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ABSTRACT ARTICLE HISTORY
Ansorge’s Rock Skink Trachylepis ansorgii (Boulenger, 1907) is an Received 19 December 2023
Angolan taxon, the taxonomic distinctiveness and geographic Accepted 16 May 2024
distribution of which are poorly understood. It is closely related
to the widespread Western Rock Skink T. sulcata (Peters, 1867)
from Namibia and South Africa, but heretofore a lack of samples
has prevented a comprehensive assessment of T. ansorgii in a KEYWORDS
molecular phylogenetic context. We combine new genetic Angola; biodiversity;
sampling from south-western Angola, including topotypical herpetology; Mabuyinae;
material of T. ansorgii, with published sequences from South multi-locus; western rock
Africa and Namibia to identify population structure, phylogenetic skink

relationships, and divergence dates within this species complex.

A multi-locus dataset of three nuclear and two mitochondrial loci

recovered significant population structuring with a centre of

diversity in south-western Angola and northern Namibia.

Mitochondrial data recovered seven clades representing distinct

geographic populations, while the nuclear data supported either

two or three deeper groupings. Mito-nuclear discordance was

observed with respect to the geographic boundary between

T. ansorgii and T. sulcata. The nuclear data support a break along

the western Kunene River (the political boundary between

Angola and Namibia), while the mitochondrial data support this

break ~250 km to the north in south-western Angola. A time-

calibrated BEAST phylogeny found the deepest species-level

divergence to have occurred in the late Miocene/early Pliocene

(~6 mya), potentially related to the formation of the Kunene

River. Our results support the recognition of both taxa at the

species level, and add further evidence that south-western

Angola is a centre of reptile diversity.
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A lagartixa-das-rochas-de-Ansorge, Trachylepis ansorgii (Boulenger,
1907) é um téxon angolano do qual pouco se sabe relativamente a
sua identidade taxonomica e distribuicdo geografica. Sendo
parente préxima da consideravelmente amplamente distribuida
lagartixa-das-rochas-ocidental, T. sulcata (Peters, 1867), da
Namibia e Africa do Sul, a falta de amostras tém até ao momento
impossibilitado uma revisdo molecular completa da T. ansorgii.
Juntando novas amostras genéticas do sudoeste de Angola, onde
se inclui material topotipico de T. ansorgii, com sequéncias ja
publicadas originarias da Africa do Sul e da Namibia, podemos
identificar a estrutura populacional, relacées filogenéticas, e
tempos de divergéncia no seio deste complexo de espécies. Um
conjunto de dados de trés genes nucleares e dois genes
mitocondriais, revelou uma  estruturacdo  populacional
significativa, com um centro de diversidade no sudoeste de
Angola e norte da Namibia. Os dados mitocondriais revelaram
sete clados, cada um representando populacdes geograficas
distintas, enquanto os dados nucleares suportam entre dois ou
trés grupos. Os dados mitocondriais e nucleares apresentam
resultados discordantes, especialmente em relacdo a fronteira
geogréfica entre T. ansorgii e T. sulcata. Os dados nucleares
apontam uma separacgao clara no rio Cunene, na fronteira entre
Angola e a Namibia, enquanto os dados mitocondriais sugerem
que esta separacao é cerca de 250 km a norte, no sudoeste de
Angola. Uma arvore BEAST calibrada temporalmente encontrou
que a divergéncia a nivel de espécie mais profunda terd ocorrido
no final do Miocénico/inicio do Pliocénica (~6 ma),
potencialmente relacionada com a formacao do rio Cunene. Os
nossos resultados suportam o reconhecimento dos dois taxa
como espécies vdlidas, e trazem novas evidéncias de que o
sudoeste de Angola é um centro de diversidade de répteis.

Introduction

The mabuyine skink genus Trachylepis is taxonomically and ecologically diverse, with 97
species currently recognised, mostly in mainland Africa and Madagascar (Uetz et al. 2023;
Ceriaco et al. 2024). The position of the genus within Mabuyinae has been addressed
(Mausfeld et al. 2002; Karin et al. 2016; Metallinou et al. 2016), while a species level phy-
logeny including most of the recognised Trachylepis taxa was presented by Weinell et al.
(2019). Although several problematic species groups have been resolved within this
scincid genus (Portik and Bauer 2012; Ceriaco et al. 2016a; Weinell and Bauer 2018), taxo-
nomic uncertainties still remain in some groups. This includes several species complexes
occurring in Angola, which until recently was largely inaccessible to researchers due to its
four decade-long civil war. A comprehensive review of Trachylepis skinks in Angola was
recently published by Ceriaco et al. (2024), which described seven new species for the
country and elevated three subspecies to full species status, one of which is the focus
of this study.

