed a Python script that employs a simple search technique to identify the
pattern. The script looks for consecutive amplitude values that meet or fall below a set
threshold in the time domain. The size of the pattern window varies depending on the
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user’s body shape, walking speed, and the hardware specifications. Through repeated
experiments, we observed that in our hardware and correction zone setup, a person of
average size walking at a speed between 0.5 to 1 m/s can be accurately detected by setting a
threshold amplitude value of −55 dBm. This parameter has been used for our evaluations.
It is to be noted that the CSI data, as depicted in Figure 9, were captured before crossing the
LoS during the 2nd to 3rd sec time interval shown in Figure 8, indicating a higher average
raw amplitude values (>600).

Figure 9. Before and After CSI Smoothing.

5.2.2. CSI Fluctuation Count

This phase determines m and n by counting fluctuations in the CSI data collected by
Rx2 and Rx4 between T0 and T1, where T0 is identified through LoS crossing detection and
T1 is provided by the smartphone. As a person moves along a radio propagation path, they
create peaks and valleys in the CSI data within the Fresnel zone. By counting these peaks
and valleys, we can ascertain which Fresnel zone the user occupies after walking k steps.

CSI data captured by the Raspberry Pi contains noise. To mitigate this, we employ the
Least-square smoothing filter [33], which effectively smooths the CSI data while minimally
altering the waveform. This filter creates a polynomial fit based on a predefined number
of input samples, known as a sample window. After thorough testing across various
environments, walking directions, and distances, we have empirically set the window size
at 51. Figure 9 displays the CSI data before and after the smoothing process. We then
utilize the find_peaks function from the SciPy package to count the fluctuations. Through
experimental evaluation, we set the minimum height as 750 (measured in raw amplitude
values, not dBm) to identify a fluctuation.

5.2.3. Direction Calculation

Once m and n are determined, the subsequent step involves solving the two ellipse
equations presented in Equation (3). For a given n, the boundary of the n-th Fresnel zone,
bn

1 , formed by Rx2, is specified by the Fresnel zone model as follows:

bn
1 = {|Rx2P|+ |PTx| − |TxRx2| = nλ/2} (10)
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Here, λ represents a parameter set by the radio wavelength. Similarly, the boundary for the
m-th Fresnel zone bm

2 , associated with Rx4, is also determined. Furthermore, for ellipse1
and ellipse2, three additional properties derived from Fresnel zone theory are essential for
calculating an

1 , bn
1 , am

2 and bm
2 in Equation (3). For clarity, the three properties for ellipse1 are

outlined below:

|Rx2P|+ |PTx| = 2an
1

|TxRx2| = 2c

(a1
n)

2 − c2 = (b1
n)

2

(11)

By solving Equations (10) and (11), we derive bn
1 as follows:

bn
1 =

√
nλ2 + 8nλc

4
(12)

Inserting bn
1 into Equation (11), allows us to calculate an

1 , with c as a predetermined variable
(from Equation (3)). Similarly, the values for am

2 and bm
2 for ellipse2 can be determined. This

allows us to solve Equation (3) and determine the two unknown variables θp (direction)
and ls, as illustrated in Figure 5b. With θp and ls distance established, the user’s location
coordinate x and y at point P can readily be calculated using Equation (2).

5.2.4. Location Calculation

Once we have determined the calculated direction (θp), we apply Equation (4) to
deduce the user’s new movement direction (θu) based on changes in the phone’s orientation,
which occur due to the user’s changed direction. Finally, we use Equation (9) to compute
the user’s new location (xi, yi) by utilizing the updated direction (θu).

5.2.5. SWiLoc App Implementation

Our app development is based on an open-source compass application [34]. Specif-
ically, our app (1) interacts with the server to obtain T0 and θp, and transmits T1 and d;
(2) detects the user’s steps and logs the time and the phone’s orientation at each step;
(3) calculates the real-time direction of the user by Equation (4); (4) computes the successive
locations of the user using the Equation (9).

6. Evaluation

This section outlines the procedure and findings of our assessment. We first measured
the accuracy achieved by phase 1 only, and then further measured our overall accuracy, i.e.,
phases 1 and 2.

6.1. Testbed Setup

We carried out experiments in two distinct indoor settings to assess the performance
of SWiLoc effectively. These included a lab office measuring 7.5 m by 6 m and a large empty
corridor of 46 m by 3 m. In each environment, we positioned four receivers to create a 3 m
by 3 m correction zone. The lab office, equipped with four tables, four chairs, and several
desktops and monitors, is characterized by rich multi-path reflections. Conversely, the
corridor is indicative of an environment with static reflections.