The Western Rock Skink Trachylepis sulcata (Peters, 1867) is a viviparous skink widely
distributed across south-western Africa, from the western half of South Africa through
Namibia and into south-western Angola (Mertens 1955; Branch 1998; Portik et al. 2010;
Marques et al. 2018). The taxon was originally described from “Neu-Barmen” [= Gross
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Barmen], Otjozondjupa Region, central Namibia (Peters 1862), and two other non-nomi-
notypic forms have been historically recognised. Trachylepis sulcata nigra (Werner, 1915)
was described from Lideritz Bay in southern coastal Namibia based on its distinct mela-
nistic colouration; however, molecular data presented by Portik et al. (2010) revealed that
the melanism in this population represents a localised adaptation to the cooler coastal
region with high fog cover, a pattern also seen in other African lizards (Daniels et al.
2004; Engelbrecht et al. 2011; Ceriaco et al. 2016a), and the subspecies was consequently
synonymised with the nominotypical form. The other form associated with T. sulcata is
Ansorge’s Rock Skink Trachylepis ansorgii (Boulenger, 1907), a poorly known taxon
described from Huila Province in south-western Angola (Boulenger 1907).

A phylogeographic study of T. sulcata by Portik et al. (2011) included extensive
sampling from South Africa and Namibia, but tissue samples from Angolan populations
were unavailable at the time, preventing any explicit assessment of T. ansorgii. Neverthe-
less, three distinct groupings were identified within T. sulcata, with the northern Namibian
population being the most genetically diverse. The authors hypothesised a Pliocene refu-
gium in this region, with a mid-Pleistocene expansion southward into South Africa (Portik
et al. 2011). A phylogeographic break was observed between the southern and central
genetic groupings at the Knersvlakte region in the north-western Western Cape province
of South Africa (Portik et al. 2011).

The original description of Mabuia Ansorgii (currently Trachylepis ansorgii), based on a
single specimen from “Caconda” on the Huila Plateau, south-western Angola, provided a
brief morphological description based on squamation, colouration, and basic measure-
ments (Boulenger 1907). Its taxonomic status, affinities, and distinguishing diagnostic
characters have since been debated, with different authors presenting conflicting views
(e.g., Boulenger 1907; Monard 1937; Laurent 1964; Mertens 1971; Haacke 1972; Bauer
et al. 1993; Branch 1998; Marques et al. 2018; Branch et al. 2019). Mertens (1971) followed
Monard (1937) in considering ansorgii as a subspecies (T. sulcata ansorgii) and raised the
possibility of the taxon’s distribution extending into northern Namibia, with what he con-
sidered typical ansorgii specimens from north-western Namibia (“Marienfluf, Kaokkoveld”),
while some other Namibian specimens from “Otjitambi” were considered intergrades
between ansorgii and sulcata. Haacke (1972) also referred to some specimens on the
Namibian side of the Kunene River as T. s. ansorgii. Bauer et al. (1993) noted that while
some individuals to the west of the escarpment in north-western Namibia showed the
characteristic pinkish or orange throat and infralabials typical of the northern race, not
enough material had been analysed to make a taxonomic decision. Branch (1998)
acknowledged T. s. ansorgii as a “poorly defined” race, with the accompanying distri-
bution map showing the two subspecies occurring parapatrically in the Kaokoveld
region of north-western Namibia, but the extent of the species’ range into Angola was
not addressed. Material collected by Ceriaco et al. (2016b) from Namibe Province,
Angola, including Leba Pass on the border with Huila, was preliminarily integrated into
the dataset from Portik et al. (2011), and no significant difference from the nominotypical
form was found, leading the authors to recognise T. sulcata as a monotypic species.
Recent revisions of Angolan herpetofauna have conservatively treated ansorgii either as
a synonym of sulcata (Marques et al. 2018) or as a subspecies (Baptista et al. 2019;
Branch et al. 2019; Butler et al. 2019; Conradie et al. 2022). However, a recent
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comprehensive review of all Angolan Trachylepis taxa recognised T. ansorgii as a distinct
species (Ceriaco et al. 2024) despite its cryptic morphology.

Here, we incorporate new genetic samples from Angola and Namibia with published
sequences from Namibia and South Africa to generate a more complete dataset that
covers the full representation of diversity within T. sulcata sensu lato. We aim to assess
phylogenetic relationships and genetic structuring using tree-based and non-tree-
based molecular methods, identify and evaluate the role of potential phylogeographic
barriers that have shaped the taxon’s current distribution in south-west Africa, and vali-
date the taxonomic status and geographic boundaries of T. ansorgii and T. sulcata
across their distributions in south-west Africa.