The receivers, mounted on tripods 50 cm above the floor, are depicted in Figure 10.
Each Raspberry Pi was positioned 1.5 m from the WiFi router, which was affixed to the
ceiling directly above the midpoint of the four receivers. Keeping the receivers elevated
from the ground is crucial to minimize the reflection of radio waves off the floor.
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(a) Office Room (b) Corridor

Figure 10. Testbed Setup.

6.2. Performance Evaluation for Phase 1 Only

Primarily, we evaluated the WiFi sensing method used in phase 1 by testing the
accuracy of direction estimation across eight basic paths. These paths intersected the WiFi
router from eight different directions, each separated by 45 degrees: 0, 45, 90, 135, 180,
225, 270, and 315 degrees, relative to the line from Rx2 to Rx4. Since smartphone-based
distance estimation is recognized for its accuracy and is not the primary focus of our study,
we proceeded under the assumption that the distance d recorded by the smartphone was
precise. Our experiment focused solely on measuring the errors originating from our WiFi
sensing method. To accurately set the directions for each path, we employed a digital
protractor and placed markers on the floor. Three volunteers were instructed to walk from
a specific start point to an endpoint, ensuring their torsos were aligned with the marked
line. We conducted eight repetitions for each data collection, collecting a total of 384 sets of
WiFi CSI data across two environments, involving three volunteers, eight paths, and eight
repeats each.

Figure 11 presents the Median Absolute Error (MAE) for eight fundamental paths
within both an office room and an empty corridor. Figure 11a indicates that the overall
MAE in the office room is 6 degrees, with a standard deviation of 5.41 degrees. Figure 11b
displays that the overall MAE in the empty corridor is approximately 5 degrees, with a
standard deviation of 4.04 degrees. Figure 11c illustrates that, in contrast to the office room,
which is affected by substantial multi-path reflections, the empty corridor results in lower
errors, with a 75th percentile error of about 6 degrees compared to 8 degrees in the office
room. Notably, the 45-degree angle consistently exhibits less than 4 degrees of error in the
upper quantile for both environments. The boxplots for both environments demonstrate
that our approach accurately estimates unreliable directions (0, 90, 180 and 270 degrees).

(a) Office Room (b) Empty Corridor (c) CDF Comparison

Figure 11. Phase 1 Accuracy in 2 Different Environments.
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6.3. Performance Evaluation for SWiLoc

We further incorporated a phone to evaluate SWiLoc’s overall accuracy (including
both phase 1 and phase 2). Following our previous testing approach, we pre-defined
2 continuous traces (namely Trace 1 and 2) in corridor and demarcated the path on the
ground to guide testers. Trace 1 and 2 have a length of 6.7m and 4.8m respectively. These
continuous traces have multiple segments each, with some segments involving LoS crossing
and other not. Five volunteers held the phone in 3 different positions, and the phone
interacted with the server for direction estimation. To obtain the ground truth direction
during walking, one observer used a laptop which was synchronized with the NTP server
to record the time when testers started or took a turn. We repeated each data collection
5 times.

Figure 12 illustrates the continuous traces and their corresponding accuracy for di-
rection estimation. Trace 1 and trace 2 have 3 and 4 segments respectively. After each
segment of walk, our tester changed their directions and the phone inferred their new
directions based on the mapping obtained from phase 1, till the tester crossed another LoS.
We observed that segment 2 exhibited higher accuracy than other segments in trace 1.

(a) Continuous Trace 1 (b) Continuous Trace 2

(c) MAE for Trace 1 (d) MAE for Trace 2

Figure 12. SWiLoc Performance in Continuous Traces.

We then infer the tester’s location with every 1 interval using the estimated walking
direction of the tester. As mentioned previously, 5 volunteers walked through these 2 traces
with an average speed of 0.63 m/s, with minimum and maximum speed of 0.51 m/s
and 0.96 m/s respectively. Therefore, our system calculated approximately 300 locations
(around 12 locations × 5 volunteers × 5 repetition) for trace 1 and 200 locations (around
8 locations × 5 volunteers × 5 repetition) for trace 2. Figure 13 shows the Cumulative
Distribution Function (CDF) for localization error for both of the traces. Trace 1 exhibits
less error than trace 2, as trace 1 consists of 4 LoS crossing points. On the other hand, trace
2 has only 1 LoS crossing point.

We also tested how different ways of holding the phone impacted the walking direction
accuracy. Figure 14a–c shows the CDF graphs for 3 hold positions, comparing SWiLoc with
two other systems, Humaine [7] and Android’s builtin compass. The CDF results show
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that SWiLoc achieves the best accuracy regardless of the phone holding position. These
results provide evidence to support our claim that combining active smartphone-based
PDR with passive WiFi-sensing-based correction zones yields greater accuracy than existing
state-of-the-art systems.