Materials and Methods
Sampling

New specimens were collected from Angola for this study, euthanised following an
approved IACUC protocol (Villanova University #1866), preserved in 10% buffered for-
malin in the field, and transferred to 70% ethanol for storage. Liver tissue was
removed before formalin fixation and preserved in RNALater and transferred to 95%
ethanol for long term storage. Specimens were deposited in the herpetological collec-
tions of the California Academy of Sciences (CAS), San Francisco, USA; Museu Nacional
de Histéria Natural e da Ciéncia, Universidade de Lisboa (MUHNAC), Lisboa, Portugal;
Museu de Histéria Natural e da Ciéncia da Universidade do Porto (MHNCUP), Porto, Por-
tugal; and Instituto Nacional da Biodiversidade e Areas de Conservacdo (INBAC),
Luanda, Angola.

A total of 124 ingroup samples were obtained for this study. Samples span the entirety
of the known range of T. sulcata and T. ansorgii, including 29 samples from South Africa,
46 from Namibia, and 49 from Angola. Of these, 48 specimens from Namibia and South
Africa were used in previous studies on the group (Portik et al. 2010, 2011). Importantly,
topotypical material of T. ansorgii was collected and included from Caconda, Huila
Province, Angola. In addition, various congeneric samples were included as outgroup
taxa for rooting purposes in phylogenetic analyses. A list of samples used in this study,
including accession numbers and locality data, is provided in Appendix Table A1.

Sequence Acquisition and Processing

Genomic DNA was extracted from preserved tissues using a salt-extraction protocol
modified from Aljanabi and Martinez (1997). Polymerase Chain Reaction (PCR) amplifica-
tion was performed for two mitochondrial loci (165 and ND2) and three nuclear loci
(RAG1, MXRA5, EXPH5) based on their effectiveness in similar studies on Trachylepis
taxa (Portik et al. 2010; Portik and Bauer 2012; Sindaco et al. 2012; Ceriaco et al. 20164a;
Allen et al. 2017, 2019; Weinell and Bauer 2018; Marques et al. 2019). Primer pairs were
taken from published studies (Palumbi et al. 1991; Macey et al. 1997; Portik et al. 2010;
Portik and Bauer 2012). PCRs were run with negative controls and products were visual-
ised using gel electrophoresis. Successful PCR reactions were cleaned using magnetic
Serapure beads and ethanol rinses. After sequencing reactions with BigDye Terminator
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and an additional bead-cleaning protocol, sequencing was performed on ABI 3730x| and
3130xl sequencers at Villanova University.

Sequence editing was manually performed in Geneious v11.0.2 to review correct base
calling and identify heterozygous sites in nuclear loci. Protein coding sequences were
translated to check for correct reading frames and premature stop codons. Alignments
were created using the Geneious alignment option under default settings. All new
sequences are available in the GenBank repository, with accession numbers listed in
Table A1.

Phylogenetic Analyses

Maximum likelihood (ML) phylogenetic analyses were performed using RAXML v8.2.12
(Stamatakis 2014) on eight datasets: five individual loci (16S, ND2, RAG1, EXPH5, and
MXRAS5), a concatenated mitochondrial dataset (mito), a concatenated nuclear dataset
(nuc), and a concatenated dataset of all five loci (all5). Individual gene trees for nuclear
loci were run with the phased haplotypes to account for heterozygosity (PHASE v2.1;
Stephens et al. 2001; Stephens and Donnelly 2003), while the concatenated nuc and
all5 analyses used the unphased sequences. PartitionFinder2 (Lanfear et al. 2017) was used
to determine the best partitions for codon positions in the gene trees, and for determining
both gene and codon partitions in the concatenated datasets. The GTRGAMMA model
was used for all partitions, as RAXML has limited model selection. Each run was called
with the -f a’ option to compute 500 rapid bootstraps and search the best-scoring ML
tree in a single run. Trees were visualised in FigTree v1.4.3 and manually rooted using
the outgroup clade (affinis (maculilabris + notabilis)) (Weinell et al. 2019). Rapid bootstrap
(BS) values greater than 70% and 95% were considered to represent ‘supported’ and
‘highly supported’ nodes, respectively.

Bayesian Inference (Bl) was used to infer phylogenetic relationships for the mito, nuc,
and all5 datasets. Partitions and models of evolution were determined in PartitionFinder2
using BIC criteria for model selection. MrBayes v3.2.2 (Ronquist et al. 2012) on the CIPRES
platform v3.3 (Miller et al. 2010) was used to run Bayesian analyses, each consisting of two
runs with four chains (three hot and one cold), and run for 20 million Markov chain Monte
Carlo (MCMC) generations, sampling every 2 000 generations. Convergence was assessed
using ESS scores (>200) and visualised in Tracer v1.7.1 with a 10% burn-in. Trees were visu-
alised in FigTree v.1.4.3 and manually rooted using the (affinis, (maculilabris, notabilis))
clade (Weinell et al. 2019). Posterior Probability (PP) values greater than 0.95 were con-
sidered as evidence of strong support for nodal values.