Figure 13. Localization Error for Continuous Trace 1 & 2.

(a) Hand Palm (b) Shirt Pocket

(c) Pant Pocket

Figure 14. CDF of Different Phone Holding Positions, Comparing SWiLoc with Humaine and

Android API.

In addition to that, we computed the median and 75th percentile accuracy achieved by
SWiLoc across all test scenarios and compared these figures with three other state-of-the-art
works: WiDir [28], Widar [29] and WalkCompass [23]. WiDir and Widar utilize passive WiFi
sensing, whereas WalkCompass relies on smartphone technology. We derived the accuracies
of these methods from their respective publications, as we did not have access to their
source codes. As detailed in Table 1, SWiLoc surpasses the performance of these models in
terms of 75th percentile and median errors, although Widar records a slightly lower median
error of 5 degrees compared to SWiLoc’s 6 degrees. Against WalkCompass, the closest
competitor, SWiLoc achieves a 64% reduction in the 75th percentile error. This superior
performance is due to the use of a geometrical relationship that avoids the cumulative
errors commonly seen in other models.
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Table 1. Comparing SWiLoc’s Walking Direction Accuracy (Phase 1) with Other Methods.

Approaches 75th Percentile Error (in degree) Median Error (in degree)

WiDir 23 10

WalkCompass 14.2 8

WiDar 18 5

SWiLoc (Phase 1) 8.89 6

Finally, we compared our localization results with the state-of-the-arts localization ap-
proaches, shown in Table 2. Among the approaches, UbiLocate [35], Spotfi [36], Spring [37],
Fusic [38] are based on passive sensing, while Kalman-filter [39], SmartPDR [24], Particle-
filter based [40], LSTMLoc [41] are active fusion based. SWiLoc outperformed both the
active and passive based localization approaches by achieving 1.12 m of 80-th percentile
localization error. Among all the methods, we implemented UbiLocate, Spotfi and Par-
ticle Filter based methods and tested for only Trace 2 holding the phone on hand palm.
Figure 15 demonstrated that SWiLoc achieved highest localization accuracy among the
3 other methods. Please note that we employed Intel 5300 NIC for implementing Spotfi
and UbiLocate testbed and utilized Linux CSI tool [42] to collect and process CSI data.

Figure 15. Localization Error for Different State-of-the-art methods (Holding Phone on Hand Palm).

Table 2. Comparing SWiLoc’s Localization Accuracy (Phase 1 & 2) with Other Methods.

Approaches
80th Percentile Localization

Error (m)
Base Sensing Method

UbiLocate 2.2 Passive

Spotfi 6.0 Passive

Spring 3.7 Passive

Fusic 3.4 Passive

Kalman-filter based 4.6 Active Fusion

PDRLoc 6.71 Active Fusion

Particle-filter based 2.21 Active Fusion

LSTMLoc 2.36
Active Fusion

(Training-based)

SWiLoc (Phase 1 & 2) 1.12
Active Fusion & Passive,

Training free

6.4. Sensitivity Analysis of SWiLoc

In this subsection, we analyzed the sensitivity of SWiLoc by examining how varying
LoS crossing locations, distances and direction accuracy impact overall system performance,
particularly focusing on direction and localization accuracy.
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6.4.1. Impact of Varying LoS Crossing Locations

We evaluated the impact of varying LoS crossing locations on accuracy. As depicted
in Figure 16, the testers traversed the LoS between Rx2 and Rx4 maintaining a consistent
walking direction, but at different crossing points. These paths (P1, P2, P3, P4 and P5), each
3 m in length and spaced 0.5 m apart, are further analyzed in Figure 17a. The results
show that the direction estimation for all paths exhibited a median error of less than
7 degrees, demonstrating that our WiFi sensing method performs well across various LoS
crossing points.

Figure 16. Paths with Different LoS Crossing Locations.

(a) Different LoS Crossing Pt. (b) Different Distance d

Figure 17. Impact of LoS Crossing Locations and Distances.

6.4.2. Impact of Distance d on Direction Accuracy

We noticed that the influence of the human body on accuracy is significant. While
our models treat the human body as a point, the actual width of the body impacts the CSI
reflections and Fresnel zone fluctuation counts. This effect diminishes if the testers walk
a longer distance post-LoS crossing. Consequently, we conducted further experiments to
assess how the distance d (the path length after crossing the LoS) affects accuracy. The
testers crossed the LoS maintaining a constant walking direction but varying walking
distances d (i.e., 0.5 m, 1 m, 1.5 m). Figure 17b shows that shorter distances d lead to greater
errors. From these findings, it is advisable for developers setting up correction zones to
ensure that area allows users to walk at least 0.5 m after crossing the LoS to minimize errors.