Divergence Dating

A time-calibrated tree for the group was estimated using the mito dataset in BEAST
v2.5.1 (Bouckaert et al. 2019). A single partition with the HKY + G substitution
model was found to be optimal using BIC in PartitionFinder2. The 16S and ND2
genes were assigned separate uncorrelated lognormal clock models. A lack of relevant
material prevented the use of fossil calibrations, so substitution rates were calibrated
using published rates of both 16S and ND2 from the literature (Barley et al. 2015).
Specifically, a normally distributed prior on the lognormal clock mean was
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implemented on each gene, with ucldMean = 0.00895 and Sigma = 0.0025. This corre-
sponds to a rate distribution of 0.48-1.31% Myr', which encompasses the known
mitochondrial substitution rates estimated for several reptile groups, including
skinks. The same rate distribution for mitochondrial genes has been used to time-cali-
brate divergences in other Trachylepis studies (Karin et al. 2016; Allen et al. 2019). A
coalescent tree prior with constant population size was chosen, given the close phy-
logenetic relationships of the ingroup and the dense population-level sampling. All
other priors were left at default settings. The MCMC chain was run for 80 million gen-
erations, sampling every 8 000 generations. Convergence was analysed in Tracer
v1.7.1, determined by ESS > 200 for each parameter. TreeAnnotator v2.5.1 was used
to create a maximum clade credibility tree, discarding the initial 10% as burn-in.
The resulting tree was visualised in FigTree v1.4.3.

Population Structure

Haplotype networks were constructed from each of the phased nuclear haplotypes
(RAG1, EXPH5, and MXRA5) using the TCS network inference method (Clement et al.
2002) implemented in PopArt v1.7 (Leigh and Bryant 2015). Trait blocks were uploaded
to visualise the networks with the colours of different haplogroups reflecting mitochon-
drial clades.

Population delimitation was determined with the program STRUCTURE v2.3.4 (Pritch-
ard et al. 2000) using a concatenated dataset of the phased nuclear data stripped of con-
served sites. Individuals were assigned to one of 14 putative populations (K=1-14)
determined by geographic clustering and mitochondrial clades. The linkage model
setting was used to map distances between loci, given that Single Nucleotide Polymorph-
isms (SNPs) within the same marker likely share an evolutionary history. The program ran
for 100 000 MCMC repetitions after a burn-in of 100 000 repetitions for 10 iterations per K
value. The Evanno method criterion (Evanno et al. 2005) implemented in StructureHarvester
(Earl and von Holdt 2012) was utilised to choose the optimal K value. Results were
combined and visualised using CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007) and
DISTRUCT v1.1 (Rosenberg 2004).

To infer intra- and inter-population dynamics, various statistics and tests were run in
Arlequin v3.1 (Excoffier et al. 2005). Individuals were assigned to one of seven populations
based on clades recovered in the phylogenetic analyses. Five datasets were analysed for
each clade: mito, RAG1, EXPH5, MXRAS5, and nuc. To analyse intra-population dynamics,
nucleotide diversity (1), within population pairwise differences (k), Tajima’'s D, and Fu's
Fs values were calculated for all five datasets. For inter-population dynamics, pairwise
fixation indices (Fst) were calculated. In addition, several Analyses of Molecular Variance
(AMOVA) were performed to test four different biogeographic scenarios: 1) a three-
species scenario (northern, central, and southern); 2) a two-species scenario with the div-
ision in northern Namibia; 3) a two-species scenario with the division in south-western
Angola; and 4) a two-species scenario with the division at the Kunene River comparing
Angolan vs. Namibian samples (Supplementary Material Figure S1). Each model was
run separately for the mito and nuc datasets, using uncorrected pairwise distances and
5 000 random permutations.
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Results
Phylogenetics

Except for the ND2 tree, individual gene trees of both mitochondrial and nuclear loci gen-
erally show little structure and are characterised by low support (Figures $1-56). The con-
catenated mito phylogenies of both ML and Bl analyses recover seven distinct subclades
with good support, although several internal nodes lack support (Figure 1; Figures S7-S8).
The subclades generally reflect geographic population structure, with four of the seven
pertaining to Angola (Pop1-4), two in northern Namibia (Pop5-6), and one large subclade
extending from central Namibia across western South Africa (Pop7). The seven popu-
lations comprise two main clades: a northern clade restricted to Angola composed of
Pop1 and Pop2, and a southern clade spanning from southern Angola to South Africa
composed of Populations 3-7. While this southern clade showed good support in the
Bl tree (0.98 PP), it was recovered with low bootstrap support (67) in the ML tree. Topo-
typical material of T. ansorgii was recovered in Pop2 of the northern clade, while near-
topotypical material of T. sulcata (MCZR 193268 from vic. Okahandja, ~21 km NE of
type locality, Gross Barmen) was recovered in Pop7 of the southern clade. The individual
from Epupa Falls (MCZ R190247) on the Namibian/Angolan border consistently groups
with Pop2 from Angola, despite being over 200 km to the south of other individuals in
this clade.

The concatenated all5 analyses show similar results to the mito phylogenies in
both ML and Bl approaches (Figure 2, Figure S9). Each of the seven subclades com-
prising the two main clades were recovered with good support, except for Pop1 and
Pop2 in the T. ansorgii clade, which were not recovered as reciprocally monophyletic
in the combined dataset. The two south-western Angolan clades (Pop3 and Pop4)
were recovered as sister to each other and together are sister to the three southern
populations (Pop5-7).

The time-calibrated BEAST tree from the mito dataset (Figure 3) recovered nearly the
same topology as the ML and Bl mito trees. The relative relationships of Pop3, Pop4,
and Pop5 differ between the trees, and these received low nodal support in all analyses.
The clock rate for 165 was found to be 0.50% Myr™' (0.25-0.80 95% highest posterior dis-
tribution, HPD), while the ND2 clock was estimated to be 1.12% l\/lyr'1 (0.69-1.55 95%
HPD). The root age of the clade (i.e., the split between the northern populations and
the rest of the clade) corresponds to the late Miocene/early Pliocene (5.87 mya, 95%
HPD 3.70-9.25). Further population-level splits were found in the Plio-Pleistocene
(Figure 3).

Population Structure

Haplotype networks of the three phased nuclear loci (Figure 4) reflect geographic popu-
lation clustering observed in the phylogenetic analyses. Overall, a clear distinction is seen
between the northern grouping (Pop1 and Pop2) and the southern grouping (Pop5-7).
The central grouping (Pop3 and Pop4) shows affinity with northern populations in the
RAG1 network, southern populations in the MXRA5 network, or split in the case of the
EXPH5 network in which Pop4 groups near the northern populations but Pop 3 shows
affinity for the southern populations. The distinctiveness between the two northern
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Figure 1: Sampling localities for the analysed dataset of the Trachylepis sulcata complex, coloured by
mitochondrial clade identity. Colours are consistent across the figures in this manuscript.
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Figure 2: RAXML tree of the unphased concatenated dataset (all5), with nodes supported (bootstrap
> 70) and highly supported (bootstrap > 95) in white and black circles, respectively. Outgroup taxa are
not shown. Ingroup taxa are coloured by mitochondrial groupings (mito).

populations (Pop1 and Pop2) is only observed in the EXPH5 network, whereas in the RAG1
and MXRA5 networks these two northern mitochondrial clades share nuclear haplotypes.
In general, the three southern mitochondrial clades (Pop5-7) show shared or highly
similar nuclear haplotypes. The MXRA5 network is the only one that presents a shared
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Figure 3: Time-calibrated BEAST tree from the concatenated mitochondrial dataset (mito). Numbers
on branches represent Posterior Probabilities, whilst bars at nodes represent the 95% highest pos-
terior distribution (HPD) intervals of divergence dates, scaled in millions of years before present.
Coloured rectangles and clade numbers correspond to mitochondrial clade identities, shown in the
inset map of sampling localities.

nuclear haplotype between a northern (Pop2) and southern (Pop6) mitochondrial clade,
as well as a central (Pop4) mitochondrial clade.

The concatenated phased nuclear dataset input into STRUCTURE included 106 individ-
uals with 254 variable loci. A population structure of K=3 was best supported by the
model (AK=12.09), followed by K=4 (AK=10.47) (Figure S10). The ancestry bar plot



AFRICAN JOURNAL OF HERPETOLOGY 1

EXPH5 MXRAS

MXRAS5

Figure 4: Haplotype networks of the three phased nuclear loci. Circle size represents number of indi-
viduals, while colours correspond to mitochondrial groupings.

with the three groupings and their comparison to mitochondrial populations is shown in
Figure 5. A northern grouping (blue bar plots) contains homogenous individuals in north-
ern Namibe and Huila provinces to Malanje, Angola (~9-14°S), corresponding to
T. ansorgii. The central grouping (yellow bar plots) contains a few individuals with com-
plete ancestry assigned to this central grouping but is mainly composed of admixed indi-
viduals showing shared ancestry with either the northern or southern groups. North-
central admixed individuals are from south-western Angola south to the Kunene River
border with Namibia (mitochondrial Pop3 and Pop4, ~14°-17°S), and south-central indi-
viduals are found from the Kunene River south to central Namibia (mitochondrial Pop5
and Pop6, ~17° to 20°S). The southern grouping (red bar plots) includes individuals
from South Africa to central Namibia (mitochondrial Pop7).