6.4.3. Impact of Direction Accuracy on Localization Accuracy

While it is evident that greater directional error leads to increased localization inac-
curacies, quantifying this error propagation is crucial. Therefore, we have systematically
measured how errors in direction influence localization accuracy. Figure 18 shows that
as direction errors increase, the position error grows non-linearly, indicating that precise
direction estimation is crucial. Moderate to large direction errors, like 30 degrees, lead
to substantial deviations in the final location, emphasizing the importance of minimizing
direction errors to maintain accurate localization.
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Figure 18. Impact of Direction Error on Loc. Accuracy.

6.5. Discussion

To the best of our knowledge, SWiLoc represents the first attempt to merge passive
WiFi sensing with smartphone-based direction estimation. Our evaluations suggest that
SWiLoc delivers robust accuracy compared to other cutting-edge models. Additionally, it
requires no training, enabling it to be deployed in a plug-and-play manner.

We also notice some of its limitations as well as special consideration for deployment,
as stated below:

(1) Requirements on Physical Deployments: Similar to other RF-based human sensing
applications like patient monitoring and gesture recognition, SWiLoc is affected by
complex multi-path environments, and its accuracy significantly decreases when
two individuals enter the same correction zone at the same time. Additionally, it is
necessary for the pedestrian to walk at least 0.5 m after crossing the LoS. Therefore,
when implementing SWiLoc, developers must ensure these conditions are met to
maintain system effectiveness.

(2) Assumption on Phone’s Orientation: Phase 2 of SWiLoc relies on the assumption
that the mapping between user’s direction and phone’s orientation won’t change.
However, sometimes a pedestrian may change how they carry the phone. Consider-
ing this, it is necessary to deploy multiple correction zones to update the mapping.
Besides, as a future work direction, we plan to integrate our approach with other
sensor fusion-based approaches such as WalkCompass.

(3) Configuration of Correction Zone: Configuring correction zones effectively is crucial
for ensuring reliable and accurate localization. The coverage area of each correction
zone is primarily determined by the sensing capabilities of each locations and the
distance between the deployed transceivers. Based on recent advancements in CSI
based sensing, as noted in the latest literature, transceivers can maintain effective
sensing zone over distances up to 40 m [43]. This extended range allows us to design
larger correction zones, thereby reducing the number of zones required to cover a
given space comprehensively.
To this end, to determine the optimal number and placement of correction zones, we
can employ a systematic approach that considers the layout of the indoor environment
and the typical movement patterns of users within it. The placement strategy aims to
maximize coverage, ensuring that at any point within the environment, a pedestrian’s
mobile phone can reliably connect to at least one correction zone. This is particularly
important given the random nature of changes in phone posture and orientation as
users move.

(4) Applicability of SWiLoc in Diverse Indoor Environments: Our SWiLoc system
employs a seamless integration with server-based corrections, which are delivered
to users via an existing WiFi connection. Users are not required to be aware of the
server or the technicalities of correction zones; instead, they experience an automated
and continuous improvement in direction and location accuracy as they move within
the coverage area. This setup ensures that the localization system is user-friendly
and unobtrusive, leveraging WiFi connectivity to provide necessary updates and
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corrections from the server. This design is particularly effective in environments
where WiFi is readily available, allowing for broad application in various indoor
settings such as shopping centers, offices, hospitals, airports, museums etc. without
the need for specialized knowledge or interaction from the user.

In practical, to enhance this seamless navigation experience, our system utilizes mul-
tiple correction zones distributed throughout the indoor space. As the user moves and
remains connected to the WiFi network, the system automatically detects which correction
zone the user is currently in. Based on this location information, the corresponding correc-
tion data from the nearest or most relevant correction zone is dynamically provided to the
user. This ensures that the direction corrections are contextually accurate, enhancing the
reliability of the navigation solution as the user traverses different areas within the space.
This dynamic allocation of correction data based on user’s real-time location within the
correction zones significantly improves the overall system efficacy and user experience in
navigating complex indoor environments.

7. Conclusions

In this paper, we introduce SWiLoc, a system designed to precisely estimate movement
direction and location by integrating passive WiFi sensing with smartphone-based direction
estimation. Our innovative approach incorporates extra receivers to enhance WiFi sensing
and employs a geometric method to improve direction and thereby localization accuracy.
SWiLoc, implemented using Raspberry Pi, demonstrates through comprehensive testing an
average 80th percentile error of 1.12 m in location estimation, achieving a 49% reduction
over existing state-of-the-art methods.
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