Genetic diversity at the population level was found to be the highest in Pop6 from
central Namibia for mtDNA (Table S1; m=0.012506; k=19.81). For nuclear data, Pop4
from Namibe, Angola had the highest diversity (Table S1; m=0.005997; k=17.67).
Several populations showed significantly negative neutrality tests. For Tajima’s D, this
was observed in the mtDNA for Pop3, Pop4, Pop5, and Pop7; and in the nDNA for
Pop1 and Pop2 (Table S1). For Fu’s Fs, this was observed in the mtDNA for Pop2,
Pop3, Pop5, and Pop7; and in the nDNA for all populations except Pop4.

Pairwise Fst values using the nuclear data are centred around 0.5 in the 7-population
model (Figure 6A), suggesting intermediate gene flow between nearby populations. The
highest pairwise Fst value was found between the most geographically separated popu-
lations, Pop1 and Pop7 (0.788), while the lowest nuclear Fst value was between Pop5 and
Pop6 (0.224). The 3-population model with the nuclear data produced similar results
(Figure 6B), with the highest value (0.649) between the central and southern groupings.
The central grouping showed similar Fst values when analysed with the northern group-
ing (0.365) as with the southern grouping (0.392). The mitochondrial data showed overall
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Figure 5: Structure plot (left) organised with individuals arranged by latitude (north to south). Mito-
chondrial population grouping is denoted by thin rectangular bars to the right of larger plot. Map of
samples included in STRUCTURE analysis (right) with samples coloured by mitochondrial grouping.

higher pairwise Fst values between populations, as expected. In the 7-population model
(Figure 6A), Pop1 and Pop4 showed the highest genetic isolation (Fst = 0.936), while Pop6
and Pop7 showed the lowest (Fst = 0.759). Similar to the nuclear data, the mitochondrial
data in the 3-population model showed the highest differentiation between the northern
and southern groupings (Figure 6B; Fst = 0.773). The central grouping was found to have a
slightly lower Fst value when compared to the southern grouping than to the northern
grouping (0.529 and 0.615, respectively).

Among the four scenarios tested with the AMOVA using the mitochondrial dataset, the
highest proportion of explained genetic variance among groups was found in the two-
species scenario that grouped the central populations (Pop3 and Pop4) with the southern
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Figure 6: Fst heatmaps for A) 7-population model and B) 3-population model. Nuclear values are
above the diagonal and mitochondrial values below the diagonal. Higher relative Fsy values are
red, while lower relative values are dark blue. Population numbers refer to mitochondrial clades.

populations (Populations 5-7), showing their division in south-western Angola (Va=
10.118; Table 1). This variation explained 26.72% of the total genetic variation found in
the mitochondrial dataset. The two-species scenario that groups the central populations
with the northern populations (Pop1 and Pop2) produced a negative Va (-1.433),
suggesting that this scenario with a division in northern Namibia is not representative
of the data. The AMOVAs for the nuclear dataset showed different results, with the
two-species scenario with a division at the Kunene River showing the highest Va at
3.114, representing 31.11% of total genetic variation in the dataset. The second highest
proportional variation among groups for both mito and nuc datasets was the three-
species scenario. For all four scenarios, the largest source of variation was within popu-
lations (Table 1).

Discussion

Although previous work has revealed aspects of the phylogeographic history of Trachylepis
sulcata in south-western Africa (Portik 2009; Portik et al. 2010, 2011), incomplete sampling
in Angola precluded a comprehensive evaluation and a taxonomic assessment of
T. sulcata and T. ansorgii across south-western Africa. With the inclusion of population-
level Angolan sampling for the first time, this study fills a large gap in our understanding
of these widespread south-western African skinks.

Phylogenetic and population genetic results are largely congruent regarding popu-
lation structuring within Trachylepis sulcata sensu lato, recovering at least two distinct
major evolutionary lineages. The ML nuc phylogenetic tree recovers, albeit with low
support, a sister relationship between a mostly Angolan clade and a Namibian/South
African clade. The mitochondrial data found support for seven populations also compris-
ing two major clades. The higher level of structure revealed by the mitochondrial DNA
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(mtDNA) is expected and reflects more recent evolutionary history given the inherent
properties of mtDNA. The concatenated all5 trees show topologies similar to the mito
trees, except for the lack of differentiation between the two northern populations
(Pop1 and Pop2). While southern Namibia and South Africa constitute nearly half of the
area of distribution for these skinks, only one of seven populations is found in this
region. Most of the diversity is recovered in south-western Angola and north-western
Namibia.

The geographic boundary between the T. ansorgii and T. sulcata clades is of particular
interest. Depending on the analysis, the south-west Angolan populations (Pop3 and
Pop4) are recovered as either: 1) sister to the northern populations (Pop1 and Pop2)
forming a mostly Angolan clade (nuc AMOVA, Table 1; nuc ML tree, Figure S11); 2)
sister to the southern populations (all5 ML and BI trees, Figure 2, Figure S8; mito AMOVA,
Table 1); or 3) as a distinct evolutionary unit combined with the northern Namibian popu-
lation (Pop5) (STRUCTURE plot, Figure 5). Nodal support values for these clades were con-
sistently low across analyses, highlighting the uncertainty of their phylogenetic placement.
The phased nuclear haplotype networks also show varying relationships where these
central populations either group with the northern populations (RAG1), are intermediate
between northern and southern (MXRAS5), or are split between showing northern and
southern haplotypic affinities (EXPH5) (Figure 4).

Taken together, these results support the recognition of two evolutionarily distinct
lineages with a zone of introgression in south-western Angola/north-western Namibia.
This is best seen in the STRUCTURE plot of the nuclear dataset (Figure 5), in which the
central grouping (yellow barplots) contains nearly all admixed individuals with either
the northern T. ansorgii haplotype (blue, ~14 to 17°S) or the southern T. sulcata haplotype
(red, ~17 to 20°S, with some additional shared ancestry individuals in southern Namibia,
~27°S). This division between ‘central/northern” and ‘central/southern’ shared ancestry
individuals at 17°S corresponds with the Kunene River and the political boundary
between Angola and Namibia. While there are no haplotypes of the southern T. sulcata
cluster (red) extending into Angola, a few individuals with the northern T. ansorgii haplo-
types (blue) are found in Namibia (Figure 5).

The lack of available Angolan samples in previous studies on T. sulcata (Portik 2009;
Portik et al. 2010, 2011) provides an interesting comparison with this study. The two data-
sets are concordant in finding the highest level of genetic diversity in the northern part of
the species’ range, although the additional sampling provided in this study shifted that
centre of genetic diversity from north-western Namibia to south-western Angola. The
three mitochondrial clades recovered in Portik (2009) from the ND2 locus were also recov-
ered in this study (Pop5, Pop6, Pop7), with the addition of four more mitochondrial clades
in Angola (Pop1-4). The nuclear break reported in the Knersvlakte region in western
South Africa by Portik (2009) and Portik et al. (2011) was not recovered in the present
study (Figure 5). The inclusion of T. ansorgii in this study increased levels of genetic diver-
sity relative to the previous study (Portik et al. 2011), making the relatively low amount of
variation responsible for the previously identified Knersvlakte break less significant
overall. Interestingly, mito-nuclear discordance was found in both studies, although in
different geographic regions (Western Cape province, South Africa in Portik et al. 2011,
south-western Angola in this study).
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The time-calibrated mito tree estimated the root age for T. sulcata sensu lato in the Late
Miocene, ~6 mya, when the two major lineages of T. sulcata and T. ansorgii diverged
(Figure 3). This date is consistent with the findings in the genus-level phylogeny
(Weinell et al. 2019) that utilised a secondary calibration for the crown age of Mabuyinae
taken from the time-calibrated Squamata phylogeny of Zheng and Weins (2016). Within
the genus Trachylepis, many pairs of sister-taxa diverged in the Late Miocene/Pliocene
around the same time as T. sulcata and T. ansorgii (Weinell et al. 2019). Within
T. ansorgii, a Pleistocene divergence was recovered in the mtDNA between Pop1 and
Pop2, although the nDNA did not recover the two clades as distinct. Lineage splitting
for the remainder of the group occurred during the Pliocene, followed by a Pleistocene
expansion of T. sulcata across southern Namibia and South Africa, as previously hypoth-
esised (Portik et al. 2011).

Although the geographic delimitation between the two sister species differs among
data types, cytonuclear discordance can often inform evolutionary histories (Toews and
Brelsford 2012). The division inferred from the slowly evolving nuclear data aligns with
the Kunene River, suggesting the importance of this hydrological feature in the early iso-
lation between T. sulcata and T. ansorgii. A river capture event that connected the upper
and lower segments of the Kunene River is hypothesised to have occurred between 2.5-5
mya (Hipondoka 2005; Hoetzel et al. 2015). The Late Pliocene split between T. sulcata and
T. ansorgii found in this study with the mito dated phylogeny supports the timing of the
Kunene River capture around the Miocene-Pliocene transition, described in Hoetzel et al.
(2015) at ~5 mya. While the divergence is slightly older than this, a proto-Kunene River
existed prior to the river capture date, as present-day hydrological patterns along the
Great Escarpment suggest river incisions formed throughout the Great Escarpment (Par-
tridge and Maud 1987). This may explain the nuclear differentiation between northern
and southern clades observed at the Kunene River. The more rapidly evolving mitochon-
drial data show the division between T. ansorgii and T. sulcata to be ~250 km north of the
Kunene River, with southwestern Angolan populations (Pop3 and Pop4) showing greater
affinity to T. sulcata from across the Kunene River in Namibia, suggesting a mitochondrial
introgression northward into southern Namibe and Huila provinces in Angola. The pres-
ence of outlier taxa being recovered in clades not corresponding with their geographic
location (i.e., MCZ R190247, AMB 6972) in both nuclear and mitochondrial trees implies
some level of gene flow between major clades, potentially from recent human-mediated
accidental translocations. Evolutionary processes that have been invoked to explain confl-
icting patterns between mitochondrial and nuclear data in other taxa include introgres-
sive hybridisation, sex-based dispersal, independent lineage sorting, and hybrid zone
movement (Folt et al. 2019; Wielstra and Arntzen 2020; Marshall et al. 2021; Ambu
et al. 2023; Burriel-Carranza et al. 2023). A comprehensive analysis of the skinks from
this region of interest, including more extensive sampling, a detailed morphological
assessment, and/or more loci (i.e., a genomic dataset) would help clarify the phylogenetic
placement of the south-western Angolan populations, which are tentatively allocated
here to T. sulcata.

The Angolan Great Escarpment, an abrupt elevational and climatic transition between
the dry lowlands of Namibe Province and the Huila Plateau and Serra da Chela mountain
range, appears to act as a minor phylogeographic barrier. Specifically, this geologic
feature divides the two south-western Angolan populations into above-escarpment



AFRICAN JOURNAL OF HERPETOLOGY 17

(Pop3) and below-escarpment (Pop4) entities, with this division corresponding to ~600-
750 m a.s.l. However, the relatively recent Pliocene divergence between these two popu-
lations (~4 mya) postdates known periods of orogenic uplift in the western Great Escarp-
ment. More likely, environmental differences associated with a rapid elevational gradient
reinforce observed population structuring. In contrast, lower elevational populations in
Namibia and South Africa are not genetically distinct from their escarpment-dwelling
counterparts (Portik et al. 2011).

The molecular results from this study are consistent with the recent taxonomic
elevation of T. ansorgii to species-level, and the taxon’s sister relationship with
T. sulcata (Ceriaco et al. 2024). Concerted sampling efforts for populations in south-
western Angola, paired with previous studies on Namibian and South African material,
offer a new insight into the population structuring, genetic divergence, and geographic
boundaries in Trachylepis sulcata sensu lato across its entire distribution. However, the
translation of genetic data into taxonomic allocations is not straightforward. The study
here captures ongoing processes, such as the potential introgression of T. sulcata mito-
chondrial DNA into T. ansorgii and/or incomplete lineage sorting, hence the discrepancies
in both the number of units present and the geographic division between them. These
taxa have been recognised as distinct forms by at least some authorities for over 100
years and have valid names associated with them, even if the morphological characters
used by these authors to support this recognition were, most of the time, vague or
even contradictory. Indeed, they represent cryptic species that are very conservative in
their morphologies, and they are difficult to tell apart without molecular data; however,
the inclusion of topotypical genetic material in the present study for T. ansorgii and
near-topotypical material for T. sulcata adds clarity to taxonomic allocations of popu-
lations. Furthermore, the divergence age between T. ansorgii and T. sulcata in the Late
Miocene is concordant with species-level splits in other Trachylepis taxa (Weinell et al.
2019; Ceriaco et al. 2024). Based on our population-level results, T. ansorgii is endemic
to the central Angolan escarpment and highlands region, while T. sulcata is recognised
from South Africa and western Namibia. South-west Angolan populations south of 14°S
are tentatively allocated to T. sulcata, but further studies from this region and north-
western Namibia are required to clarify the status of such populations. Our results raise
the possibility of these populations representing a third species-level lineage, and
future fieldwork from the sampling gap in Cunene Province, Angola will help resolve
this issue.

Molecular methods have successfully recognised hidden species-level diversity in
Trachylepis from oceanic islands (Sindaco et al. 2012; Ceriaco et al. 2016a), central Africa
(Allen et al. 2017), southern Africa (Weinell and Bauer 2017), and Angola (Marques et al.
2019; Ceriaco et al. 2024). Additional field surveys will likely uncover further cryptic
diversity within the genus. Despite being relatively under-explored compared to other
southern African countries, Angola boasts the largest number of Trachylepis species at
25, including both T. sulcata and T. ansorgii (Ceriaco et al. 2024).

Several transitional ecotones are found within Angola, with the most prominent being
that between the humid tropics and the arid deserts of southern Africa (Marques et al.
2018; Branch et al. 2019). Trachylepis ansorgii and T. sulcata reflect this transition, as
their geographic boundaries correspond to the stark environmental gradients that
drive habitat differentiation across a relatively small transect. The Huila Plateau of the
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Angolan Great Escarpment harbours high genetic diversity and likely has acted as a
source of diversification for T. sulcata and T. ansorgii. These results highlight this escarp-
ment’s evolutionary importance in generating high levels of biodiversity and endemism
across taxonomic groups. Current conservation areas do not adequately preserve such
evolutionary unique assemblages persisting in the Angolan Great Escarpment (Clark
et al. 2011), and future work to document the region’s biodiversity is needed in order
to promote conservation.
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